
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 7, July 2018, Pages 4683–4707
http://dx.doi.org/10.1090/tran/7108

Article electronically published on December 27, 2017

ON THE ASYMPTOTIC STABILITY

IN THE ENERGY SPACE FOR MULTI-SOLITONS

OF THE LANDAU-LIFSHITZ EQUATION

YAKINE BAHRI

Abstract. We establish the asymptotic stability of multi-solitons for the one-
dimensional Landau-Lifshitz equation with an easy-plane anisotropy. The soli-
tons have non-zero speed, are ordered according to their speeds and have suffi-
ciently separated initial positions. We provide the asymptotic stability around
solitons and between solitons. More precisely, we show that for an initial da-
tum close to a sum of N dark solitons, the corresponding solution converges
weakly to one of the solitons in the sum, when it is translated to the center
of this soliton, and converges weakly to zero when it is translated between
solitons.

1. Introduction

We consider the one-dimensional Landau-Lifshitz equation

(LL) ∂tm+m× (∂xxm+ λm3e3) = 0,

for a map m = (m1,m2,m3) : R × R → S2, where e3 = (0, 0, 1) and λ ∈ R.
This equation, which was introduced by Landau and Lifshitz in [14], describes
the dynamics of magnetization in a one-dimensional ferromagnetic material; for
example in CsNiF3 or TMNC (see, e.g., [11, 13] and the references therein). λ
is the anisotropy parameter of the material. The case λ > 0 gives an account
of an easy-axis anisotropy and the case λ < 0 of an easy-plane anisotropy. The
equation reduces to the one-dimensional Schrödinger map equation in the isotropic
case λ = 0. This equation has been intensively studied (see, e.g., [2, 10, 12]). In
this paper, we are interested in the easy-plane anisotropy case (λ < 0). Scaling the
map m, if necessary, we can assume from now on λ = −1.

The Hamiltonian for the Landau-Lifshitz equation, the so-called Landau-Lifshitz
energy, is given by

E(m) :=
1

2

∫
R

(
|∂xm|2 +m2

3

)
.

In this paper, we study the solutions m to (LL) with finite Landau-Lifshitz energy,
i.e., which belong to the energy space

E(R) :=
{
υ : R → S

2, s.t. υ′ ∈ L2(R) and υ3 ∈ L2(R)
}
.

A soliton with speed c is a traveling wave solution of (LL) which has the form

m(x, t) := u(x− ct).
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Its profile u is the solution to the ordinary differential equation

(TWE) u′′ + |u′|2u+ u2
3u− u3e3 + cu× u′ = 0.

The solutions of this equation are explicit. If |c| < 1, there exist non-constant
solutions uc to (TWE), which are given by the formulae

[uc]1(x) =
c

cosh
(
(1− c2)

1
2 x

) , [uc]2(x) = tanh
(
(1− c2)

1
2 x

)
,

[uc]3(x) =
(1− c2)

1
2

cosh
(
(1− c2)

1
2x

) ,
up to the invariances of the problem, i.e., translations, rotations around the axis
x3 and the orthogonal symmetry with respect to the plane x3 = 0 (see [7] for more
details). Else, when |c| ≥ 1, the only solutions with finite Landau-Lifshitz energy
are the constant vectors in S1 × {0}.

In dimension one the equation is completely integrable using the inverse scatter-
ing method (see, e.g., [9]). This method allows us to justify the existence of multi-
solitons for (LL) and to compute their expression (see [18, 20]). Multi-solitons,
which can be considered as a non-linear superposition of single solitons, are exact
solutions to (LL). Our main goal is to prove the asymptotic stability of multi-
solitons (see Theorem 1.1 below).

Martel, Merle and Tsai proved the asymptotic stability for multi-solitons of the
sub-critical gKdV equations in [17]. Martel and Merle stated this result for one
soliton of the generalized KdV equation in [15] and then they refined the results for
multi-solitons in [16]. This method was successfully adapted by Bethuel, Gravejat
and Smets to prove the asymptotic stability for a dark soliton of the Gross-Pitaevskii
equation in [5] and then in [1] to show the same result for the Landau-Lifshitz equa-
tion. Cuccagna and Jenkins proved similar results for the Gross-Pitaevskii equation
in [6] using the inverse scattering method. Perelman established the asymptotic
stability of multi-solitons for the non-linear Schrödinger equation in [19].

In this paper, we use a lot of results from de Laire and Gravejat in [8], and from
[1] combined with techniques from Martel, Merle and Tsai in [17] and Martel and
Merle [15,16]. In addition, we give a proof to avoid any regularity hypothesis on the
translation parameters between solitons. We prove also a Liouville type theorem for
the zero solution in the hydrodynamical framework (see Section 4 for more details).

In the next subsections, we first introduce this hydrodynamical framework in
which we provide all the analysis and we provide our main result.

1.1. The hydrodynamical framework. We denote by m̌ the map defined by
m̌ := m1 + im2. We have

|m̌(x)| = (1−m2
3(x))

1
2 → 1,

as x → ±∞, using the fact that m3 belongs to H1(R), and the Sobolev embedding
theorem.

This allows us, as in the case of the Gross-Pitaevskii equation (see, e.g., [3]), to
consider the hydrodynamical framework for the Landau-Lifshitz equation. In terms
of the maps m̌ and m3, this equation may be written as{

i∂tm̌−m3∂xxm̌+ m̌∂xxm3 − m̌m3 = 0,

∂tm3 + ∂x
〈
im̌, ∂xm̌

〉
C
= 0.
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When the map m̌ does not vanish, one can write it as m̌ = (1−m2
3)

1/2 exp iϕ. The
hydrodynamical variables v := m3 and w := ∂xϕ satisfy the following system:

(HLL)

⎧⎪⎨
⎪⎩

∂tv = ∂x
(
(v2 − 1)w

)
,

∂tw = ∂x

( ∂xxv

1− v2
+ v

(∂xv)
2

(1− v2)2
+ v

(
w2 − 1)

)
.

This system is similar to the hydrodynamical Gross-Pitaevskii equation (see, e.g.,
[5]).1 The Cauchy problem in the space X(R) := H1(R)×L2(R) for this system was
solved by de Laire and Gravejat in [8], where local well-posedness is established.

In this framework, the Landau-Lifshitz energy is expressed as

(1.1) E(v) :=

∫
R

e(v) :=
1

2

∫
R

( (v′)2

1− v2
+
(
1− v2

)
w2 + v2

)
,

where v := (v, w) denotes the hydrodynamical pair. The momentum P , defined by

(1.2) P (v) :=

∫
R

vw,

is also conserved by the Landau-Lifshitz flow. When c �= 0, the function ǔc does
not vanish. The hydrodynamical pair Qc := (vc, wc) is given by

(1.3) vc(x) =
(1− c2)

1
2

cosh
(
(1− c2)

1
2 x

)
and

wc(x) =
c vc(x)

1− vc(x)2
=

c(1− c2)
1
2 cosh

(
(1− c2)

1
2 x

)
sinh

(
(1− c2)

1
2 x

)2
+ c2

.

The flow of (HLL) is invariant by translations and the opposite map (v, w) �→
(−v,−w). These geometric transformations play an important role in the stability
statement. We will show that the stability depends on these invariances.

We denote by

Qc,a,s(x) := sQc(x− a) :=
(
svc(x− a), swc(x− a)

)
,

for a ∈ R and s ∈ {±1}. We also define

(1.4) Sc,a,s :=
(
Vc,a,s,Wc,a,s

)
:=

N∑
j=1

Qcj ,aj ,sj ,

with N ∈ N
∗, c = (c1, . . . , cN ), with cj �= 0, a = (a1, . . . , aN ) ∈ R

N and s =
(s1, . . . , sN ) ∈ {±1}N . In the original framework, this can be translated in the
following way:

Rc,a,s :=
(
(1− V 2

c,a,s)
1
2 cos(Θc,a,s), (1− V 2

c,a,s)
1
2 sin(Θc,a,s), Vc,a,s

)
,

where we have denoted by

Θc,a,s(x) :=

∫ x

0

Wc,a,s(y)dy,

1The hydrodynamical terminology originates in the fact that the hydrodynamical Gross-
Pitaevskii equation is similar to the Euler equation for an irrotational fluid (see, e.g., [4]).
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for any x ∈ R. In this paper, we provide the proof of the asymptotic stability around
any soliton and between any two solitons of a sum of well-separated solitons with
ordered speed, i.e.,

aj − aj−1 ≥ L, for any j ∈ {2, . . . , N}, where L > 0, and c1 < . . . < cN .

