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AMBIENT OBSTRUCTION FLOW

CHRISTOPHER LOPEZ

Abstract. We establish fundamental results for a parabolic flow of Riemann-
ian metrics introduced by Bahuaud–Helliwell which is based on the Fefferman–
Graham ambient obstruction tensor. First, we obtain local L2 smoothing es-
timates for the curvature tensor and use them to prove pointwise smoothing
estimates for the curvature tensor. We use the pointwise smoothing estimates
to show that the curvature must blow up for a finite time singular solution. We
also use the pointwise smoothing estimates to prove a compactness theorem
for a sequence of solutions with bounded C0 curvature norm and injectivity
radius bounded from below at one point. Finally, we use the compactness
theorem to obtain a singularity model from a finite time singular solution and
to characterize the behavior at infinity of a nonsingular solution.

1. Introduction

1.1. Introduction. The uniformization theorem ensures that for a compact two-
dimensional Riemannian manifold (M, g), there is a metric g̃ conformal to g for
which (M, g̃) has constant sectional curvature equal to K. Moreover, the sign of K
can be determined via the Gauss–Bonnet theorem. In higher dimensions, curvature
functionals have been used with great success to define and locate optimal metrics
in higher dimensions; see [29]. One conformally invariant curvature functional for
a 4-dimensional Riemannian manifold (M, g) is given by

F4
W (g) =

∫
M

|Wg|2 dVg,

where Wijkl is the Weyl tensor. The negative gradient of F4
W is the Bach tensor

Bij defined as

Bij = −∇k∇lWkijl − 1
2R

klWkijl.

The study of critical metrics for F4
W , i.e., Bach-flat metrics, has been fruitful. The

class of Bach-flat metrics contains, as shown in [5], familiar metrics such as locally
conformally Einstein metrics and scalar flat (anti) self-dual metrics.

Another conformally invariant functional for a 4-dimensional Riemannian man-
ifold (M, g) is given by

F4
Q(g) =

∫
M

Q(g) dVg,
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where Q(g) is a scalar quantity introduced by Branson in [7] called the Q curvature.
Via the Chern–Gauss–Bonnet theorem, this functional is related to F4

W by F4
Q =

8π2χ(M) − 1
4F4

W . The Bach tensor is also the gradient of F4
Q. Unlike the Weyl

tensor, the Q curvature is not pointwise conformally covariant.
One can generalize the Q curvature to a scalar quantity defined on n-dimensional

Riemannian manifolds (M, g), where n is even. Consider the functionals defined
for n even by

Fn
Q(g) =

∫
M

Q(g) dVg.

These functionals are conformally invariant. The gradient of Fn
Q is a symmetric

2-tensor O, introduced by Fefferman and Graham in [16], called the ambient ob-
struction tensor. This tensor arises in physics: for example, Anderson and Chruściel
use O in [1] to construct global solutions of the vacuum Einstein equation in even
dimensions. In dimension 4, O is just the Bach tensor. The ambient obstruction
tensor is conformally covariant in n dimensions. This is in contrast to the n-
dimensional generalization of the Bach tensor, which is only conformally covariant
in dimension 4. This fact follows from a result in Graham–Hirachi [19] stating that
in even dimensions 6 and greater, the only conformally covariant tensors are essen-
tially W and O. Extending the 4-dimensional case, Fefferman and Graham showed
in [17] that O vanishes for Einstein metrics for all even dimensions. However, there
also exist nonconformally Einstein metrics for which O = 0, as shown by Gover and
Leitner in [18]. The conformal covariance of O and the fact that obstruction flat
metrics generalize conformally Einstein metrics suggest that studying the critical
points of Fn

Q via its gradient flow may aid in the study of optimal metrics on M .
Our main goal is to establish fundamental results for this gradient flow.

1.2. Main results. We will continue the study of a variant of the gradient flow of
Fn

Q, that was introduced by Bahuaud and Helliwell in [3], establishing fundamental

results. This flow, which we will refer to as the ambient obstruction flow (AOF),
is defined for a family of metrics g(t) on a smooth manifold M by

(1.1)

{
∂tg = (−1)

n
2 O + (−1)

n
2

2(n−1)(n−2) (Δ
n
2 −1R)g,

g(0) = h.

The conformal term involving the scalar curvature was added in order to counteract
the invariance of O under the action of the conformal group on the space of metrics
on M . In the papers [3, 4] they proved the short time existence and uniqueness,
respectively, of solutions to AOF given by (1.1) when M is compact. Mantegazza
and Martinazzi provided an existence proof for parabolic quasilinear PDE on com-
pact manifolds in [32]. Kotschwar has given in [27] an alternate uniqueness proof
via a classical energy argument without using the DeTurck trick.

Gradient flows have been studied extensively since Hamilton in [21–23] and Perel-
man in [34–36] (expositions are given in [9,26,33]) used the Ricci flow to study the
geometry of 3-manifolds. In the past fifteen years, these have begun to include
higher order flows. Mantegazza studied a family of higher order mean curvature
flows in [31], Kuwert–Schätzle studied the gradient flow of the Willmore functional
in [28], Streets studied the gradient flow of

∫
M

|Rm|2 in [39], Chen-He studied the
Calabi flow in [11, 12], and Kişisel–Sarıoğlu–Tekin studied the Cotton flow in [25].
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Bour studied the gradient flows of certain quadratic curvature functionals in [6],
including some variants of

∫
M

|W |2.
Our first result gives pointwise smoothing estimates for the C0 norms of the

derivatives of the curvature. Since the AOF PDE (1.1) is of order n, the maximum
principle cannot be used to obtain these estimates. Instead, we first use interpo-
lation inequalities derived by Kuwert and Schätzle in [28] in order to derive local
integral Bernstein–Bando–Shi-type smoothing estimates. Then, we use a blowup
argument adapted from Streets [40] in order to convert the integral smoothing esti-
mates to pointwise smoothing estimates, as stated in the following theorem. During
the proof, we use the local integral smoothing estimates to take a local subsequential
limit of renormalized metrics.

Theorem 1.1. Let m ≥ 0 and let n ≥ 4. There exists a constant C = C(m,n) so
that if (Mn, g(t)) is a complete solution to AOF on [0, T ] satisfying

max

(
1, sup

M×[0,T ]

|Rm|
)

≤ K,

then for all t ∈ (0, T ],

sup
M

|∇mRm|g(t) ≤ C
(
K + t−

2
n

)1+m
2

.

We obtain from the pointwise smoothing estimates two additional theorems. The
first theorem gives an obstruction to the long-time existence of the flow. Since the
pointwise smoothing estimates do not require that the Sobolev constant be bounded
on [0, T ), we rule out that the manifold collapses with bounded curvature.

Theorem 1.2. Let g(t) be a solution to the AOF on a compact manifold M that
exists on a maximal time interval [0, T ) with 0 < T ≤ ∞. If T < ∞, then we must
have

lim sup
t↑T

‖Rm‖C0(g(t)) = ∞.

The second theorem allows us to extract convergent subsequences from a se-
quence of solutions to AOF with uniform C0 curvature bound and uniform injec-
tivity radius lower bound. We prove this in section 7 by using the Cheeger–Gromov
compactness theorem to obtain subsequential convergence of solutions at one time.
Then, after extending estimates on the covariant derivatives of the metrics from
one time to the entire time interval, we obtain subsequential convergence over the
entire time interval.

Theorem 1.3. Let {(Mn
k , gk(t), Ok)}k∈N be a sequence of complete pointed solu-

tions to AOF for t ∈ (α, ω), with t0 ∈ (α, ω), such that

(1) |Rm(gk)|gk ≤ C0 on Mk × (α, ω) for some constant C0 < ∞ independent
of k,

(2) injgk(t0)(Ok) ≥ ι0 for some constant ι0 > 0.

Then there exists a subsequence {jk}k∈N such that {(Mjk , gjk(t), Ojk)}k∈N converges
in the sense of families of pointed Riemannian manifolds to a complete pointed
solution to AOF (Mn

∞, g∞(t), O∞) defined for t ∈ (α, ω) as k → ∞.

We use this compactness theorem to prove two corollaries. For a compact Rie-
mannian manifold (M, g), let CS(M, g) denote the L2 Sobolev constant of (M, g),
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defined as the smallest constant CS such that

‖f‖2
L

2n
n−2

≤ CS

(
‖∇f‖2L2 + V − 2

n ‖f‖2L2

)
,

where V = vol(M, g), for all f ∈ C1(M). The following result states that if the
Sobolev constant and the integral of Q curvature are bounded along the flow, there
exists a sequence of renormalized solutions to AOF that converge to a singularity
model.

Theorem 1.4. Let (Mn, g(t)), n ≥ 4, be a compact solution to AOF that exists
on a maximal time interval [0, T ) with T < ∞. Suppose that sup{CS(M, g(t)) :
t ∈ [0, T )} < ∞. Let {(xi, ti)}i∈N ⊂ M × [0, T ) be a sequence of points satisfy-
ing ti → T , |Rm(xi, ti)| = sup{|Rm(x, t)| : (x, t) ∈ M × [0, ti]}, and λi → ∞,
where λi = |Rm(xi, ti)|. Then the sequence of pointed solutions to AOF given by
{(M, gi(t), xi)}i∈N, with

gi(t) = λig(ti + λ
−n

2

i t), t ∈ [−λ
n
2

i ti, 0],

subsequentially converges in the sense of families of pointed Riemannian manifolds
to a nonflat, noncompact complete pointed solution (M∞, g∞(t), x∞) to AOF de-
fined for t ∈ (−∞, 0]. Moreover, if n = 4 or

sup
t∈[0,T )

∫
M

Q(g(t)) dVg(t) < ∞,

then O(g∞(t)) ≡ 0 for all t ∈ (−∞, 0].

The next result states that if a nonsingular solution to AOF does not collapse
at time ∞ and the integral of Q curvature is bounded along the flow, there exists
a sequence of times ti → ∞ for which g(ti) converges to an obstruction flat metric.
We note that in cases (2) and (3), the boundedness of the integral of the Q curvature
along the flow implies that g∞(t) is obstruction flat. However, this does not imply
that ∂tg∞ = 0. Rather, ∂tg∞ = (−1)n/2C(n)(Δ

n
2 −1R)g∞, i.e., the metric is still

flowing by the conformal term of AOF within the conformal class of g∞(0).

Theorem 1.5. Let (M, g(t)) be a compact solution to AOF on [0,∞) such that

sup
t∈[0,∞)

‖Rm‖C0(g(t)) < ∞.

Then exactly one of the following is true:

(1) M collapses when t = ∞, i.e.,

lim
t→∞

inf
x∈M

injg(t)(x) = 0.

