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A RANDOM WALK ON A NON-INTERSECTING

TWO-SIDED RANDOM WALK TRACE

IS SUBDIFFUSIVE IN LOW DIMENSIONS

DAISUKE SHIRAISHI

Abstract. Let (S
1
, S

2
) be the two-sided random walks in Z

d (d = 2, 3) con-

ditioned so that S
1
[0,∞)∩S

2
[1,∞) = ∅, which was constructed by the author

in 2012. We prove that the number of global cut times up to n grows like

n
3
8 for d = 2. In particular, we show that each S

i
has infinitely many global

cut times with probability one. Using this property, we prove that the simple

random walk on S
1
[0,∞) ∪ S

2
[0,∞) is subdiffusive for d = 2. We show the

same result for d = 3.

1. Introduction and main results

1.1. Introduction. Let S = (S(n)) be the simple random walk in Z
d (d = 2, 3)

starting at the origin. Take integers k < n. A time k is called the cut time up to
n if

(1.1) S[0, k] ∩ S[k + 1, n] = ∅,
where S[0, k] = {S(j) : 0 ≤ j ≤ k}. We call S(k) a cut point if k is a cut time.
Let R(n) be the number of cut times up to n. Lawler [13] proved that there exist
ζd > 0 and c > 0 such that

E
(
R(n)

)
� n1−ζd for d = 2, 3,(1.2)

P
(
R(n) ≥ cn1−ζ2

)
≥ c for d = 2,(1.3)

lim
n→∞

logR(n)

log n
= 1 − ζ3 with probability one for d = 3.(1.4)

Here � means “within multiplicative constants of” (see (1.10) below). We call ζd
the intersection exponent. For the value of ζ2, Lawler, Schramm and Werner [15]
showed that

(1.5) ζ2 =
5

8
,

by using the SLE techniques. Consequently, the expected number of cut times up
to time n grows like n

3
8 for d = 2. The exact value of ζ3 is not known. The best

rigorous estimates for ζ3 [4, 14] are

(1.6)
1

4
< ζ3 <

1

2
.

While the understanding of the number of cut times has been advanced, to
our knowledge there are no results about the geometrical structure of the path
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around the cut points. In order to investigate the structure, the following problem
was considered in [17]: if we condition that S[0, n] ∩ S[n + 1, 2n] = ∅, then what
does the path look like around S(n)? Let S1, S2 be independent simple random
walks starting at the origin. Then, thanks to the translation invariance and the
reversibility of the simple random walk, our problem may be reduced to clarifying
the structure of S1, S2 around the origin when we condition that S1[0, n]∩S2[1, n] =
∅. To tackle this problem, the non-intersecting two-sided random walk paths were
constructed for d = 2, 3 in [17]. Namely the following limit exists:

(1.7) lim
n→∞

P (· | S1[0, τ1(n)] ∩ S2[1, τ2(n)] = ∅) =: P �(·),

where τ i(n) = inf{k ≥ 0 : |Si(k)| ≥ n}. Let S
1
, S

2
be the associated two-sided

random walks whose probability law is P �. It was also proved in [17] that the speed
of convergence in (1.7) is fast (see [17] for details). So, our problem is reduced to

the following: what does S
1
[0,∞) ∪ S

2
[0,∞) look like?

In this paper, we will consider this problem, mainly for d = 2. Assume d = 2. We

will study the difference between S
1
[0,∞)∪S

2
[0,∞) and S1[0,∞)∪S2[0,∞) = Z

2.

Intuitively, since S
1

and S
2

do not intersect, one may expect that those paths are
sparse. However, it will be proved (see Remark 4.5 below) that there exists β < ∞
such that for each i,

(1.8) #S
i
[0, τ i(n)] ≥ n2(log n)−β, P �-a.s.

for large n, where we write

τ i(n) = inf{k ≥ 0 : |Si
(k)| ≥ n}.

This shows that the path of S
i

is not so sparse. (1.8) is due to the so-called
separation lemma (see Proposition 2.1 below), which roughly says that two paths
conditioned not to intersect are likely to be far apart. Once they are far apart, then

each S
i
forgets the conditioning and behaves like the usual simple random walk for

a while. (Note that for the usual simple random walk, it is known ([6]–[8]) that
#Si[0, τ i(n)] is of order n2(log n)−1.)

One of the most significant differences between Si and S
i

is the recurrence/
transience property. Let B(m) = {z ∈ Z

2 : |z| < m}. For any m < n, it is clear
that

P
(
Si

[
τ i(n),∞

)
∩ B(m) 
= ∅

)
= 1.

On the other hand, it will be proved (see Lemma 3.8 below) that there is a constant
c < ∞ such that

(1.9) P �
(
S
i[
τ i(n),∞

)
∩ B(m) 
= ∅

)
≤ c

( n

m

)− 1
2

for each i = 1, 2. By using this transience of S
i
, we will prove that each S

i
has

infinitely many global cut times with probability one (Theorem 1.1). Here a time

n is called global cut time for S
i
if S

i
[0, n]∩S

i
[n+1,∞) = ∅. Obviously, the usual

simple random walk Si has no global cut times. Moreover, we will show that the

number of global cut times for S
i

less than n grows like n
3
8 with probability one

for each i = 1, 2 (Theorem 1.1).

To state another difference between S
1
[0,∞) ∪ S

2
[0,∞) and Z

2, we will follow
Kesten, who constructed the incipient infinite cluster (IIC) in two dimensional
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critical bond percolation [10] and proved that the simple random walk on IIC is

subdiffusive [11]. For this purpose, we consider G = S
1
[0,∞) ∪ S

2
[0,∞) to be a

random subgraph of Z2 with vertex set

V (G) =
{
S
i
(n) : n ≥ 0, i = 1, 2

}
and edge set

E(G) =
{
{Si

(n), S
i
(n + 1)} : n ≥ 0, i = 1, 2

}
(see Figure 1). Let X = (X(n)) be the simple random walk on G starting at the
origin. We will show that X is subdiffusive at the quenched level. More precisely,
if we write

T (n) = inf{k ≥ 0 : |X(k)| ≥ n},
then the expectation (with respect to the quenched law of X) of T (n) is larger than
n2+δ for some δ > 0, P �-almost surely (Theorem 1.2). From this, we see that G has
an anomalous structure compared to Z

2.
We give a heuristic reason of this subdiffusivity here. Although G has many

vertices as in (1.8), because of global cut points, its connectivity is bad when viewed

as an electrical network. Let t < t′ be two global cut times for S
i
and assume that

X(k) ∈ S
i
[t, t′] for a certain time k. Then both {Si

(t), S
i
(t+1)} and {Si

(t′), S
i
(t′+

1)} play the role of bottleneck edges. In other words, X must pass through either
of the two edges in order to go far away. It takes a long time for X to make it if

S
i
[t, t′] is a big graph. So, the strategy for the proof of Theorem 1.2 is to find a

long enough sequence of global cut times t1 < t2 < · · · < tk < τ i(n) such that each
tj+1 − tj is large enough. We will find such a sequence for P �-a.s. G so that X has
subdiffusive behavior.

For the proof of Theorem 1.2, with the help of recent progress on the planar
simple random walk [15] and the loop-erased random walk ([2], [9]), we will establish
a number of estimates for global cut times and the graph distance on G (Proposition
4.3, Lemma 4.6, etc.), which are of independent interest.

It is natural to investigate whether or not X has subdiffusive behavior for d = 3.
We will show that X is also subdiffusive in this case (Theorem 1.3).

Throughout the paper, we use c, c′, c1, · · · to denote arbitrary positive constants
which may change from line to line. If a constant is to depend on some other
quantity, this will be made explicit. For example, if c depends on ε, we write cε.
We write an � bn if there exist constants c1, c2 such that

(1.10) c1bn ≤ an ≤ c2bn.

To avoid complication of notation, we don’t use �r� (the largest integer ≤ r), even
though it is necessary to carry it.

1.2. Framework and main results. For x ∈ Z
d (d = 2, 3), let

B(x, n) = {z ∈ Z
d : |z − x| < n}

and
∂B(x, n) = {z ∈ Z

d\B(x, n) : |z − y| = 1 for some y ∈ B(x, n)}.
We write B(n) = B(0, n) and ∂B(n) = ∂B(0, n).

A sequence of points γ = [γ(0), γ(1), · · · , γ(l)] ⊂ Z
d is called a path if |γ(j) −

γ(j − 1)| = 1 for each j = 1, 2, · · · , l. Let lenγ = l be the length of the path. (For
the case where part of the path is repeated, we count the overlap. For example, if
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Figure 1. A non-intersecting two-sided random walk trace G for
d = 2.

γ = [x, y, z, w, x, y, z, w], then lenγ = 7.) Let Λ(n) be the set of paths satisfying
that

γ(0) = 0, γ(j) ∈ B(n) for all j = 0, 1, · · · , lenγ − 1,

γ(lenγ) ∈ ∂B(n).

Let

(1.11) Γ(n) = {γ = (γ1, γ2) ∈ Λ(n) × Λ(n) : γ1(i) 
= γ2(j) for all (i, j) 
= (0, 0)}
and Γ(∞) =

⋂∞
n=1 Γ(n).

Let S1, S2 be the independent simple random walks in Z
d. For any x1, x2 ∈ Z

d,

we let P x1,x2

be the probability measure associated with S1 and S2 with S1(0) = x1

and S2(0) = x2. If x1 = x2 = 0, we just write P instead of P 0,0. Let

τ i(n) = inf{k ≥ 0 : Si(k) ∈ ∂B(n)}
and

(1.12) An =
{(

S1[0, τ1(n)], S2[0, τ2(n)]
)
∈ Γ(n)

}
.

