Extrapolation and interpolation in generalized Orlicz spaces
HTML articles powered by AMS MathViewer
- by David Cruz-Uribe and Peter Hästö PDF
- Trans. Amer. Math. Soc. 370 (2018), 4323-4349 Request permission
Abstract:
We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.References
- A. Almeida, P. Harjulehto, P. Hästö, and T. Lukkari, Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces, Ann. Mat. Pura Appl. (4) 194 (2015), no. 2, 405–424. MR 3322428, DOI 10.1007/s10231-013-0382-2
- Kenneth F. Andersen and Russel T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. MR 604351, DOI 10.4064/sm-69-1-19-31
- Pascal Auscher and José María Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. General operator theory and weights, Adv. Math. 212 (2007), no. 1, 225–276. MR 2319768, DOI 10.1016/j.aim.2006.10.002
- M. Avci and A. Pankov, Multivalued elliptic operators with nonstandard growth, Advances in Nonlinear Analysis, March 2016, 1–14.
- Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206–222. MR 3348922, DOI 10.1016/j.na.2014.11.001
- P. Baroni, M. Colombo, and G. Mingione, Nonautonomous functionals, borderline cases and related function classes, Algebra i Analiz 27 (2015), no. 3, 6–50; English transl., St. Petersburg Math. J. 27 (2016), no. 3, 347–379. MR 3570955, DOI 10.1090/spmj/1392
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), no. 1, 7–16. MR 642611, DOI 10.1512/iumj.1982.31.31002
- Yunmei Chen, Stacey Levine, and Murali Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406. MR 2246061, DOI 10.1137/050624522
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Maria Colombo and Giuseppe Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273. MR 3360738, DOI 10.1007/s00205-015-0859-9
- Michael Cowling, José García-Cuerva, and Hendra Gunawan, Weighted estimates for fractional maximal functions related to spherical means, Bull. Austral. Math. Soc. 66 (2002), no. 1, 75–90. MR 1922609, DOI 10.1017/S0004972700020694
- Lucas Chaffee and David Cruz-Uribe, Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces, Math. Inequal. Appl. 21 (2018), no. 1, 1–16. MR 3716205, DOI 10.7153/mia-2018-21-01
- D. Cruz-Uribe and A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals, Publ. Mat. 47 (2003), no. 1, 103–131. MR 1970896, DOI 10.5565/PUBLMAT_{4}7103_{0}5
- D. Cruz-Uribe and A. Fiorenza, $L\log L$ results for the maximal operator in variable $L^p$ spaces, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2631–2647. MR 2471932, DOI 10.1090/S0002-9947-08-04608-4
- David V. Cruz-Uribe and Alberto Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. MR 3026953, DOI 10.1007/978-3-0348-0548-3
- D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239–264. MR 2210118
- David V. Cruz-Uribe, José Maria Martell, and Carlos Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2797562, DOI 10.1007/978-3-0348-0072-3
- David Cruz-Uribe and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2941–2960. MR 1308005, DOI 10.1090/S0002-9947-1995-1308005-6
- David Cruz-Uribe and Li-An Daniel Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1205–1235. MR 3572271, DOI 10.1090/tran/6730
- Lars Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700 (English, with English and French summaries). MR 2166733, DOI 10.1016/j.bulsci.2003.10.003
- Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542, DOI 10.1007/978-3-642-18363-8
- L. Diening, P. Hästö, and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings, Drabek and Rakosnik (eds.), Milovy, Czech Republic, Academy of Sciences of the Czech Republic, Prague, 2005, 38–58.
- Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. MR 1800316, DOI 10.1090/gsm/029
- Flavia Giannetti and Antonia Passarelli di Napoli, Regularity results for a new class of functionals with non-standard growth conditions, J. Differential Equations 254 (2013), no. 3, 1280–1305. MR 2997371, DOI 10.1016/j.jde.2012.10.011
- Eleonor Harboure, Roberto A. Macías, and Carlos Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 (1988), no. 3, 383–397. MR 944321, DOI 10.2307/2374616
- P. Harjulehto and P. Hästö, Reflexivity and uniform convexity of generalized Orlicz spaces, preprint.
