Stieltjes functions of finite order and hyperbolic monotonicity
HTML articles powered by AMS MathViewer
- by Lennart Bondesson and Thomas Simon PDF
- Trans. Amer. Math. Soc. 370 (2018), 4201-4222 Request permission
Abstract:
A class of Stieltjes functions of finite type is introduced. These satisfy Widder’s conditions on the successive derivatives up to some finite order and are not necessarily smooth. We show that such functions have a unique integral representation along some generic kernel which is a truncated Laurent series approximating the standard Stieltjes kernel. We then obtain a two-to-one correspondence, via the logarithmic derivative, between these functions and a subclass of hyperbolically monotone functions of finite type. This correspondence generalizes a representation of HCM functions in terms of two Stieltjes transforms earlier obtained by the first author.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Anita Behme and Lennart Bondesson, A class of scale mixtures of $\textrm {Gamma}(k)$-distributions that are generalized gamma convolutions, Bernoulli 23 (2017), no. 1, 773–787. MR 3556792, DOI 10.3150/15-BEJ761
- Christian Berg, Quelques remarques sur le cône de Stieltjes, Seminar on Potential Theory, Paris, No. 5 (French), Lecture Notes in Math., vol. 814, Springer, Berlin, 1980, pp. 70–79 (French). MR 593349
- Lennart Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statistics, vol. 76, Springer-Verlag, New York, 1992. MR 1224674, DOI 10.1007/978-1-4612-2948-3
- Norman L. Johnson and N. Balakrishnan (eds.), Advances in the theory and practice of statistics, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1997. A volume in honor of Samuel Kotz; A Wiley-Interscience Publication. MR 1481161
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- Francis Hirsch, Intégrales de résolvantes et calcul symbolique, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 4, 239–264 (French, with English summary). MR 367716
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Henrik L. Pedersen, Pre Stieltjes functions, Mediterr. J. Math. 8 (2011), no. 1, 113–122. MR 2781923, DOI 10.1007/s00009-010-0043-2
- René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein functions, 2nd ed., De Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2012. Theory and applications. MR 2978140, DOI 10.1515/9783110269338
- Thomas Simon, Total positivity of a Cauchy kernel, J. Approx. Theory 184 (2014), 238–258. MR 3218800, DOI 10.1016/j.jat.2014.05.014
- Thomas Simon, Total positivity in stable semigroups, Constr. Approx. 44 (2016), no. 1, 103–120. MR 3514406, DOI 10.1007/s00365-016-9337-3
- Alan D. Sokal, Real-variables characterization of generalized Stieltjes functions, Expo. Math. 28 (2010), no. 2, 179–185. MR 2671114, DOI 10.1016/j.exmath.2009.06.004
- D. V. Widder, A classification of generating functions, Trans. Amer. Math. Soc. 39 (1936), no. 2, 244–298. MR 1501847, DOI 10.1090/S0002-9947-1936-1501847-6
- D. V. Widder, The Stieltjes transform, Trans. Amer. Math. Soc. 43 (1938), no. 1, 7–60. MR 1501933, DOI 10.1090/S0002-9947-1938-1501933-2
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- R. E. Williamson, Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), 189–207. MR 77581
Additional Information
- Lennart Bondesson
- Affiliation: Department of Mathematics and Mathematical Statistics, Umeå University, 90183 Umeå, Sweden
- MR Author ID: 39130
- Email: lennart.bondesson@umu.se
- Thomas Simon
- Affiliation: Laboratoire Paul Painlevé, Université de Lille 1, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 640288
- Email: simon@math.univ-lille1.fr
- Received by editor(s): April 19, 2016
- Received by editor(s) in revised form: November 7, 2016
- Published electronically: February 14, 2018
- Additional Notes: The second author would like to thank Jean-François Burnol for several discussions related to this paper.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4201-4222
- MSC (2010): Primary 44A15; Secondary 60E05, 60E10
- DOI: https://doi.org/10.1090/tran/7123
- MathSciNet review: 3811525