Darmon cycles and the Kohnen-Shintani lifting
HTML articles powered by AMS MathViewer
- by Guhan Venkat PDF
- Trans. Amer. Math. Soc. 370 (2018), 4059-4087 Request permission
Abstract:
Let $\mathbf {f}(q)$ be a Coleman family of cusp forms of tame level $N$. Let $k_{0}$ be the classical weight at which the specialization of $\mathbf {f}(q)$ is new. By the Kohnen-Shintani correspondence, we associate to every even classical weight $k$, a half-integral weight form (for $k \neq k_{0}$) $g_{k} = \sum \limits _{D > 0} c(D, k)q^D \in S_{\frac {k+1}{2}}(\Gamma _{0}(4N))$ and $g_{k_{0}} = \sum \limits _{D > 0} c(D, k)q^D \in S_{\frac {k+1}{2}}(\Gamma _{0}(4Np))$.
We first prove that the Fourier coefficients $c(D, k)$ for $k \in 2\mathbb {Z}_{> 0}$ can be interpolated by a $p$-adic analytic function $\tilde {c}(D, \kappa )$ with $\kappa$ varying in a neighbourhood of $k_{0}$ in the $p$-adic weight space. For discriminants $D$ such that $\tilde {c}(D, k_{0}) = 0$, which we call Type II, we show that $\frac {d}{d\kappa }[\widetilde {c}(D, \kappa )]_{k=k_{0}}$ is related to certain algebraic cycles associated to the motive $\mathcal {M}_{k_{0}}$ attached to the space of cusp forms of weight $S_{k_{0}}(\Gamma _{0}(Np))$. These algebraic cycles appear in the theory of Darmon cycles.
References
- Avner Ash and Glenn Stevens, Modular forms in characteristic $l$ and special values of their $L$-functions, Duke Math. J. 53 (1986), no. 3, 849–868. MR 860675, DOI 10.1215/S0012-7094-86-05346-9
- A. Ash and G. Stevens, $p$-adic deformations of arithmetic cohomology, preprint.
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Joël Bellaïche, Critical $p$-adic $L$-functions, Invent. Math. 189 (2012), no. 1, 1–60. MR 2929082, DOI 10.1007/s00222-011-0358-z
- Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343–370. MR 2521118, DOI 10.4007/annals.2009.170.343
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Henri Cohen, Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, vol. 239, Springer, New York, 2007. MR 2312337
- Harvey Cohn, Advanced number theory, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980. Reprint of A second course in number theory, 1962. MR 594936
- Pierre Colmez, Zéros supplémentaires de fonctions $L\ p$-adiques de formes modulaires, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, pp. 193–210 (French, with English summary). MR 2193353
- Pierre Colmez and Jean-Marc Fontaine, Construction des représentations $p$-adiques semi-stables, Invent. Math. 140 (2000), no. 1, 1–43 (French). MR 1779803, DOI 10.1007/s002220000042
- Henri Darmon, Integration on $\scr H_p\times \scr H$ and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589–639. MR 1884617, DOI 10.2307/3062142
- Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
- Henri Darmon and Gonzalo Tornaría, Stark-Heegner points and the Shimura correspondence, Compos. Math. 144 (2008), no. 5, 1155–1175. MR 2457522, DOI 10.1112/S0010437X08003552
- Samit Dasgupta and Jeremy Teitelbaum, The $p$-adic upper half plane, $p$-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 65–121. MR 2482346, DOI 10.1090/ulect/045/03
- Jean-Marc Fontaine, Représentations $p$-adiques semi-stables, Astérisque 223 (1994), 113–184 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293972
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
- Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
- Matthew Greenberg, Marco Adamo Seveso, and Shahab Shahabi, Modular $p$-adic $L$-functions attached to real quadratic fields and arithmetic applications, J. Reine Angew. Math. 721 (2016), 167–231. MR 3574881, DOI 10.1515/crelle-2014-0088
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562. MR 909238, DOI 10.1007/BF01458081
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135, DOI 10.1017/CBO9780511623691
- Adrian Iovita and Michael Spieß, Derivatives of $p$-adic $L$-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), no. 2, 333–384. MR 2013784, DOI 10.1007/s00222-003-0306-7
- Koji Kitagawa, On standard $p$-adic $L$-functions of families of elliptic cusp forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 81–110. MR 1279604, DOI 10.1090/conm/165/01611
- Winfried Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237–268. MR 783554, DOI 10.1007/BF01455989
- Winfried Kohnen, Modular forms of half-integral weight on $\Gamma _{0}(4)$, Math. Ann. 248 (1980), no. 3, 249–266. MR 575942, DOI 10.1007/BF01420529
