Examples of holomorphic functions vanishing to infinite order at the boundary
HTML articles powered by AMS MathViewer
- by Jonas Hirsch PDF
- Trans. Amer. Math. Soc. 370 (2018), 4249-4271 Request permission
Abstract:
We present examples of holomorphic functions that vanish to infinite order at points at the boundary of their domain of definition. They give rise to examples of Dirichlet minimizing $Q$-valued functions indicating that “higher”-regularity boundary results are difficult. Furthermore we discuss some implication to branching and vanishing phenomena in the context of minimal surfaces, $Q$-valued functions, and unique continuation.References
- Frederick J. Almgren Jr., Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. $Q$-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR 1777737
- Jeff Cheeger, Aaron Naber, and Daniele Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math. 68 (2015), no. 2, 173–209. MR 3298662, DOI 10.1002/cpa.21518
- Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR 2780140, DOI 10.1090/gsm/121
- Camillo De Lellis, Carlo Romano Grisanti, and Paolo Tilli, Regular selections for multiple-valued functions, Ann. Mat. Pura Appl. (4) 183 (2004), no. 1, 79–95. MR 2044333, DOI 10.1007/s10231-003-0081-5
- Camillo De Lellis and Emanuele Nunzio Spadaro, $Q$-valued functions revisited, Mem. Amer. Math. Soc. 211 (2011), no. 991, vi+79. MR 2663735, DOI 10.1090/S0065-9266-10-00607-1
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI 10.1512/iumj.1986.35.35015
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- Robert Gulliver, A minimal surface with an atypical boundary branch point, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 211–228. MR 1173043
- Robert Gulliver and Frank David Lesley, On boundary branch points of minimizing surfaces, Arch. Rational Mech. Anal. 52 (1973), 20–25. MR 346641, DOI 10.1007/BF00249089
- Jonas Hirsch, Boundary regularity of Dirichlet minimizing $Q$-valued functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 4, 1353–1407. MR 3616337
- B. Krummel and N. Wickramasekera, Fine properties of branch point singularities: Two-valued harmonic functions, arXiv e-prints (2013).
- Aaron Naber and Daniele Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math. 70 (2017), no. 10, 1835–1897. MR 3688031, DOI 10.1002/cpa.21708
- Robert Osserman, A proof of the regularity everywhere of the classical solution to Plateau’s problem, Ann. of Math. (2) 91 (1970), 550–569. MR 266070, DOI 10.2307/1970637
- Leon Simon and Neshan Wickramasekera, A frequency function and singular set bounds for branched minimal immersions, Comm. Pure Appl. Math. 69 (2016), no. 7, 1213–1258. MR 3503021, DOI 10.1002/cpa.21642
- Emanuele Nunzio Spadaro, Complex varieties and higher integrability of Dir-minimizing $Q$-valued functions, Manuscripta Math. 132 (2010), no. 3-4, 415–429. MR 2652440, DOI 10.1007/s00229-010-0353-5
Additional Information
- Jonas Hirsch
- Affiliation: Mathematical Analysis, Modelling, and Applications, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy
- Received by editor(s): June 16, 2016
- Received by editor(s) in revised form: June 28, 2016, and November 18, 2016
- Published electronically: February 19, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4249-4271
- MSC (2010): Primary 35J67; Secondary 49Q20
- DOI: https://doi.org/10.1090/tran/7192
- MathSciNet review: 3811527