We introduce the following set:

Pos(L) :=
{
a = (a1, . . . , aN ) ∈ R

N , s.t. aj+1 > aj + L for 1 ≤ j ≤ N − 1
}
,

and we set

Vc,s(α,L) :=
{
v = (v, w) ∈ H1(R)× L2(R), s.t. inf

a∈Pos(L)

∥∥v− Sc,a,s

∥∥
H1×L2 < α

}
,

for α > 0. Multi-solitons are orbitally stable under these invariance parameters
(see [8] for more details). We recall this result in the next section (see Theorem 2.1
below).

1.2. Asymptotic stability in the original framework. In this subsection, we
provide our main result. First, we introduce a metric structure on the energy space
E(R) in order to establish them. As done by de Laire and Gravejat in [8], we define
the following distance:

dE(f, g) := |f̌(0)− ǧ(0)|+ ‖f ′ − g′‖L2(R) + ‖f3 − g3‖L2(R),

where f = (f1, f2, f3) and f̌ = f1 + if2 (respectively for g). With this choice,
(E(R), dE) is a metric space. The following theorem shows the asymptotic stability
around each soliton and between the solitons.

Theorem 1.1. Let m0 ∈ E(R), s ∈ {±1}N , c0 = (c01, . . . , c
0
N ) ∈ (−1, 1)N , with

c0j �= 0, such that

c01 < . . . < c0N ,

and a0 = (a01, . . . , a
0
N ) ∈ RN . There exist a positive number βc0 , depending only on

c0, and a positive number L0 such that, if

dE
(
m0, Rc0,a0,s

)
≤ βc0 ,

and

a
0 ∈ Pos(L0),

then there exist N numbers c∞ :=
(
c∞1 , . . . , c∞N

)
∈ (−1, 1)N , with c∞j �= 0, and 2N

functions aj ∈ C1(R+,R) and θj ∈ C1(R+,R), such that

a′j(t) → c∞j , and θ′j(t) → 0,

as t → +∞, and for which the map

mθj :=
(
cos(θj)m1 − sin(θj)m2, sin(θj)m1 + cos(θj)m2,m3

)
,
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corresponding to the unique global solution m ∈ C0(R, E(R)) with initial datum m0,
satisfies the convergences

N∑
j=1

[
∂xmθj(t)

(
·+aj(t), t

)
− ∂xuc̃j

]
⇀ 0 in L2(R),

N∑
j=1

[
mθj(t)

(
·+aj(t), t

)
− uc̃j

]
→ 0 in L∞

loc(R),

and

N∑
j=1

[
m3

(
·+aj(t), t

)
− [uc̃j ]3

]
⇀ 0 in L2(R),

(1.5)

as t → +∞. In addition, for any map bj satisfying the following conditions:

(1.6)

⎧⎨
⎩

b1(t) < a1(t),
aj−1(t) < bj(t) < aj(t) ∀ 2 ≤ j ≤ N,

bN+1(t) > aN (t),

for all t ∈ R+ and

(1.7)

⎧⎨
⎩

lim inf
t→+∞

bj(t)
t > c∞j−1,

lim sup
t→+∞

bj(t)
t < c∞j ,

with {
c∞0 = −1,
c∞N+1 = 1,

we have
N∑
j=1

∂xmθj(t)

(
·+bj(t), t

)
⇀ 0 in L2(R),

N∑
j=1

[
mθj(t)

(
·+bj(t), t

)
− e2

]
→ 0 in L∞

loc(R),

and

N∑
j=1

m3

(
·+bj(t), t

)
⇀ 0 in L2(R),

(1.8)

as t → +∞, with e2 = (0, 1, 0).

As a consequence, we infer the following corollary.

Corollary 1.1.

∂xmθj(t)

(
·+aj(t), t

)
− ∂xuc̃j ⇀ 0 in L2(R),

mθj(t)

(
·+aj(t), t

)
− uc̃j → 0 in L∞

loc(R),

and
[
m3

(
·+aj(t), t

)
− [uc̃j ]3 ⇀ 0 in L2(R),

and

∂xmθj(t)

(
·+bj(t), t

)
⇀ 0 in L2(R),

mθj(t)

(
·+bj(t), t

)
− e2 → 0 in L∞

loc(R),

and m3

(
·+bj(t), t

)
⇀ 0 in L2(R),

as t → +∞, for any j ∈ {1, . . . , N}.
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The proof of Theorem 1.1 is similar to the one of Theorem 1.1 in [1]. It relies
on a modulation argument and Theorem 1.2. The proof still applies for our case
of N solitons since each term of the sums in (1.5) and (1.8) converges to zero. It
remains to deal with each term separately and apply the arguments used for the
case of one soliton N times. In particular, (1.5) and (1.8) are direct consequences
of (1.9) and (1.10) respectively (see Subsection 2.4 in [1] for more details).

Remark 1.1. (i) There is no regularity hypothesis on bj . Indeed, if (1.8) was not
true, we would have a sequence of time (tn) converging to +∞ and for which we
did not have (1.8). Since we can take the functions bj sufficiently separated, we can

interpolate then by smooth functions b̃j , i.e., which satisfy b̃j(tn) = bj(tn) and we
obtain the convergence using (1.10). This leads to a contradiction.

(ii) The locally strong asymptotic stability result for multi-solitons, as stated
by Martel, Merle and Tsai in [17] for the KdV equation, is stronger than the two
weak asymptotic stability results stated in this paper. It is still an open problem
for the Landau-Lifshitz equation. As a matter of fact, the method used by Martel,
Merle and Tsai is based on a monotonicity argument for the localized energy. This
argument is not obvious in our case, since dispersion has both positive and negative
speeds in contrast with the KdV case in which dispersion has only negative speeds.

1.3. Asymptotic stability in the hydrodynamical framework. The following
theorem shows the asymptotic stability of multi-solitons in the hydrodynamical
framework. We show the asymptotic stability around and between solitons.

Theorem 1.2. Let c0 = (c01, . . . , c
0
N ) ∈ (−1, 1)N , with c0j �= 0 for all j = 1, . . . , N

and s ∈ {−1, 1}N , such that there exist L0, α0 > 0 with the following properties.
Given any (v0, w0) ∈ X(R), there exist L > L0 and α < α0 such that if (v0, w0) ∈
Vc0,s(α,L), then there exist a :=

(
a1, . . . , aN

)
∈ C1(R+,R

N ), c :=
(
c1, . . . , cN

)
∈

C1(R+, (−1, 1)\{0}N ) and non-zero different speeds c∞ =
(
c∞1 , . . . , c∞N

)
∈ (−1, 1)N

such that the unique global solution (v, w) ∈ C0(R,NV(R)) to (HLL) with initial
datum (v0, w0) satisfies, for all j ∈ {1, . . . , N},

(1.9) (v, w)(t, x+ aj(t))−
N∑

k=1

Qck(t)(x+ aj(t)− ak(t)) ⇀ 0 in X(R),

as well as

(1.10) (v, w)(t, x+ bj(t))−
N∑

k=1

Qck(t)(x+ bj(t)− ak(t)) ⇀ 0 in X(R),

for any b :=
(
b1, . . . , bN+1

)
∈ C1(R+,R

N+1) with bj satisfying (1.6) and

(1.11) c∞j−1 < lim
t→+∞

b′j(t) < c∞j .

Moreover, we have

(1.12) cj(t) → c∞j , a′j(t) → c∞j ,

as t → +∞.

In fact, all the solitons in (1.9) with speed ck for k �= j are weakly convergent to
0 in X(R) as t → +∞, due to (1.12), so that (1.9) truly provides the asymptotic
stability of the soliton with speed cj . For (1.10), all the solitons are weakly con-
vergent to 0 in X(R) as t → +∞, so that (1.10) provides the asymptotic stability
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of the zero solution between the solitons. As a consequence we have the following
corollary.

Under the asumptions of Theorem 1.2, we have

Corollary 1.2. We have

(v, w)(t, ·+ aj(t))−Qcj(t) ⇀ 0 in X(R),

as well as

(v, w)(t, ·+ bj(t)) ⇀ 0 in X(R),

as t → +∞, for any j ∈ {1, . . . , N}.

Remark 1.2. (i) For (1.10), we begin by proving the convergence for b :=
(
b1, . . . ,

bN+1

)
∈ C1(R+,R

N+1) with bj satisfying (1.6) and (1.11). Then, we show that it
remains true also for any bj satisfying (1.7) in order to deduce (1.8) (see the end of
Subsection 4.1 for the proof).