- Petteri Harjulehto and Peter Hästö, The Riesz potential in generalized Orlicz spaces, Forum Math. 29 (2017), no. 1, 229–244. MR 3592600, DOI 10.1515/forum-2015-0239
- Petteri Harjulehto, Peter Hästö, and Riku Klén, Generalized Orlicz spaces and related PDE, Nonlinear Anal. 143 (2016), 155–173. MR 3516828, DOI 10.1016/j.na.2016.05.002
- P. Harjulehto, P. Hästö, V. Latvala, and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math. Lett. 26 (2013), no. 1, 56–60. MR 2971400, DOI 10.1016/j.aml.2012.03.032
- Petteri Harjulehto, Peter Hästö, Út V. Lê, and Matti Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), no. 12, 4551–4574. MR 2639204, DOI 10.1016/j.na.2010.02.033
- Peter A. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038–4048. MR 3418078, DOI 10.1016/j.jfa.2015.10.002
- Peter A. Hästö, Corrigendum to “The maximal operator on generalized Orlicz spaces” [J. Funct. Anal. 269 (2015) 4038–4048] [ MR3418078], J. Funct. Anal. 271 (2016), no. 1, 240–243. MR 3494250, DOI 10.1016/j.jfa.2016.04.005
- Peter Hästö, Yoshihiro Mizuta, Takao Ohno, and Tetsu Shimomura, Sobolev inequalities for Orlicz spaces of two variable exponents, Glasg. Math. J. 52 (2010), no. 2, 227–240. MR 2610969, DOI 10.1017/S0017089509990292
- Mohammed Kbiri Alaoui, Tamer Nabil, and Mohamed Altanji, On some new non-linear diffusion models for the image filtering, Appl. Anal. 93 (2014), no. 2, 269–280. MR 3169204, DOI 10.1080/00036811.2013.769132
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- Gary M. Lieberman, On the regularity of the minimizer of a functional with exponential growth, Comment. Math. Univ. Carolin. 33 (1992), no. 1, 45–49. MR 1173745
- Fumi-Yuki Maeda, Yoshihiro Mizuta, and Takao Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot )}(\log L)^{q(\cdot )}$, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 405–420. MR 2731699, DOI 10.5186/aasfm.2010.3526
- Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, and Tetsu Shimomura, Approximate identities and Young type inequalities in Musielak-Orlicz spaces, Czechoslovak Math. J. 63(138) (2013), no. 4, 933–948. MR 3165506, DOI 10.1007/s10587-013-0063-8
- Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, and Tetsu Shimomura, Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), no. 1, 76–96. MR 3007101, DOI 10.1016/j.bulsci.2012.03.008
- Fumi-Yuki Maeda, Yoshihiro Sawano, and Tetsu Shimomura, Some norm inequalities in Musielak-Orlicz spaces, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 721–744. MR 3525396, DOI 10.5186/aasfm.2016.4148
- Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434, DOI 10.1007/BFb0072210
- Hidegorô Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950. MR 0038565
- Hidegorô Nakano, Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo, 1951. MR 0046560
- Takao Ohno and Tetsu Shimomura, Trudinger’s inequality for Riesz potentials of functions in Musielak-Orlicz spaces, Bull. Sci. Math. 138 (2014), no. 2, 225–235. MR 3175020, DOI 10.1016/j.bulsci.2013.05.007
- W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3 (1931), 200–211.
- Carlos Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (1997), no. 6, 743–756. MR 1481632, DOI 10.1007/BF02648265
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- José Luis Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 393–395. MR 663793, DOI 10.1090/S0273-0979-1982-15047-9
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Agnieszka Świerczewska-Gwiazda, Nonlinear parabolic problems in Musielak-Orlicz spaces, Nonlinear Anal. 98 (2014), 48–65. MR 3158445, DOI 10.1016/j.na.2013.11.026
Additional Information
- David Cruz-Uribe
- Affiliation: Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487-0350
- MR Author ID: 329597
- Email: dcruzuribe@ua.edu
- Peter Hästö
- Affiliation: Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland – and – Department of Mathematics and Statistics, FI-20014 University of Turku, Finland
- Email: peter.hasto@oulu.fi
- Received by editor(s): July 25, 2016
- Received by editor(s) in revised form: December 5, 2016
- Published electronically: February 21, 2018
- Additional Notes: The first author was supported by NSF grant DMS-1362425 and research funds from the Dean of the College of Arts & Sciences, the University of Alabama
The authors would also like to thank the anonymous referee for several useful comments and additional references - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4323-4349
- MSC (2010): Primary 46E35; Secondary 46E30, 42B20, 42B25
- DOI: https://doi.org/10.1090/tran/7155
- MathSciNet review: 3811530