Extreme positive ternary sextics
HTML articles powered by AMS MathViewer
- by Aaron Kunert and Claus Scheiderer PDF
- Trans. Amer. Math. Soc. 370 (2018), 3997-4013 Request permission
Abstract:
We study nonnegative (psd) real sextic forms $q(x_0,x_1,x_2)$ that are not sums of squares (sos). Such a form has at most ten real zeros. We give a complete and explicit characterization of all sets $S\subseteq \mathbb {P}^2(\mathbb {R})$ with $|S|=9$ for which there is a psd non-sos sextic vanishing in $S$. Roughly, on every plane cubic $X$ with only real nodes there is a certain natural divisor class $\tau _X$ of degree $9$, and $S$ is the real zero set of some psd non-sos sextic if and only if there is a unique cubic $X$ through $S$ and $S$ represents the class $\tau _X$ on $X$. If this is the case, there is a unique extreme ray $\mathbb {R}_{+} q_S$ of psd non-sos sextics through $S$, and we show how to find $q_S$ explicitly. The sextic $q_S$ has a tenth real zero which for generic $S$ does not lie in $S$, but which may degenerate into a higher singularity contained in $S$. We also show that for any eight points in $\mathbb {P}^2(\mathbb {R})$ in general position there exists a psd sextic that is not a sum of squares and vanishes in the given points.References
- Grigoriy Blekherman, Jonathan Hauenstein, John Christian Ottem, Kristian Ranestad, and Bernd Sturmfels, Algebraic boundaries of Hilbert’s SOS cones, Compos. Math. 148 (2012), no. 6, 1717–1735. MR 2999301, DOI 10.1112/S0010437X12000437
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Man Duen Choi, Tsit Yuen Lam, and Bruce Reznick, Real zeros of positive semidefinite forms. I, Math. Z. 171 (1980), no. 1, 1–26. MR 566480, DOI 10.1007/BF01215051
- Arthur B. Coble, The Ten Nodes of the Rational Sextic and of the Cayley Symmetroid, Amer. J. Math. 41 (1919), no. 4, 243–265. MR 1506391, DOI 10.2307/2370285
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- David Hilbert, Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888), no. 3, 342–350 (German). MR 1510517, DOI 10.1007/BF01443605
- David Hilbert, Über ternäre definite Formen, Acta Math. 17 (1893), no. 1, 169–197 (German). MR 1554835, DOI 10.1007/BF02391990
- Monique Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 157–270. MR 2500468, DOI 10.1007/978-0-387-09686-5_{7}
- Bruce Reznick, Some concrete aspects of Hilbert’s 17th Problem, Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996) Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 251–272. MR 1747589, DOI 10.1090/conm/253/03936
- B. Reznick, On Hilbert’s construction of positive polynomials. Preprint, arxiv:0707.2156.
- Raphael M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, Selected questions of algebra and logic (collection dedicated to the memory of A. I. Mal′cev) (Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973, pp. 264–282. MR 0337878
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Claus Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069. MR 1675230, DOI 10.1090/S0002-9947-99-02522-2
Additional Information
- Aaron Kunert
- Affiliation: Fachbereich Mathematik und Statistik, Universität Konstanz, Germany
- Claus Scheiderer
- Affiliation: Fachbereich Mathematik und Statistik, Universität Konstanz, Germany
- MR Author ID: 212893
- Received by editor(s): August 27, 2015
- Received by editor(s) in revised form: September 8, 2016
- Published electronically: December 14, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3997-4013
- MSC (2010): Primary 14P05; Secondary 14C22, 14H45
- DOI: https://doi.org/10.1090/tran/7076
- MathSciNet review: 3811517