(ii) The case when c0j �= 0 is excluded from the statement. In fact, we cannot
use the hydrodynamical formulation in that case because the first and the second
components of the soliton can vanish simultaneously. In addition, the Liouville
type theorem cannot be applied as well as the orbital stability theorem. To our
knowledge, this is still an open problem.

The proof relies on the strategy developed by Martel, Merle and Tsai in [17].

1.4. Plan of the paper. In the second section, we recall the orbital stability result
for the multi-solitons, stated by de Laire and Gravejat in [8], which is an important
tool to prove our results.

In the third section, we prove the asymptotic stability around solitons. More
precisely, we show that any solution close to the sum of N solitons is weakly con-
vergent to a soliton in the translating neighborhood of each soliton. We state that
all other solitons stay far in the way that, in this region, the problem reduces to
the asymptotic stability for a single soliton. This is the reason why we can use the
Liouville type theorem proved in [1]. For that, we begin by constructing a limit
profile around each soliton, by using their orbital stability. We then prove that this
limit solution is smooth and exponentially localized using the weak continuity of
the flow. Finally we obtain (1.9) using the Liouville type theorem.

In the last section, we change the translation parameters to show that any so-
lution, corresponding to an initial datum close to the sum of N solitons, converges
weakly to zero when it is moving in the core of the region separating two solitons.
As in the third section, we construct a smooth and exponentially decaying limit
solution with small energy. Next, we establish a Liouville type theorem, which
affirms that small solutions which are smooth and exponentially localized are zero
solutions. As a consequence, we obtain (1.10) which claims that there is no inter-
action between well-separated solitons with ordered speed.

2. Orbital stability in the hydrodynamical framework

In this section, we first recall the orbital stability result proved by de Laire and
Gravejat in [8]. In order to quantify it precisely, we set

NV(R) :=
{
v = (v, w) ∈ H1(R)× L2(R), s.t. max

R

|v| < 1
}
.
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In what follows we consider this space as a metric space equipped with the metric
structure provided by the norm

‖v‖H1×L2 :=
(
‖v‖2H1 + ‖w‖2L2

) 1
2

.

Theorem 2.1 ([8]). Let s∗ ∈ {±1}N and c∗ = (c∗1, . . . , c
∗
N ) ∈ (−1, 1)N , with c∗j �= 0,

such that

(2.1) c∗1 < . . . < c∗N .

There exist positive numbers α∗, L∗ and A∗, depending only on c∗ such that, if
v0 ∈ NV(R) satisfies the condition

(2.2) α0 :=
∥∥v0 − Sc∗,a0,s∗

∥∥
H1×L2 ≤ α∗

for points a0 = (a01, . . . , a
0
N ) ∈ RN such that

L0 := min
{
a0j+1 − a0j , 1 ≤ j ≤ N − 1

}
≥ L∗,

then the solution v to (HLL) with initial datum v0 is globally well defined on R+,
and there exists a function a = (a1, . . . , aN ) ∈ C1(R+,R

N ) such that

(2.3)

N∑
j=1

∣∣a′j(t)− c∗j
∣∣ ≤ A∗

(
α0 + exp

(
− νc∗L

0

65

))
,

and

(2.4)
∥∥v(·, t)− Sc∗,a(t),s∗

∥∥
H1×L2 ≤ A∗

(
α0 + exp

(
− νc∗L

0

65

))
,

for any t ∈ R+.

We define

μc := min
1≤j≤N

|cj |, and νc := min
1≤j≤N

(
1− c2j

) 1
2 ,

for any c ∈ (−1, 1)N . The following proposition provides some details contained in
the proof of Theorem 2.1. In particular, it shows the existence of the speed and the
translation parameters for each soliton (see [8] for the proof). It is an important
tool for the proof of the asymptotic stability result.

Proposition 2.1 ([8]). There exist positive numbers α∗
1 and L∗

1, depending only
on c∗ and s∗, such that we have the following properties:

(i) Any pair v = (v, w) ∈ Vc∗,s∗(α
∗
1, L

∗
1) belongs to NV(R), with

(2.5) 1− v2 ≥ 1

8
μ2
c∗ .

(ii) There exist two maps c ∈ C1(Vc∗,s∗(α
∗
1, L

∗
1), (−1, 1)N ) and

a ∈ C1(Vc∗,s∗(α
∗
1, L

∗
1),R

N ),

and a positive number A∗, depending only on c∗ and s∗, such that, if∥∥v− Sc∗,a∗,s∗
∥∥
H1×L2 < α

for a∗ ∈ Pos(L), with L > L∗
1 and α < α∗

1, then we have

(2.6) ‖ε‖H1×L2 +
N∑
j=1

∣∣cj(v)− c∗j
∣∣+ N∑

j=1

∣∣aj(v)− a∗j
∣∣ ≤ A∗

(
α+ exp

(
− νc∗L

32

))
,
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as well as

(2.7) a(v) ∈ Pos(L− 1), μc(v) ≥
1

2
μc∗ and νc(v) ≥

1

2
νc∗ ,

where
ε = v− Sc(v),a(v),s∗ ,

satisfies the orthogonality conditions

(2.8) 〈ε, ∂xQck(v)〉L2(R)2 = 〈ε, χck(v)〉L2(R)2 = 0,

for any k ∈ {1, . . . , N}. Here the function χck(v) stands for an eigenvector of the
quadratic form Hck(v) := E′′(Qck(v)) − ck(v)P

′′(Qck(v)) associated to its unique
negative eigenvalue.

Remark 2.1. The second orthogonality condition in (2.8) is not the same as the one
used by de Laire and Gravejat in [8]. However, the result remains true by the same
argument used in [1] (see Section 3 in [1] for more details). Moreover, we need this
orthogonality condition in order to apply the Liouville type theorem (Theorem 3.1
below) (see Subsection 2.3.3 in [1] for more details).

Next, we recall the result for only one soliton which is a direct consequence of
Theorem 2.1. It is an important tool for the proof of (1.5) since we analyze the
soliton around each soliton.

Theorem 2.2 ([8]). Let c ∈ (−1, 1) \ {0}. There exists a positive number αc,
depending only on c, with the following properties. Given any (v0, w0) ∈ NV(R)
such that

(2.9) α0 :=
∥∥(v0, w0)−Qc,a

∥∥
X(R)

≤ αc,

for some a ∈ R, there exist a unique global solution (v, w) ∈ C0(R,NV(R)) to (HLL)
with initial datum (v0, w0), two maps c ∈ C1(R, (−1, 1) \ {0}) and a ∈ C1(R,R),
and two positive numbers σc and Ac, depending only and continuously on c, such
that

(2.10) max
x∈R

v(x, t) ≤ 1− σc,

(2.11)
∥∥δ(·, t)∥∥

X(R)
+
∣∣c(t)− c

∣∣ ≤ Acα
0,

and

(2.12)
∣∣c′(t)∣∣+ ∣∣a′(t)− c(t)

∣∣ ≤ Ac

∥∥δ(·, t)∥∥
X(R)

,

for any t ∈ R, where the function δ is defined by

(2.13) δ(·, t) :=
(
v(·+ a(t), t), w(·+ a(t), t)

)
−Qc(t),

and satisfies the orthogonality conditions

(2.14) 〈δ(·, t), ∂xQc(t)〉L2(R)2 = 〈δ(·, t), χc(t)〉L2(R)2 = 0,

for any t ∈ R.

Set

c(t) := c(v(·, t)) :=
(
c1(t), . . . , cN (t)

)
and a(t) := a(v(·, t)) :=

(
a1(t), . . . , aN (t)

)
,

as well as

(2.15) ε(·, t) :=
(
ε1(·, t), ε2(·, t)

)
= v(·, t)− Sc(t),a(t),s∗ .
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The pair ε is well defined and satisfies the orthogonality conditions

(2.16) 〈ε(·, t), ∂xQck(t)〉L2(R)2 = 〈ε(·, t), χck(t)〉L2(R)2 = 0,

for any t ∈ R+ and for any k ∈ {1, . . . , N} (see [8] for more details). For α and L
given by Proposition 2.1, we also infer from the results in [8] that

(2.17) ‖ε(·, t)‖H1×L2 +

N∑
j=1

∣∣cj(t)− c∗j
∣∣ ≤ A∗

(
α+ exp

(
− νc∗L

65

))
,

and

(2.18) a(t) ∈ Pos(L− 1), μc(t) ≥
1

2
μc∗ and νc(t) ≥

1

2
νc∗ .

3. Asymptotic stability around the solitons

in the hydrodynamical variables

3.1. Proofs of (1.9) and (1.12). Let c0 be as in Theorem 1.2 and v0 be any pair
which belongs to the set Vc0,s(α,L) with α and L as in the hypothesis of Theorem
1.2.