(2) There exists a sequence {(xi, ti)}i∈N ⊂ M × [0,∞) such that the sequence
of pointed solutions to AOF given by {(M, gi(t), xi)}i∈N, with

gi(t) = g(ti + t), t ∈ [−ti,∞),

subsequentially converges in the sense of pointed Riemannian manifolds to
a complete noncompact finite volume pointed solution (M∞, g∞(t), x∞) to
AOF defined for t ∈ (−∞,∞). If n = 4 or

sup
t∈[0,∞)

∫
M

Q(g(t)) dVg(t) < ∞,

then g∞(t) is obstruction flat for all t ∈ (−∞,∞).
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(3) There exists a sequence {(xi, ti)}i∈N ⊂ M × [0,∞) such that the sequence
of pointed solutions to AOF given by {(M, gi(t), xi)}i∈N, with

gi(t) = g(ti + t), t ∈ [−ti,∞),

subsequentially converges in the sense of pointed Riemannian manifolds
to a compact pointed solution (M∞, g∞(t), x∞) to AOF defined for t ∈
(−∞,∞), where M∞ is diffeomorphic to M . If n = 4 or

sup
t∈[0,∞)

∫
M

Q(g(t)) dVg(t) < ∞,

then g∞(t) is obstruction flat for all t ∈ (−∞,∞) and there exists a family
of metrics ĝ∞(t) conformal to g∞(t) for all t ∈ (−∞,∞), with ĝ∞(t) =
ĝ∞(0) for all t ∈ (−∞,∞), such that ĝ∞(0) is obstruction flat and has
constant scalar curvature.

2. Background

2.1. Q curvature. Here we recall a description of Q curvature given by Chang
et al. in [10]. The Q curvature was introduced in 4 dimensions by Riegert in [38]
and Branson–Ørsted in [8] and in even dimensions by Branson in [7]. It is a scalar
quantity defined on an even-dimensional Riemannian manifold (Mn, g). If n = 2,
we define Q to be Q = − 1

2R = −K, where K is the Gaussian curvature of M . The

Gauss–Bonnet theorem gives
∫
QdV = −2πχ(M). The Q curvature of a metric

g̃ = e2fg is given by e2f Q̃ = Q+Pf , where the Paneitz operator P introduced by
Graham–Jenne–Mason–Sparling in [20] is given by Pf = Δf . If n = 4, we define
Q to be

Q = − 1
6ΔR − 1

2R
abRab +

1
6R

2.

The Chern–Gauss–Bonnet theorem gives∫
QdV = 8π2χ(M)− 1

4

∫
|W |2 dV.

In particular, if M is conformally flat, then
∫
QdV = 8π2χ(M). The Q curvature

of a metric g̃ = e2fg is given by e4f Q̃ = Q+Pf , where the Paneitz operator P is
given by

Pf = ∇a[∇a∇b + 2Rab − 2
3Rgab]∇bf.

In general when n is even, we are only able to write down the highest order terms
of Q and P:

Q = − 1
2(n−1)Δ

n
2 −1R+ lots, Pf = Δ

n
2 f + lots.

Nonetheless, Q still has nice conformal properties. Under a conformal change of

metric g̃ = e2fg, we have enf Q̃ = Q + Pf . The integral of Q is conformally
invariant. In particular, if M is locally conformally flat, we have an analogue of the
Gauss–Bonnet theorem:∫

QdV = (−1)
n
2 (n2 − 1)! 2n−1π

n
2 χ(M).
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2.2. Ambient obstruction tensor. Fefferman and Graham proposed in [16] a
method to determine the conformal invariants of a manifold from the pseudo-
Riemannian invariants of an ambient space in which it is embedded. They in-
troduced the ambient obstruction tensor O as an obstruction to such an em-
bedding. They subsequently provided a detailed description of the properties of O
in their monograph [17].

We define several tensors that we will use to express O. The Schouten tensor A,
Cotton tensor C, and Bach tensor B are defined as

Aij =
1

n−2

(
Rij− 1

2(n−1)Rgij
)
, Cijk = ∇kAij−∇jAik, Bij = ∇kCijk−AklWkijl.

We obtain via the identity ∇l∇kWkijl = (3− n)∇kCijk that

Bij =
1

3−n∇
l∇kWkijl +

1
2−nR

klWkijl.

We define the notation Pm
k (A) for a tensor A by

Pm
k (A) =

∑
i1+···+ik=m

∇i1A ∗ · · · ∗ ∇ikA.

The following result describes O. The form of the lower order terms is implied by
the proofs.

Theorem 2.1 (Fefferman–Graham [17], Theorem 3.8; Graham–Hirachi [19], The-
orem 2.1). Let n ≥ 4 be even. The obstruction tensor Oij of g is independent of
the choice of ambient metric g̃ and has the following properties:

(1) O is a natural tensor invariant of the metric g; i.e., in local coordinates the
components of O are given by universal polynomials in the components of
g, g−1, and the curvature tensor of g and its covariant derivatives, and can
be written just in terms of the Ricci curvature and its covariant derivatives.
The expression for Oij takes the form

Oij = Δ
n
2 −2(ΔAij −∇j∇iAk

k) +

n/2∑
k=2

Pn−2k
k (Rm)

=
1

3− n
Δ

n
2 −2∇l∇kWkijl +

n/2∑
k=2

Pn−2k
k (Rm),

where Δ = ∇i∇i.
(2) One has Oi

i = 0 and ∇jOij = 0.
(3) Oij is conformally invariant of weight 2 − n; i.e., if 0 < Ω ∈ C∞(M) and

ĝij = Ω2gij, then Ôij = Ω2−nOij .
(4) If gij is conformal to an Einstein metric, then Oij = 0.

C. R. Graham and K. Hirachi express the gradient of Q in terms of O.

Theorem 2.2 ([19], Theorem 1.1). If g(t) is a one-parameter family of metrics on
a compact manifold M of even dimension n ≥ 4 and h = ∂t|t=0 g(t), then

∂

∂t

∣∣∣∣
t=0

∫
M

Q(g(t)) dVg(t) = (−1)
n
2
n− 2

2

∫
M

〈
O(g(0)), h

〉
dVg(0).
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Define the adjusted ambient obstruction tensor Ô to be

(2.1) Ô = (−1)
n
2 O +

(−1)
n
2

2(n− 1)(n− 2)
(Δ

n
2 −1R)g.

We rewrite Ô in terms of the Ricci and scalar curvatures.

Proposition 2.3. If (M, g) is a Riemannian manifold, then

O = Δ
n
2 −1A− 1

2(n− 1)
Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm)(2.2)

Ô =
(−1)

n
2

n− 2
Δ

n
2 −1Rc +

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm).

Proof. First, we re-express O:

Ak
k = 1

n−2

[
gjkRkj − 1

2(n−1)Rgjkgkj

]
= 1

n−2

[
R − n

2(n−1)R
]

= 1
2(n−1)R

and

Oij = Δ
n
2 −2(ΔAij −∇j∇iAk

k) +

n/2∑
j=2

Pn−2j
j (Rm)

= Δ
n
2 −1Aij −

1

2(n− 1)
Δ

n
2 −2∇j∇iR+

n/2∑
j=2

Pn−2j
j (Rm).

Next, we re-express Ô using (2.2):

Ô = (−1)
n
2 O +

(−1)
n
2

2(n− 1)(n− 2)
(Δ

n
2 −1R)g

= (−1)
n
2 Δ

n
2 −1A+

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm)

+
(−1)

n
2

2(n− 1)(n− 2)
(Δ

n
2 −1R)g

=
(−1)

n
2

n− 2
Δ

n
2 −1Rc +

(−1)
n
2 −1

2(n− 1)(n− 2)
(Δ

n
2 −1R)g +

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R

+
(−1)

n
2

2(n− 1)(n− 2)
(Δ

n
2 −1R)g +

n/2∑
j=2

Pn−2j
j (Rm)

=
(−1)

n
2

n− 2
Δ

n
2 −1Rc +

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R +

n/2∑
j=2

Pn−2j
j (Rm).

�
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3. Short time existence and uniqueness

In this section, we derive the evolution equations for the covariant derivatives of
the curvature tensor. We then give a theorem asserting the short time existence
and uniqueness of solutions to AOF.

3.1. Preliminaries. We collect some facts about Riemannian manifolds that will
be used to derive the evolution equations.

Lemma 3.1 (Hamilton [21], Lemma 7.2). On any Riemannian manifold, the fol-
lowing identity holds:

ΔRjklm = ∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj +Rm∗2.

The following proposition can be proved by adapting the proof of Proposition
13.22 in Chow et al. [14].

Proposition 3.2. If A is a tensor on a Riemannian manifold and k, l ≥ 1, then

∇kΔlA = Δl∇kA+
2l+k−2∑

i=0

∇2l+k−2−iRm ∗ ∇iA.

The following proposition can be proved by adapting the proof of Proposition
13.26 in Chow et al. [14].

Proposition 3.3. Let M be a manifold and let g(t) be a 1-parameter family of
metrics on M . If A is a tensor on M and k ≥ 1, then

∂t∇kA = ∇k∂tA+
k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jA).

3.2. Evolution equations. We derive the equations for ∂t∇kRm for every k ≥ 0.

Proposition 3.4. If (M, g(t)) is a solution to AOF, then

∂tRm =
(−1)

n
2 +1

2(n− 2)
Δ

n
2 Rm+

n/2+1∑
j=2

Pn−2j+2
j (Rm).

Proof. Let ĝ(t) be a one-parameter family of metrics on M and let h = ∂tĝ. The
evolution of Rm is given by ([21], Theorem 7.1)

∂tRijkl =
1
2 [∇i∇khjl +∇j∇lhik −∇i∇lhjk −∇j∇khil] + Rm ∗ h.

If h = Δ
n
2 −1Rc, then, using Proposition 3.2 in the second line and Lemma 3.1 in

the third line,

∂tRijkl =
1
2 [∇i∇kΔ

n
2 −1Rjl +∇j∇lΔ

n
2 −1Rik −∇i∇lΔ

n
2 −1Rjk −∇j∇kΔ

n
2 −1Ril]

+ Rm ∗Δn
2 −1Rc

= 1
2Δ

n
2 −1[∇i∇kRjl +∇j∇lRik −∇i∇lRjk −∇j∇kRil]

+

n−2∑
i=0

∇n−2−iRm ∗ ∇iRc + Pn−2
2 (Rm)

= 1
2Δ

n
2 −1[−ΔRijkl +Rm∗2] + Pn−2

2 (Rm)

= − 1
2Δ

n
2 Rijkl + Pn−2

2 (Rm).
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If h = Δ
n
2 −2∇2R, then, using Proposition 3.2 in the second and fourth lines,

∂tRijkl =
1
2 [∇i∇kΔ

n
2 −2∇j∇lR+∇j∇lΔ

n
2 −2∇i∇kR−∇i∇lΔ

n
2 −2∇j∇kR

−∇j∇kΔ
n
2 −2∇i∇lR] + Rm ∗Δn

2 −2∇2R

= 1
2Δ

n
2 −2[∇i∇k∇j∇lR+∇j∇l∇i∇kR−∇i∇l∇j∇kR−∇j∇k∇i∇lR]

+

n−2∑
i=0

∇n−2−iRm ∗ ∇i∇2R+ Pn−2
2 (Rm)

= 1
2Δ

n
2 −2[∇i∇k∇j∇lR+∇j∇l∇i∇kR−∇i∇l∇j∇kR−∇j∇k∇i∇lR]

+ Pn−2
2 (Rm)

= 1
2Δ

n
2 −2[∇i∇k∇j∇lR+∇j∇l∇i∇kR−∇i∇k∇j∇lR−∇j∇l∇i∇kR

+∇Rm ∗ ∇R +Rm ∗ ∇2R] + Pn−2
2 (Rm)

= Pn−2
2 (Rm).

