Riesz bases, Meyer’s quasicrystals, and bounded remainder sets
HTML articles powered by AMS MathViewer
- by Sigrid Grepstad and Nir Lev PDF
- Trans. Amer. Math. Soc. 370 (2018), 4273-4298 Request permission
Abstract:
We consider systems of exponentials with frequencies belonging to simple quasicrystals in $\mathbb {R}^d$. We ask if there exist domains $S$ in $\mathbb {R}^d$ which admit such a system as a Riesz basis for the space $L^2(S)$. We prove that the answer depends on an arithmetical condition on the quasicrystal. The proof is based on the connection of the problem to the discrepancy of multi-dimensional irrational rotations, and specifically, to the theory of bounded remainder sets. In particular it is shown that any bounded remainder set admits a Riesz basis of exponentials. This extends to several dimensions (and to the non-periodic setting) the results obtained earlier in dimension one.References
- S. A. Avdonin, On the question of Riesz bases of exponential functions in $L^{2}$, Vestnik Leningrad. Univ. No. 13 Mat. Meh. Astronom. Vyp. 3 (1974), 5–12, 154 (Russian, with English summary). MR 0361746
- Arne Beurling, The collected works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Harmonic analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057614
- Vladimir G. Boltianskiĭ, Hilbert’s third problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Richard A. Silverman; With a foreword by Albert B. J. Novikoff. MR 0500434
- Michel Duneau and Christophe Oguey, Displacive transformations and quasicrystalline symmetries, J. Physique 51 (1990), no. 1, 5–19 (English, with French summary). MR 1036415, DOI 10.1051/jphys:019900051010500
- Sigrid Grepstad and Nir Lev, Multi-tiling and Riesz bases, Adv. Math. 252 (2014), 1–6. MR 3144222, DOI 10.1016/j.aim.2013.10.019
- Sigrid Grepstad and Nir Lev, Universal sampling, quasicrystals and bounded remainder sets, C. R. Math. Acad. Sci. Paris 352 (2014), no. 7-8, 633–638 (English, with English and French summaries). MR 3237817, DOI 10.1016/j.crma.2014.05.006
- Sigrid Grepstad and Nir Lev, Sets of bounded discrepancy for multi-dimensional irrational rotation, Geom. Funct. Anal. 25 (2015), no. 1, 87–133. MR 3320890, DOI 10.1007/s00039-015-0313-z
- Alan Haynes and Henna Koivusalo, Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices, Israel J. Math. 212 (2016), no. 1, 189–201. MR 3504323, DOI 10.1007/s11856-016-1283-z
- E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. eins, Abh. Math. Sem. Univ. Hamburg 1 (1922), no. 1, 54–76 (German). MR 3069388, DOI 10.1007/BF02940580
- S. V. Hruščëv, N. K. Nikol′skiĭ, and B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980) Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 214–335. MR 643384
- Jean-Pierre Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293–314 (French). MR 102702
- Harry Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution $\textrm {mod}\ 1$, Acta Arith. 12 (1966/67), 193–212. MR 209253, DOI 10.4064/aa-12-2-193-212
- Mihail N. Kolountzakis, Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc. 143 (2015), no. 2, 741–747. MR 3283660, DOI 10.1090/S0002-9939-2014-12310-0
- Gady Kozma and Nir Lev, Exponential Riesz bases, discrepancy of irrational rotations and BMO, J. Fourier Anal. Appl. 17 (2011), no. 5, 879–898. MR 2838111, DOI 10.1007/s00041-011-9178-1
- Gady Kozma and Shahaf Nitzan, Combining Riesz bases, Invent. Math. 199 (2015), no. 1, 267–285. MR 3294962, DOI 10.1007/s00222-014-0522-3
- Gady Kozma and Shahaf Nitzan, Combining Riesz bases in $\Bbb {R}^d$, Rev. Mat. Iberoam. 32 (2016), no. 4, 1393–1406. MR 3593529, DOI 10.4171/RMI/922
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 222554, DOI 10.1007/BF02395039
- Nir Lev, Riesz bases of exponentials on multiband spectra, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3127–3132. MR 2917085, DOI 10.1090/S0002-9939-2012-11138-4
- Pierre Liardet, Regularities of distribution, Compositio Math. 61 (1987), no. 3, 267–293 (English, with French summary). MR 883484
- Yurii I. Lyubarskii and Alexander Rashkovskii, Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat. 38 (2000), no. 1, 139–170. MR 1749363, DOI 10.1007/BF02384495
- Yurii I. Lyubarskii and Kristian Seip, Sampling and interpolating sequences for multiband-limited functions and exponential bases on disconnected sets, J. Fourier Anal. Appl. 3 (1997), no. 5, 597–615. Dedicated to the memory of Richard J. Duffin. MR 1491937, DOI 10.1007/BF02648887
- J. Marzo, Riesz basis of exponentials for a union of cubes in $\mathbb {R}^d$, arXiv:math/0601288, (2006).