Let j ∈ {1, . . . , N}. By (2.17), the functions ε and cj are uniformly bounded in
X(R), respectively in R. Then, there exist ε̃j,0 ∈ X(R)2 and c̃j,0 ∈ (−1, 1) \ {0}
such that, up to a subsequence,

(3.1) ε(·+ aj(tn), tn) ⇀ ε̃j,0 in X(R) and cj(tn) → c̃j,0 as n → ∞.

Indeed, the bounds in (2.17) and the possibility to choose α small enough guarantee
that c̃j,0 stays always close to c0j which prevents c̃j,0 to be in {−1, 0, 1} for any
j ∈ {1, . . . , N}.

We set ṽj,0 = (ṽj,0, w̃j,0) := Qc̃j,0 + ε̃j,0 and denote by ṽj = (ṽj , w̃j) the unique
global solution to (HLL) corresponding to this initial datum ṽj,0. We claim that
this solution exponentially decays with respect to the space variable for any time,
as well as all its space derivatives. More precisely, we have

Proposition 3.1. The pair (ṽj , w̃j) is indefinitely smooth and exponentially de-
caying on R× R. Moreover, given any k ∈ N, there exist a positive constant Ak,c,
depending only on k and c, and a function ãj ∈ C1(R,R) such that

(3.2)

∫
R

[
(∂k+1

x ṽj)
2 + (∂k

x ṽj)
2 + (∂k

xw̃j)
2
]
(x+ ãj(t), t) exp

( νc
16

|x|
)
dx ≤ Ak,c,

for any t ∈ R.

With this proposition at hand, we can finish the proof of (1.9). We recall the
Liouville type theorem stated in [1].

Theorem 3.1 ([1]). Let j ∈ {1, . . . , N}, cj ∈ (−1, 1) \ {0} and let (ṽj , w̃j) be a
solution of (HLL) satisfying (3.2) and

(3.3) ‖(ṽj,0, w̃j,0)−Qcj‖X(R) ≤ α,

where α satisfies the hypothesis of Theorem 1.2. Then, there exist two numbers
x∗ ∈ R and c∗ ∈ (−1, 1) \ {0} such that

(ṽj , w̃j)(t, x) = Qc∗(x− x∗ − c∗t) ∀(t, x) ∈ R× R.

2In view of (2.17), the norm of ε̃j,0 in X(R) is small.
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Due to the orbital stability of Qc̃j,0 , condition (3.3) is satisfied when α0 is small
enough. Applying Theorem 3.1, we get x∗ ∈ R and c∗ ∈ (−1, 1) \ {0} such that we
have

ṽj(t, x) = Qc∗(x− x∗ − c∗t) ∀(t, x) ∈ R× R.

In particular, we have Qc̃j,0(x) + ε̃j,0(x) = Qc∗(x − x∗). We claim that x∗ = 0.
Indeed, we use the fact that ‖ε̃j,0‖X(R) ≤ α and a modulation argument to obtain
|c∗ − c̃j,0| ≤ Acα and |x∗| � Acα. We define

h(c∗, x∗) =

∫
R

〈
Qc∗(x− x∗), Q′

c̃j,0

〉
.

We have

∂x∗h(c̃j,0, 0) = −
∫
R

|Q′
c̃j,0 |

2 �= 0.

From the implicit function theorem, there exist a neighborhood V of (c̃j,0, 0) and a
function φ such that (c∗, x∗) ∈ V and h(c∗, x∗) = 0 if and only if x∗ = φ(c∗). Since,
by parity, h(c∗, 0) = 0, we infer that x∗ = 0.

Next, we set g(c∗) =
∫
R

〈
Qc∗ − Qc̃j,0 , Qc̃j,0

〉
. Since g′(c̃j,0) �= 0, we can prove

that c∗ = c̃j,0, which leads to the fact that ε̃0 ≡ 0. This allows us to deduce the
convergence (1.9) for a subsequence of (tn)n∈N.

Finally, we prove (1.9) and (1.12) for t → ∞. Since al(tnk
)−aj(tnk

) → ∞ for all
l �= j, the solution converges to only one soliton because the other solitons converge
to zero. This means that we have(

v(·+ aj(tnk
), tnk

), w(·+ aj(tnk
), tnk

)
)
−Qcj(tnk

) ⇀ 0 in X(R),

as k → ∞. This restricts the problem to the case of only one soliton. The proof is
then similar to the one stated by Béthuel, Gravejat and Smets in [5]. It relies on
the monotonicity formula for the quantities Ij,y0

in Proposition 3.3.
The main idea is to show that c̃j,0 is independent of the sequence (tn)n∈N. As-

sume by contradiction that for two different sequences (tn)n∈N and (sn)n∈N, both
tending to ∞, we have

cj(tn) → cj,1 and cj(sn) → cj,2,

as n → ∞, with cj,1 �= cj,2 satisfying (2.17). In addition, we suppose that we have

(3.4)
(
v(·+ a(tn), tn), w(·+ a(tn), tn)

)
−Qcj(tn) ⇀ 0 in X(R),

and

(3.5)
(
v(·+ a(sn), sn), w(·+ a(sn), sn)

)
−Qcj(sn) ⇀ 0 in X(R).

Note that these two convergences are different since Qcj(tn) → Qcj,1 and Qcj(sn) →
Qcj,2 as n → ∞. We may assume, without loss of generality, that cj,1 < cj,2 and
that the sequences (tn)n∈N and (sn)n∈N are strictly increasing and are taken such
that

(3.6) tn + 1 ≤ sn ≤ tn+1 − 1,

for any n ∈ N. Let δ > 0. For y0 sufficiently large, we can define the quantities
Ij,y0

as in (3.28), and deduce from (3.6) and (3.30) that

(3.7) Ij,±y0
(sn) ≥ Ij,±y0

(tn)−
δ

10
and Ij,±y0

(tn+1) ≥ Ij,±y0
(sn)−

δ

10
,
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for any n ∈ N. On the other hand, by (3.4) and (3.5), there exists an integer n0

such that

(3.8)
∣∣Ij,−y0

(tn)− Ij,y0
(tn)− P (Qcj(tn))

∣∣ ≤ δ

5
,

and

(3.9)
∣∣Ij,−y0

(sn)− Ij,y0
(sn)− P (Qcj(sn))

∣∣ ≤ δ

5
,

for any n ≥ n0 and for y0 large enough. From (3.7), (3.8) and (3.9), we have

Ij,y0
(sn) ≥ Ij,y0

(tn) +
δ

2
,

for any n ≥ n0. This yields, using (3.7) again, that

Ij,y0
(tn+1) ≥ Ij,y0

(tn) +
2δ

5
,

for any n ≥ n0. Therefore, the sequence (Ij,y0
(tn))n∈N is unbounded, which leads

to a contradiction with the fact that the pair (v, w) has a bounded energy.
The second convergence in (1.12) follows from the fact that

aj(tn + t)− aj(tn) → c∞j t,

for any fixed t ∈ R and any sequence (tn)n∈N tending to ∞ (due to (3.21)), and
Lemma 2 in [5] (see [5] for more details). �

3.2. Localization and smoothness of the limit profile. In this section, we
prove Proposition 3.1. First, we use (2.3) and (2.17) to claim that

(3.10) min
j=1,...,N

{
cj(t)

2, a′j(t)
2
}
≥ μ2

c

2
, max

j=1,...,N

{
cj(t)

2, a′j(t)
2
}
≤ 1 +

μ2
c

2
,

and

(3.11)
∥∥Vc,a(t),s − v(t)

∥∥
L∞(R)

≤ min
{μ2

c

4
,
ν2c
16

}
,

for any t ∈ R. In particular, we conclude that c̃j,0 ∈ (−1, 1) \ {0}, so that Qc̃j,0 is
a dark soliton.

In addition, for j ∈ {1, . . . , N}, we have

(3.12)
∣∣c̃j,0 − cj

∣∣ ≤ Aμc
α.

On the other hand, by the weak lower semi-continuity of the norm, (2.17) and (3.1),
we infer that

(3.13)
∥∥(ṽj,0, w̃j,0)−Qcj

∥∥
X(R)

≤ Aμc
α+

∥∥Qcj −Qc̃j,0

∥∥
X(R)

≤ Ãμc
α.

Now, we suppose that α is sufficiently small so that, by (3.13),

(3.14)
∥∥(ṽj,0, w̃j,0)−Qcj

∥∥
X(R)

≤ αc.

