Finding bases of uncountable free abelian groups is usually difficult
HTML articles powered by AMS MathViewer
- by Noam Greenberg, Dan Turetsky and Linda Brown Westrick PDF
- Trans. Amer. Math. Soc. 370 (2018), 4483-4508 Request permission
Abstract:
We investigate effective properties of uncountable free abelian groups. We show that identifying free abelian groups and constructing bases for such groups is often computationally hard, depending on the cardinality. For example, we show, under the assumption $V=L$, that there is a first-order definable free abelian group with no first-order definable basis.References
- J. E. Baumgartner, L. A. Harrington, and E. M. Kleinberg, Adding a closed unbounded set, J. Symbolic Logic 41 (1976), no. 2, 481–482. MR 434818, DOI 10.2307/2272248
- William W. Boone, The word problem, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 1061–1065. MR 101267, DOI 10.1073/pnas.44.10.1061
- Jacob Carson, Jesse Johnson, Julia Knight, Karen Lange, Charles McCoy, and John Wallbaum, The arithmetical hierarchy in the setting of $\omega _1$, Computability 2 (2013), no. 2, 93–105. MR 3153995, DOI 10.3233/COM-13022
- M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911), no. 1, 116–144 (German). MR 1511645, DOI 10.1007/BF01456932
- Rodney Downey and Alexander G. Melnikov, Effectively categorical abelian groups, J. Algebra 373 (2013), 223–248. MR 2995024, DOI 10.1016/j.jalgebra.2012.09.020
- Paul C. Eklof, On the existence of $\kappa$-free abelian groups, Proc. Amer. Math. Soc. 47 (1975), 65–72. MR 379694, DOI 10.1090/S0002-9939-1975-0379694-0
- Paul C. Eklof, Methods of logic in abelian group theory, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 251–269. MR 0465854
- Paul C. Eklof, Shelah’s singular compactness theorem, Publ. Mat. 52 (2008), no. 1, 3–18. MR 2384838, DOI 10.5565/PUBLMAT_{5}2108_{0}1
- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR 1914985
- Ekaterina Fokina, Sy-David Friedman, Julia Knight, and Russell Miller, Classes of structures with universe a subset of $\omega _1$, J. Logic Comput. 23 (2013), no. 6, 1249–1265. MR 3144883, DOI 10.1093/logcom/ext042
- Sy D. Friedman, Negative solutions to Post’s problem. II, Ann. of Math. (2) 113 (1981), no. 1, 25–43. MR 604041, DOI 10.2307/1971132
- A. Fröhlich and J. C. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy. Soc. London Ser. A 248 (1956), 407–432. MR 74349, DOI 10.1098/rsta.1956.0003
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Noam Greenberg, The role of true finiteness in the admissible recursively enumerable degrees, Mem. Amer. Math. Soc. 181 (2006), no. 854, vi+99. MR 2213065, DOI 10.1090/memo/0854
- Noam Greenberg, Joel David Hamkins, Denis Hirschfeldt, and Russell Miller (eds.), Effective mathematics of the uncountable, Lecture Notes in Logic, vol. 41, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2013. MR 3185552, DOI 10.1017/CBO9781139028592
- Noam Greenberg, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky, Computability and uncountable linear orders I: Computable categoricity, J. Symb. Log. 80 (2015), no. 1, 116–144. MR 3320586, DOI 10.1017/jsl.2014.68
- Noam Greenberg, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky, Computability and uncountable linear orders II: Degree spectra, J. Symb. Log. 80 (2015), no. 1, 145–178. MR 3320587, DOI 10.1017/jsl.2014.69
- Noam Greenberg and Julia F. Knight, Computable structure theory on $\omega _1$ using admissibility, Effective mathematics of the uncountable, Lect. Notes Log., vol. 41, Assoc. Symbol. Logic, La Jolla, CA, 2013, pp. 50–80. MR 3205054
- Noam Greenberg, Julia F. Knight, Alexander G. Melnikov, and Daniel D. Turetsky, Computable categoricity for uncountable structures, in preparation.
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI 10.1007/BF01206635
- G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. London Ser. A 262 (1961), 455–475. MR 130286, DOI 10.1098/rspa.1961.0132
- Paul Hill, New criteria for freeness in abelian groups, Trans. Amer. Math. Soc. 182 (1973), 201–209. MR 325805, DOI 10.1090/S0002-9947-1973-0325805-5
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- Peter Koepke, Ordinal computability, Mathematical theory and computational practice, Lecture Notes in Comput. Sci., vol. 5635, Springer, Berlin, 2009, pp. 280–289. MR 2545902, DOI 10.1007/978-3-642-03073-4_{2}9
- A. I. Mal′cev, Constructive algebras. I, Uspehi Mat. Nauk 16 (1961), no. 3 (99), 3–60 (Russian). MR 0151377
- G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann. Math. Logic 11 (1977), no. 2, 147–171. MR 446936, DOI 10.1016/0003-4843(77)90015-8
- P. S. Novikov, The unsolvability of the problem of the equivalence of words in a group and several other problems in algebra, Czechoslovak Math. J. 6(81) (1956), 450–454 (Russian, with English summary). MR 121395
- L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. (2) 35 (1934), no. 2, 361–388. MR 1503168, DOI 10.2307/1968438
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
- Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR 1080970, DOI 10.1007/BFb0086109
- Saharon Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243–256. MR 357114, DOI 10.1007/BF02757281
- Saharon Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), no. 4, 319–349. MR 389579, DOI 10.1007/BF02757993
- Bartel L. van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Polynomen, Math. Ann. 102 (1930), no. 1, 738–739 (German). MR 1512605, DOI 10.1007/BF01782374
Additional Information
- Noam Greenberg
- Affiliation: School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
- MR Author ID: 757288
- ORCID: 0000-0003-2917-3848
- Email: greenberg@msor.vuw.ac.nz
- Dan Turetsky
- Affiliation: School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
- MR Author ID: 894314
- Email: dan.turetsky@vuw.ac.nz
- Linda Brown Westrick
- Affiliation: School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
- Address at time of publication: Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, Connecticut 06269-1009
- Email: westrick@uconn.edu
- Received by editor(s): January 23, 2016
- Received by editor(s) in revised form: March 7, 2017
- Published electronically: December 14, 2017
- Additional Notes: The first author was supported by the Marsden Fund, a Rutherford Discovery Fellowship from the Royal Society of New Zealand, and by the Templeton Foundation via the Turing centenary project “Mind, Mechanism and Mathematics”.
The third author was supported by the Rutherford Discovery Fellowship as a postdoctoral fellow. - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4483-4508
- MSC (2010): Primary 03C57; Secondary 03D60
- DOI: https://doi.org/10.1090/tran/7232
- MathSciNet review: 3811535