The regularity of Diophantine quadruples
HTML articles powered by AMS MathViewer
- by Yasutsugu Fujita and Takafumi Miyazaki PDF
- Trans. Amer. Math. Soc. 370 (2018), 3803-3831 Request permission
Abstract:
A set of positive integers is called a Diophantine tuple if the product of any two elements in the set increased by the unity is a perfect square. A conjecture on the regularity of Diophantine quadruples asserts that any Diophantine triple can be uniquely extended to a Diophantine quadruple by joining an element exceeding the maximal element of the triple. The problem is reduced to studying an equation expressed as the coincidence of two linear recurrence sequences with initial terms composed of the fundamental solutions of some Pellian equations. In this paper, we determine the values of those initial terms completely and obtain finiteness results on the number of solutions of the equation. As one of the applications to the problem on the regularity of Diophantine quadruples, we show in general that the number of ways of extending any given Diophantine triple is at most $11$.References
- Joseph Arkin, V. E. Hoggatt Jr., and E. G. Straus, On Euler’s solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), no. 4, 333–339. MR 550175
- A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI 10.1093/qmath/20.1.129
- Michael A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173–199. MR 1629862, DOI 10.1515/crll.1998.049
- Michael A. Bennett, Mihai Cipu, Maurice Mignotte, and Ryotaro Okazaki, On the number of solutions of simultaneous Pell equations. II, Acta Arith. 122 (2006), no. 4, 407–417. MR 2234424, DOI 10.4064/aa122-4-4
- Yann Bugeaud, Andrej Dujella, and Maurice Mignotte, On the family of Diophantine triples $\{k-1,k+1,16k^3-4k\}$, Glasg. Math. J. 49 (2007), no. 2, 333–344. MR 2347264, DOI 10.1017/S0017089507003564
- Mihai Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), no. 3, 201–219. MR 3342321, DOI 10.4064/aa168-3-1
- Mihai Cipu, Alan Filipin, and Yasutsugu Fujita, Bounds for Diophantine quintuples II, Publ. Math. Debrecen 88 (2016), no. 1-2, 59–78. MR 3452164, DOI 10.5486/PMD.2015.7257
- Mihai Cipu and Yasutsugu Fujita, Bounds for Diophantine quintuples, Glas. Mat. Ser. III 50(70) (2015), no. 1, 25–34. MR 3361263, DOI 10.3336/gm.50.1.03
- M. Cipu, Y. Fujita, and M. Mignotte, Two-parameter families of uniquely extendable Diophantine triples, Sci. China Math., to appear, DOI 10.1007/s11425-015-0638-0.
- Mihai Cipu and Maurice Mignotte, On the number of solutions to systems of Pell equations, J. Number Theory 125 (2007), no. 2, 356–392. MR 2332594, DOI 10.1016/j.jnt.2006.09.016
- Mihai Cipu and Tim Trudgian, Searching for Diophantine quintuples, Acta Arith. 173 (2016), no. 4, 365–382. MR 3512860, DOI 10.4064/aa8254-2-2016
- Andrej Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), no. 3-4, 311–322. MR 1485226
- Andrej Dujella, An absolute bound for the size of Diophantine $m$-tuples, J. Number Theory 89 (2001), no. 1, 126–150. MR 1838708, DOI 10.1006/jnth.2000.2627
- Andrej Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214. MR 2039327, DOI 10.1515/crll.2004.003
- Andrej Dujella, On the number of Diophantine $m$-tuples, Ramanujan J. 15 (2008), no. 1, 37–46. MR 2372791, DOI 10.1007/s11139-007-9066-0
- A. Dujella, Diophantine $m$-tuples, http://web.math.pmf.unizg.hr/ duje/dtuples.html.
- Andrej Dujella and Attila Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552, DOI 10.1093/qjmath/49.195.291
- Alan Filipin and Yasutsugu Fujita, The number of Diophantine quintuples II, Publ. Math. Debrecen 82 (2013), no. 2, 293–308. MR 3034347, DOI 10.5486/PMD.2013.5200
- Alan Filipin, Yasutsugu Fujita, and Alain Togbé, The extendibility of Diophantine pairs I: the general case, Glas. Mat. Ser. III 49(69) (2014), no. 1, 25–36. MR 3224475, DOI 10.3336/gm.49.1.03
- Alan Filipin, Yasutsugu Fujita, and Alain Togbé, The extendibility of Diophantine pairs II: Examples, J. Number Theory 145 (2014), 604–631. MR 3253321, DOI 10.1016/j.jnt.2014.06.020
- Yasutsugu Fujita, The extensibility of Diophantine pairs $\{k-1,k+1\}$, J. Number Theory 128 (2008), no. 2, 322–353. MR 2380324, DOI 10.1016/j.jnt.2007.03.013
- Yasutsugu Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), no. 7, 1678–1697. MR 2524189, DOI 10.1016/j.jnt.2009.01.001
- Yasutsugu Fujita, The number of Diophantine quintuples, Glas. Mat. Ser. III 45(65) (2010), no. 1, 15–29. MR 2646434, DOI 10.3336/gm.45.1.02
- P. E. Gibbs, Computer Bulletin 17 (1978), 16.
- Bo He and Alain Togbé, On the family of Diophantine triples $\{k+1,4k,9k+3\}$, Period. Math. Hungar. 58 (2009), no. 1, 59–70. MR 2487246, DOI 10.1007/s10998-009-9059-6
- B. He and A. Togbé, On a family of Diophantine triples $\{k,A^2k+2A,(A+1)^2k+2(A+1)\}$ with two parameters, Acta Math. Hungar. 124 (2009), no. 1-2, 99–113. MR 2520620, DOI 10.1007/s10474-009-8155-5
- Bo He and Alain Togbé, On a family of Diophantine triples $\{k,A^2k+2A,(A+1)^2k+2(A+1)\}$ with two parameters II, Period. Math. Hungar. 64 (2012), no. 1, 1–10. MR 2886402, DOI 10.1007/s10998-012-9001-z
- Burton W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), no. 2, 155–165. MR 498978
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325–348. MR 2457264, DOI 10.4064/aa133-4-3
- D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), no. 1, 52–66. MR 1418319, DOI 10.1006/jnth.1996.0137
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252, DOI 10.1070/IM2000v064n06ABEH000314
- John H. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 461–472. MR 1207511, DOI 10.1017/S0305004100076118
- Tim Trudgian, Bounds on the number of Diophantine quintuples, J. Number Theory 157 (2015), 233–249. MR 3373240, DOI 10.1016/j.jnt.2015.05.004
- Pingzhi Yuan, On the number of solutions of simultaneous Pell equations, Acta Arith. 101 (2002), no. 3, 215–221. MR 1875840, DOI 10.4064/aa101-3-2
Additional Information
- Yasutsugu Fujita
- Affiliation: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
- MR Author ID: 720213
- ORCID: 0000-0001-7985-9667
- Email: fujita.yasutsugu@nihon-u.ac.jp
- Takafumi Miyazaki
- Affiliation: Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
- MR Author ID: 887630
- Email: tmiyazaki@gunma-u.ac.jp
- Received by editor(s): January 29, 2016
- Received by editor(s) in revised form: August 23, 2016
- Published electronically: December 27, 2017
- Additional Notes: The first author was supported by JSPS KAKENHI Grant Number 16K05079
The second author was supported by JSPS KAKENHI Grant Number 16K17557 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3803-3831
- MSC (2010): Primary 11D45; Secondary 11D09, 11B37, 11J68, 11J86
- DOI: https://doi.org/10.1090/tran/7069
- MathSciNet review: 3811510