By Theorem 2.2, there exist two maps c̃j ∈ C1(R, (−1, 1) \ {0}) and ãj ∈ C1(R,R)
such that the function ε̃j defined by

(3.15) ε̃j(·, t) :=
(
ṽj(·+ ãj(t), t), w̃j(·+ ãj(t), t)

)
−Qc̃j(t),

satisfies the estimates

(3.16)
∥∥ε̃j(·, t)∥∥X(R)

+
∣∣c̃j(t)− cj

∣∣+ ∣∣ã′j(t)− c̃j(t)
∣∣ ≤ Ac

∥∥(ṽj,0, w̃j,0)−Qcj

∥∥
X(R)

,
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and the orthogonality conditions

(3.17) 〈ε̃j(·, t), ∂xQc̃j(t)〉L2(R)2 = 〈ε̃j(·, t), χc̃j(t)〉L2(R)2 = 0,

for any t ∈ R.
Using (3.13) and (3.16), and choosing α small enough we claim that

(3.18) min
{
c̃j(t)

2, ã′j(t)
2
}
≥ μ2

c

4
, max

{
c̃j(t)

2, ã′j(t)
2
}
≤ 1 + μ2

c ,

and

(3.19)
∥∥vcj (·)− ṽj(·+ ãj(t), t)

∥∥
L∞(R)

≤ min
{μ2

c

4
,
1− μ2

c

16

}
,

for any t ∈ R. We then prove the following weak continuity property in the hydro-
dynamical framework.

Proposition 3.2. Let j ∈ {1, . . . , N} and t ∈ R be fixed. Then,

(3.20) (v, w)(·+ aj(tn), tn + t) ⇀ (ṽj , w̃j)(·, t)
)

in X(R),

while

(3.21) aj(tn + t)− aj(tn) → ãj(t), and cj(tn + t) → c̃j(t),

as n → ∞. In particular, we have

(3.22) (v, w)(·+ aj(tn + t), tn + t) ⇀ (ṽj , w̃j)(·+ ãj(t), t) in X(R),

as n → ∞.

The weak continuity of the flow and of the modulation parameters were proved
in [1] in the case of a simple soliton. The proof of Proposition 3.2 is similar.

Proof. Let j ∈ {1, . . . , N} be a fixed integer. First, we prove (3.20). By the second
convergence in (3.1) and the explicit formula of Qcj(tn) in (1.3), we can infer that

Qcj(tn) → Qc̃j,0 in X(R),

as n → ∞. This leads, using the first convergence in (3.1), to(
v(·+ aj(tn), tn), w(·+ aj(tn), tn)

)
⇀ ε̃j,0 +Qc̃j,0 in X(R),

as n → ∞. In view of the fact that t �→ (v(· + aj(tn), tn + t), w(· + aj(tn), tn +
t)) and (ṽj , w̃j) are the solutions to (HLL) with initial data (v(· + aj(tn), tn),
w(· + aj(tn), tn)), respectively ε∗0 + Qc∗0

, we deduce (3.20) from the weak conti-
nuity of the flow (see Proposition A.1 in [1] for more details).

Next, let us prove (3.21). By (2.11) and (2.12) the maps a′j and cj are bounded
on R, so that the sequences (aj(tn+t)−aj(tn))n∈N and (cj(tn+t))n∈N are bounded.
Hence it is sufficient to prove that the unique possible accumulation points for these
sequences are ãj(t), respectively c̃j(t).

We suppose now that, up to a possible subsequence, we have

(3.23) aj(tn + t)− aj(tn) → αj , and cj(tn + t) → σj ,

as n → ∞. Given a function φ ∈ H1(R), we write〈
v(·+ aj(tn + t), tn + t), φ

〉
H1(R)

=
〈
v(·+ aj(tn), tn + t), φ(· − aj(tn + t) + aj(tn))− φ(· − αj)

〉
H1(R)

+
〈
v(·+ aj(tn), tn + t), φ(· − αj)

〉
H1(R)

.
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Since we know that

φ(·+ h) → φ in H1(R),

when h → 0, we can use (3.20) and (3.23) to infer that

v(·+ aj(tn + t), tn + t) ⇀ ṽj(·+ αj , t) in H1(R),

as n → ∞. Similarly, we obtain

w(·+ aj(tn + t), tn + t) ⇀ w̃j(·+ αj , t) in L2(R).

By (3.23) we also have

Qcj(tn+t) → Qσj
in X(R),

as n → ∞. This leads to

(3.24) ε(·, tn + t) ⇀
(
ṽj(·+ αj , t), w̃j(·+ αj , t)

)
−Qσj

in X(R),

as n → ∞.
Now, we use the fact that the function χc is continuous with respect to the

parameter c, (1.3) and the second convergence in (3.23) to prove that

∂xQcj(tn+t) → ∂xQσj
and χcj(tn+t) → χσj

in L2(R)2,

as n → ∞. Combining this with (3.24), we can take the limit n → ∞ in the two
orthogonality conditions in (3.17) to obtain〈

(ṽj(·+ αj , t), w̃j(·+ αj , t))−Qσj
, ∂xQσj

〉
L2(R)2

=
〈
(ṽj(·+ αj , t), w̃j(·+ αj , t))−Qσj

, χσj

〉
L2(R)2

= 0.

Since the parameters ãj(t) and c̃j(t) are uniquely defined in (3.15), we infer that

(3.25) αj = ãj(t), and σj = c̃j(t),

which is enough to complete the proof of (3.21). Convergence (3.22) follows com-
bining (3.15) with (3.24) and (3.25). �

Now, we consider the function Φ, which is defined on R by

(3.26) Φ(x) :=
1

2

(
1 + tanh

( νc
16

x
))

.

Recall that Φ′ satisfies the following property:

(3.27)
∣∣Φ′′′(x)

∣∣ ≤ ν2c
64

Φ′(x) ≤ ν3c
512

exp
(
− νc

16
|x|

)
.

We set

δc :=
1

2
min{1 + c1, c2 − c1, c3 − c2, . . . , cN − cN−1, 1− cN}

for any c ∈ (−1, 1)N .
Let (v, w) be a pair given by Theorem 2.1, j ∈ {1, . . . , N} and y0 ∈ R. Denote

(3.28) Ij,y0
(t) :=

∫
R

Φ(x− (aj(t) + y0))[vw](x, t) dx.

The quantity Ij,y0
is a localized version of the momentum in the right semi-line

from the position aj + y0. Following the ideas used by Martel, Merle and Tsai in
the proof of Lemma 3 in [17], we prove a monotonicity formula for this quantity
up to some exponentially decaying error terms. This formula originates in the
conservation law for the density of momentum (see [8] for more details).
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The choice of the function Φ comes from the exponentially decaying of the soli-
tons. This choice is responsible of the exponentially decaying error terms in the
monotonicity formula.

Proposition 3.3. Let y0 ∈ R, t ∈ R+ and σ ∈ [−δc, δc]. There exist positive
numbers α1 ≤ α, L1 ≥ L∗ and A1, A

∗
1 > 0, depending only on c and s, such that, if

α0 ≤ α1 and L ≥ L1, then the map Ij is of class C1 on R, and it satisfies

d

dt

[
Ij,y0+σt(t)

]
≥ν2c
32

∫
R

[
(∂xv)

2 + v2 + w2
]
(x, t)Φ′(x− (aj(t) + y0 + σt)) dx

−A1 exp
(
− νc

16
|y0 + σt|

)
,

(3.29)

for any 1 ≤ j ≤ N and any t ∈ R+. In particular, we have

(3.30) Ij,y0
(t1) ≥ Ij,y0

(t0)−A∗
1 exp

(
− νc

16
|y0|

)
,

for any real numbers t1 ≥ t0 ≥ 0.

Remark 3.1. In view of the proof below, Proposition 3.3 holds for any time t ∈ R,
when there is only one soliton in the sum. In particular, this further property is
true for the limit solution (ṽj , w̃j).

Proof. We differentiate the quantities Ij,y0+σt with respect to t in order to obtain

d

dt

[
Ij,y0+σt(t)

]
=
1

2

∫
R

Φ′(· − (aj(t) + y0 + σt))

×
(
v2 + w2 −

(
a′j(t) + σ

)
vw − 3v2w2 +

3− v2

(1− v2)2
(∂xv)

2
)

+
1

2

∫
R

Φ′′′(· − (aj(t) + y0 + σt)) ln
(
1− v2

)
,

(3.31)

for any t ∈ R+ (see [8] for more details). We decompose the real line into two
regions,

Rj(t) =
[
aj(t)−

L− 1

4
, aj(t) +

L− 1

4

]
,

and its complementary set. We set

d

dt

[
Ij,y0+σt(t)

]
= I1

j (t) + I2
j (t),

where

I2
j (t) =

1

2

∫
Rj(t)

Φ′(· − (aj(t) + y0 + σt))

×
(
v2 + w2 −

(
a′j(t) + σ

)
vw − 3v2w2 +

3− v2

(1− v2)2
(∂xv)

2
)

+
1

2

∫
Rj(t)

Φ′′′(· − (aj(t) + y0 + σt)) ln
(
1− v2

)
.