In [17], it was proved that for each L ∈ N and γ = (γ1, γ2) ∈ Γ(L), the limit

(1.13) lim
n→∞

P
((

S1[0, τ1(L)], S2[0, τ2(L)]
)

= γ
∣∣ An

)
exists. If we denote the value of (1.13) by P �(γ), then P � extends uniquely to a
probability measure on Γ(∞). We denote this probability space by (Ω,F , P �).

Let S
1
, S

2
be the associated two-sided random walks whose probability law is

P �. Define the trace of S
i

to be the graph Gi
=

(
V (Gi

), E(Gi
)
)

with vertex set

V (Gi
) =

{
S
i
(n) : n ≥ 0

}
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and edge set

E(Gi
) =

{
{Si

(n), S
i
(n + 1)} : n ≥ 0

}
.

We denote the trace of two-sided random walks by G =
(
V (G), E(G)

)
, i.e.,

V (G) = V (G1
) ∪ V (G2

) and E(G) = E(G1
) ∪ E(G2

).

Let

X =
(
(X(n))n≥0, P

G
x , x ∈ V (G)

)
be the simple random walk on G. We let EG

x be the expectation with respect to

PG
x . Let

(1.14) T (n) = inf{k ≥ 0 : |X(k)| ≥ n}.

A time k is called a global cut time for S
i

if

(1.15) S
i
[0, k] ∩ S

i
[k + 1,∞) = ∅.

We write

K
i
(j) = 1

{
S
i
[0, j] ∩ S

i
[j + 1,∞) = ∅

}
to denote the indicator function of the event that j is a global cut time for S

i
.

The following theorems are our main results in this paper.

Theorem 1.1. Let d = 2, 3. It follows that for each i = 1, 2,

(1.16) lim
n→∞

log
( n∑

j=0

K
i
(j)

)
log n

= 1 − ζd,

P �-almost surely. In particular, both S
1
and S

2
have infinitely many global cut

times, P �-almost surely.

Theorem 1.2. Let d = 2. For every ε ∈ (0, 1
100 ), there exists Ω1 ⊂ Ω with

P �(Ω1) = 1 satisfying the following: for each ω ∈ Ω1, there exists N1(ω) < ∞ such
that

(1.17) E
G(ω)
0

(
T (n)

)
≥ n

81
40−ε

for all n ≥ N1(ω).

Let ξd := 2ζd. Note that by (1.6), we see that 1
2 < ξ3 < 1, so that 4 − 2ξ3 > 2.

Theorem 1.3. Let d = 3. There exists ρ < ∞ such that the following holds: there
exists Ω2 ⊂ Ω with P �(Ω2) = 1 satisfying the following: for each ω ∈ Ω2, there
exists N2(ω) < ∞ such that

(1.18) E
G(ω)
0

(
T (n)

)
≥ n4−2ξ3(logn)−ρ

for all n ≥ N2(ω).

The rest of the paper is organized as follows. In Section 2, we will prove the
so-called separation lemma, which plays an important role in the proof of Theorem
1.1. We will give the proof of Theorem 1.1 in Section 3, and the proofs of Theorem
1.2 and Theorem 1.3 in Section 4.
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2. Separation lemma and its consequence

Throughout this section, we assume d = 2 or 3. Recall Γ(n) as was defined in
(1.11). For each l < n and γ = (γ1, γ2) ∈ Γ(l), define

An(γ) =

⎧⎨
⎩

S1[0, τ1n] ∩ γ2 = ∅,
S2[0, τ2n] ∩ γ1 = ∅,
S1[0, τ1n] ∩ S2[0, τ2n] = ∅

⎫⎬
⎭ .(2.1)

Let wi = γi(lenγi). We assume Si(0) = wi when we consider An(γ). There are
many ways to define the “separation” event; we will make one arbitrary choice. Let

I(r) = {(x1, · · · , xd) ∈ Z
d : x1 ≥ r}, I ′(r) = {(x1, · · · , xd) ∈ Z

d : x1 ≤ −r}.
For each l ∈ N, let Sep(l) denote the event

(2.2) Sep(l) =
{
S1[0, τ1(2l)] ⊂ B

(3l

2

)
∪I

(4l

3

)}
∩
{
S2[0, τ2(2l)] ⊂ B

(3l

2

)
∪I ′

(4l

3

)}
.

A typical pair (S1, S2) which satisfies A2l(γ) ∩ Sep(l) is pictured in Figure 2.

Proposition 2.1. There exists c > 0 such that for all l ∈ N and γ = (γ1, γ2) ∈ Γ(l),

(2.3) Pw1,w2(
Sep(l)

∣∣ A2l(γ)
)
≥ c,

where wi = γi(lenγi).

Proof. The proof of this proposition is similar to the proof of Lemma 3.1 in [16]
which is stated for the Brownian case. That lemma is slightly stronger than this
proposition, but it suffices to show (2.3) for our purposes. Since we could not find
the discrete version in the literature, we will give the proof for completeness.

For each l ∈ N and γ = (γ1, γ2) ∈ Γ(l) with wi = γi(lenγi), let

D(γ) = dist(w1, γ2) ∧ dist(w2, γ1).

Notice that D(γ) ≥ 1 for every γ. Let

un =
∞∑
j=n

j22−j .

Take N sufficiently large so that uN ≤ 1
4 . For n ≥ N , let hn be the infimum of

Pw1,w2(
Sep(l) ∩A2l(γ)

)
Pw1,w2

(
A2l(γ)

) ,

where the infimum is over l ≥ 2n−1, 0 ≤ r ≤ un, and all γ = (γ1, γ2) ∈ Γ((1 + r)l)

such that D(γ)
l ≥ 2−n.

We first check that in order to prove (2.3) it suffices to show that

(2.4) inf
n≥N

hn > 0.

For this purpose, take an arbitrary initial configuration γ = (γ1, γ2) ∈ Γ(l). If
l ≤ 2N , then it is easy to see that

Pw1,w2(
Sep(l)

∣∣ A2l(γ)
)
≥ c

for some c > 0 depending only on the dimension since N is a constant. Therefore
assume l > 2N . Chose a unique n such that

2−n ≤ D(γ)

l
< 2−n+1.
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Figure 2. The event A2l(γ) ∩ Sep(l).

If n ≤ N , then l > 2N , γ ∈ Γ(l) and D(γ)
l ≥ 2−N . Hence

Pw1,w2(
Sep(l)

∣∣ A2l(γ)
)
≥ hN .

On the other hand, if n > N , then it follows from D(γ) ≥ 1 that

l > 2n−1.

Since γ ∈ Γ(l) and D(γ)
l ≥ 2−n, we see that

Pw1,w2(
Sep(l)

∣∣ A2l(γ)
)
≥ hn.

Now we return to (2.4). For this, it suffices to show that hn > 0 for each n ≥ N ,
and that there exists a summable sequence δn < 1 such that

(2.5) hn+1 ≥ hn(1 − δn).
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l

O

z1

w1

z2

γ1γ2

z2 + O2

z1 + O1
w2

l/1000

6l/5

Figure 3. Two cones zj + Oj .

Suppose U is a relatively open subset of {z ∈ R
d : |z| = 1}. We let O denote the

corresponding cone

(2.6) O = {rw : r > 0, w ∈ U}.

Then it is easy to see that we can find infinite cones O1, O2 as in (2.6) and vertices
z1, z2 ∈ R

d such that the following hold:

(a)
D(γ)

100
≤ |zj − wj | ≤ D(γ)

20
.

(b) wj ∈ Oj + zj and
D(γ)

100
≤ dist

(
wj , ∂(zj + Oj)

)
≤ D(γ)

20
.

(c) (Oj + zj) ∩ B(l) ⊂ B(wj ,
D(γ)

10
).

(d) If Vj = (Oj + zj) ∩ (Z2\B(
6l

5
)), then dist(V1, V2) ≥

l

1000

(see Figure 3).
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We leave it to the reader to see that such cones can be found. Moreover, it is
also easy to see that there exist c > 0 and α < ∞ such that

Pw1,w2(
Si[0, τ i(

5l

4
)] ⊂ Oj + zj , for i = 1, 2

)
≥ c(

D(γ)

l
)α.

Let Fl = {Si[0, τ i( 5l4 )] ⊂ Oj + zj , for i = 1, 2}. Then it is not hard to convince
oneself that

Pw1,w2(
Sep(l) ∩ A2l(γ)

∣∣ Fl

)
≥ c

for some c > 0. Therefore, we have

Pw1,w2(
Sep(l) ∩ A2l(γ)

)
≥ c(

D(γ)

l
)α

and

(2.7) hn ≥ c2−αn.

Next we will prove (2.5). Assume that l ≥ 2n, 0 ≤ r ≤ un+1, and γ = (γ1, γ2) ∈
Γ((1 + r)l) with D(γ)

l ≥ 2−n−1. Recall that wi = γi(lenγi) ∈ ∂B((1 + r)l). We

define a sequence of balls {Bj}j≥0 as follows:

Bj = B(aj),

where aj = (1 + r)l + 4j2−nl. Let

ρ′ = inf
{
j : dist

(
S1(τ1(aj)), (S

2[0, τ2(aj)] ∪ γ2)
)

∧ dist
(
S2(τ2(aj)), (S

1[0, τ1(aj)] ∪ γ1)
)
≥ 2−nl

}
and ρ = ρ′ ∧ n2

4 . Set

Dj = dist
(
S1(τ1(aj)), (S

2[0, τ2(aj)]∪γ2)
)
∧ dist

(
S2(τ2(aj)), (S

1[0, τ1(aj)]∪γ1)
)
.

