On tensor products of positive representations of split real quantum Borel subalgebra $\mathcal {U}_{q\widetilde {q}}(\mathfrak {b}_\mathbb {R})$
HTML articles powered by AMS MathViewer
- by Ivan C. H. Ip PDF
- Trans. Amer. Math. Soc. 370 (2018), 4177-4200 Request permission
Abstract:
We study the positive representations $\mathcal {P}_\lambda$ of split real quantum groups $\mathcal {U}_{q\widetilde {q}}(\mathfrak {g}_\mathbb {R})$ restricted to the Borel subalgebra $\mathcal {U}_{q\widetilde {q}}(\mathfrak {b}_\mathbb {R})$. We prove that the restriction is independent of the parameter $\lambda$. Furthermore, we prove that it can be constructed from the GNS-representation of the multiplier Hopf algebra $\mathcal {U}_{q\widetilde {q}}^{C^*}(\mathfrak {b}_\mathbb {R})$ defined earlier, which allows us to decompose their tensor product using the theory of the “multiplicative unitary”. In particular, the quantum mutation operator can be constructed from the multiplicity module, which will be an essential ingredient in the construction of quantum higher Teichmüller theory from the perspective of representation theory, generalizing earlier work by Frenkel-Kim.References
- Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171–191. MR 204641, DOI 10.2307/1970309
- Saad Baaj and Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425–488 (French, with English summary). MR 1235438
- A. G. Bytsko and J. Teschner, R-operator, co-product and Haar-measure for the modular double of $U_q(\mathfrak {s}\mathfrak {l}(2,\Bbb R))$, Comm. Math. Phys. 240 (2003), no. 1-2, 171–196. MR 2004985, DOI 10.1007/s00220-003-0894-5
- V. V. Fok and L. O. Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999), no. 3, 511–528 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 120 (1999), no. 3, 1245–1259. MR 1737362, DOI 10.1007/BF02557246
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- P. Etingof, V. Ginzburg, N. Guay, D. Hernandez, and Al Savage, Twenty-five years of representation theory of quantum groups, final reports, BIRS, Banff (2011).
- L. D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), no. 3, 249–254. MR 1345554, DOI 10.1007/BF01872779
- Ludwig Faddeev, Modular double of a quantum group, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 149–156. MR 1805888
- L. D. Faddeev and R. M. Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), no. 5, 427–434. MR 1264393, DOI 10.1142/S0217732394000447
- V. V. Fock, Dual Teichmüller spaces, arXiv:dg-ga/9702018 (1997).
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- V. V. Fock and A. B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), no. 2, 223–286. MR 2470108, DOI 10.1007/s00222-008-0149-3
- Igor B. Frenkel and Ivan C. H. Ip, Positive representations of split real quantum groups and future perspectives, Int. Math. Res. Not. IMRN 8 (2014), 2126–2164. MR 3194015, DOI 10.1093/imrn/rns288
- Igor B. Frenkel and Hyun Kyu Kim, Quantum Teichmüller space from the quantum plane, Duke Math. J. 161 (2012), no. 2, 305–366. MR 2876932, DOI 10.1215/00127094-1507390
- V. A. Fateev and A. V. Litvinov, Correlation functions in conformal Toda field theory. I, J. High Energy Phys. 11 (2007), 002, 54. MR 2362147, DOI 10.1088/1126-6708/2007/11/002
- Ivan Chi-Ho Ip, Representation of the quantum plane, its quantum double, and harmonic analysis on $GL_q^+(2,\Bbb {R})$, Selecta Math. (N.S.) 19 (2013), no. 4, 987–1082. MR 3131494, DOI 10.1007/s00029-012-0112-4
- Ivan Chi-Ho Ip, Positive Representations and Harmonic Analysis of Split Real Quantum Groups, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Yale University. MR 3068031
- Ivan C. H. Ip, Positive representations of non-simply-laced split real quantum groups, J. Algebra 425 (2015), 245–276. MR 3295985, DOI 10.1016/j.jalgebra.2014.11.019
- Ivan Chi-Ho Ip, Positive representations of split real quantum groups: the universal $R$ operator, Int. Math. Res. Not. IMRN 1 (2015), 240–287. MR 3340301, DOI 10.1093/imrn/rnt198
- I. Ip, Positive representations, multiplier Hopf algebra, and continuous canonical basis, String theory, integrable systems and representation theory, RIMS Kokyuroku Bessatsu B62 (2017), 71-86.
- I. Ip, On tensor products of positive representations of split real quantum Borel subalgebra $\mathcal {U}_{q\widetilde {q}}(\mathfrak {b}_\mathbb {R})$, preprint, arXiv:1405.4786v2 (2014).
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- R. M. Kashaev, The Heisenberg double and the pentagon relation, Algebra i Analiz 8 (1996), no. 4, 63–74; English transl., St. Petersburg Math. J. 8 (1997), no. 4, 585–592. MR 1418255
- R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998), no. 2, 105–115. MR 1607296, DOI 10.1023/A:1007460128279
- Johan Kustermans and Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837–934 (English, with English and French summaries). MR 1832993, DOI 10.1016/S0012-9593(00)01055-7
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- I. Nidaiev and J. Teschner, On the relation between the modular double of $\mathcal {U}_q(\mathfrak {sl}(2,\mathbb {R}))$ and the quantum Teichmüller theory, arXiv:1302.3454 (2013).
- B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, arXiv: hep-th/9911110 (1999).
- B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of $\scr U_q(\mathfrak {sl}(2,\Bbb R))$, Comm. Math. Phys. 224 (2001), no. 3, 613–655. MR 1871903, DOI 10.1007/PL00005590
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Takayuki Oda, An explicit integral representation of Whittaker functions for the representations of the discrete series—the case of $\textrm {SU}(2,2)$, Sūrikaisekikenkyūsho K\B{o}kyūroku 843 (1993), 45–63. Research into automorphic forms and $L$ functions (Japanese) (Kyoto, 1992). MR 1296709
- J. Teschner, Quantization of moduli spaces of flat connections and Liouville theory, arXiv:1405.0359
- Thomas Timmermann, An invitation to quantum groups and duality, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyond. MR 2397671, DOI 10.4171/043
- A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), no. 2, 917–932. MR 1220906, DOI 10.1090/S0002-9947-1994-1220906-5
- Alexandre Yu. Volkov, Noncommutative hypergeometry, Comm. Math. Phys. 258 (2005), no. 2, 257–273. MR 2171695, DOI 10.1007/s00220-005-1342-5
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- Niclas Wyllard, $A_{N-1}$ conformal Toda field theory correlation functions from conformal $\scr N=2$ $\textrm {SU}(N)$ quiver gauge theories, J. High Energy Phys. 11 (2009), 002, 22. MR 2628905, DOI 10.1088/1126-6708/2009/11/002
Additional Information
- Ivan C. H. Ip
- Affiliation: Center for the Promotion of Interdisciplinary Education and Research , Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Email: ivan.ip@math.kyoto-u.ac.jp
- Received by editor(s): May 29, 2014
- Received by editor(s) in revised form: February 19, 2016, and October 26, 2016
- Published electronically: December 27, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4177-4200
- MSC (2010): Primary 81R50, 22D25
- DOI: https://doi.org/10.1090/tran/7110
- MathSciNet review: 3811524