If h =
∑n/2

j=2 P
n−2j
j (Rm), then

∂tRm = ∇2

n/2∑
j=2

Pn−2j
j (Rm) + Rm ∗

n/2∑
j=2

Pn−2j
j (Rm)

=

n/2∑
j=2

Pn−2j+2
j (Rm) +

n/2∑
j=2

Pn−2j
j+1 (Rm).

Combining these results, we conclude that if h = Ô, then

∂tRm =
(−1)

n
2 +1

2(n− 2)
Δ

n
2 Rm+ Pn−2

2 (Rm) + Pn−2
2 (Rm)

+

n/2∑
j=2

Pn−2j+2
j (Rm) +

n/2∑
j=2

Pn−2j
j+1 (Rm)

=
(−1)

n
2 +1

2(n− 2)
Δ

n
2 Rm+

n/2+1∑
j=2

Pn−2j+2
j (Rm).

�

Proposition 3.5. If (M, g(t)) is a solution to AOF, then

∂t∇kRm =
(−1)

n
2 +1

2(n− 2)
Δ

n
2 ∇kRm+

n/2+1∑
l=2

Pn−2l+k+2
l (Rm).
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Proof. We compute:

k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jRm) =
k−1∑
j=0

∇j

⎛⎝n/2∑
l=2

Pn−2l+1
l (Rm) ∗ ∇k−1−jRm

⎞⎠
=

k−1∑
j=0

∇j

n/2∑
l=2

Pn−2l+k−j
l+1 (Rm)

=

k−1∑
j=0

n/2∑
l=2

Pn−2l+k
l+1 (Rm)

=

n/2∑
l=2

Pn−2l+k
l+1 (Rm)

=

n/2+1∑
l=3

Pn−2l+k+2
l (Rm).

Then, using Proposition 3.3 in the first line, Proposition 3.4 in the second line, and
Proposition 3.2 in the third line, we get

∂t∇kRm = ∇k∂tRm+
k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jRm)

=
(−1)

n
2 +1

2(n− 2)
∇kΔ

n
2 Rijkl +∇k

n/2+1∑
j=2

Pn−2j+2
j (Rm)

+

n/2+1∑
l=3

Pn−2l+k+2
l (Rm)

=
(−1)

n
2 +1

2(n− 2)
Δ

n
2 ∇kRijkl + Pn+k−2

2 (Rm) +

n/2+1∑
j=2

Pn−2j+k+2
j (Rm)

+

n/2+1∑
l=3

Pn−2l+k+2
l (Rm)

=
(−1)

n
2 +1

2(n− 2)
Δ

n
2 ∇kRijkl +

n/2+1∑
l=2

Pn−2l+k+2
l (Rm).

�

3.3. Short time existence and uniqueness. The ambient obstruction flow is
a quasilinear flow of order n in the metric g. E. Bahuaud and D. Helliwell have
shown the following existence and uniqueness result for AOF.

Theorem 3.6 ([3], Theorem C; [4], Theorem C). Let h be a smooth metric on a
compact manifold M of even dimension n ≥ 4. Then there is a unique smooth short
time solution to the following flow:

(3.1)

{
∂tg = Ô = (−1)

n
2 O + (−1)

n
2

2(n−1)(n−2)(Δ
n
2 −1R)g,

g(0) = h,
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where O is the ambient obstruction tensor on M and R is the scalar curvature of
M .

We will only briefly illustrate that applying the DeTurck trick to the system
(3.1) results in a strongly parabolic system. Due to the diffeomorphism invariance
of M , the system (3.1) is not strongly parabolic. We define the following vector
fields:

V k = gij(Γk
ij − Γ(h)kij),

X =
(−1)

n
2 −1

2(n− 2)
Δ

n
2 −1V,

Y =
(−1)

n
2

4(n− 1)
(∇Δ

n
2 −2R)�,

W = X + Y.

We show that the following system is strongly parabolic:

(3.2)

{
∂tg = Ô + LW g,

g(0) = h.

We show this by computing the principal symbol σ of the linearization of Ô+LW g
at h. We know from Proposition 2.3 that

Ô =
(−1)

n
2

n− 2
Δ

n
2 −1Rc +

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm).

We then rewrite the system (3.2) as follows:

(3.3) ∂tg =
(−1)

n
2

n− 2
Δ

n
2 −1Rc+LXg+

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R+LY g+

n/2∑
j=2

Pn−2j
j (Rm).

Let ζ ∈ T ∗M . The principal symbol of the first two terms of (3.3) is given by

σ
[
D
(

(−1)n/2

n−2 Δn/2−1Rc + LXg
)]

(ζ)(h)

= (−1)n/2−1

2(n−2) σ[D(Δn/2−1)](ζ) · σ[D(−2Rc + LV g)](ζ)(h)

= (−1)n/2−1

2(n−2) |ζ|nh.

We used the fact that the Ricci–DeTurck flow is strongly parabolic (Chow–Knopf
[15], Theorem 3.13). The highest order terms of the next two terms of (3.3) cancel
each other out, and the remaining terms are of lower order. Therefore the principal

symbol of the system (3.2) is (−1)n/2−1

2(n−2) |ζ|nh, implying that this system is strongly

parabolic.

4. Local integral estimates

In this section, let (Mn, g) be a Riemannian manifold that is a solution to the
AOF on a time interval [0, T ). We give local L2 estimates for ∇kRm for all k ∈ N.
We need to use local L2 estimates since we can only locally convert L2 estimates
to pointwise estimates. These local pointwise estimates are used in the proof of the
pointwise smoothing estimates given in Theorem 1.1. Specify the Laplace operator
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by Δ = −∇∗∇. Let ϕ ∈ C∞
c (M) be a cutoff function with constants Λ,Λ1 > 0

such that

sup
t∈[0,T )

|∇ϕ| ≤ Λ1, max
0≤i≤n

2

sup
t∈[0,T )

|∇iϕ| ≤ Λ.

Lemma 4.1. Suppose M,ϕ satisfy the above hypotheses. Let A be any tensor and
let p ≥ 1, q ≥ 2. Then

∫
M

ϕp〈ΔqA,A〉 = (−1)q
∫
[ϕ>0]

q∑
i=0

P q−i
p (ϕ) ∗ ∇iA ∗ ∇qA

+

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗A.

Proof. We first claim that if q ≥ 2, then

ΔqA = (−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.

If q = 2, we get, using Proposition 3.2, that

Δ2A = −∇∗∇ΔA

= −∇∗Δ∇A+∇∗[∇Rm ∗A+Rm ∗ ∇A]

= (∇∗)2∇2A+∇2Rm ∗A+∇Rm ∗ ∇A+Rm ∗ ∇2A,

which agrees with the claim. Suppose the claim is true for every integer less than
q. First,

ΔqA = −∇∗∇Δq−1A

= −∇∗

[
Δq−1∇A+

2q−3∑
i=0

∇2q−3−iRm ∗ ∇iA

]

= −∇∗Δq−1∇A+

2q−3∑
i=0

[
∇2q−2−iRm ∗ ∇iA+∇2q−3−iRm ∗ ∇i+1A

]
= −∇∗Δq−1∇A+

2q−3∑
i=0

∇2q−2−iRm ∗ ∇iA+

2q−2∑
i=1

∇2q−2−iRm ∗ ∇iA

= −∇∗Δq−1∇A+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.
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Applying the last equation above and then the inductive hypothesis,

ΔqA = −∇∗Δq−1∇A+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= −∇∗

[
(−1)q−1(∇∗)q−1∇q−1∇A+

2q−4∑
i=0

∇2q−4−iRm ∗ ∇i∇A

]

+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−4∑
i=0

∇2q−3−iRm ∗ ∇i+1A+

2q−4∑
i=0

∇2q−4−iRm ∗ ∇i+2A

+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−3∑
i=1

∇2q−2−iRm ∗ ∇iA+

2q−2∑
i=2

∇2q−2−iRm ∗ ∇iA

+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.

This proves the claim. We compute

(−1)q+1

∫
M

∇qA ∗ ∇q(ϕpA) = (−1)q+1

∫
M

∇qA ∗
q∑

i=0

∇q−i(ϕp) ∗ ∇iA

= (−1)q+1

∫
[ϕ>0]

q∑
i=0

∑
|α|=q−i

∇iA ∗ ∇qA ∗
p∏

j=1

∇αjϕj

= (−1)q+1

∫
[ϕ>0]

q∑
i=0

P q−i
p (ϕ) ∗ ∇iA ∗ ∇qA.

Finally, applying the claim,∫
M

ϕp〈ΔqA,A〉 =
∫
M

ϕp

〈
(−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA,A

〉

= (−1)q
∫
M

∇qA ∗ ∇q(ϕpA) +

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗A

= (−1)q
∫
[ϕ>0]

q∑
i=0

P q−i
p (ϕ) ∗ ∇iA ∗ ∇qA

+

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗A. �
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Proposition 4.2. Suppose M,ϕ satisfy the above hypotheses. If p ≥ 1, k ≥ 0, then

(4.1)

∂

∂t

∫
M

ϕp|∇kRm|2 = − 1

n− 2

∫
M

ϕp|∇n
2 +kRm|2 +

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm)

+

∫
[ϕ>0]

n
2 −1∑
i=0

P
n
2 −i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm.

Proof. First, we have

∂

∂t

∫
M

ϕp|∇kRm|2 dVg = 2

∫
M

ϕp

〈
∂

∂t
∇kRm,∇kRm

〉
dVg

+

∫
M

ϕp|∇kRm|2 ∂g
∂t

dVg.

We can expand the first integral by substituting Proposition 3.5, which states that
for our flow,

∂

∂t
∇kRm =

(−1)
n
2 +1

2(n− 2)
Δ

n
2 ∇kRm+

n
2 +1∑
i=2

Pn−2i+k+2
i (Rm).

Applying Lemma 4.1 to the first term of ∂
∂t∇kRm gives that

(−1)
n
2

+1

n−2

∫
M

ϕp〈Δn
2 ∇kRm,∇kRm〉

= (−1)n+1

n−2

∫
[ϕ>0]

n
2∑

i=0

[P
n
2 −i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm]

+

∫
M

n−2∑
i=0

ϕp∇n−2−iRm ∗ ∇k+iRm ∗ ∇kRm

= − 1
n−2

∫
M

ϕp|∇n
2 +kRm|2

+

∫
[ϕ>0]

n
2 −1∑
i=0

P
n
2 −i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕpPn+2k−2
3 (Rm).
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Substituting the second term of ∂
∂t∇kRm into the inner product gives that∫

M

ϕp

〈
∇kRm,

n
2 +1∑
i=2

Pn−2i+k+2
i (Rm)

〉
=

∫
M

ϕp

n
2 +2∑
i=3

Pn−2i+2k+4
i (Rm)

=

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm).