It is easy to see that there is a p > 0 such that given S1[0, τ1(aj)] and S2[0, τ2(aj)],
the probability that Dj+1 ≥ 2−nl is at least p for every j. Iterating this, we see
that there exist c, δ such that

(2.8) Pw1,w2

(ρ =
n2

4
) ≤ c2−δn2

.

In the event {ρ < n2

4 } ∩ Aaρ
(γ), we have

l > 2n−1,(
S1[0, τ1(aρ)] ∪ γ1, S2[0, τ2(aρ)] ∪ γ2

)
∈ Γ(aρ),

0 ≤ r + 4ρ2−n ≤ un,

Dρ ≥ 2−nl.

Using the definition of hn, we see that

Pw1,w2(
Sep(l) ∩ A2l(γ)

)
≥ Pw1,w2(

Sep(l) ∩ A2l(γ) ∩ {ρ <
n2

4
}
)

≥ hnP
w1,w2(

A2l(γ) ∩ {ρ <
n2

4
}
)
.
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However, (2.7) and (2.8) imply that

Pw1,w2(
A2l(γ) ∩ {ρ <

n2

4
}
)
≥ Pw1,w2(

A2l(γ)
)
− c2−δn2

≥ Pw1,w2(
A2l(γ)

)(
1 − c2−δn2+αn

)
.

Therefore, (2.5) follows with δn = c2−δn2+αn. �

Here we establish a corollary of Proposition 2.1. Recall that ξd = 2ζd.

Corollary 2.2. There exist c1, c2 such that for all l, n with 2l < n and all γ =
(γ1, γ2) ∈ Γ(l) with wi = γi(lenγi) ∈ ∂B(l),

(2.9) c1(
n

l
)−ξdPw1,w2

(A2l(γ)) ≤ Pw1,w2

(An(γ)) ≤ c2(
n

l
)−ξdPw1,w2

(A2l(γ)).

Proof. The upper bound of (2.9) follows immediately from Corollary 4.6 in [13] and
the strong Markov property. For the lower bound, let

G =
{
Si[τ i(2l), τ i(n)] ∩ B(2l) ⊂ B

(
Si(τ i(2l)),

l

10

)
, i = 1, 2

}
,

H =
{
S1[τ1(2l), τ1(n)] ∩ S2[τ2(2l), τ2(n)] = ∅

}
.

Note that if A2l(γ) ∩ Sep(l) ∩G ∩H holds, then An(γ) holds. By Corollary 4.2 in
[13], we see that there exists c > 0 such that

Pw1,w2(
G ∩H | Sep(l)

)
≥ c(

n

l
)−ξd .

By Proposition 2.1,

Pw1,w2(
Sep(l) ∩ A2l(γ)

)
≥ cPw1,w2(

A2l(γ)
)
.

Therefore,

Pw1,w2

(An(γ)) ≥ Pw1,w2(
A2l(γ) ∩ Sep(l) ∩G ∩H

)
≥ c(

n

l
)−ξdPw1,w2(

A2l(γ)
)
,

and the proof is finished. �

3. Estimate of global cut times

In this section, we will prove Theorem 1.1. Again assume d = 2 or 3 throughout

this section. Recall that S
1
, S

2
are the associated two-sided random walks whose

probability law is P �. Let

τ i(n) = inf{k ≥ 0 : |Si
(k)| ≥ n},

for i = 1, 2. Let

(3.1) K
i
(j, n) = 1

{
S
i
[0, j] ∩ S

i
[j + 1, τ i(n)] = ∅

}
and

(3.2) K
i
(j) = 1

{
S
i
[0, j] ∩ S

i
[j + 1,∞) = ∅

}
.

Define

L
i
(n)=

{ τi( 5
62

n)∑
j=τi( 2

32
n)

K
i
(j, 2n) ≥ c(2n)2−ξd

}
,

V
i
(n)=

{
S
i
[τ i(2n),∞) ∩ B(

11

12
2n) = ∅

}
.

(3.3)
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Note that in the event L
i
(n) ∩ V

i
(n),

τ i( 5
6 2

n)∑
j=τ i( 2

3 2
n)

K
i
(j) ≥ c(2n)2−ξd .

In order to get the lower bound for Theorem 1.1, we will first show that

(3.4) P �
(
L
i
(n) ∩ V

i
(n)

)
≥ c,

for some c > 0 (Proposition 3.1). Then, by the iteration argument, we will show
that there exist c, α < ∞ such that

(3.5) P �
( n+α logn⋃

j=n

(
L
i
(j) ∩ V

i
(j)

))
≥ 1 − cn−2,

for each i = 1, 2 (Proposition 3.6). This gives the lower bound of Theorem 1.1. We
then give the upper bound (which is easier) and prove the theorem in Section 3.3.

3.1. Proof of (3.4). In this subsection, we will prove the following proposition.

Proposition 3.1. For each i = 1, 2, there exists c > 0 such that

(3.6) P �
( τ i( 5n

6 )∑
j=τi( 2n

3 )

K
i
(j, n) ≥ cn2−ξd , S

i
[τ i(n),∞) ∩ B( 11n12 ) = ∅

)
≥ c.

In order to establish this proposition, we need several lemmas below. So we will
show these lemmas first, and then Proposition 3.1.

Fix n and take N ≥ 2n. We define five events F1, · · · , F5 as follows. Let

(3.7) F1 =
{(

S1[0, τ1(
2n

3
)], S2[0, τ2(

2n

3
)]
)
∈ Γ(

2n

3
), Sep(

n

3
)
}
.

Let

xn =

{
(n, 0) (if d = 2),
(n, 0, 0) (if d = 3)

and

D2 =
{
z ∈ R

d : dist
(
z, lS2(τ2( 2n

3 )),−xn

)
≤ n

20

}
,

where lS2(τ2( 2n
3 )),−xn

denotes the line segment between S2(τ2( 2n3 )) and −xn. Define

(3.8) F2 =
{
S2[τ2(

2n

3
), τ2(n)] ⊂ D2

}
.

Let

σ = inf
{
k ≥ τ1(

2n

3
) :

∣∣S1(k) − S1(τ1(
2n

3
))
∣∣ ≥ n

10

}
,

and for each n2

200 ≤ j ≤ n2

100 , let

(3.9) Y 1
j = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1[τ1( 2n3 ), τ1( 2n3 ) + j] ∩ S1[τ1( 2n3 ) + j + 1, σ] = ∅,
S1

(
τ1( 2n3 ) + j

)
∈ D3,

S1[τ1( 2n3 ), τ1( 2n3 ) + j] ⊂ B
(
S1(τ1( 2n3 )), n

15

)
,

S1[τ1( 2n3 ) + j, σ] ⊂ D′
3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,
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where we let

D3 =
{
z∈R

d :
n

30
≤

∣∣z−S1(τ1(
2n

3
))
∣∣ ≤ n

15
,

−→
l 0,S1(τ1( 2n

3 ))∣∣−→l 0,S1(τ1( 2n
3 ))

∣∣ �
−→
l S1(τ1( 2n

3 )),z∣∣−→l S1(τ1( 2n
3 )),z

∣∣≥
√

3

2

}
and

D′
3 =

{
z∈R

d :
n

60
≤

∣∣z−S1(τ1(
2n

3
))
∣∣ ≤ n

10
,

−→
l 0,S1(τ1( 2n

3 ))∣∣−→l 0,S1(τ1( 2n
3 ))

∣∣ �
−→
l S1(τ1( 2n

3 )),z∣∣−→l S1(τ1( 2n
3 )),z

∣∣≥ 1

2

}
.

Here we write
−→
l x,y to represent the vector and (

−→
l x,y,

−→
l z,w) to represent the inner

product (see Figure 5). Define

(3.10) F3 =
{ n2

100∑
j= n2

200

Y 1
j ≥ cn2−ξd

}
.

Let

D4 =
{
z ∈ R

d : dist
(
z, lS1(σ),xn

)
≤ n

50

}
,

and define

(3.11) F4 =
{
S1[σ, τ1(n)] ⊂ D4

}
.

Finally, let

F5 =
{
S1[τ1(n), τ1(N)] ∩ S2[τ2(n), τ2(N)] = ∅

}
∩
{
Si[τ i(n), τ i(N)] ∩ B(n) ⊂ B

(
Si

(
τ i(n)

)
,
n

20

)
for i = 1, 2

}
.(3.12)

Notice that

(3.13)
5⋂

i=1

Fi ⊂

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
S1[0, τ1(N)], S2[0, τ2(N)]

)
∈ Γ(N),

τ1( 5n
6 )∑

j=τ1( 2n
3 )

1{S1[0, j] ∩ S1[j + 1, τ1(N)] = ∅} ≥ cn2−ξd ,

S1[τ1(n), τ1(N)] ∩ B( 11n12 ) = ∅

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=: Gn,N

(see Figure 4). So we will give a lower bound of P
(⋂5

i=1 Fi

)
to prove Proposition

3.1.

Lemma 3.2. There exists c > 0 such that

(3.14) P
(
F5

∣∣∣ 4⋂
i=1

Fi

)
≥ c(

N

n
)−ξd .

Proof. Note that in the event F2 ∩ F4, we have∣∣∣S1
(
τ1(n)

)
− S2

(
τ2(n)

)∣∣∣ ≥ n.

Hence by Corollary 4.2 in [13], it follows that there exists c > 0 such that

P
(
F5

∣∣∣ 4⋂
i=1

Fi

)
≥ c(

N

n
)−ξd .

�
It is easy to show the following lemma, so we omit the proof.
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F
1

F
2

O

F3

F
4

F5

F5
S
1

S2

N

2n
3

n

S
1
(σ)

Figure 4. The event
⋂5

i=1 Fi.