When x ∈ Rj(t), we have

|x− aj(t)− y0 − σt| ≥ −L

4
+ |y0 + σt|.
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Hence, using (2.5), (3.19), and (3.27), we obtain

(3.32)
∣∣I2

j (t)
∣∣ ≤ Ac exp

(
− νc

16
|y0 + σt|

)
,

where Ac denotes, here as in what follows, a positive number depending only on c

and s.
Next, we use (2.5) and (3.27) to bound I1

j (t) from below by

I1
j (t) ≥

1

2

∫
R\Rj(t)

Φ′(· − (aj(t) + y0 + σt))

×
(
(∂xv)

2 + v2 + w2 − 2
(
1− ν2c

4

) 1
2 |v||w| − 3v2w2 +

ν2c
64

ln
(
1− v2

))
.

(3.33)

For any x ∈ R \Rj(t), we have ∣∣x− ak(t)
∣∣ ≥ L

4
,

for any 1 ≤ k ≤ N . This yields, by (2.15), (2.17), the Sobolev embedding theorem,
the exponential decay of the solitons and (2.18), that

∣∣v(x, t)∣∣ ≤ ∣∣εv(x, t)∣∣+ N∑
k=1

∣∣vck(t)(x− ak(t))
∣∣ ≤ Ac

(
α+ exp

(
− νc

16
L
))

,

for any x ∈ R \Rj(t). For α small enough and L large enough, we have

(3.34) v2 ≤ min
{1

2
,
ν2c
96

}
,

on R \Rj(t). We conclude from (3.33), (3.34) and the fact that ln(1− s) ≥ −2s for
0 ≤ s ≤ 1/2, that

I1
j (t) ≥

1

2

(
1−

(
1− ν2c

4

) 1
2 − ν2c

32

)∫
R\Rj(t)

Φ′(·− (aj(t)+y0+σt))
(
(∂xv)

2+v2+w2
)
.

Then, using the fact that 1− (1− s)1/2 ≥ s/2 for 0 ≤ s ≤ 1, we obtain

I1
j (t)

≥ 1

2

(
1−

(
1− ν2c

4

) 1
2 − ν2c

32

)∫
R\Rj(t)

Φ′(· − (aj(t) + y0 + σt))
(
(∂xv)

2 + v2 + w2
)

≥ 3ν2c
64

∫
R\Rj(t)

Φ′(· − (aj(t) + y0 + σt))
(
(∂xv)

2 + v2 + w2
)
.

This concludes the proof of (3.29). Now let us prove (3.30). When y0 ≥ 0, we
integrate (3.29) from t0 to t1+t0

2 taking σ = δc
2 and y0 = y0 − δc

2 t0 and from t1+t0
2

to t1 taking σ = − δc
2 and y0 = y0 + δc

2 t1, to obtain (3.30). The proof is similar
when y0 < 0. This finishes the proof of this proposition. �

Using Propositions 3.2 and 3.3 and Remark 3.1, we claim as in [1] that

Proposition 3.4 ([1]). Let t ∈ R. There exists a positive constant Ac0 such that∫ t+1

t

∫
R

[
(∂xṽj)

2 + ṽ2j + w̃2
j

]
(x+ ãj(s), s)e

νc
16 |x| dx ds ≤ Ac0 .
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The two lemmas below are the main ingredients for the proof of this proposition.

For the limit profile (ṽj , w̃j), we set Ĩj,±y0
(t) := I(ṽj ,w̃j)

j,±y0
(t) for any t ∈ R and any

y0 > 0.

Lemma 3.1 ([5]). For any positive number δ, there exists a positive number yδ,
depending only on δ, such that for any t ∈ R we have

(3.35)
∣∣∣Ĩj,y0

(t)
∣∣∣ ≤ δ and |P (ṽj , w̃j)− Ĩj,−y0

(t)| ≤ δ,

for any y0 ≥ yδ.

This lemma shows that the momentum of the limit profile is localized in a com-
pact region of the real line. This is a key point to claim that this momentum is
exponentially decaying with respect to y0.

Proof. The proof of this lemma is by contradiction. We assume that there exists
a positive number δ0 such that, for any positive number y0, there exists a number
t0 ∈ R such that either |Ĩj,y0

(t0)| ≥ δ0 or |Ĩj,−y0
(t0)− P (ṽj , w̃j)| ≥ δ0.

At initial time t=0, we have limy0→+∞ Ĩj,y0
(0)=limy0→+∞ Ĩj,−y0

(0)−P (ṽj , w̃j)
= 0. Hence, there exists y0 > 0 such that

(3.36) |Ĩj,y0
(0)|+ |Ĩj,−y0

(0)− P (ṽj , w̃j)| ≤
δ0
4

and Ac exp
(
− νc

16
y0

)
≤ δ0

32
.

Now, we prove that the case Ĩj,y0
(t0) ≥ δ0 cannot hold for this choice of y0. The

proof of the other cases can be written in a very similar manner.
First, we deduce from (3.36) that

Ĩj,y0
(t0) ≥ δ0 ≥ δ0

4
+

δ0
16

≥ Ĩj,y0
(0) +Ac exp

(
− νc

16
y0

)
.

Using (3.30), we conclude that t0 > 0. Next, from the fact that limy0→+∞ Ĩj,−y0
(t0)

−P (ṽj , w̃j) = 0 we can choose y′0 ≥ y0 such that

(3.37)
∣∣Ĩj,−y′

0
(t0)− P (ṽj , w̃j)

∣∣ ≤ δ0
4
.

The choice of y′0 can be done to conserve (3.36) and to obtain∣∣Ĩj,−y′
0
(t0)−Ĩj,y0

(t0)−P (ṽj , w̃j)
∣∣≥ 3δ0

4
and

∣∣Ĩj,−y′
0
(0)−Ĩj,y0

(0)−P (ṽj , w̃j)
∣∣≤ δ0

2
,

and therefore ∣∣∣(Ĩj,−y′
0
(0)− Ĩj,y0

(0)
)
−
(
Ĩj,−y′

0
(t0)− Ĩj,y0

(t0)
)∣∣∣ ≥ δ0

4
.

Using the fact that the integrands of the expressions between the parentheses are
compactly supported in the space, we infer from Proposition 3.2 that there exists
an integer n0 such that∣∣∣(Ij,−y′

0
(tn)− Ij,y0

(tn)
)
−
(
Ij,−y′

0
(tn + t0)− Ij,y0

(tn + t0)
)∣∣∣ ≥ δ0

8
,

for any n ≥ n0. Rearranging the terms in the previous inequality, we obtain

(3.38) max
{∣∣Ij,−y′

0
(tn)− Ij,−y′

0
(tn + t0)

∣∣, ∣∣Ij,y0
(tn)− Ij,y0

(tn + t0)
∣∣} ≥ δ0

16
.

Since t0 ≥ 0, by (3.30), and (3.36), we deduce

Ij,−y′
0
(tn)− Ij,−y′

0
(tn + t0) ≤

δ0
32

and Ij,y0
(tn)− Ij,y0

(tn + t0) ≤
δ0
32

,
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and then we infer from (3.38) that, for any n ≥ n0,

either Ij,−y′
0
(tn + t0)− Ij,−y′

0
(tn) ≥

δ0
16

, or Ij,y0
(tn + t0)− Ij,y0

(tn) ≥
δ0
16

.

This leads us to the possibility of choosing an increasing sequence (nk)k∈N such
that tnk+1

≥ tnk
+ t0 for any k ∈ N, and either

(3.39) Ij,y0
(tnk

+ t0)− Ij,y0
(tnk

) ≥ δ0
16

,

for any k ∈ N, or

Ij,−y′
0
(tnk

+ t0)− Ij,−y′
0
(tnk

) ≥ δ0
16

,

for any k ∈ N. Next, we suppose that (3.39) holds, the proof of the other case being
exactly the same. From the fact that tnk+1

≥ tnk
+ t0, we conclude using (3.30),

(3.36) and (3.39), that

(3.40) Ij,y0
(tnk+1

) ≥ Ij,y0
(tnk

+ t0)−
δ0
32

≥ Ij,y0
(tnk

) +
δ0
32

,

for any k ∈ N. Now, we recall that Ij,y0
(tnk

) is bounded by the energy of the initial
datum. This yields a contradiction with (3.40) and finishes the proof. �

At this stage, the problem reduces to the case of one soliton. The proof of the
next statement is exactly the same as the one given by the author in [1] for that
case (see also [5] for more details).