Since

∂g

∂t
= Δ

n
2 −1Rc +Δ

n
2 −2∇2R+

n
2∑

i=2

Pn−2i
i (Rm)

= ∇n−2Rm+∇n−4+2Rm+

n
2∑

i=2

Pn−2i
i (Rm)

=

n
2∑

i=1

Pn−2i
i (Rm),

we have ∫
M

ϕp|∇kRm|2 ∂g
∂t

=

∫
M

ϕp(∇kRm)∗2
n
2∑

i=1

Pn−2i
i (Rm)

=

∫
M

ϕp

n
2∑

i=1

Pn−2i+2k
i+2 (Rm)

=

∫
M

ϕp

n
2 +2∑
i=3

Pn−2i+2k+4
i (Rm)

=

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm).

Combining all of these results yields

∂

∂t

∫
M

ϕp|∇kRm|2 = − 1

n− 2

∫
M

ϕp|∇n
2 +kRm|2

+

∫
[ϕ>0]

n
2 −1∑
i=0

P
n
2 −i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕpPn+2k−2
3 (Rm) +

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm)

+

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm)

= − 1

n− 2

∫
M

ϕp|∇n
2 +kRm|2
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+

∫
[ϕ>0]

n
2 −1∑
i=0

P
n
2 −i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2(Rm).

�

We estimate the last two terms of (4.1). First, we recall two corollaries from the
paper [28] of E. Kuwert and R. Schätzle.

Proposition 4.3 ([28], Corollary 5.2). Suppose M,ϕ satisfy the above hypotheses.
Let A be a tensor. If 2 ≤ p < ∞ and s ≥ p, then for every ε > 0,(∫

M

|∇A|pϕs

) 1
p

≤ ε

(∫
M

|∇2A|pϕs+p

) 1
p

+
c

ε

(∫
[ϕ>0]

|A|pϕs−p

) 1
p

,

where c = c(n, p, s,Λ1).

Proposition 4.4 ([28], Corollary 5.5). Suppose M,ϕ satisfy the above hypotheses.
Let A be a tensor. Let 0 ≤ i1, . . . , ir ≤ k, i1 + · · ·+ ir = 2k, and s ≥ 2k. Then∣∣∣∣∫

M

ϕs∇i1A ∗ · · · ∗ ∇irA

∣∣∣∣ ≤ c‖A‖r−2
∞

(∫
M

ϕs|∇kA|2 dV + ‖A‖22,[ϕ>0]

)
,

where c = c(k, n, r, s,Λ1).

We estimate the last term of (4.1).

Lemma 4.5. Suppose M,ϕ satisfy the above hypotheses. If l ≥ 1, q ≥ 0, then for
every ε > 0,

(4.2)

∫
M

ϕ2l+q|∇lRm|2 ≤ ε

∫
M

ϕ2l+q+2|∇l+1Rm|2 + C

εl

∫
[ϕ>0]

ϕq|Rm|2,

where C = C(n, l,Λ1, q).

Proof. We prove the inequality (4.2) by induction on l. If l = 1, the inequality
(4.2) follows immediately from Proposition 4.3. Assume that l ≥ 2 and (4.2) is true
for all integers at most l. Then, applying Proposition 4.3 in the first line and the
inductive hypothesis in the second line,∫

M

ϕ2l+2+q|∇l+1Rm|2 ≤ ε

2

∫
M

ϕ2l+4+q|∇l+2Rm|2 + C

ε

∫
M

ϕ2l+q|∇lRm|2

≤ ε

2

∫
M

ϕ2l+4+q|∇l+2Rm|2 + C

ε

ε

2C

∫
M

ϕ2l+q+2|∇l+1Rm|2

+
C

ε

C

εl

∫
[ϕ>0]

ϕq|Rm|2

=
ε

2

∫
M

ϕ2l+4+q|∇l+2Rm|2 + 1

2

∫
M

ϕ2l+q+2|∇l+1Rm|2

+
C

εl+1

∫
[ϕ>0]

ϕq|Rm|2.

Collecting terms, we see that (4.2) is also true for l + 1. �
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Lemma 4.6. Suppose M,ϕ satisfy the above hypotheses. If q ≥ 0 and 0 ≤ l ≤ q,
then for every ε > 0,∫

M

ϕ2l+r|∇lRm|2 ≤ εq−l

∫
M

ϕ2q+r|∇qRm|2 + Cε−l

∫
[ϕ>0]

ϕr|Rm|2,

where C = C(n, l,Λ1, r).

Proof. Let m = q − l. The desired inequality is equivalent to

(4.3)

∫
M

ϕ2q−2m+r|∇q−mRm|2 ≤ εm
∫
M

ϕ2q+r|∇qRm|2 + Cεm−q

∫
[ϕ>0]

ϕr|Rm|2.

We prove this inequality by induction on m. If m = 0 the inequality is true:∫
M

ϕ2q+r|∇qRm|2 ≤
∫
M

ϕ2q+r|∇qRm|2 + Cε−q

∫
[ϕ>0]

ϕr|Rm|2.

Assume the inequality (4.3) is true for every integer less than m. Then∫
M

ϕ2q−2m+r|∇q−mRm|2 ≤ ε

∫
M

ϕ2q−2m+r+2|∇q−m+1Rm|2

+ Cεm−q

∫
[ϕ>0]

ϕr|Rm|2

≤ εεm−1

∫
M

ϕ2q+r|∇qRm|2 + εCεm−q−1

∫
[ϕ>0]

ϕr|Rm|2

+ Cεm−q

∫
[ϕ>0]

ϕr|Rm|2

= εm
∫
M

ϕ2q+r|∇qRm|2 + Cεm−q

∫
[ϕ>0]

ϕr|Rm|2.

We applied Lemma 4.5 in the first line and the inductive hypothesis in the second
line. �

Lemma 4.7. Suppose M,ϕ satisfy the above hypotheses. Let 0 ≤ i ≤ n
2 − 1 and

p ≥ n+ 2k. Then for every δ > 0,∫
M

P
n
2 −i
p (ϕ) ∗ ∇i+kRm ∗ ∇n

2 +kRm ≤ Cδ

∫
M

ϕp|∇n
2 +kRm|2

+ Cδ
−n−2i−4k

n−2i

∫
[ϕ>0]

ϕp−n−2k|Rm|2,

where C = C(n, k, p,Λ, i).

Proof. We apply the Cauchy–Schwarz inequality:∫
M

P
n
2 −i
p (ϕ) ∗ ∇i+kRm ∗ ∇n

2 +kRm ≤ C(Λ)

∫
M

|ϕp−(n
2 −i) ∗ ∇i+kRm ∗ ∇n

2 +kRm|

≤ Cεβ
∫
M

ϕp|∇n
2 +kRm|2

+ Cε−β

∫
[ϕ>0]

ϕp−n+2i|∇i+kRm|2.
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The second term can be estimated using Lemma 4.6:∫
[ϕ>0]

ϕp−n+2i|∇i+kRm|2 =

∫
[ϕ>0]

ϕ2(i+k)+(p−n−2k)|∇i+kRm|2

≤ ε
n
2 −i

∫
M

|∇n
2 +kRm|2 + Cε−i−k

∫
[ϕ>0]

ϕp−n−2k|Rm|2.

If β = n
2 − i− β, then β = n−2i

4 . If we set δ = ε
n−2i

4 , then ε = δ
4

n−2i and

ε−β−i−k = δ
4

n−2i (
2i−n

4 −i−k) = δ
−n−2i−4k

n−2i .

Therefore∫
M

P
n
2 −i
p (ϕ) ∗ ∇i+kRm ∗ ∇n

2 +kRm ≤ Cεβ
∫
M

ϕp|∇n
2 +kRm|2

+ Cε−β+n
2 −i

∫
M

|∇n
2 +kRm|2

+ Cε−β−i−k

∫
[ϕ>0]

ϕp−n−2k|Rm|2

≤ Cδ

∫
M

ϕp|∇n
2 +kRm|2

+ Cδ
−n−2i−4k

n−2i

∫
[ϕ>0]

ϕp−n−2k|Rm|2.

�

We estimate the penultimate term of (4.1).

Lemma 4.8. Suppose M,ϕ satisfy the above hypotheses. Let K = max{1, ‖Rm‖∞}.
If p ≥ n+ 2k and k ≤ l ≤ n

2 + k − l, then for every δ satisfying 0 < δ ≤ 1,∫
M

ϕpP 2l
n
2 +k−l+2(Rm) ≤ Cδ

∫
M

ϕp+n+2k−2l|∇n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0],

where C = C(n, k, p,Λ1, l).

Proof. Since p ≥ n+ 2k ≥ n+ 2k − 2 = 2(n2 + k − 1), Proposition 4.4 implies∫
M

ϕpP 2l
n
2 +k−l+2(Rm) ≤ C‖Rm‖

n
2 +k−l
∞

(∫
M

ϕp|∇lRm|2 + ‖Rm‖22,[ϕ>0]

)
.

Let ε = K−1δ
2

n+2k−2l . We have p− 2l ≥ n+2k− (n+2k− 1) = 1. Via Lemma 4.6,

C‖Rm‖
n
2 +k−l
∞

∫
M

ϕp|∇lRm|2 ≤ CK
n
2 +k−lε

n
2 +k−l

∫
M

ϕn+2k+p−2l|∇n
2 +kRm|2

+ CK
n
2 +k−lε−l

∫
[ϕ>0]

ϕp−2l|Rm|2

= Cδ

∫
M

ϕn+2k+p−2l|∇n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k

∫
[ϕ>0]

ϕp−2l|Rm|2.
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Since k ≤ l ≤ n
2 + k − l and 0 < δ ≤ 1, we get δ

2l
2l−n−2k ≥ δ−

2k
n ≥ 1 and

K
n
2 +k−l ≤ K

n
2 . Therefore∫

M

ϕpP 2l
n
2 +k−l+2(Rm) ≤ Cδ

∫
M

ϕn+2k+p−2l|∇n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k

∫
[ϕ>0]

ϕp−2l|Rm|2

+K
n
2 +k−l‖Rm‖22,[ϕ>0]

≤ Cδ

∫
M

ϕp+n+2k−2l|∇n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0].

�

Proposition 4.9. Suppose M,ϕ satisfy the above hypotheses. Let

K = max{1, ‖Rm‖∞}.
If p ≥ n+ 2k, then for every δ satisfying 0 < δ ≤ 1,

∂t‖ϕ
p
2 ∇kRm‖22 ≤ − 1

2(n−2)‖ϕ
p
2 ∇n

2 +kRm‖22 + CK
n
2 +k‖Rm‖22,[ϕ>0],

where C = C(n, k, p,Λ).