Lemma 3.3. There exists c > 0 such that

(3.15) P (F2) ≥ c, P (F4) ≥ c.

Next we will estimate P (F3).

Lemma 3.4. There exists c > 0 such that

(3.16) P (F3) ≥ c.

Proof. By applying the argument used in the proof of Corollary 4.12 in [13], we see
that there exists c > 0 such that

E(Y 1
j ) ≥ cn−ξd

for each n2

200 ≤ j ≤ n2

100 . Therefore,

(3.17) E
( n2

100∑
j= n2

200

Y 1
j

)
≥ cn2−ξd .

On the other hand, it follows from Lemma 5.1 in [13] that there exists c′ < ∞ such
that

(3.18) E
(( n2

100∑
j= n2

200

Y 1
j

)2) ≤ c′n2(2−ξd).

Therefore, using the second moment method, we see that

(3.19) P
( n2

100∑
j= n2

200

Y 1
j ≥ cn2−ξd

)
≥ c

for some c > 0, and the proof is finished. �
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O
n/10

D3

D ′
3\D3

S
1
(τ1(2n

3
))

Figure 5. The sets D3 and D′
3.

Finally, by using Proposition 2.1, we get the following lemma.

Lemma 3.5. There exists c > 0 such that

(3.20) P (F1) ≥ cn−ξd .

Proof of Proposition 3.1. Recall that the event Gn,N was defined in (3.13). By
Lemmas 3.2, 3.3, 3.4, and 3.5 and (3.13),

P
(
Gn,N

)
≥ P

( 5⋂
i=1

Fi

)
≥ cN−ξd

for some c > 0. It follows from Theorem 1.3 in [13] that there exist c1, c2 such that

c1N
−ξd ≤ P

((
S1[0, τ1(N)], S2[0, τ2(N)]

)
∈ Γ(N)

)
≤ c2N

−ξd .

Therefore, we have

P
( τ1( 5n

6 )∑
j=τ1( 2n

3 )

1{S1[0, j] ∩ S1[j + 1, τ1(n)] = ∅}

≥ cn2−ξd , S1[τ1(n), τ1(N)] ∩ B(
11n

12
) = ∅

∣∣∣ AN

)
≥ c,

and letting N → ∞, we get the proposition. �

3.2. Proof of (3.5). For each α ∈ (0,∞), let

Λ
i
(n) = Λ

i
(n, α) =

⋃
n≤j≤n+α log n

(
L
i
(j) ∩ V

i
(j)

)
.
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In order to get the lower bound of
n∑

j=0

K
i
(j) at the quenched level, we need to show

the following proposition.

Proposition 3.6. There exist α, c ∈ (0,∞) such that

(3.21) P �
(
Λ
i
(n, α)

)
≥ 1 − c

n2

for each i = 1, 2.

It suffices to show (3.21) for i = 1. In order to prove that, we need some lemmas.
We will first show them and then Proposition 3.6.

Fix n and define a random sequence s0, s1, s2, · · · inductively as follows. Let
s0 = n. Suppose si has been defined. If si = ∞, then si+1 = ∞. Suppose

si = s < ∞. In the event
(
L
1
(s)

)c
, we set si+1 = s + 2. In the event L

1
(s), let

η = inf
{
m ≥ τ1(2s) : |S1

(m)| ≤ 11

12
2s
}
,

where η = ∞ if no such m exists. Let

si+1 = inf
{
k : S

1
[0, η] ⊂ B(2k−2)

}
,

and si+1 = ∞ if η = ∞. Let

s� = sup{si : si < ∞}
(see Figure 6 for the definition of si). Note that this choice of {si} is the same as
that used in the proof of Theorem 1.2 in [13]. It follows that the event {si = s}
is S

1
[0, τ1(2s−2)]-measurable for each i, and L

1
(s�) ∩ V

1
(s�) holds. Therefore, in

order to prove (3.21), it suffices to show that there exist c and α such that for all
n,

(3.22) P �(s� ≥ n + α log n) ≤ c

n2
.

Lemma 3.7. There exists c > 0 such that for every i,

(3.23) P �
(
si+1 = ∞ | s0, · · · , si

)
≥ c.

Proof. It suffices to prove that there is a c > 0 such that for all i and s ∈ [n,∞),

(3.24) P �
(
si+1 = ∞ | si = s

)
≥ c.

Since si = s is S
1
[0, τ1(2s−2)]-measurable, we have

P �
(
si+1 = ∞, si = s

)
=

∑
γ

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, si+1 = ∞

)
,

where the summation is over all possible γ = (γ1, γ2) ∈ Γ(2s−2) such that

{
(
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ} ∩ {si = s}

is possible. Let Ψ ⊂ Γ(2s−2) denote the set of such γ. Fix γ = (γ1, γ2) ∈ Ψ. By
definition of si,

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, si+1 = ∞

)
= P �

((
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, L

1
(s), V

1
(s)

)
.
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O

S 1

11
12

2si

2
si

2
si+1−2

2
si+1−3

S 1 τ 1(2si)

S 1(η)

Figure 6. The sequence {si}.

Let wi = γi(lenγi). Applying a similar argument as in the proof of Proposition 3.1,
we see that

P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ, L1(s), V 1(s), A2N

)
≥ c(2N−s)−ξdPw1,w2(

A2s−1(γ)
)
P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ
)
,(3.25)

where Li(n) and V i(n) are the events as follows:

Li(n)=Big{
τi( 5

6 2
n)∑

j=τi( 2
3 2

n)

Ki(j, 2n) ≥ c(2n)2−ξd
}
,

V i(n)=
{
Si[τ i(2n),∞) ∩ B(

11

12
2n) = ∅

}
.

Here we write

Ki(j,m) = 1
{
Si[0, j] ∩ Sj [j + 1, τ i(m)] = ∅

}
,

and recall that the event An was defined as in (1.12). By the strong Markov
property,

Pw1,w2(
A2N (γ)

)
≤ c(2N−s)−ξdPw1,w2(

A2s−1(γ)
)
.

Therefore, the right hand side of (3.25) is bounded below by

cP
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ, A2N

)
.
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Letting N → ∞, we see that

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, L

1
(s), V

1
(s)

)
≥ cP �

((
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ

)
.

By summing over all γ ∈ Ψ, we get

P �(si+1 = ∞, si = s) ≥ cP �(si = s),

and the proof is finished. �

Next we will show the following lemma.

Lemma 3.8. There exists c < ∞ such that for all i and k,

(3.26) P �
(
si + k ≤ si+1 < ∞ | s0, · · · , si

)
≤ c2−

k
2 .

Proof. Fix i, k and s ∈ [n,∞). We will prove that

(3.27) P �
(
si + k ≤ si+1 < ∞ | si = s

)
≤ c2−

k
2 ,

for some c < ∞. Recall that Ψ is the set of γ ∈ Γ(2s−2) such that

{
(
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ} ∩ {si = s}

is possible. For j ≥ k and γ = (γ1, γ2) ∈ Ψ, we will estimate

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, si+1 = s + j

)
.

By definition of si, we see that

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, si+1 = s + j

)
≤ P �

((
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ,

S
1
[τ1(2s+j−3), τ1(2s+j−2)] ∩ B(

11

12
2s) 
= ∅

)
.

Hence we need to estimate

(3.28)
P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ,

S1[τ1(2s+j−3), τ1(2s+j−2)] ∩ B(2s) 
= ∅, A2N

)
for N > s+ j. By the strong Markov property, the probability in (3.28) is bounded
above by

c2−(N−s−j)ξdP
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ,

S1[τ1(2s+j−3), τ1(2s+j−2)] ∩ B(2s) 
= ∅, A2s+j

)
.

Let

τ = inf
{
l ≥ τ1(2s+j−3) : S1(l) ∈ B(2s)

}
.

For d = 3, it is easy to see that

P (τ < ∞) ≤ c2−j
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for some c < ∞. Therefore,

P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ,(3.29)

S1[τ1(2s+j−3), τ1(2s+j−2)] ∩ B(2s) 
= ∅, A2s+j

)
≤ c2−jP

((
S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]

)
= γ, A2s+j−3

)
.

For d = 2, we see that

P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ,(3.30)

S1[τ1(2s+j−3), τ1(2s+j−2)] ∩ B(2s) 
= ∅, A2s+j

)
≤ P

((
S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]

)
= γ, A2s+j−3 ,

τ ≤ τ1(2s+j−2), S1[τ, τ1(2s+j)] ∩ S2[0, τ2(2s+j)] = ∅
)
.

By using the discrete Beurling estimate (see Theorem 2.5.2 in [12] for details), the
right hand side of (3.30) is bounded above by

c2−
j
2P

((
S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]

)
= γ, A2s+j−3

)
.

If we write wi = γi(lenγi), then

P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ, A2s+j−3

)
≤ c2−jξdPw1,w2(

A2s−1(γ)
)
P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ
)
.

Combining these estimates, we see that (3.28) is bounded above by

c2−(N−s)ξdPw1,w2(
A2s−1(γ)

)
P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ
)
2−

j
2 .

However, by Corollary 2.2,

2−(N−s)ξdPw1,w2(
A2s−1(γ)

)
≤ 1

c1
Pw1,w2(

A2N (γ)
)
,

and hence (3.28) can be bounded above by

P
((

S1[0, τ1(2s−2)], S2[0, τ2(2s−2)]
)

= γ, A2N

)
c2−

j
2 .

So dividing each side by P (A2N ) first, and then by letting N → ∞, we have

P �
((

S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ, si+1 = s + j

)
≤ c2−

j
2P �

((
S
1
[0, τ1(2s−2)], S

2
[0, τ2(2s−2)]

)
= γ

)
.

