On the number of zeros and poles of Dirichlet series
HTML articles powered by AMS MathViewer
- by Bao Qin Li PDF
- Trans. Amer. Math. Soc. 370 (2018), 3865-3883 Request permission
Abstract:
This paper investigates lower bounds on the number of zeros and poles of a general Dirichlet series in a disk of radius $r$ and gives, as a consequence, an affirmative answer to an open problem of Bombieri and Perelli on the bound. Applications will also be given to Picard type theorems, global estimates on the symmetric difference of zeros, and uniqueness problems for Dirichlet series.References
- Tom M. Apostol, Modular functions and Dirichlet series in number theory, 2nd ed., Graduate Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990. MR 1027834, DOI 10.1007/978-1-4612-0999-7
- Carlos A. Berenstein and Roger Gay, Complex variables, Graduate Texts in Mathematics, vol. 125, Springer-Verlag, New York, 1991. An introduction. MR 1107514, DOI 10.1007/978-1-4612-3024-3
- A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York, 1955. MR 0068029
- Harald Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, N.Y., 1947. MR 0020163
- E. Bombieri and A. Perelli, Distinct zeros of $L$-functions, Acta Arith. 83 (1998), no. 3, 271–281. MR 1611193, DOI 10.4064/aa-83-3-271-281
- Enrico Bombieri and Alberto Perelli, Zeros and poles of Dirichlet series, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 69–73 (2002) (English, with English and Italian summaries). MR 1898450
- Matthew Cardwell and Zhuan Ye, A uniqueness theorem of L-functions with rational moving targets, J. Math. Anal. 5 (2014), no. 1, 16–19. MR 3199389
- Yik-Man Chiang and Shao-Ji Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3767–3791. MR 2491899, DOI 10.1090/S0002-9947-09-04663-7
- Chong Ji Dai, David Drasin, and Bao Qin Li, On the growth of entire and meromorphic functions of infinite order, J. Analyse Math. 55 (1990), 217–228. MR 1094716, DOI 10.1007/BF02789202
- H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series, J. London Math. Soc., 11(1936), 181-185; Collected Works, vol. IV, Academic Press, 1977, 1774-1779.
- Rui Gao and Bao Qin Li, An answer to a question on value distribution of the Riemann zeta-function, Internat. J. Math. 23 (2012), no. 4, 1250044, 9. MR 2903194, DOI 10.1142/S0129167X12500449
- Anatoly A. Goldberg and Iossif V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, vol. 236, American Mathematical Society, Providence, RI, 2008. Translated from the 1970 Russian original by Mikhail Ostrovskii; With an appendix by Alexandre Eremenko and James K. Langley. MR 2435270, DOI 10.1090/mmono/236
- Steven M. Gonek, Jaeho Haan, and Haseo Ki, A uniqueness theorem for functions in the extended Selberg class, Math. Z. 278 (2014), no. 3-4, 995–1004. MR 3278902, DOI 10.1007/s00209-014-1343-1
- G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Stechert-Hafner, Inc., New York, 1964. MR 0185094
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Pei-Chu Hu and Bao Qin Li, A simple proof and strengthening of a uniqueness theorem for $L$-functions, Canad. Math. Bull. 59 (2016), no. 1, 119–122. MR 3451903, DOI 10.4153/CMB-2015-045-1
- Pei-Chu Hu and Bao Qin Li, A connection between the Riemann hypothesis and uniqueness of the Riemann zeta function, manuscript.
- Haseo Ki, A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation, Adv. Math. 231 (2012), no. 5, 2484–2490. MR 2970456, DOI 10.1016/j.aim.2012.07.027
- Haseo Ki and Bao Qin Li, On uniqueness in the extended Selberg class of Dirichlet series, Proc. Amer. Math. Soc. 141 (2013), no. 12, 4169–4173. MR 3105859, DOI 10.1090/S0002-9939-2013-11749-1
- C. G. Lekkerkerker, On the zeros of a class of Dirichlet series, Van Gorcum & Co. N. V., Assen, Netherlands, 1955. MR 0069265
- B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR 589888
- Bao Qin Li, A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation, Adv. Math. 226 (2011), no. 5, 4198–4211. MR 2770446, DOI 10.1016/j.aim.2010.12.001
- S. Mandelbrojt, Dirichlet series, D. Reidel Publishing Co., Dordrecht, 1972. Principles and methods. MR 0435370
- Maruti Ram Murty and Vijaya Kumar Murty, Strong multiplicity one for Selberg’s class, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 315–320 (English, with English and French summaries). MR 1289304
- K. Ramachandra, On the zeros of a class of generalized Dirichlet series, J. Reine Angew. Math. 273 (1975), 31–40; addendum, ibid. 273 (1975), 60. MR 369285, DOI 10.1515/crll.1975.273.31
- K. Ramachandra, On the zeros of a class of generalised Dirichlet series. VII, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 391–397. MR 1139805, DOI 10.5186/aasfm.1991.1620
- A. Selberg, Old and new conjectures and results about a class of Dirichlet series, In: E. Bombieri et al. (eds.), Proc. Amalfi Conf. Analytic Number Theory, Universit‘a di Salerno 1992, 367-385; Collected Papers, vol. II, Springer-Verlag, 1991, 47-63.
- Jörn Steuding, Value-distribution of $L$-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696
- E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition. MR 3155290
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Additional Information
- Bao Qin Li
- Affiliation: Department of Mathematics and Statistics, Florida International University, Miami, Florida 33199
- MR Author ID: 249034
- Email: libaoqin@fiu.edu
- Received by editor(s): May 2, 2016
- Received by editor(s) in revised form: August 28, 2016
- Published electronically: February 21, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3865-3883
- MSC (2010): Primary 30B50, 11M41, 11M36
- DOI: https://doi.org/10.1090/tran/7084
- MathSciNet review: 3811512