Proof. Applying the estimates from Lemmas 4.8 and 4.7 to equation (4.1) in Propo-
sition 4.2, we obtain

∂t‖ϕ
p
2∇kRm‖22 ≤ − 1

n−2‖ϕ
p
2∇n

2 +kRm‖22

+

n
2 +k−1∑
l=k

[
C1δ‖ϕ

p
2+

n
2 +k−l∇n

2 +kRm‖22 + C1K
n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0]

]

+

n
2 −1∑
i=0

[
C2δ‖ϕ

p
2 ∇n

2 +kRm‖22 + C2δ
−n−2i−4k

n−2i ‖ϕ
p
2−

n
2 −kRm‖22,[ϕ>0]

]
,

where C1 = C1(n, k, p,Λ, l) and C2 = C2(n, k, p,Λ1, i). From the inequalities

1− n− 2k ≤ 1− 2n+ 4k

n− 2i
≤ −n+ 4k

n
,

2− n− 2k

2
≤ 1 +

n+ 2k

2l − n− 2k
≤ −2k

n

we conclude

max
(
{δ 2l

2l−n−2k : k ≤ l ≤ n
2 + k − 1} ∪ {δ

−n−2i−4k
n−2i : 0 ≤ i ≤ n

2 − 1}
)
= δ1−n−2k.

Therefore

∂t‖ϕ
p
2 ∇kRm‖22 ≤ − 1

n−2‖ϕ
p
2 ∇n

2 +kRm‖22 + C̃δ‖ϕ
p
2∇n

2 +kRm‖22
+ C̃K

n
2 +kδ1−n−2k‖Rm‖22,[ϕ>0]

≤ − 1
2(n−2)‖ϕ

p
2 ∇n

2 +kRm‖22 + CK
n
2 +k‖Rm‖22,[ϕ>0],

where

C̃ ≡
n
2 +k−1∑
l=k

C1 +

n
2 −1∑
i=0

C2, δ ≡ min{ 1
2(n−2) C̃

−1, 1}.

�
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Proposition 4.10. Suppose M,ϕ satisfy the above hypotheses. Suppose

max{‖Rm‖∞, 1} ≤ K

for all t ∈ [0, αK−n
2 ]. Then

‖ϕn
2 (m+1)∇n

2 mRm‖2 ≤ Ct−
m
2 sup

t∈[0,αK− n
2 ]

‖Rm‖L2(t),[ϕ>0],

where C = C(m,n, α,Λ), for all t ∈ (0, αK−n
2 ].

Proof. Let βk for 0 ≤ k ≤ m denote constants given by βk = (2n − 4)m−km!/k!.
Define

G(t) ≡ tm‖ϕn
2 (m+1)∇n

2 mRm‖22 +
m−1∑
k=0

βkt
k‖ϕn

2 (k+1)∇n
2 kRm‖22,[ϕ>0].

Using Proposition 4.9,

dG

dt
≤ mtm−1‖ϕn

2 (m+1)∇n
2 mRm‖22

+ tm
(
− 1

2(n−2)‖ϕ
n
2 (m+1)∇n

2 (m+1)Rm‖22 + Cn
2 mK

n
2 (m+1)‖Rm‖22,[ϕ>0]

)
+

m−1∑
k=1

βkkt
k−1‖ϕn

2 (k+1)∇n
2 kRm‖22

+
m−1∑
k=0

βkt
k
(
− 1

2(n−2)‖ϕ
n
2 (k+1)∇n

2 (k+1)Rm‖22 + Cn
2 kK

n
2 (k+1)‖Rm‖22,[ϕ>0]

)
≤ mtm−1‖ϕn

2 m∇n
2 mRm‖22 + tm

(
Cn

2 mK
n
2 (m+1)‖Rm‖22,[ϕ>0]

)
+

m−2∑
k=0

βk+1(k + 1)tk‖ϕn
2 (k+1)∇n

2 (k+1)Rm‖22

+

m−1∑
k=0

βkt
k
(
− 1

2(n−2)‖ϕ
n
2 (k+1)∇n

2 (k+1)Rm‖22 + Cn
2 kK

n
2 (k+1)‖Rm‖22,[ϕ>0]

)
.

Choose t0 ∈ [0, αK−n
2 ] such that

‖Rm‖L2(t0),[ϕ>0] = sup
t∈[0,αK−n

2 ]

‖Rm‖L2(t),[ϕ>0].

Our choice of the constants βk yields

dG

dt
≤ αmK−n

2 mCn
2 mK

n
2 (m+1)‖Rm‖22,[ϕ>0]

+
m−1∑
k=0

βkα
kK−n

2 kCn
2 kK

n
2 (k+1)‖Rm‖22,[ϕ>0]

=
m∑

k=0

βkCn
2 kα

kK
n
2 ‖Rm‖22,[ϕ>0]

= CK
n
2 ‖Rm‖2L2(t0),[ϕ>0].
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Therefore

tm‖ϕn
2 (m+1)∇n

2 mRm‖22 ≤ G ≤ β0‖Rm‖2L2(0),[ϕ>0] + CK
n
2 ‖Rm‖2L2(t0),[ϕ>0]t

≤ (β0 + αC)‖Rm‖2L2(t0),[ϕ>0]

= C‖Rm‖2L2(t0),[ϕ>0],

proving the proposition. �

Proposition 4.11. Let (Mn, g(t)) be a solution to the AOF for t ∈ [0, T ). Let
ϕ ∈ C∞

c (M) be a cutoff function such that

max
0≤i≤n

2

sup
t∈[0,T )

‖∇iϕ‖C0(M,g(t)) ≤ Λ.

Suppose max{‖Rm‖C0(M,g(t)), 1} ≤ K for all t ∈ [0, αK−n
2 ]. Then, for every l ≥ 0

and all t ∈ (0, αK−n
2 ],

‖ϕl+n
2 ∇lRm‖L2(M,g(t)) ≤ C(1 + t−�2l/n	/2) sup

t∈[0,αK−n
2 ]

‖Rm‖L2(supp(ϕ),g(t)),

where C = C(l, n, α,Λ).

Proof. Let l = n
2m + r, 1 ≤ r ≤ n

2 . Then, applying Lemma 4.6 and Proposition
4.10, we get∫

M

ϕn(m+1)+2r|∇n
2 m+rRm|2 ≤

∫
M

ϕn(m+2)|∇n
2 (m+1)Rm|2 + C ′

∫
[ϕ>0]

ϕn|Rm|2

≤ t−(m+1)CΘ2 + C ′Θ2

‖ϕl+n
2 ∇lRm‖L2(t) ≤ Θ(Ct−

m+1
2 + C ′),

where
Θ = sup

t∈[0,αK−n
2 ]

‖Rm‖L2(t),[ϕ>0].

�

5. Pointwise smoothing estimates

Let (M, g(t)) be a solution to AOF and let ϕ be a cutoff function on M . We
give estimates of |∇iϕ|g(t) for 1 ≤ i ≤ n

2 that depend on spacetime derivatives of

the metric and |∇iϕ|g(0) for 0 ≤ i ≤ n
2 . We then give a proof of the pointwise

smoothing estimates given in Theorem 1.1.

Lemma 5.1. Let M be a manifold and let g(t) be a one-parameter family of metrics
on M . For a function ϕ ∈ Ci(M) and i ≥ 2,

∂t∇iϕ =

i−1∑
j=1

∇i−j∂tg ∗ ∇jϕ.

Proof. Apply Proposition 3.3 with k = i− 1 and A = ∇ϕ. �

Proposition 5.2. Let M be a manifold and let g(t) be a one-parameter family of
metrics on M . For a function ϕ ∈ Ci(M) and i ≥ 1,

∂t|∇iϕ|2g(t) =
i∑

j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ.
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Proof. We compute, using the preceding Lemma 5.1 in the second line:

∂t|∇iϕ|2g(t) = ∂tg ∗ ∇iϕ∗2 + ∂t∇iϕ ∗ ∇iϕ

= ∂tg ∗ ∇iϕ∗2 +
i−1∑
j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ

=

i∑
j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ.

�

Proposition 5.3. Let M be a Riemannian manifold with a one-parameter family
of metrics {g(t)}t∈[0,T ] and ϕ ∈ C∞

c (M). Fix i ≥ 1. Suppose that, for each j

satisfying 0 ≤ j ≤ i − 1, there exists Kj > 0 such that |∇j∂tg(x, t)|g(t) ≤ Kj on
suppϕ × [0, T ] and, for each j satisfying 1 ≤ j ≤ i, there exists C ′

j > 0 such that

|∇jϕ|g(0) ≤ C ′
j on suppϕ. Then there exists a constant Ci such that, for every

t ∈ [0, T ],

|∇iϕ|2g(t) ≤ Ci = Ci(K0, . . . ,Ki−1, C
′
1, . . . , C

′
i, T ).

Proof. Let i = 1. Then Proposition 5.2 gives

∂t|∇ϕ|2g(t) = ∂tg ∗ ∇ϕ∗2 ≤ CK0|∇ϕ|2g(t).

Solving the differential inequality, we get

|∇ϕ|2g(t) ≤ |∇ϕ|2g(0)eCK0T ≡ C2
1 ,

which proves the proposition for i = 1.
Fix i ≥ 2 and suppose that the proposition is true for every j satisfying 1 ≤ j ≤

i− 1. Let f(t) = |∇iϕ|2g(t). Then, via Proposition 5.2,

df

dt
≤

i∑
j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ

≤
i−1∑
j=1

|∇i−j∂tg||∇jϕ||∇iϕ|+ |∂tg||∇iϕ|2

≤
i−1∑
j=1

CKi−jCjf
1
2 + CK0f

≤ C̃(K0, . . . ,Ki−1, C1, . . . , Ci−1)(1 + f)

= C̃(K0, . . . ,Ki−1, C
′
1, . . . , C

′
i−1, T )(1 + f).

Solving the differential inequality, we get

1 + f(t) ≤ (1 + f(0))e
˜CT

|∇iϕ|2g(t) ≤ (1 + |∇iϕ|2g(0))e
˜CT

≤ (1 + (C ′
i)

2)e
˜CT ≡ C2

i .

�
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Proposition 5.4. Let (Mn, g(t)) solve AOF on [0, T ], where n ≥ 4. Fix r > 0.
Suppose there exist x ∈ M , r > 0, and K > 0 such that
(5.1)

max

[
1, sup

[0,T ]

‖Rm‖C0(Bg(T )(x,2r),g(t))

]
+

3n/2−3∑
j=1

sup
[0,T ]

‖∇jRm‖
2

j+2

C0(Bg(T )(x,2r),g(t))
< K.

Then for all l ≥ 0 and t ∈ (0, T ],

(5.2) ‖∇lRm‖L2(Bg(T )(x,r),g(t)) ≤ C(1 + t−�2l/n	/2) sup
t∈[0,T ]

‖Rm‖L2(Bg(T )(x,2r),g(t)),

where C = C(n, l,K, T, r).

Proof. Let ϕ be a cutoff function that is equal to 1 on Bg(T )(x, r) and supported on

Bg(T )(x, 2r). The inequality (5.1) provides C0 bounds for the first n
2 − 1 covariant

derivatives of Rm so that

(5.3) max
0≤j≤n

2

‖∇jϕ‖C0(M,g(T )) ≤ C ′(n,K, r).

The inequality (5.3) provides bounds for the first n
2 covariant derivatives of ϕ at time

T , and the inequality (5.1) induces bounds on the first n
2 − 1 covariant derivatives

of Ô. We therefore are able to, for each t ∈ [0, T ] and j satisfying 0 ≤ j ≤ n
2 , to

obtain via Proposition 5.3 bounds given by

‖∇jϕ‖C0(M,g(t)) ≤ C̃j(n,K, r, T ).