By summing over all γ ∈ Ψ, we get

P �(si = s, si+1 = s + j) ≤ c2−
j
2P �(si = s).

Finally, by summing over all j ≥ k, we finish the proof of the lemma. �

Proof of Proposition 3.6. As previously mentioned, in order to prove (3.21), it suf-
fices to show that there exist c and α such that for all n,

P �(s� ≥ n + α log n) ≤ c

n2
.
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However, once Lemma 3.7 and Lemma 3.8 have been established, then by applying
the same argument used in the proof of Theorem 1.2 in [13], we conclude that (3.22)
holds for some c and α. �

3.3. Proof of Theorem 1.1. In this subsection, we will prove Theorem 1.1. To
establish it, we need the two lemmas below.

Lemma 3.9. There exists c1, c2 ∈ (0,∞) such that

(3.31) P �
(
τ i
(√

n(log n)−1
)
≤ n ≤ τ i

(√
n(log n)

))
≥ 1 − c1e

−c2(logn)2

for each i = 1, 2.

Proof. Standard large deviation estimates give that

P
(
τ i
(√

n(log n)−1
)
≤ n ≤ τ i

(√
n(logn)

))
≥ 1 − c1e

−c2(logn)2

for some c1, c2 ∈ (0,∞). Therefore, for each N > n,

P
(
τ i
(√

n(logn)−1
)
> n, AN

)
≤ P

(
τ i
(√

n(log n)−1
)
> n,

S1[τ1(n), τ1(N)] ∩ S2[τ2(n), τ2(N)] = ∅
)

≤ c1e
−c2(logn)2

(N
n

)−ξd
≤ c1e

− c2
2 (logn)2N−ξd .

Hence,

P
(
τ i
(√

n(log n)−1
)
> n

∣∣ AN

)
≤ ce−c′(logn)2 .

Letting N → ∞,

P �
(
τ i
(√

n(log n)−1
)
> n

)
≤ ce−c′(logn)2 .

Similarly, we see that

P �
(
τ i
(√

n(log n)
)
< n

)
≤ ce−c′(log n)2 ,

and the lemma is proved. �

Recall that K
i
(j) is the indicator function defined as in (3.2).

Lemma 3.10. For all ε > 0, there exists c = cε < ∞ such that

(3.32) P �
( n∑

j=0

K
i
(j) ≥ n1−ζd+ε

)
≤ cn−10,

for each i = 1, 2.

Proof. Fix ε > 0. Let

J i(j, n) =
{
Si[0, j] ∩ Si[j + 1, n] = ∅

}
.

By Lemma 5.1 in [13] (see also Lemma 4.2 in [14]), we see that there exists a
constant c = cε depending on ε such that

E
(( n∑

j=0

J i(j, n)
) 20

ε

)
≤ cn

20
ε (1−ζd).
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Therefore,

P
( n∑

j=0

J i(j, n) ≥ n1−ζd+ε
)
≤ P

(( n∑
j=0

J i(j, n)
) 20

ε ≥ n
20
ε (1−ζd)+20

)

≤
E
(( n∑

j=0

J i(j, n)
) 20

ε

)
n

20
ε (1−ζd)+20

≤ cn−20.

Since ξd < 2, this implies that for each N > n,

P
( n∑

j=0

J i(j, n) ≥ n1−ζd+ε
∣∣ AN

)
≤ cn−10.

Letting N → ∞,

P �
( n∑

j=0

J
i
(j, n) ≥ n1−ζd+ε

)
≤ cn−10,

where we let J
i
(j, n) be the indicator function of the event{

S
i
[0, j] ∩ S

i
[j + 1, n] = ∅

}
.

Since J
i
(j, n) ≥ K

i
(j), we get the lemma. �

Proof of Theorem 1.1. For the lower bound of Theorem 1.1, we note that in the

event Λ
i
(n, α), it follows that

(3.33)
τ i(2n+α log n)∑
j=τ i(2n−1)

K
i
(j) ≥ c(2n)2−ξd .

On the other hand, it follows from Proposition 3.6 and the Borel-Cantelli Lemma

that with probability one for all n sufficiently large, Λ
i
(n, α) holds. By using

Lemma 3.9, it is easy to check that if Λ
i
(n, α) holds for all sufficiently large n with

probability one, then with probability one,

lim inf
n→∞

log
( n∑

j=0

K
i
(j)

)
log n

≥ 1 − ζd.

For the upper bound, take ε > 0. By Lemma 3.10 and the Borel-Cantelli Lemma,
with probability one, for all n sufficiently large,

n∑
j=0

K
i
(j) ≤ n1−ζd+ε,

and hence

lim sup
n→∞

log
( n∑

j=0

K
i
(j)

)
log n

≤ 1 − ζd + ε.

Since ε is arbitrary, with probability one,

lim sup
n→∞

log
( n∑

j=0

K
i
(j)

)
log n

≤ 1 − ζd



TWO-SIDED RANDOM WALKS 4545

and

lim
n→∞

log
( n∑

j=0

K
i
(j)

)
log n

= 1 − ζd

for d = 2, 3. �

4. Subdiffusivity

In this section, we will prove Theorem 1.2 and Theorem 1.3. We first give some
notation.

For a locally finite connected graph G = (V,E) with vertex set V and edge set
E, let dG(·, ·) be the shortest path graph distance on G. We define a quadratic
form E by

E(f, g) =
1

2

∑
x,y∈V,
{x,y}∈E

(f(x) − f(y))(g(x) − g(y)).

If we regard G as an electrical network with a unit resistor on each edge in E, then
E(f, f) is the energy dissipation when the vertices of V are at a potential f . Set

H2 = {f ∈ R
V : E(f, f) < ∞}.

Let A,B be disjoint subsets of V . The effective resistance between A and B is
defined by

(4.1) RG(A,B)−1 = inf{E(f, f) : f ∈ H2, f |A = 1, f |B = 0}.

Let RG(x, y) = RG({x}, {y}).
We write Cn to represent the connected component of G ∩ B(n) containing 0,

and write Ci
n to represent the connected component of Gi ∩ B(n) containing 0. Let

Cc
n = G\Cn and (Ci

n)c = Gi\Ci
n.

Recall that X =
(
(X(n))n≥0, P

G
x , x ∈ V (G)

)
is the simple random walk on G.

For a subset A ⊂ V (G), let

TA = inf{k ≥ 0 : X(k) ∈ A},

and let Tx = T{x} for x ∈ V (G). Note that T (n) in (1.14) is equal to TCc
n
. For

x, y ∈ Cn, we write

GCn
(x, y) = EG

x

( TCc
n
−1∑

k=0

1{X(k) = y}
)

to denote Green’s function for X in Cn, and write gCn
(x, y) to represent its kernel.

Note that the fact

RG(x, Cc
n) = gCn

(x, x) for all x ∈ Cn

is well known. (For the proof of this fact, see, for example, section 3.2 in [1].)
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Let μx = #{y ∈ Cn : {x, y} ∈ E(G)} be the number of edges that contain
x ∈ Cn. Then,

EG
0

(
T (n)

)
=

∑
x∈Cn

GCn
(0, x)

=
∑

x∈Cn

PG
0

(
Tx < TCc

n

)
GCn

(x, x)

=
∑

x∈Cn

PG
0

(
Tx < TCc

n

)
gCn

(x, x)μx

≥
∑

x∈Cn

PG
0

(
Tx < TCc

n

)
RG(x, Cc

n),(4.2)

where we use μx ≥ 1 in the last inequality.
Since the proof of Theorem 1.3 is easy, we first give the proof.

4.1. Proof of Theorem 1.3. For each α > 0, let

G′ =
{ τi(n)∑

j=0

K
i
(j) ≥ n2−ξ3(log n)−α,

τi(n(logn)α)∑
j=τi(n(logn))

K
i
(j) ≥ n2−ξ3 , for i = 1, 2

}
.

Then, by Proposition 3.6, it follows that there exist c, α < ∞ such that

P �
(
G′) ≥ 1 − c(log n)−2.

Let b′n = n(logn)α. By (4.2),

(4.3) EG
0

(
T
(
b′n
))

≥
∑

x∈Cb′n

PG
0

(
Tx < TCc

b′n

)
RG(x, Cc

b′n
).

Note that

PG
0

(
TCc

b′n
= T(C1

b′n
)c
)
∨ PG

0

(
TCc

b′n
= T(C2

b′n
)c
)
≥ 1

2
.

By the symmetry between S
1

and S
2
, we may assume that

(4.4) PG
0

(
TCc

b′n
= T(C1

b′n
)c

)
≥ 1

2
.

Let

C1
n = {S1

(t) : 0 ≤ t ≤ τ1(n), K
1
(t) = 1}.

Then by (4.4),

(4.5) PG
0

(
Tx < TCc

b′n

)
≥ 1

2
,

for all x ∈ C1
n. By using the parallel law for electrical resistance, it follows that for

x ∈ C1
n,

(4.6) RG

(
x, Cc

b′n

)
=

RG

(
x, (C1

b′n
)c
)
RG

(
x, (C2

b′n
)c
)

RG

(
x, (C1

b′n
)c
)

+ RG

(
x, (C2

b′n
)c
) .