- Winfried Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32–72. MR 660784, DOI 10.1515/crll.1982.333.32
- W. Kohnen and D. Zagier, Values of $L$-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, 175–198. MR 629468, DOI 10.1007/BF01389166
- Matteo Longo and Zhengyu Mao, Kohnen’s formula and a conjecture of Darmon and Tornaría, Trans. Amer. Math. Soc. 370 (2018), no. 1, 73–98. MR 3717975, DOI 10.1090/tran/6930
- B. Mazur, On monodromy invariants occurring in global arithmetic, and Fontaine’s theory, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 1–20. MR 1279599, DOI 10.1090/conm/165/01599
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- M. Ram Murty and V. Kumar Murty, Non-vanishing of $L$-functions and applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1997. [2011 reprint of the 1997 original] [MR1482805]. MR 3025442, DOI 10.1007/978-3-0348-0274-1
- Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), no. 1, 99–125. MR 1135466, DOI 10.1007/BF01231883
- Jürgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4
- Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo $l$, Ann. of Math. (2) 147 (1998), no. 2, 453–470. MR 1626761, DOI 10.2307/121015
- Robert Pollack, Overconvergent modular symbols, Computations with modular forms, Contrib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 69–105. MR 3381449, DOI 10.1007/978-3-319-03847-6_{3}
- Alexandru A. Popa, Central values of Rankin $L$-series over real quadratic fields, Compos. Math. 142 (2006), no. 4, 811–866. MR 2249532, DOI 10.1112/S0010437X06002259
- Victor Rotger and Marco Adamo Seveso, $\scr L$-invariants and Darmon cycles attached to modular forms, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1955–1999. MR 2984593, DOI 10.4171/JEMS/352
- P. Schneider and U. Stuhler, The cohomology of $p$-adic symmetric spaces, Invent. Math. 105 (1991), no. 1, 47–122. MR 1109620, DOI 10.1007/BF01232257
- A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430. MR 1047142, DOI 10.1007/BF01231194
- Marco Adamo Seveso, $p$-adic $L$-functions and the rationality of Darmon cycles, Canad. J. Math. 64 (2012), no. 5, 1122–1181. MR 2979580, DOI 10.4153/CJM-2011-076-8
- Marco Adamo Seveso, The Teitelbaum conjecture in the indefinite setting, Amer. J. Math. 135 (2013), no. 6, 1525–1557. MR 3145003, DOI 10.1353/ajm.2013.0055
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11. MR 0314766
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211–221. MR 463119, DOI 10.1007/BF01391466
- Goro Shimura, The periods of certain automorphic forms of arithmetic type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 605–632 (1982). MR 656039
- Takuro Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126. MR 389772
- G. Stevens, Rigid analytic modular symbols. preprint.
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484 (French). MR 646366
- Hui Xue, Gross-Kohnen-Zagier theorem for higher weight forms, Math. Res. Lett. 17 (2010), no. 3, 573–586. MR 2653689, DOI 10.4310/MRL.2010.v17.n3.a14
- Shaul Zemel, A Gross-Kohnen-Zagier type theorem for higher-codimensional Heegner cycles, Res. Number Theory 1 (2015), Paper No. 23, 44. MR 3501007, DOI 10.1007/s40993-015-0025-3
- Thomas Zink, Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 68, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984 (German). With English, French and Russian summaries. MR 767090
Additional Information
- Guhan Venkat
- Affiliation: Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Address at time of publication: Département de Mathématiques et de Statistique Université Laval, Pavillion Alexandre-Vachon 1045 Avenue de la Médecine Québec, QC G1V 0A6, Canada
- Email: guhan.venkat@gmail.com
- Received by editor(s): June 21, 2016
- Received by editor(s) in revised form: September 15, 2016
- Published electronically: February 28, 2018
- Additional Notes: The author would like to thank Denis Benois, Adrian Iovita and Matteo Longo for their constant guidance throughout this project. The author would also like to thank the anonymous referee for suggesting improvements to an earlier draft. The work grew out of the author’s PhD thesis completed at the Université de Bordeaux and Università di degli Studi di Padova and was supported by the ALGANT-Doc commission.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4059-4087
- MSC (2010): Primary 11F67, 11F37, 11F85, 11G40
- DOI: https://doi.org/10.1090/tran/7077
- MathSciNet review: 3811520