Lemma 3.2 ([1]). Let y0 > 0. For any t ∈ R we have
(3.41)

Ĩj,y0
(t) ≤ Ac exp

(
− νc

16
y0

)
and |P (ṽj , w̃j)− Ĩj,−y0

(t)| ≤ Ac exp
(
− νc

16
y0

)
.

The proof of Proposition 3.1 is then exactly the same as the one of Proposition
2.7 in [1].

4. Asymptotic stability between the solitons

in the hydrodynamical framework

4.1. Proof of (1.10). Let c0 be as in Theorem 1.2 and v0 be any pair which belongs
to the set Vc0,s(α,L) with α and L as in the hypothesis of Theorem 1.2.

Let j ∈ {1, . . . , N} and bj satisfying (1.6) and (1.11). By (2.17), ε is uniformly
bounded in X(R). Then, there exists ε∗j,0 ∈ X(R) such that, up to a subsequence,

(4.1) ε(·+ bj(tn), tn) ⇀ ε∗j,0 in X(R) as n → ∞.

We set v∗j,0 = (v∗j,0, w
∗
j,0) := ε∗j,0 and denote by v∗j = (v∗j , w

∗
j ) the unique global

solution to (HLL) corresponding to this initial datum v∗j,0. We claim that this
solution exponentially decays with respect to the space variable for any time, as
well as all its space derivatives. More precisely, we have

Proposition 4.1. The pair (v∗j , w
∗
j ) is indefinitely smooth and exponentially de-

caying on R×R. Moreover, given any k ∈ N, there exists a positive constant Ak,c,
depending only on k and c, such that

(4.2)

∫
R

[
(∂k+1

x v∗j )
2 + (∂k

xv
∗
j )

2 + (∂k
xw

∗
j )

2
]
(x+ b̃j(t), t) exp

( νc
16

|x|
)
dx ≤ Ak,c,

for any t ∈ R, where b̃j satisfies (1.6) and (1.11).
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In view of this proposition, we can establish a Liouville type theorem in order
to finish the proof of Theorem 1.2.

Proposition 4.2. There exists a positive number α∗ such that, if (v, w) is a solution
of (HLL) satisfying (4.2) and

‖(v0, w0)‖X(R) ≤ α∗,

then,

(v, w)(t, x) = 0 ∀(t, x) ∈ R× R.

This result concludes the proof of Theorem 1.2 since ε∗j,0 ≡ 0 for any sequence
(tn)n∈N. Indeed, if we suppose that there exists a sequence of time (sn) such
that εj,0 �= 0, then, in view of the previous analysis, we get a contradiction from
Proposition 4.2.

Now, we will show that (1.8) holds also when bj is an arbitrary map satisfying
(1.6) and (1.7) instead of (1.11).

Proof. Let (tn) be a sequence of time such that tn → ∞ as n → ∞. It follows from

(1.7), up to a subsequence,
bj(tn)
tn

has a limit lj as n → ∞ and c∞j−1 < lj < c∞j .

Next, we take b̃j a smooth extension of bj such that b̃j(tn) = bj(tn) for all n ∈ N.

More precisely, b̃j ∈ C1(R+,R) satisfies (1.6), and, from (1.7), we have

lim
t→∞

b̃′j(t) = lim
n→∞

b̃j(tn)

tn
= lj .

Hence, b̃j satisfies (1.11). Then, by (1.10), we obtain

(v, w)(tn, ·+ b̃j(tn)) ⇀ 0 in X(R),

as n → ∞. This leads to

(v, w)(tn, ·+ bj(tn)) ⇀ 0 in X(R),

as n → ∞. This finishes the proof since this convergence holds for any sequence
(tn) such that tn → ∞ as n → ∞. �

In the next two subsections we begin by proving Proposition 4.2 and then we
give the proof of Proposition 4.1.

4.2. Proof of the Liouville type theorem. First, we verify that our limit so-
lution has a small norm. This is a direct consequence of the conservation of the
energy, (4.1), Theorem 2.1 and equivalence between the energy and the norm of
X(R). More precisely, we have

‖(v∗j,0, w∗
j,0)‖X(R) ≤ lim inf

n→∞
‖ε(tn)‖X(R) ≤ Acα,

and then,

‖(v∗j , w∗
j )(t)‖X(R) ≤ AcE

(
v∗j , w

∗
j

)
(t) = AcE

(
v∗j,0, w

∗
j,0

)
≤ Ac‖(v∗j,0, w∗

j,0)‖X(R) ≤ Acα,

for all t ∈ (T−, T+), where (T−, T+) denotes the maximal interval of existence for
the solution (v∗j , w

∗
j ). We derive from this inequality the existence of a number

0 < δ < 1 such that

‖v∗j (t)‖L∞ ≤ δ < 1,



4702 YAKINE BAHRI

for all t ∈ (T−, T+). It then follows from the result in [8] that the solution (v∗j , w
∗
j )

is actually global, and that it satisfies

(4.3) ‖(v∗j , w∗
j )(t)‖X(R) ≤ AcE

(
v∗j , w

∗
j

)
(t) ≤ Acα,

for all t ∈ R.
Next, we linearize (HLL) around zero. Let v := (v, w) be a solution of (HLL)

satisfying (4.3). We obtain

(4.4) ∂tv = JLv+ JBv,

where we have denoted

(4.5) J = S∂x :=

(
0 ∂x
∂x 0

)
,

Lv :=

(
−v + ∂xxv

−w

)
,

and

Bv :=

(
(∂xxv)v

2

1−v2 + (∂xv)
2v

(1−v2)2 + vw2

v2w

)
.

Now, we consider the following quantity:

U(t) :=

∫
R

x[v∗jw
∗
j ](t, x)dx,

for any t ∈ R. Since (v∗j , w
∗
j ) is a smooth solution of (HLL) which satisfies (4.2),

the map U is of class C1 and it is possible to differentiate the integrand with respect
to the time variable. Hence, we deduce from (4.4) and an integration by parts that

(4.6) U ′(t) = −
〈
Lv∗j (t), v

∗
j (t)

〉
L2(R)

−
〈
Lv∗j (t), μ∂xv

∗
j (t)

〉
L2(R)

+
〈
μ∂xBv∗j , v

∗
j

〉
L2(R)

,

where μ(x) = x for all x ∈ R. For the linear terms, we integrate by parts to write

−
〈
Lv∗j (t), v

∗
j (t)

〉
L2(R)

−
〈
Lv∗j (t), μ∂xv

∗
j (t)

〉
(4.7)

=

∫
R

[3
2
(∂xv

∗
j (t))

2 +
1

2
(v∗j (t))

2 +
1

2
(w∗

j (t))
2
]
.

For the other term, we use the Cauchy-Schwarz inequality, the Sobolev embedding
theorem, (4.2) and (4.3) to infer that

(4.8)
∣∣〈μ∂xBv∗j , v

∗
j

〉
L2(R)

∣∣ ≤ Acα‖v∗j‖2X(R).

Indeed, let us estimate two terms of the right hand side. The other ones can be
estimated in a very similar way. Performing integrations by parts, and using the
Cauchy-Schwarz inequality and (2.10), we can write∣∣∣ ∫

R

x∂x
(
(v∗j (t, x))

2w∗
j (t, x)

)
w∗

j (t, x)dx
∣∣∣

≤ ‖μ∂xw∗
j (t)‖L∞‖v∗j (t)‖L∞‖v∗j (t)‖L2‖w∗

j (t)‖L2

+ ‖v∗j (t)‖2L∞‖w∗
j (t)‖2L2 ,
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and ∣∣∣ ∫
R

x∂x

( (∂xxv∗j (t, x))(v∗j )2(t, x)
1− (v∗j )

2(t, x)

)
v∗j (t, x)dx

∣∣∣
≤ Ac‖μ∂xxv∗j (t)‖L∞‖∂xv∗j (t)‖L2‖v∗j (t)‖L2‖v∗j (t)‖L∞

+Ac‖∂xxv∗j (t)‖L∞‖v∗j (t)‖L∞‖v∗j (t)‖2L2 .