In the event G′, we see that

RG

(
x, (Ci

b′n
)c
)
≥

τi(n(logn)α)∑
j=τi(n(logn))

K
i
(j) ≥ n2−ξ3
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for x ∈ C1
n. Hence by (4.6),

(4.7) RG(x, Cc
b′n

) ≥ 1

2
n2−ξ3

for x ∈ C1
n in the event G′. Therefore,

EG
0

(
T
(
b′n
))

≥
∑

x∈Cb′n

PG
0

(
Tx < TCc

b′n

)
RG(x, Cc

b′n
)

≥
∑

x∈C1
n

PG
0

(
Tx < TCc

b′n

)
RG(x, Cc

b′n
)

≥ 1

4
n2−ξ3#C1

n

≥ 1

4
n4−2ξ3(log n)−α,

in the event G′. By a simple reparameterisation, we conclude that

P �
(
EG

0

(
T (n)

)
≥ n4−2ξ3(logn)−4α

)
≥ 1 − c(logn)−2.

So, using the Borel-Cantelli Lemma, it follows that, with probability one for all k
sufficiently large, the following holds:

EG
0

(
T (2k)

)
≥ (2k)4−2ξ3(log(2k))−4α.

Take n sufficiently large and let k be such that 2k ≤ n < 2k+1. Then

EG
0

(
T (n)

)
≥ EG

0

(
T (2k)

)
≥ (2k)4−2ξ3(log(2k))−4α ≥ cn4−2ξ3(logn)−4α,

for some c > 0, and the proof of Theorem 1.3 is finished. �

4.2. Loop-erased random walk. From now on, we assume d = 2. Since 4 −
2ξ2 = 3

2 < 2, the proof of Theorem 1.3 in the previous subsection does not give
subdiffusivity for d = 2. We first give the idea of the proof of Theorem 1.2 here.
Recall that

(4.8) EG
0

(
T (n)

)
≥

∑
x∈Cn

PG
0

(
Tx < TCc

n

)
RG(x, Cc

n).

In order to prove the theorem, we will find a long enough sequence xj ∈ Cn such

that both PG
0

(
Txj

< TCc
n

)
and RG(xj , Cc

n) are large. Fix ε ∈ (0, 1
100 ). Assume that

PG
0

(
TCc

n
= T(C1

n)
c

)
≥ 1

2
.

Then for each global cut time t for S
1

with t < τ1(n2 ),

PG
0

(
T
S

1
(t)

< TCc
n

)
≥ 1

2
,

and by a similar argument as in the proof of (4.7), we see that RG(S
1
(t), Cc

n) can

be bounded below by n
3
4 (log n)−α. The strategy for the proof of Theorem 1.2 is to

find a long enough sequence of global cut times t1 < t2 < · · · < tl < τ1(n2 ) for S
1

such that each tj+1 − tj is large. We will show that there are dn := n
3
10 global cut

times t1 < t2 < · · · < tdn < τ1(n2 ) such that tj+1 − tj > n
6
5 for each j (see (4.33)
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for details). By the theory of electrical networks, it follows that if dG
(
x, S

1
(tj)

)
is

small, then both∣∣PG
0

(
Tx < TCc

n

)
− PG

0

(
T
S

1
(tj)

< TCc
n

)∣∣ and
∣∣RG(x, Cc

n) −RG(S
1
(tj), Cc

n)
∣∣

are also small. Indeed, we will show that if

x ∈
{
y ∈ Cn : dG

(
y, S

1
(tj)

)
≤ n

3
4 (log n)−2α

}
=: V j ,

then

(4.9) PG
0

(
Tx < TCc

n

)
≥ 1

4
and RG(x, Cc

n) ≥ n
3
4 (log n)−α.

(See (4.38) and (4.40).) Because each tj+1 − tj (> n
6
5 ) is large, it can be shown

that V j is disjoint. For the cardinality of V j , we will show that

(4.10) #V j ≥ n
39
40−ε.

(See Lemma 4.4 below.) Combining (4.9) and (4.10) with (4.8), we have

EG
0

(
T (n)

)
≥

∑
x∈Cn

PG
0

(
Tx < TCc

n

)
RG(x, Cc

n)

≥
∑

x∈
⋃dn

j=1 V j

PG
0

(
Tx < TCc

n

)
RG(x, Cc

n)

≥ 1

4
n

3
4 (logn)−α

dn∑
j=1

#V j

≥ cn
3
4 (logn)−αn

39
40−εdn

= cn
81
40−ε(log n)−α,

and we obtain Theorem 1.2 (see Figure 7).
To prove (4.10), we need to estimate the graph distance on G, which we will do

in this subsection. The proof of Theorem 1.2 will be given in Section 4.3.
Now we will establish estimates of the graph distance on G by using a loop-

erased random walk (LERW). For this purpose, we begin with the introduction of
the definition of LERW.

For a path λ = [λ(0), · · · , λ(m)] of length m in Z
2, assign a self-avoiding walk

path L(λ) in the following way. Let

σ0 = sup{j : λ(j) = λ(0)},
and for i > 0,

σi = sup{j : λ(j) = λ(σi−1 + 1)}.
Let

l = inf{i : σi = m}.
Now define

λ̂(i) = λ(σi)

and

L(λ) = [λ̂(0), λ̂(1), · · · , λ̂(l)].

This self-avoiding path clearly satisfies (L(λ))(0) = λ(0) and (L(λ))(l) = λ(m). Let
S = (S(n))n≥0 be the simple random walk in Z

2 started at 0, and let

τ (n) = inf{k ≥ 0 : |S(k)| ≥ n}.
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O

n/2
n

S 1

V
1

V
2

V dn

S
2

Figure 7. Illustration of the idea of the proof of Theorem 1.2.

We denote the length of L
(
S[0, τ (n)]

)
by Mn. Then the following two propositions

have been proved.

Proposition 4.1 ([9, Theorem 3]). It follows that

(4.11) lim
n→∞

logE(Mn)

log n
=

5

4
.

The quantity 5/4 is called the growth exponent for the planar loop-erased random
walk. For tail bounds on Mn, the following holds.

Proposition 4.2 ([2, Theorem 1.1]). There exists c > 0 such that for all t ≥ 0,

(4.12) P
(
Mn > tE(Mn)

)
≤ 2e−ct.

Fix ε ∈ (0, 1
100 ). By Proposition 4.1, we see that for all n sufficiently large,

(4.13) E(Mn) ≤ n
5
4+ε.

From now on, assume n is large so that (4.13) holds.
For k < l, let G(k, l) =

(
V (G(k, l)), E(G(k, l))

)
be the graph with

V (G(k, l)) =
{
S(j) : k ≤ j ≤ l

}
, E(G(k, l)) =

{
{S(j), S(j + 1)} : k ≤ j < l

}
.

Let

Nn = #
{
S(k) : n ≤ k ≤ n(log n)8, dG(0,k)(0, S(k)) ≤ n

5
8+ε

}
.

The key result in this subsection is the following proposition.
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O
S

k
0

k
1

k
2

kl 2
√
n(logn)2

G(t0, s0)

G(t1,s1)

G(tl, sl)

Figure 8. G(tj , sj) are disjoint.

Proposition 4.3. There exists c > 0 such that

(4.14) P
(
Nn ≥ n

13
16 (log n)−7

)
≥ 1 − e−c(logn)2 .

Proof. By a standard large deviation estimate, we see that

P
(
n < τ

(√
n(log n)2

)
< τ

(
3
√
n(logn)2

)
< n(log n)8

)
≥ 1 − e−c(log n)2 ,

for some c > 0. For j = 0, 1, · · · , define

kj =
√
n(logn)2 + jn

5
16 ,

and let

l = sup
{
j : kj < 2

√
n(logn)2

}
.

Note that

l �
√
n(log n)2

n
5
16

= n
3
16 (log n)2.

For j = 0, 1, · · · , l, we write

tj = τ (kj).

Let

sj = inf
{
k ≥ tj :

∣∣S(k) − S(tj)
∣∣ ≥ 1

3
n

5
16

}
for j = 0, 1, · · · , l. Notice that sj−1 < tj < sj for j = 1, 2, · · · , l and G(tj , sj) are
disjoint. Moreover,

{
G(tj , sj) − S(tj)

}
is i.i.d. (see Figure 8).



TWO-SIDED RANDOM WALKS 4551

Let

Nj,n = #
{
S(k) : tj ≤ k ≤ sj , dG(tj ,k)

(
S(tj), S(k)

)
≤ n

5
8

}
.

We will show that

Nj,n ≥ n
5
8 (log n)−6,

with positive probability for each j. It follows from a standard large deviation
estimate that

P
(
n

5
8 (log n)−4 ≤ sj − tj ≤ n

5
8 (log n)4

)
≥ 1 − e−c(log n)2 ,

for some c > 0. So assume sj − tj ≥ n
5
8 (logn)−4; then

#V
(
G
(
tj , tj + n

5
8 (log n)−4

))
≤ Nj,n.

However, by the translation invariance of the simple random walk, we see that

(4.15)
P
(
#V

(
G
(
tj , tj + n

5
8 (logn)−4

))
≥ n

5
8 (log n)−6

)
= P

(
#V

(
G
(
0, n

5
8 (log n)−4

))
≥ n

5
8 (logn)−6

)
.