Therefore, via Proposition 4.11,

‖∇lRm‖L2(Bg(T )(x,r),g(t)) ≤ ‖ϕl+n
2 ∇lRm‖L2(M,g(t))

≤ C(1 + t−�2l/n	/2) sup
t∈[0,T ]

‖Rm‖L2(supp(ϕ),g(t))

= C(1 + t−�2l/n	/2) sup
t∈[0,T ]

‖Rm‖L2(Bg(T )(x,2r),g(t)),

where C = C(n, l,K, T, r). �

We are now able to prove the pointwise smoothing estimates given in Theorem
1.1.

Proof of Theorem 1.1. We adapt the proof of Theorem 1.3 in Streets [40]. We will
show that if this inequality fails, we can construct a blowup limit that is flat and
has nonzero curvature. Consider the function given by

fm(x, t, g) =
m∑
j=1

|∇jRm(g(x, t))|
2

j+2

g(t) .

It suffices to show that

(5.4) fm(x, t, g) ≤ C

(
K +

1

t
2
n

)
since for every l satisfying 1 ≤ l ≤ m,

|∇lRm(g(x, t))|
2

l+2

g(t) ≤
m∑
j=1

|∇jRm(g(x, t))|
2

j+2

g(t) = fm(x, t, g) ≤ C

(
K +

1

t
2
n

)
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and

|∇lRm(g(x, t))|g(t) ≤ C

(
K +

1

t
2
n

) l+2
2

≤ C

(
K +

1

t
2
n

)m+2
2

.

Suppose that the inequality (5.4) fails. It suffices to take m ≥ 3n
2 − 3. Without

loss of generality, for each i ∈ N there exists a solution to AOF (Mn
i , gi(t)) and

(xi, ti) ∈ Mi × (0, T ] such that

i <
fm(xi, ti, gi)

K + t
− 2

n
i

= sup
Mi×(0,T ]

fm(x, t, gi)

K + t−
2
n

< ∞,

and define a new sequence of blown up metrics by

g̃i(t) = λigi(ti + λ
−n

2
i t),

where λi = fm(xi, ti, gi). We will show in the proof of Theorem 1.4 that these

metrics also solve AOF. These metrics, which are defined for t ∈ [−λ
n
2
i ti, 0], are

eventually defined on [−1, 0] since as i → ∞,

t
2
n
i λi =

fm(xi, ti, gi)

t
− 2

n
i

≥ fm(xi, ti, gi)

K + t
− 2

n
i

→ ∞.

Replace the sequence of AOF solutions {(Mi, g̃i(t))}i∈N with the tail subsequence

for which λ
n
2
i ti > 1. The curvatures of these manifolds converge to 0 since as i → ∞,

(5.5) |Rm(g̃i)|g̃i ≤
K

λi
=

K

fm(xi, ti, gi)
≤ K + t

− 2
n

i

fm(xi, ti, gi)
→ 0.

Furthermore, there is a uniform Cm estimate on the curvature given by

fm(x, t, g̃i) =
fm(x, ti + tλ

−n
2

i , gi)

λi

=
fm(x, ti + tλ

−n
2

i , gi)

fm(xi, ti, gi)

≤ K + (ti + tλ
−n

2

i )−
2
n

K + t
− 2

n

i

≤
K + t

− 2
n

i (1 + t
2 )

− 2
n

K + t
− 2

n
i

≤ 2
2
n(5.6)

for all i ∈ N and (x, t) ∈ Mi × [−1, 0].
Let B(0, 1) be the open Euclidean ball in R

n centered at 0 with radius 1, let
ϕi : B(0, 1) → Mi be given by expxi

with respect to gi(0) for each i ∈ N, and

let hi(t) ≡ ϕ∗
i gi(t). The uniform C0 bound on Rm(g̃i(t)) given by (5.6) induces a

uniform bound on (ϕi)∗ (see Petersen [37]) which permits the uniform Cm estimate
(5.6) on Rm(g̃i(t)) to lift to a uniform Cm estimate on Rm(hi(t)). Furthermore,
hi(t) solves AOF for all i since ϕi does not depend on t.

Since m ≥ 3n
2 − 3, we have uniform C0 bounds on ∇jÔ(h(t)) for 0 ≤ j ≤ n

2 − 1.

Via Proposition 5.4, we obtain uniform bounds on the L2(Bhi(0)(0,
1
2 ))-norms of all

covariant derivatives of Rm(hi(0)). Since the metrics hi(0) are uniformly equivalent
to the Euclidean metric, the Sobolev constant of Bhi(0)(0,

1
2 ) is uniformly bounded
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for all i. Via the Kondrakov compactness theorem, we thus obtain uniform bounds
on the C0(Bhi(0)(0,

1
2 ))-norms of all covariant derivatives of Rm(hi(0)). The Taylor

expansion for hi in terms of geodesic coordinates about 0 with curvature coefficients
can then be used to obtain uniform bounds on the C0(Bhi(0)(0,

1
2 ))-norms of all

partial derivatives of hi(0). Finally, by the Arzelà–Ascoli theorem, after taking
a subsequence, still named {hi(0)}i∈N, we get hi(0) → h∞ in C∞(B(0, 12 )) for
some Riemannian metric h∞. We have already shown with inequality (5.5) that
(B(0, 12 ), h∞) is flat. However, for all i ∈ N,

fm(xi, 0, g̃i) =
m∑
j=1

|∇j
g̃i
Rm(g̃i)(xi, 0)|

2
2+j

g̃i(0)

=

m∑
j=1

(
λ
− j+2

2
i |∇jRm(xi, ti)|g(ti)

) 2
2+j

=

m∑
j=1

λ−1
i |∇jRm(xi, ti)|

2
2+j

g(ti)

= λ−1
i λi = 1.

Also, fm(0, 0, hi) = 1 for all i since (ϕi)∗ is the identity map at 0 = ϕ−1
i (xi).

Therefore fm(0, 0, h∞) = 1. This is a contradiction, thereby proving the inequality
(5.4). �

6. Long time existence

In this section, we prove that if a solution (M, g(t)) to the AOF only ex-
ists for a finite time T , then ‖Rm‖C0(g(t)) becomes unbounded along a sequence
{(xn, tn)}∞n=1 ⊂ M × [0, T ) with tn ↑ T . We will prove this theorem by showing
that if actually

(6.1) sup
t∈[0,T )

‖Rm‖C0(g(t)) = K < ∞,

then the solution g(t) exists past the time T . In order to show this, we show
that (6.1) and the pointwise smoothing estimates on |∇kRm|g(t) induce bounds on

|∇̄kg(t)|ḡ with respect to some fixed background metric ḡ and connection ∇̄. We
also show that (6.1) implies uniform convergence of g(t) to some continuous metric
g(T ). The bounds on |∇̄kg(t)|ḡ imply that g(T ) is smooth so that we can extend
the solution g(t) past the time T via the short time existence Theorem 3.6.

We first show that if (6.1) holds, the metrics g(t) converge uniformly as t ↑ T
to a continuous metric g(T ) equivalent to each g(t). The following lemma is from
Chow–Knopf [15].

Lemma 6.1. Let M be a closed manifold. For 0 ≤ t < T ≤ ∞, let g(t) be a
one-parameter family of metrics on M depending smoothly on both space and time.
If there exists a constant C < ∞ such that∫ T

0

∣∣∣∣ ∂∂tg(x, t)
∣∣∣∣
g(t)

dt ≤ C

for all x ∈ M , then

e−Cg(x, 0) ≤ g(x, t) ≤ eCg(x, 0)
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for all x ∈ M and t ∈ [0, T ). Furthermore, as t ↑ T , the metrics g(t) converge
uniformly to a continuous metric g(T ) such that for all x ∈ M ,

e−Cg(x, 0) ≤ g(x, T ) ≤ eCg(x, 0).

Lemma 6.2. Let M be a compact manifold and let (M, g(t)) be a solution to AOF
on [0, T ) such that

sup
t∈[0,T )

‖Rm‖C0(g(t)) = K < ∞.

Then g(t) converges uniformly as t ↑ T to a continuous metric g(T ) that is uni-
formly equivalent to g(t) for every t ∈ [0, T ].

Proof. Since Proposition 2.3 states that

∂g

∂t
=

(−1)
n
2

n− 2
Δ

n
2 −1Rc +

(−1)
n
2 −1

2(n− 1)
Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm),

in order to apply the preceding Lemma 6.1 it suffices to show that |∇kRm|g(t) is
bounded on M × [0, T ) for all k satisfying 0 ≤ k ≤ n − 2. Using the smoothing
estimate provided in Theorem 1.1, we get

max
0≤k≤n−2

sup
M×[0,T )

|∇kRm|g(t) ≤ max
0≤k≤n−2

sup
M×[0,T2 ]

|∇kRm|g(t) + C
(
K̃ + (T2 )

− 2
n

)n
2 ,

where C = C(n) and K̃ = max{K, 1}.
So ∂g

∂t is bounded on M × [0, T ) and the metrics g(t) converge uniformly as t ↑ T
to a continuous metric g(T ) uniformly equivalent to each g(t). �

Since M is a compact manifold, we can obtain bounds on |∇̄kg(t)|ḡ by taking
the maximum of bounds taken on finitely many coordinate patches. On such a
coordinate patch, we can assume that the fixed metric is just the Euclidean one.

Thus we will only need to bound the partial derivatives of g and Ô.

Lemma 6.3. Let M be a compact manifold and let (M, g(t)) be a solution to AOF
on [0, T ). Let U be a coordinate patch on M . Fix m ≥ 0. Suppose that for
0 ≤ i ≤ m + n − 1, there exist constants Ci such that |∇i

g(t)Rm(g(t))|g(t) < Ci on

M × [0, T ). Then for all (x, t) ∈ U × [0, T ),

|∂mg(x, t)|g(t) < C̃1(g(0), C0, . . . , Cm+n−1),

|∂mÔ(x, t)|g(t) < C̃2(g(0), C0, . . . , Cm+n−1).

Proof. We adapt the proof of Proposition 6.48 in Chow–Knopf [15]. The given

estimates for ∇kRm imply C0(M × [0, T )) estimates on ∇kÔ for all k. We first

estimate ∂g. We bound Γ by integrating ∂tΓ = ∇Ô and estimate ∂g by integrating

∂t∂g = ∇Ô+Γ ∗ Ô. Next, we estimate ∂mg and ∂m−1Γ for m ≥ 2 using induction.

It suffices to bound ∂mÔ since ∂t∂
mg = ∂mÔ. We define Pm(Γ) to be a polynomial

in Γ, . . . , ∂m−1Γ, in which each term contains m partial derivatives of g:

Pm(Γ) =
∑

k+i1+···+ik=m

∂i1Γ ∗ · · · ∗ ∂ikΓ.
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We first bound ∂m−1Γ in terms of ∇kÔ for k ≥ 0, ∂kg for 0 ≤ k ≤ m− 1, and ∂kΓ
for 0 ≤ k ≤ m− 2 by using the inequality

|∂t∂m−1Γ| ≤
m−1∑
i=0

|∂i∇Ô ∗ ∂m−1−ig|

and the equation

∂i∇Ô = ∇i+1Ô +

i∑
j=1

∇jÔ ∗ Pi−j+1(Γ).