Then, by the Sobolev embedding theorem, 4.2 and (4.3), we obtain∣∣∣ ∫
R

x∂x
(
(v∗j (t, x))

2w∗
j (t, x)

)
w∗

j (t, x)dx
∣∣∣ ≤ Acα‖v∗j (t)‖2X(R),

and ∣∣∣ ∫
R

x∂x

( (∂xxv∗j (t, x))(v∗j )2(t, x)
1− (v∗j )

2(t, x)

)
v∗j (t, x)dx

∣∣∣ ≤ Acα‖v∗j (t)‖2X(R).

Now, we introduce (4.7) and (4.8) into (4.6) and we choose α small enough to
claim that

(4.9) U ′(t) ≥ 1

4
‖v∗j (t)‖2X(R).

Since U is uniformly bounded on R, we infer that the map t �→ ‖v∗j (t)‖X(R)

belongs to L2(R). This yields the existence of a sequence of positive times (sn)n∈N,
which goes to ∞ as n → ∞, such that we have

(4.10) lim
n→∞

‖v∗j (±sn)‖X(R) = 0.

In view of (4.2), this gives

lim
n→∞

U(±sn) = 0.

Integrating (4.9) from −sn to sn and taking the limit n → ∞, we deduce that∫
R

‖v∗j (t)‖2X(R)dt = 0.

Hence,

v∗j ≡ 0 on R× R.

This finishes the proof of Theorem 4.2. �

4.3. Proof of Proposition 4.1. In this section, we prove the exponential decay
of the limit solution v∗j . First, we state the monotonicity of the momentum. Let
(v, w) be a pair given by Theorem 2.1, j ∈ {1, . . . , N} and y0 ∈ R. Denote

Ij,y0
(t) :=

∫
R

Φ(x− (bj(t) + y0))[vw](x, t) dx,

for bj satisfying (1.6) and (1.11) and set

λc,γ :=
1

2
min

{
1 + γ1, γ2 − c1, c2 − γ2, . . . , γN+1 − cN , 1− γN+1

}
for any c ∈ (−1, 1)N , where γ := (γ1, . . . , γN+1) := limt→∞

(
b′1(t), . . . , b

′
N+1(t)

)
.

We claim the following monotonicity formula for this localized version of the mo-
mentum.
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Proposition 4.3. There exist positive numbers α2 ≤ α, L2 ≥ L∗, T > 0 and
A2, A

∗
2 > 0, depending only on c and s, such that, if α0 ≤ α2 and L ≥ L2, then the

map Ij,y0
is of class C1 on R, and it satisfies

d

dt

[
Ij,y0

(t)
]
≥ν2c
32

∫
R

[
(∂xv)

2 + v2 + w2
]
(x, t)Φ′(x− (bj(t) + y0)) dx

−A2 exp
(
− νc

16
(|y0 + λc,γt|

)
,

(4.11)

for any 1 ≤ j ≤ N and any t ≥ T . In particular, we have

(4.12) Ij,y0
(t1) ≥ Ij,y0

(t0)−A∗
2 exp

(
− νc

16
|y0|

)
,

for any real numbers t1 ≥ t0 ≥ T .

The proof is very similar to the one of Proposition 5 in [8]. We will only sketch
it.

Proof. As in the proof of Proposition 3.3, we write

I ′
j,y0

(t) = I1(t) + I2(t),

decomposing the real line into the region Ij(t) and its complementary set, where
Ij(t) is the interval defined by

Ij(t) =
[
bj(t)−

1

4

(
L+ λc,γt

)
, bj(t) +

1

4

(
L+ λc,γt

)]
.

For I2, we have (see the proof of Proposition 3.3 for more details)

∣∣I2(t)∣∣ ≤ A∗ exp
(
− 1

32

(
L+ λc,γt

))
.

For I1(t), we first infer from (1.6) that there exists T > 0 sufficiently large such
that for all t ≥ T ,

c∞j−1 < b′j(t) < c∞j ,

and then

b′j(t)
2 ≤ 1− ν2c

4
.

This leads, using (2.5) and (3.27), to

I1(t) ≥
1

2

∫
Ij(t)

Φ′( ·−(bj(t)+y0)
) (

(∂xv)
2+v2+w2−2

(
1− ν2c

4

) 1
2 |v||w|−3v2w2

+
ν2c∗

64
ln
(
1− v2

))
.

Now, increasing the value of T > 0 if necessary, we infer from (1.11) that

∣∣ak(t)− bj(t)| ≥
1

2

(
L+ λc,γt

)
,

for any t ≥ T and 1 ≤ k ≤ N . When x ∈ Ij(t), we have

∣∣x− ak(t)
∣∣ ≥ ∣∣∣ak(t)− bj(t)

∣∣∣− 1

4

(
L+ λc,γt

)
≥ 1

4

(
L+ λc,γt

)
,
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for any 1 ≤ k ≤ N . This yields, using (2.15), (2.17) (and the Sobolev embedding
theorem), (2.18) and the exponential decay of the solitons,

∣∣v(x, t)∣∣ ≤ ∣∣ε1(x, t)∣∣+ N∑
k=1

∣∣vck(t)(x− ak(t))
∣∣ ≤ A∗

(
α+ exp

(
− νc∗

16

(
L+ λc,γt

)))
,

for any x ∈ Ij(t). We now decrease α and increase L, if necessary, to guarantee
that |v| is sufficiently small on the interval Ij(t). Then we can finish the proof as
the one of Proposition 4.3. �

Remark 4.1. In view of the proof below, the limit solution (v∗j , w
∗
j ) satisfies the

conclusions of Proposition 4.3 for any time t ∈ R.

The following claim contains the weak continuity of the flow and the convergence
of the parameter bj .

Claim 1. Let j ∈ {1, . . . , N} and t ∈ R be fixed. Then, there exists a map b∗j ∈
C1(R,R) satisfying (1.6) and (1.11) such that

(4.13)
(
v(·+ bj(tn), tn + t), w(·+ bj(tn), tn + t)

)
⇀

(
v∗j (·, t), w∗

j (·, t)
)

and
(4.14)(
v(·+ bj(tn + t), tn + t), w(·+ bj(tn + t), tn + t)

)
⇀

(
v∗j (·+ b∗j (t), t), w

∗
j (·+ b∗j (t), t)

)
in X(R), while

(4.15) bj(tn + t)− bj(tn) → b∗j (t),

as n → +∞.

Proof. We take b∗j (t) := γjt, for all t ∈ R, where γj := limt→+∞ b′j(t). Clearly, b∗j
satisfies (1.6) and (1.11). Then, the proof remains exactly the same as the one of
Proposition 3.2. �

As in the previous section, we claim the following lemma which shows the local-
ization of the momentum for the limit solution. For the limit profile (v∗j , w

∗
j ), we

set

I∗
j,±y0

(t) := I(v∗
j ,w

∗
j )

j,±y0
(t) =

∫
R

[v∗jw
∗
j ](t)Φ(· − (±y0 + b∗j (t))),

for any t ∈ R and y0 > 0.

Lemma 4.1 ([5]). For any positive number δ, there exists a positive number yδ,
depending only on δ, such that for any t ∈ R we have

(4.16)
∣∣I∗

j,y0
(t)

∣∣ ≤ δ and |P (v∗j , w
∗
j )− I∗

j,−y0
(t)| ≤ δ,

for any y0 ≥ yδ.

In view of Remark 4.1, the proof is similar to the one of Lemma 3.1.
We also have

Lemma 4.2 ([5]). Let y0 > 0. For any t ∈ R, we have
(4.17)

I∗
j,y0

(t) ≤ Ac exp
(
− νc

16
y0

)
and |P (v∗j , w

∗
j )− I∗

j,−y0
(t)| ≤ Ac exp

(
− νc

16
y0

)
.
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Using Proposition 4.3, we claim as in [5] that

Proposition 4.4 ([1]). Let t ∈ R. There exists a positive constant Ac0 such that∫ t+1

t

∫
R

[
(∂xv

∗
j )

2 + (v∗j )
2 + (w∗

j )
2
]
(x+ b∗j (s), s)e

νc
16 |x| dx ds ≤ Ac0 .

At this stage, the proof of Proposition 4.1 remains exactly the same as in [1] (see
Section 4.2 for more details).
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for their support throughout the time the author spent finishing this manuscript,
and for offering invaluable advice.

References

[1] Yakine Bahri, Asymptotic stability in energy space for dark solitons of the Landau-Lifshitz
equation, Anal. PDE 9 (2016), no. 3, 645–697, DOI 10.2140/apde.2016.9.645. MR3518533

[2] I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Global Schrödinger maps in dimen-
sions d ≥ 2: small data in the critical Sobolev spaces, Ann. of Math. (2) 173 (2011), no. 3,
1443–1506, DOI 10.4007/annals.2011.173.3.5. MR2800718
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