- Basarab Matei and Yves Meyer, Quasicrystals are sets of stable sampling, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1235–1238 (English, with English and French summaries). MR 2473299, DOI 10.1016/j.crma.2008.10.006
- Basarab Matei and Yves Meyer, A variant of compressed sensing, Rev. Mat. Iberoam. 25 (2009), no. 2, 669–692. MR 2569549, DOI 10.4171/RMI/578
- Basarab Matei and Yves Meyer, Simple quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 947–964. MR 2674875, DOI 10.1080/17476930903394689
- Yves Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique, Lecture Notes in Mathematics, Vol. 117, Springer-Verlag, Berlin-New York, 1970 (French). Cours Peccot donné au Collège de France en avril-mai 1969. MR 0568288
- Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 0485769
- Yves Meyer, Addendum to: “Quasicrystals, almost periodic patterns, mean periodic functions and irregular sampling” [MR2876415], Afr. Diaspora J. Math. 17 (2014), no. 1, 65–74. MR 3270013
- Shahaf Nitzan and Alexander Olevskii, Revisiting Landau’s density theorems for Paley-Wiener spaces, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 509–512 (English, with English and French summaries). MR 2929058, DOI 10.1016/j.crma.2012.05.003
- Alexander Olevskii and Alexander Ulanovskii, Universal sampling of band-limited signals, C. R. Math. Acad. Sci. Paris 342 (2006), no. 12, 927–931 (English, with English and French summaries). MR 2235612, DOI 10.1016/j.crma.2006.04.015
- Alexander Olevskiĭ and Alexander Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (2008), no. 3, 1029–1052. MR 2439002, DOI 10.1007/s00039-008-0674-7
- Alexander Olevskii and Alexander Ulanovskii, On multi-dimensional sampling and interpolation, Anal. Math. Phys. 2 (2012), no. 2, 149–170. MR 2917231, DOI 10.1007/s13324-012-0027-4
- Joaquim Ortega-Cerdà and Kristian Seip, Fourier frames, Ann. of Math. (2) 155 (2002), no. 3, 789–806. MR 1923965, DOI 10.2307/3062132
- A. Ostrowski, Mathematische Miszellen IX: Notiz zur Theorie der Diophantischen Approximationen (German), Jahresber. Dtsch. Math.-Ver. 36 (1927), 178–180.
- A. Ostrowski, Mathematische Miszellen. XVI: Zur Theorie der linearen diophantischen Approximationen (German), Jahresber. Dtsch. Math.-Ver. 39 (1930), 34–46.
- B. S. Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt, Dokl. Akad. Nauk SSSR 247 (1979), no. 1, 37–40 (Russian). MR 545940
- Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004. MR 2040080, DOI 10.1090/ulect/033
- Marjorie Senechal and Jean Taylor, Quasicrystals: the view from Les Houches, Math. Intelligencer 12 (1990), no. 2, 54–64. MR 1044931, DOI 10.1007/BF03024006
- P. Szüsz, Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats, Acta Math. Acad. Sci. Hungar. 5 (1954), 35–39 (German, with Russian summary). MR 64086, DOI 10.1007/BF02020384
- Robert M. Young, An introduction to nonharmonic Fourier series, 1st ed., Academic Press, Inc., San Diego, CA, 2001. MR 1836633
Additional Information
- Sigrid Grepstad
- Affiliation: Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University, 4040 Linz, Austria
- Address at time of publication: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MR Author ID: 1047019
- Email: sigrid.grepstad@ntnu.no
- Nir Lev
- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
- MR Author ID: 760715
- Email: levnir@math.biu.ac.il
- Received by editor(s): May 27, 2016
- Received by editor(s) in revised form: November 21, 2016
- Published electronically: February 28, 2018
- Additional Notes: The first author was supported by the Austrian Science Fund (FWF), Project F5505-N26, which is a part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”
The second author was partially supported by the Israel Science Foundation grant No. 225/13 - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4273-4298
- MSC (2010): Primary 42C15, 52C23, 11K38
- DOI: https://doi.org/10.1090/tran/7157
- MathSciNet review: 3811528