It then follows from the equation

∂mÔ = ∇mÔ +
m∑
i=1

∂m−iÔ ∗ Pi(Γ)

that we can bound ∂mg in terms of ∇kÔ for k ≥ 0, ∂kg for 0 ≤ k ≤ m − 1, and
∂kΓ for 0 ≤ k ≤ m− 2. This completes the induction. �
Proof of Theorem 1.2. Suppose that equation (6.1) holds. By Lemma 6.2, the met-
rics g(t) converge uniformly to a continuous metric g(T ) as t ↑ T . We show that
g(T ) is C∞ on M . It suffices to show for each k ∈ N that g(T ) is Ck on any
coordinate patch since we can take a maximum over finitely many of them to show
that g(T ) is Ck on M . We have

g(t) = g(0) +

∫ t

0

Ô(τ ) dτ.

Taking limits as t ↑ T , we get

g(T ) = g(0) +

∫ T

0

Ô(τ ) dτ.

This permits us to take the kth partial derivative:

∂kg(T ) = ∂kg(0) +

∫ T

0

∂kÔ(τ ) dτ.

The bounds on ∂kg and ∂kÔ from Lemma 6.3 therefore imply a bound on ∂kg(T ).
So g(T ) is C∞ on M . Furthermore, since

|∂kg(T )− ∂kg(t)| ≤
∫ T

t

|∂kÔ(τ )| dτ ≤ Ck(T − t),

the metrics g(t) converge in C∞ to g(T ). So g(t) is a C∞ solution to AOF on [0, T ].
Then the short time existence Theorem 3.6 applied to g(t) with initial metric g(T )
allows us to extend g(t) past T . This contradicts the assumption that T was the
maximal time for the solution (M, g(t)). �

7. Compactness of solutions

In this section, we give compactness results for an AOF similar to Hamilton’s
compactness theorem for solutions of the Ricci flow. We first prove a proposition
that states that for a sequence of metrics, uniform bounds on the spacetime deriva-
tives of curvature and the derivatives of the metric at one time extend to uniform
bounds on the spacetime derivatives of the metric. This is used to prove the com-
pactness Theorem 1.3 for a sequence of complete pointed solutions of AOF. We
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then give the proofs of Theorem 1.4, which allow us to obtain a singularity model
from a singular solution, and Theorem 1.5, which describe the behavior at time ∞
of a nonsingular solution.

The type of convergence of manifolds we will consider is the pointed C∞ Cheeger–
Gromov convergence.

Definition 7.1 (C∞ Cheeger–Gromov convergence ([13], Definition 3.5)). A se-
quence {(Mn

k , gk, Ok)}k∈N of complete pointed Riemannian manifolds converges
(in the Cheeger–Gromov topology) to a complete pointed Riemannian manifold
(Mn

∞, g∞, O∞) if there exist

(1) an exhaustion {Uk}k∈N of M∞ by open sets with O∞ ∈ Uk,
(2) a sequence of diffeomorphisms Φk : Uk → Vk := Φk(Uk) ⊂ Mk with

Φk(O∞) = Ok such that (Uk,Φ
∗
k [gk|Vk

]) converges in C∞ to (M∞, g∞)
uniformly on compact sets in M∞.

The following compactness result of Hamilton allows us to extract a convergent
subsequence of manifolds at a fixed time.

Theorem 7.2 (Cheeger–Gromov compactness theorem ([23], Theorem 2.3)). Let
{(Mn

k , gk, Ok)}k∈N be a sequence of complete pointed Riemannian manifolds that
satisfy

|∇p
kRmk|k ≤ Cp on Mk

for all p ≥ 0 and k, where Cp < ∞ is a sequence of constants independent of k and

injgk(Ok) ≥ ι0

for some constant ι0 > 0. Then there exists a subsequence {jk}k∈N such that
{Mjk , gjk , Ojk)}k∈N converges to a complete pointed Riemannian manifold

(Mn
∞, g∞, O∞)

as k → ∞.

The following proposition allows us to extend bounds on the derivatives of a
sequence of metrics at one time to bounds that are uniform over an interval.

Proposition 7.3. Let (M, g) be a Riemannian manifold and let L be a compact
subset of M . Let {gi}i∈N be a collection of Riemannian metrics that are solutions
of AOF on neighborhoods containing L × [β, ψ]. Let t0 ∈ [β, ψ] and fix k ≥ n − 2.
Let unmarked objects such as ∇ and | · | be taken with respect to g, and let objects
such as ∇k and | · |k be taken with respect to gk. Suppose that:

(1) The metrics gi(t0) are uniformly equivalent to g for every i ∈ N: for some
B0 > 0, B−1

0 g ≤ gi(t0) ≤ B0g.
(2) For each 1 ≤ p ≤ k, there exists a uniform bound Cp on L independent of

i such that |∇pgi(t0)| ≤ Cp.
(3) For each 0 ≤ p + q ≤ k + n − 2, there exists a uniform bound C ′

p,q on

L× [β, ψ] independent of i such that |∂q
t∇p

gi
Rm(gi)|gi ≤ C ′

p,q.

Then:

(1) The metrics gk(t) are uniformly equivalent to g for every i ∈ N and t ∈
[β, ϕ]: for some B = B(t, t0) > 0, B−1g ≤ gi(t) ≤ Bg.

(2) For every p, q satisfying 0 ≤ p + q ≤ k, there is a uniform bound C̃p,q on

L× [β, ψ] independent of i such that |∂q
t∇pgi(t)| ≤ C̃p,q.
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Proof. We adapt the proof of Lemma 3.11 in Chow et al. [13]. The uniform equiv-
alence of the gk and g on L× [β, φ] follow from the given bounds for |∇p

gi
Rm(gi)|gi

on L× [β, ψ]. Define the bounds Cj for j satisfying 0 ≤ j ≤ j − n+ 2 by

|∇j
kÔk| ≤

n−2+j∑
p=j

apCC ′
p,0 ≡ Cj .

Suppose that (p, q) = (1, 0). Hamilton showed in Theorem 7.1 of [21] that ∂tΓ =
g−1 ∗ ∇∂tg. Then

|∂t(Γk − Γ)|k ≤ C|∇kÔk|k ≤ CC1.

It follows that

|∇gk(t)| ≤ B(t, t0)
3/2|∇gk(t)|k

≤ B(ψ, β)3/22|Γk(t)− Γ|k
≤ B(ψ, β)3/2(CC1|ψ − β|+ 3B

3/2
0 C1) ≡ C̃1,0.

Next, we prove the lemma for p satisfying p ≤ k when q = 0. We will show that
for p ≥ 1,

(7.1) |∇p∂tgk| ≤ C ′′
p |∇pgk|+ C ′′′

p , |∇pgk| ≤ C̃p,0.

If p = 1, then

|∇∂tgk(t)| ≤ B(t, t0)
3/2|(∇−∇k)∂tgk +∇k∂tgk|k

≤ B(t, t0)
3/2C|Γ− Γk|k|∂tgk|k + |∇k∂tgk|k

≤ B(t, t0)
3/2C|∇gk|C0 + C1,

and we have already shown that |∇gk| ≤ C̃1,0.
Let N ≥ 2 and assume that (7.1) is true for 0 ≤ p ≤ N − 1. The telescoping

identity

∇NA−∇N
k A =

N∑
i=1

∇N−i(∇−∇k)∇i−1
k A

results in the following inequality:

|∇N∂tgk| ≤ |∇N−1(∇−∇k)∂tgk|+
N∑
i=2

|∇N−i(∇−∇k)∇i−1
k ∂tgk|+ |∇N

k ∂tgk|.

Using the induction hypothesis and the given estimates for |∇p
giRm(gi)|gi , we esti-

mate the terms of the preceding inequality. Collecting terms yields

|∇N∂tgk| ≤ C ′′
N |∇Ngk|+ C ′′′

N .

Applying the preceding inequality, we get

∂t|∇Ngk|2 = 2〈∂t∇Ngk,∇Ngk〉
≤ |∂t∇Ngk|2 + |∇Ngk|2

≤ (1 + 2(C ′′
N )2)|∇Ngk|2 + 2(C ′′′

N )2.

After solving an ODE, we obtain

|∇Ngk|2(t) ≤ e(1+2(C′′
N )2)(ψ−t0)

[
CN +

2(C ′′′
N )2

1 + 2(C ′′
N )2

(
1− e(1+2(C′′

N )2)(t0−β)
)]

≡ C̃2
N,0.
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This completes the inductive proof of (7.1) and the proof of the proposition when
q = 0. Since ∂q

t∇pgk = ∇p∂q
t gk, a similar procedure may be used to prove the

proposition when q > 0. �

We are now able to prove the compactness Theorem 1.3 for solutions of the
AOF via a modification of the proof given by Hamilton in [23] of the compactness
theorem for Ricci flow.

Proof of Theorem 1.3. Since we are given a uniform bound on |Rm(gk)|gk , the
pointwise smoothing estimates given by Theorem 1.1 furnish uniform bounds on
‖∇m

gk(t0)
Rm(gk(t0))‖C0(gk(t0)) for all m ∈ N. Therefore, since the (Mk, gk) are

complete, the Cheeger–Gromov compactness Theorem 7.2 yields a subsequence of
{(Mk, gk(t), Ok)}k∈N that converges to a complete pointed Riemannian manifold
(Mn

∞, h, O∞).
Theorem 1.1 provides uniform C0 estimates for the covariant derivatives of cur-

vature on a closed interval. This enables us to apply Proposition 7.3 in order to
obtain uniform estimates on closed time intervals of the spacetime derivatives of
the metrics in the subsequence that converges at time t0. Finally, an application of
the Arzelà–Ascoli theorem provides the desired subsequence that converges on the
time interval (α, ω). �

As our first corollary of the compactness Theorem 1.3, we show that under
suitable conditions, we can obtain a singularity model for the ambient obstruction
flow.

Proof of Theorem 1.4. We first show that the gi are also solutions to AOF by show-
ing that if g̃ = λg and g satisfies AOF, given up to constants by

∂tg = Δ
n
2 −1Rc +Δ

n
2 −2∇2R+

n/2∑
j=2

Pn−2j
j (Rm),

then g̃ satisfies

(7.2) ∂tg̃ = Δ̃
n
2 −1R̃c + Δ̃

n
2 −2∇̃2R̃+

n/2∑
j=2

Pn−2j
j (R̃m).

We evaluate the first term of the right side of (7.2):

Δ̃
n
2 −1R̃c =

(
λ−1g−1∇2

)n
2 −1

Rc = λ1−n
2 Δ

n
2 −1Rc.

Similarly, the second term is equal to λ1−n
2 Δ

n
2 −1Rc. The remaining terms are

contractions of terms of the form

∇̃i1R̃m⊗ · · · ⊗ ∇̃ij R̃m

with 2 ≤ j ≤ n
2 and i1 + · · · + ij = n − 2j. In order to contract on all but two

indices of the above term, we need to contract 1
2 (i1 + · · ·+ ij + 3j − j − 2) = n

2 − 1

pairs of indices. This implies that Pn−2j
j (R̃m) = λ1−n

2 Pn−2j
j (Rm). The left side of

(7.2) is equal to λ1−n
2 ∂tg. So g̃ satisfies (7.2).

