## On the parametric behavior of $A$-hypergeometric series

HTML articles powered by AMS MathViewer

- by Christine Berkesch, Jens Forsgård and Laura Felicia Matusevich PDF
- Trans. Amer. Math. Soc.
**370**(2018), 4089-4109 Request permission

## Abstract:

We describe the parametric behavior of the series solutions of an $A$-hypergeometric system. More precisely, we construct explicit stratifications of the parameter space such that, on each stratum, the series solutions of the system are holomorphic.## References

- Alan Adolphson,
*Hypergeometric functions and rings generated by monomials*, Duke Math. J.**73**(1994), no. 2, 269–290. MR**1262208**, DOI 10.1215/S0012-7094-94-07313-4 - Alan Adolphson and Steven Sperber,
*On logarithmic solutions of A-hypergeometric systems*, arXiv:1402.5173, 2014. - Christine Berkesch,
*The rank of a hypergeometric system*, Compos. Math.**147**(2011), no. 1, 284–318. MR**2771133**, DOI 10.1112/S0010437X10004811 - Christine Berkesch Zamaere, Jens Forsgård, and Laura Felicia Matusevich,
*Hypergeometric functions for projective toric curves*, Adv. Math.**300**(2016), 835–867. MR**3534846**, DOI 10.1016/j.aim.2016.03.032 - Christine Berkesch Zamaere, Laura Felicia Matusevich, and Uli Walther,
*Singularities and holonomicity of binomial $D$-modules*, J. Algebra**439**(2015), 360–372. MR**3373376**, DOI 10.1016/j.jalgebra.2015.04.030 - Alicia Dickenstein, Federico N. Martínez, and Laura Felicia Matusevich,
*Nilsson solutions for irregular $A$-hypergeometric systems*, Rev. Mat. Iberoam.**28**(2012), no. 3, 723–758. MR**2949617**, DOI 10.4171/RMI/689 - I. M. Gel′fand and M. I. Graev,
*GG-functions and their connection with general hypergeometric functions*, Uspekhi Mat. Nauk**52**(1997), no. 4(316), 3–48 (Russian); English transl., Russian Math. Surveys**52**(1997), no. 4, 639–684. MR**1480889**, DOI 10.1070/RM1997v052n04ABEH002055 - I. M. Gelfand and M. I. Graev,
*GG functions and their relations to general hypergeometric functions*, Lett. Math. Phys.**50**(1999), no. 1, 1–27. MR**1751616**, DOI 10.1023/A:1007653012080 - I. M. Gel′fand, M. I. Graev, and A. V. Zelevinskiĭ,
*Holonomic systems of equations and series of hypergeometric type*, Dokl. Akad. Nauk SSSR**295**(1987), no. 1, 14–19 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no. 1, 5–10. MR**902936** - I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov,
*Equations of hypergeometric type and Newton polyhedra*, Dokl. Akad. Nauk SSSR**300**(1988), no. 3, 529–534 (Russian); English transl., Soviet Math. Dokl.**37**(1988), no. 3, 678–682. MR**948812** - I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov,
*Hypergeometric functions and toric varieties*, Funktsional. Anal. i Prilozhen.**23**(1989), no. 2, 12–26 (Russian); English transl., Funct. Anal. Appl.**23**(1989), no. 2, 94–106. MR**1011353**, DOI 10.1007/BF01078777 - Ryoshi Hotta,
*Equivariant $D$-modules*, Proceedings of ICPAM Spring School in Wuhan (1991), available at arXiv:math/9805021. - Heinz Kredel and Volker Weispfenning,
*Parametric Gröbner bases in rings of solvable type*, Proc. IV International Conference on Computer Algebra in Physical Research, Joint Institute for Nuclear Research Dibna, USSR, May 1990, World Scientific, Singapore, 1991, pp. 236–244. - Laura Felicia Matusevich, Ezra Miller, and Uli Walther,
*Homological methods for hypergeometric families*, J. Amer. Math. Soc.**18**(2005), no. 4, 919–941. MR**2163866**, DOI 10.1090/S0894-0347-05-00488-1 - Katsusuke Nabeshima, Katsuyoshi Ohara, and Shinichi Tajima,
*Comprehensive Gröbner systems in rings of differential operators, holonomic $D$-modules and b-functions*, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, pp. 349–356. MR**3565734** - Katsuyoshi Ohara and Nobuki Takayama,
*Holonomic rank of $\scr A$-hypergeometric differential-difference equations*, J. Pure Appl. Algebra**213**(2009), no. 8, 1536–1544. MR**2517990**, DOI 10.1016/j.jpaa.2008.11.018 - Mutsumi Saito,
*Isomorphism classes of $A$-hypergeometric systems*, Compositio Math.**128**(2001), no. 3, 323–338. MR**1858340**, DOI 10.1023/A:1011877515447 - Mutsumi Saito,
*Logarithm-free $A$-hypergeometric series*, Duke Math. J.**115**(2002), no. 1, 53–73. MR**1932325**, DOI 10.1215/S0012-7094-02-11512-9 - Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama,
*Gröbner deformations of hypergeometric differential equations*, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR**1734566**, DOI 10.1007/978-3-662-04112-3 - Mathias Schulze and Uli Walther,
*Irregularity of hypergeometric systems via slopes along coordinate subspaces*, Duke Math. J.**142**(2008), no. 3, 465–509. MR**2412045**, DOI 10.1215/00127094-2008-011 - Volker Weispfenning,
*Comprehensive Gröbner bases*, J. Symbolic Comput.**14**(1992), no. 1, 1–29. MR**1177987**, DOI 10.1016/0747-7171(92)90023-W

## Additional Information

**Christine Berkesch**- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 881657
- Email: cberkesc@math.umn.edu
**Jens Forsgård**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: jensf@math.tamu.edu
**Laura Felicia Matusevich**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 632562
- Email: laura@math.tamu.edu
- Received by editor(s): May 20, 2016
- Received by editor(s) in revised form: September 13, 2016, and September 15, 2016
- Published electronically: December 27, 2017
- Additional Notes: The first author was partially supported by NSF Grant DMS 1440537

The second author was partially supported by the G. S. Magnusson Fund of the Royal Swedish Academy of Sciences

The third author was partially supported by NSF grants DMS 1001763 and DMS 1500832 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 4089-4109 - MSC (2010): Primary 33C70; Secondary 14M25, 32A10, 52B20
- DOI: https://doi.org/10.1090/tran/7071
- MathSciNet review: 3811521