For moment estimates of #V
(
G
(
0, n

5
8 (logn)−4

))
, the following are known:

E
(
#V

(
G(0, n

5
8 (log n)−4)

))
� n

5
8 (log n)−5,(4.16)

Var
(
#V

(
G(0, n

5
8 (log n)−4)

))
� n

5
4 (log n)−12.(4.17)

(4.16) is from Lemma 2.6 in [7] with the estimates (2.2) and (2.3) in [6]. (4.17) is
from Theorem 4.2 in [8]. Therefore,

P
(
#V

(
G(0, n

5
8 (logn)−4)

)
< n

5
8 (log n)−6

)
≤ P

(
#V

(
G(0, n

5
8 (log n)−4)

)
≤ E

(
#V (G(0, n

5
8 (logn)−4))

)
c(log n)−1

)
≤ P

(∣∣∣#V
(
G(0, n

5
8 (log n)−4)

)
− E

(
#V (G(0, n

5
8 (logn)−4))

)∣∣∣
≥ 1

2
E
(
#V (G(0, n

5
8 (log n)−4))

))

≤
4Var

(
#V

(
G(0, n

5
8 (log n)−4)

))
E
(
#V

(
G(0, n

5
8 (log n)−4)

))2

≤ c(logn)−2

for some c < ∞. Hence if we write

Ij,n = 1{Nj,n ≥ n
5
8 (logn)−6},

then

P (Ij,n = 1) ≥ P
(
sj − tj ≥ n

5
8 (logn)−4, #V

(
G
(
tj , tj + n

5
8 (log n)−4

))
≥ n

5
8 (log n)−6

)
≥ 1

2
.
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Since Ij,n are i.i.d., we see that

P
( (logn)2∑

j=0

Ij,n = 0
)
≤ e−δ(log n)2

for some δ > 0. Therefore,

(4.18) P
( l∑

j=0

Ij,n ≤ l(log n)−2
)
≤ le−δ(logn)2 ≤ e−

δ
2 (logn)2

for large n.
Next we will estimate dG(0,S(tj))

(
0, S(tj)

)
for each j by using (4.11) and (4.12).

Recall that √
n(log n)2 ≤ kj ≤ 2

√
n(logn)2

for each j = 0, 1, · · · , l. Hence by (4.13),

E(Mkj
) ≤ n

5
8+

2ε
3

for all j = 0, 1, · · · , l and n sufficiently large. Therefore, by (4.12),

P
(
Mkj

≥ 1

2
n

5
8+ε for some j = 0, 1, · · · , l

)
≤

l∑
j=0

P
(
Mkj

≥ 1
2n

5
8+ε

)

≤
l∑

j=0

P
(
Mkj

≥ 1
2n

ε
3E

(
Mkj

))
≤ 2le−c′n

ε
3 ≤ e−cn

ε
3

for some c, c′. Since L
(
S[0, τ (kj)]

)
(0) = 0 and the end point of L

(
S[0, τ (kj)]

)
is

S(τ (kj)), we see that dG(0,S(tj))

(
0, S(tj)

)
≤ Mkj

. Hence,

(4.19) P
(
dG(0,S(tj))

(
0, S(tj)

)
≥ 1

2
n

5
8+ε for some j = 0, 1, · · · , l

)
≤ e−cn

ε
3 .

Combining (4.19) with (4.18), we see that

P
(
dG(0,S(tj))

(
0, S(tj)

)
≤ 1

2
n

5
8+ε for all j = 0, · · · , l, and

l∑
j=0

Ij,n

≥ l(logn)−2
)
≥ 1 − e−c(log n)2

for some c > 0. So assume

n < τ
(√

n(log n)2
)
< τ

(
3
√
n(log n)2

)
< n(log n)8,

dG(0,S(tj))

(
0, S(tj)

)
≤ 1

2
n

5
8+ε for all j = 0, · · · , l,

l∑
j=0

Ij,n ≥ l(log n)−2.

Then

Nn ≥
l∑

j=0

Nj,n ≥
l∑

j=0

Ij,nn
5
8 (log n)−6 ≥ l(logn)−2n

5
8 (log n)−6 � n

13
16 (log n)−6,

and the proposition is proved. �
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Let Gi
(k, l) =

(
V (Gi

(k, l)), E(Gi
(k, l))

)
be the graph with

V (Gi
(k, l)) =

{
S
i
(j) : k ≤ j ≤ l

}
, E(Gi

(k, l)) =
{
{Si

(j), S
i
(j + 1)} : k ≤ j < l

}
for k < l and i = 1, 2. Define

N
i

n = #
{
S
i
(k) : n ≤ k ≤ n(logn)8, dGi

(0,k)
(0, S

i
(k)) ≤ n

5
8+ε

}
.

By using a similar argument as in the proof of Lemma 3.9, the following lemma
is an easy consequence of Proposition 4.3. So we omit the proof.

Lemma 4.4. There exists c > 0 such that

(4.20) P �
(
N

i

n ≥ n
13
16 (log n)−7 for i = 1, 2

)
≥ 1 − e−c(log n)2 .

Remark 4.5. By using a similar idea as in the proof of Proposition 4.3, one can
show that

P
(
#Si[0, τ i(n)] ≤ n2(logn)−10

)
≤ e−δ(log n)2 ,

for some δ > 0. Therefore, we see that

P �
(
#S

i
[0, τ i(n)] ≥ n2(logn)−10

)
≥ 1 − e−

δ
2 (logn)2 .

Using the Borel-Cantelli Lemma, it follows that with probability one for all n
sufficiently large,

(4.21) #S
i
[0, τ i(n)] ≥ n2(log n)−10.

4.3. Proof of Theorem 1.2. In this subsection, we will give the proof of Theorem
1.2. For this purpose, we first define several events as follows. Let d = 2. Fix
ε ∈ (0, 1

100 ). Let

(4.22) G1,i =
{ n2∑

j=0

K
i
(j) ≥ n

3
4 (logn)−α, 2n2 < τ i(n(logn)2),

τ i(n(log n)2+α)∑
j=τi(n(logn)2)

K
i
(j) ≥ n

3
4 (log n)

}
,

and G1 = G1,1 ∩G1,2. By Proposition 3.6, there exist α, c < ∞ such that

(4.23) P �(G1) ≥ 1 − c(log n)−2.

So fix such an α.
Let

an = n
6
5−ε,

and
kj = jan

for j = 0, 1, · · · . We write Ij = [kj−1, kj ]. Let

m = inf{j : kj > n2}.
Then,

m � n2

an
= n

4
5+ε.

Define the event

(4.24) G2,i =
{ kj∑

t=kj−1

K
i
(t) ≤ n

9
20 , for all j = 1, 2, · · · ,m

}
,
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and let G2 = G2,1 ∩G2,2. For t ∈ Ij , let

Zi
j(t) = 1

{
Si[kj−1, t] ∩ Si[t + 1, kj ] = ∅

}
and

Z
i

j(t) = 1
{
S
i
[kj−1, t] ∩ S

i
[t + 1, kj ] = ∅

}
.

By Lemma 3.10, it follows that there exists a constant c = cε depending on ε such
that

P
( kj∑

t=kj−1

Zi
j(t) ≥ n

9
20 for some j = 1, 2, · · · ,m

)
≤

m∑
j=1

P
( kj∑

t=kj−1

Zi
j(t) ≥ n

9
20

)

= mP
( k1∑

t=0
Zi
1(t) ≥ n

9
20

)
≤ cmn−10 ≤ cn−9.

Therefore, by using a similar argument as in the proof of Lemma 3.9, we see that

(4.25) P �
( kj∑

t=kj−1

Z
i

j(t) ≥ n
9
20 for some j = 1, 2, · · · ,m

)
≤ cn−6

for some c = cε < ∞. Since
kj∑

t=kj−1

K
i
(t) ≤

kj∑
t=kj−1

Z
i

j(t), it follows that

P �
(
(G2,i)c

)
≤ cn−6

and

(4.26) P �(G2) ≥ 1 − cn−6.

For each j = 1, 2, · · · ,m, define

N
i

j,n = #V
i

j,n,

where
(4.27)

V
i

j,n =
{
S
i
(t) : kj ≤ t ≤ kj + an(log n)8, dGi

(kj−1,t)
(S

i
(kj−1), S

i
(t)) ≤ n

3
4

}
.

Let

(4.28) G3,i =
{
N

i

j,n ≥ n
39
40−ε(log n)−7 for all j = 1, 2, · · · ,m

}
,

and G3 = G3,1 ∩ G3,2. Although P � is not translation invariant, by using similar
arguments as in the proof of (4.25), it follows from Lemma 4.4 that

(4.29) P �(G2) ≥ 1 − e−c(log n)2

for some c > 0. Hence we get the following lemma.

Lemma 4.6. For every ε ∈ (0, 1
100 ), there exists a constant c = cε < ∞ such that

(4.30) P �
(
G1 ∩G2 ∩G3

)
≥ 1 − c(log n)−2.

Now we will prove Theorem 1.2.
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kj
l
−1

kj
ltl

kj
l

+ an(logn)
8

kj
l+1

kj
l+1−1

tl+1

I
j
l I

j
l+1

Figure 9. Good intervals.

Proof of Theorem 1.2. We will give a lower bound of EG
0

(
T
(
bn
))

in the event G1∩
G2 ∩G3, where bn = n(logn)2+α. So assume G1 ∩G2 ∩G3 holds. By (4.2),

(4.31) EG
0

(
T
(
bn
))

≥
∑

x∈Cbn

PG
0

(
Tx < TCc

bn

)
RG(x, Cc

bn
).

By the symmetry between S
1

and S
2
, we may assume that

(4.32) PG
0

(
TCc

bn
= T(C1

bn
)c

)
≥ 1

2
;

the converse can be proved similarly. In this case, the probability that X passes
through all global cut points in C1

bn
before it goes outside in Cbn is at least 1

2 .
Recall that we write

an = n
6
5−ε, kj = jan, Ij = [kj−1, kj ],

and m = inf{j : kj > n2}. We will say that Ij is good if there is at least one global

cut time for S
1

in Ij , i.e.,
kj∑

t=kj−1

K
1
(t) ≥ 1.

In the event G1 ∩G2, we have

(4.33) #
{

1 ≤ j ≤ m : Ij is good
}
≥ n

3
4 (log n)−α

n
9
20

= n
3
10 (log n)−α.