We have |Rm(gi)|gi ≤ 1 on M × [−λ
n/2
i ti, 0] for each i since the definition of λi

implies

|Rm(gi)|2gi = λ−2
i |Rm|2 ≤ λ−2

i λ2
i = 1.
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Let k ∈ N. There exists ik such that if i ≥ ik, then λ
n/2
i ti > k. Then {gi}i≥ik

is a sequence of complete pointed solutions to AOF on (−k, 0]. Since the Sobolev
constant is scaling invariant, the uniform bound of CS(M, g) on [0, T ) implies a
uniform bound independent of i of CS(M, gi) on [0, T ). We conclude from Lemma
3.2 of Hebey [24] that there exists a uniform lower bound independent of i for

infx∈M vol(Bgi(x, 1)). This and the bound |Rm(gi)|gi ≤ 1 on M × [−λ
n/2
i ti, 0] for

all i give a uniform lower bound independent of i for injgi(0)(xi) via the Cheeger–
Gromov–Taylor theorem.

The proof of the compactness Theorem 1.3 is unchanged if we replace (α, ω) with
(−k, 0]. Thus, by Theorem 1.3, we obtain subsequential convergence of

{(M, gi(t), xi)}i≥ik

to a complete pointed solution (M∞, g∞(t), x∞) to AOF for t ∈ (−k, 0]. By taking a
further diagonal subsequence over k, we get that {(M, gi(t), xi)}i≥1 subsequentially
converges to a complete pointed solution (M∞, g∞(t), x∞) to AOF for t ∈ (−∞, 0].
The limit (M∞, g∞(t)) is not flat since

|Rm(g∞(0))(x∞)|g∞(0) = 1

by the definition of gi(t).
We show that M∞ is noncompact. Lemma 3.9 of Chow–Knopf [15] states that

for a one-parameter family of Riemannian manifolds (M, g(t)), the volume element
evolves by ∂tdVg = 1

2g
ij∂tgij . By applying the fact that O is traceless and the

divergence theorem,

∂

∂t
vol(M, g(t)) =

1

2

∫
M

gij
∂gij
∂t

dVg(t)

=
1

2

∫
M

[(−1)
n
2 gijOij + C(n)(Δ

n
2 −1R)gijgij ] dVg(t)

= C(n)

∫
M

Δ
n
2 −1RdVg(t)

= 0.

Therefore the volume of (M, g(t)) is preserved along the flow. Since λi → ∞,

vol(M∞, g∞(t)) = lim
i→∞

vol(M, gi(t)) = lim
i→∞

λ
n/2
i vol(M, g(ti + λ

n
2
i t)) = ∞

for all t ∈ (−∞, 0]. So the volume of (M, g∞(t)) is infinite for all t ∈ (−∞, 0]. The
uniform volume lower bound for (M, gi) passes in the limit to a uniform volume
lower bound for (M, g∞). Therefore M∞ is noncompact by Lemma 8.1 of Bour [6].

Next, we show that the integral of the Q curvature is nondecreasing along the
flow on M . Along the flow, the derivative of

∫
M

Q is given by

∂

∂t

∫
M

Q = (−1)
n
2
n− 2

2

∫
M

〈O, ∂tg〉

= (−1)
n
2
n− 2

2

∫
M

(−1)
n
2 |O|2 + C(n)

∫
M

〈O, (Δ
n
2 −1R)g〉

=
n− 2

2

∫
M

|O|2,

where the third line holds since O is traceless. So the integral of the Q curvature
does not decrease along the flow.
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Suppose that

sup
t∈[0,T )

∫
M

Q(g(t)) dVg(t) < ∞.

This is always true when n = 4 since the Chern–Gauss–Bonnet theorem gives that
for all t ∈ [0, T ), ∫

M

Q = 8π2χ(M)− 1
4

∫
M

|W |2 ≤ 8π2χ(M).

So if the integral of the Q curvature is bounded along the flow,∫ T

0

∫
M

|O|2 =

∫ T

0

∂

∂t

∫
M

Q

= lim
t↑T

∫
M

Q(g(t))−
∫
M

Q(g(0))

< ∞.

Let {(M, gi(t), xi)}i≥1 be the convergent subsequence previously found in the proof.
Fix k ∈ N. Since ti → T and λi → ∞, we can choose a subsequence of times {tij}j∈N

as follows:

i1 = inf
{
i : ti ≥ T

2 , λi ≥
(
2k
T

) 2
n
}
, ij = inf

{
i : ti ≥ 1

2 (T+tij−1
), λi ≥

(
2k

T−tij−1

) 2
n
}

for j ≥ 2. We relabel {tij}j∈N as {ti}i∈N. Then

∞∑
i=1

∫ ti

ti−kλ
−n

2
i

∫
M

|O|2 <

∫ T

0

∫
M

|O|2 < ∞,

implying that, using the scaling law O(λg) = λ
2−n
2 O(g),

0 = lim
i→∞

∫ ti

ti−kλ
−n

2
i

∫
M

|O(g)|2g dVg dt

= lim
i→∞

∫ 0

−k

∫
M

λn
i |O(gi)|2giλ

−n
2

i λ
−n

2
i dVgi dt

= lim
i→∞

∫ 0

−k

∫
M

|O(gi)|2gi dVgi dt.

Since O(gi) → O(g∞) in C∞ on compact subsets, this implies that O(g∞) ≡ 0 on
[−k, 0]. So for each k ∈ N, there exists a sequence of pointed solutions to AOF
that converge to an obstruction flat pointed solution to AOF on [−k, 0]. By taking
a further diagonal subsequence over k, we obtain a sequence of pointed solutions
to AOF that converge to an obstruction flat complete pointed solution to AOF on
(−∞, 0]. �

Finally, we provide a corollary of the compactness Theorem 1.3 characterizing
limits of nonsingular solutions to AOF.

Proof of Theorem 1.5. Suppose M does not collapse at ∞. Then there exists a
sequence {(xi, ti)}i∈N ⊂ M × [0,∞) such that infi injg(ti)(xi) > 0. Let gi(t) = g(t+

ti) for t ∈ [−ti,∞). Let k ∈ N. Then there exists ik ∈ N such that ti > k for all i ≥
ik. Since supt∈[0,∞) ‖Rm‖∞ < ∞ and infi injgi(0)(xi) > 0, we apply Theorem 1.3
to obtain subsequential convergence in the sense of families of pointed Riemannian
manifolds of {(M, gi(t), xi)}i≥ik to a complete pointed solution (M∞, g∞(t), x∞)
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to AOF on (−k,∞). By taking a further diagonal subsequence over k, we get
that {(M, gi(t), xi)}i≥1 subsequentially converges to a complete pointed solution
(M∞, g∞(t), x∞) to AOF on (−∞,∞).

If M∞ is compact, then by the definition of convergence of complete pointed
Riemannian manifolds, M∞ is diffeomorphic to M . Just as in the proof of Theorem
1.4, the volume of (M, g(t)) is preserved along the flow. So for all t ∈ (−∞,∞),

vol(M∞, g∞(t)) = lim
i→∞

vol(M, gi(t)) = lim
i→∞

vol(M, g(ti + t)) < ∞.

Suppose that

sup
t∈[0,∞)

∫
M

Q(g(t)) dVg(t) < ∞.

This is always true when n = 4 by the Chern–Gauss–Bonnet theorem. Using the
same argument as in the proof of Theorem 1.4, we obtain∫ ∞

0

∫
M

|O|2 < ∞.

Let {(M, gi(t), xi)}i≥1 be the convergent subsequence previously found in the proof.
Since ti → ∞, we can choose a subsequence of times {tij}j∈N as follows:

i1 = inf{i : ti ≥ k}, ij = inf{i : ti ≥ tij−1
+ 2k}

for j ≥ 2. We relabel {tij}j∈N as{ti}i∈N. Then

∞∑
i=1

∫ ti+k

ti−k

∫
M

|O|2 <

∫ ∞

0

∫
M

|O|2 < ∞

implies that

0 = lim
i→∞

∫ ti+k

ti−k

∫
M

|O(g)|2g dVg dt = lim
i→∞

∫ k

−k

∫
M

|O(gi)|2gi dVgi dt.

Since O(gi) → O(g∞) in C∞ on compact subsets, this implies that O(g∞) ≡ 0 on
[−k, k]. So for each k ∈ N, there exists a sequence of pointed solutions to AOF
that converge to an obstruction flat pointed solution to AOF on [−k, k]. By taking
a further diagonal subsequence over k, we obtain a sequence of pointed solutions
to AOF that converge to an obstruction flat complete pointed solution to AOF on
(−∞,∞). Since g∞ solves the conformal flow ∂tg∞ = (−1)n/2C(n)(Δ

n
2 −1R)g, we

see that g∞(t) is in the conformal class of g∞(0) for all t ∈ (−∞,∞). If M∞ is
compact, we can solve the Yamabe problem for (M∞, [g∞(0)]); the Yamabe problem
was solved by Aubin, Trudinger, and Schoen (see [2, 30]). Due to the conformal
covariance of O, we obtain an obstruction flat, constant scalar curvature complete
pointed solution (M∞, ĝ∞(t)) to AOF with ĝ∞(t) = ĝ∞(0) for all t ∈ (−∞,∞). �
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[25] Ali Ulaş Özgür Kişisel, Özgür Sarıoğlu, and Bayram Tekin, Cotton flow, Classical Quantum
Gravity 25 (2008), no. 16, 165019, 15, DOI 10.1088/0264-9381/25/16/165019. MR2429736

[26] Bruce Kleiner and John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5,
2587–2855, DOI 10.2140/gt.2008.12.2587. MR2460872

[27] Brett Kotschwar, An energy approach to uniqueness for higher-order geometric flows, J.
Geom. Anal. 26 (2016), no. 4, 3344–3368, DOI 10.1007/s12220-015-9670-y. MR3544962

[28] Ernst Kuwert and Reiner Schätzle, Gradient flow for the Willmore functional, Comm. Anal.

Geom. 10 (2002), no. 2, 307–339, DOI 10.4310/CAG.2002.v10.n2.a4. MR1900754
[29] Claude LeBrun, Curvature functionals, optimal metrics, and the differential topology of 4-

manifolds, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New
York, 2004, pp. 199–256, DOI 10.1007/0-306-48658-X 5. MR2102997

[30] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.)
17 (1987), no. 1, 37–91, DOI 10.1090/S0273-0979-1987-15514-5. MR888880

[31] C. Mantegazza, Smooth geometric evolutions of hypersurfaces, Geom. Funct. Anal. 12 (2002),
no. 1, 138–182, DOI 10.1007/s00039-002-8241-0. MR1904561

[32] Carlo Mantegazza and Luca Martinazzi, A note on quasilinear parabolic equations on mani-
folds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 4, 857–874. MR3060703

[33] John Morgan and Gang Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics
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