Therefore, there are dn := n
3
10 (logn)−α−9 indexes j1 < j2 < · · · < jdn

such that
Ijl is good and

kjl+1
− kjl = (jl+1 − jl)an ≥ an(log n)9

for each l. So we write tl to represent a global cut time for S
1

in the (good) interval
Ijl .

Recall that V
1

j,n is defined as in (4.27). If S
1
(t) ∈ V

1

jl,n
, then kjl ≤ t ≤ kjl +

an(logn)8 and

dG1
(kjl−1,t)

(
S
1
(kjl−1), S

1
(t)

)
≤ n

3
4 .

However, since tl ∈ Ijl = [kjl−1, kjl ] is a global cut time for S
1
, we see that

dG1
(kjl−1,t)

(
S
1
(kjl−1), S

1
(t)

)
= dG1

(kjl−1,tl)

(
S
1
(kjl−1), S

1
(tl)

)
+ dG1

(tl,t)

(
S
1
(tl), S

1
(t)

)
.

Hence,

(4.34) dG1
(tl,t)

(
S
1
(tl), S

1
(t)

)
≤ n

3
4

for all S
1
(t) ∈ V

1

jl,n
and l = 1, 2, · · · , dn.
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By using the parallel law for electrical resistance,

(4.35) RG

(
S
1
(tl), Cc

bn

)
=

RG

(
S
1
(tl), (C1

bn
)c
)
RG

(
S
1
(tl), (C2

bn
)c
)

RG

(
S
1
(tl), (C1

bn
)c
)

+ RG

(
S
1
(tl), (C2

bn
)c
) .

In the event G1, we have

(4.36) RG

(
S
1
(tl), (Ci

bn)c
)
≥

τ i(n(log n)2+α)∑
j=τi(n(logn)2)

K
i
(j) ≥ n

3
4 (log n).

Therefore, the right hand side of (4.35) is bounded below by a constant times

n
3
4 (log n). By (4.34),

(4.37) RG
(
S
1
(tl), S

1
(t)

)
≤ dG1

(tl,t)

(
S
1
(tl), S

1
(t)

)
≤ n

3
4

for all S
1
(t) ∈ V

1

jl,n
. Hence,

(4.38) RG

(
S
1
(t), Cc

bn

)
≥ RG

(
S
1
(tl), Cc

bn

)
−RG

(
S
1
(tl), S

1
(t)

)
≥ cn

3
4 (log n)

for all S
1
(t) ∈ V

1

jl,n
and l = 1, 2, · · · , dn.

To give a lower bound on the right hand side of (4.31), we will estimate

PG
0

(
T
S

1
(t)

< TCc
bn

)
for S

1
(t) ∈ V

1

jl,n
. Assume that TCc

bn
= T(C1

bn
)c ; then

T
S

1
(tl)

< TCc
bn
.

Therefore, by (4.32),

(4.39) PG
0

(
T
S

1
(tl)

< TCc
bn

)
≥ 1

2

for all l = 1, 2, · · · , dn. For S
1
(t) ∈ V

1

jl,n
, we have

PG
0

(
T
S

1
(t)

< TCc
bn

)
= PG

0

(
T
S

1
(tl)

< TCc
bn

)
PG
S

1
(tl)

(
T
S

1
(t)

< TCc
bn

)
≥ 1

2
PG
S

1
(tl)

(
T
S

1
(t)

< TCc
bn

)
.

However, it follows from (4) in [3] that

PG
S

1
(tl)

(
TCc

bn
< T

S
1
(t)

)
≤

RG
(
S
1
(tl), S

1
(t)

)
RG

(
S
1
(tl), Cc

bn

) .

Therefore, by (4.36) and (4.37),

(4.40) PG
0

(
T
S

1
(t)

< TCc
bn

)
≥ 1

2
(1 − (logn)−1) ≥ 1

4
.

So combining (4.38) and (4.40) with (4.31), we have

(4.41) EG
0

(
T (bn)

)
≥ cn

3
4 (log n)#

( dn⋃
l=1

V
1

jl,n

)
.

Recall that

kjl−1 ≤ tl ≤ kjl < kjl + an(log n)8 < kjl + an(log n)9 ≤ kjl+1−1 ≤ tl+1 ≤ kjl+1
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and V
1

jl,n
⊂ G1(

kjl , kjl + an(log n)8
)

(see Figure 9). Since tl is a global cut time,

we see that V
1

jl,n
are disjoint. Hence, by (4.28), the right hand side of (4.41) is

bounded below by

cn
3
4 (logn)n

39
40−ε(logn)−7dn = cn

3
4+

39
40−ε+ 3

10 (log n)−α−15 = cn
81
40−ε(logn)−α−15,

in the event G1∩G2∩G3. Therefore, by Lemma 4.6 and a simple reparameterisation,
we conclude that

P �
(
EG

0

(
T (n)

)
≥ n

81
40−ε(log n)−4α−21

)
≥ 1 − c(log n)−2.

So, using the Borel-Cantelli Lemma, it follows that, with probability one for all k
sufficiently large, the following holds:

EG
0

(
T (2k)

)
≥ (2k)

81
40−ε(log(2k))−4α−21.

Take n sufficiently large and let k be such that 2k ≤ n < 2k+1. Then

EG
0

(
T (n)

)
≥ EG

0

(
T (2k)

)
≥ (2k)

81
40−ε(log(2k))−4α−21 ≥ cn

81
40−ε(log n)−4α−21

for some c > 0, and the proof of Theorem 1.2 is finished. �

Remark 4.7. It is desirable to show that X is subdiffusive with respect to the
graph distance dG . For the usual two dimensional simple random walk S, it was
conjectured in [5] that

(4.42) E
(
dG(0,n)

(
0, S(n)

))
≈ E

(
|S(n)|

)
�

√
n,

where ≈ denotes that the logarithms of the two sides are asymptotic as n → ∞.
From this, we expect that the difference between dG and the Euclidean distance is
negligible for d = 2; more precisely, we conjecture that

(4.43) dG(0, x) ≈ |x| as |x| → ∞,

with probability one. Combining (4.43) with Theorem 1.2, we expect that X is
subdiffusive with respect to the graph distance. The question of whether or not
(4.42) holds remains open. It is a challenging problem to prove/disprove (4.42) and
(4.43).

Acknowledgement

The author would like to thank Takashi Kumagai for constant encouragement
and fruitful discussion and Keiji Kimura for drawing Figure 1.

References

[1] Martin T. Barlow, Thierry Coulhon, and Takashi Kumagai, Characterization of sub-Gaussian
heat kernel estimates on strongly recurrent graphs, Comm. Pure Appl. Math. 58 (2005),
no. 12, 1642–1677, DOI 10.1002/cpa.20091. MR2177164 (2006i:60106)

[2] Martin T. Barlow and Robert Masson, Exponential tail bounds for loop-erased random walk
in two dimensions, Ann. Probab. 38 (2010), no. 6, 2379–2417, DOI 10.1214/10-AOP539.
MR2683633 (2011j:60148)

[3] Noam Berger, Nina Gantert, and Yuval Peres, The speed of biased random walk on percolation
clusters, Probab. Theory Related Fields 126 (2003), no. 2, 221–242, DOI 10.1007/s00440-
003-0258-2. MR1990055 (2004h:60149)

[4] Krzysztof Burdzy and Gregory F. Lawler, Nonintersection exponents for Brownian paths. II.
Estimates and applications to a random fractal, Ann. Probab. 18 (1990), no. 3, 981–1009.
MR1062056 (91g:60097)

http://www.ams.org/mathscinet-getitem?mr=2177164
http://www.ams.org/mathscinet-getitem?mr=2177164
http://www.ams.org/mathscinet-getitem?mr=2683633
http://www.ams.org/mathscinet-getitem?mr=2683633
http://www.ams.org/mathscinet-getitem?mr=1990055
http://www.ams.org/mathscinet-getitem?mr=1990055
http://www.ams.org/mathscinet-getitem?mr=1062056
http://www.ams.org/mathscinet-getitem?mr=1062056


4558 DAISUKE SHIRAISHI

[5] Krzysztof Burdzy and Gregory F. Lawler, Rigorous exponent inequalities for random walks,
J. Phys. A 23 (1990), no. 1, L23–L28. MR1034620 (91a:60271)

[6] Yuji Hamana, The fluctuation result for the multiple point range of two-dimensional recur-
rent random walks, Ann. Probab. 25 (1997), no. 2, 598–639, DOI 10.1214/aop/1024404413.
MR1434120 (98f:60136)

[7] Naresh C. Jain and William E. Pruitt, The range of recurrent random walk in the plane, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 279–292. MR0281266 (43 #6984)

[8] Naresh C. Jain and William E. Pruitt, The range of random walk, Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley,
Calif., 1970/1971), Univ. California Press, Berkeley, Calif., 1972, pp. 31–50. MR0410936
(53 #14677)

[9] Richard Kenyon, The asymptotic determinant of the discrete Laplacian, Acta Math. 185
(2000), no. 2, 239–286, DOI 10.1007/BF02392811. MR1819995 (2002g:82019)

[10] Harry Kesten, The incipient infinite cluster in two-dimensional percolation, Probab. Theory
Related Fields 73 (1986), no. 3, 369–394, DOI 10.1007/BF00776239. MR859839 (88c:60196)

[11] Harry Kesten, Subdiffusive behavior of random walk on a random cluster (English, with
French summary), Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 4, 425–487.
MR871905 (88b:60232)

[12] Gregory F. Lawler, Intersections of random walks, Probability and its Applications,
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