Fields of definition of elliptic -curves and the realizability of all genus 2 Sato-Tate groups over a number field
Authors:
Francesc Fité and Xavier Guitart
Journal:
Trans. Amer. Math. Soc. 370 (2018), 4623-4659
MSC (2010):
Primary 11G10, 11G15, 14K22
DOI:
https://doi.org/10.1090/tran/7074
Published electronically:
January 18, 2018
MathSciNet review:
3812090
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an abelian variety of dimension
that is isogenous over
to
, where
is an elliptic curve. If
does not have complex multiplication (CM), by results of Ribet and Elkies concerning fields of definition of elliptic
-curves,
is isogenous to a curve defined over a polyquadratic extension of
. We show that one can adapt Ribet's methods to study the field of definition of
up to isogeny also in the CM case. We find two applications of this analysis to the theory of Sato-Tate groups: First, we show that
of the
possible Sato-Tate groups of abelian surfaces over
occur among at most
-isogeny classes of abelian surfaces over
. Second, we give a positive answer to a question of Serre concerning the existence of a number field over which abelian surfaces can be found realizing each of the
possible Sato-Tate groups of abelian surfaces.
- [Bea10] Arnaud Beauville, Finite subgroups of 𝑃𝐺𝐿₂(𝐾), Vector bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Providence, RI, 2010, pp. 23–29. MR 2681719, https://doi.org/10.1090/conm/522/10289
- [Car01]
G. Cardona, Models racionals de corbes de gènere
, Doctoral Thesis, Universitat Politècnica de Catalunya, 2001.
- [CF00] T. Chinburg and E. Friedman, The finite subgroups of maximal arithmetic Kleinian groups, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1765–1798 (2001). MR 1817383
- [Cox89] David A. Cox, Primes of the form 𝑥²+𝑛𝑦², A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- [CQ07] Gabriel Cardona and Jordi Quer, Curves of genus 2 with group of automorphisms isomorphic to 𝐷₈ or 𝐷₁₂, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2831–2849. MR 2286059, https://doi.org/10.1090/S0002-9947-07-04111-6
- [Elk04] Noam D. Elkies, On elliptic 𝐾-curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 81–91. MR 2058644
- [FS14] Francesc Fité and Andrew V. Sutherland, Sato-Tate distributions of twists of 𝑦²=𝑥⁵-𝑥 and 𝑦²=𝑥⁶+1, Algebra Number Theory 8 (2014), no. 3, 543–585. MR 3218802, https://doi.org/10.2140/ant.2014.8.543
- [FKRS12] Francesc Fité, Kiran S. Kedlaya, Víctor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390–1442. MR 2982436, https://doi.org/10.1112/S0010437X12000279
- [Gro80] Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, vol. 776, Springer, Berlin, 1980. With an appendix by B. Mazur. MR 563921
- [GQ14] Xavier Guitart and Jordi Quer, Modular abelian varieties over number fields, Canad. J. Math. 66 (2014), no. 1, 170–196. MR 3150707, https://doi.org/10.4153/CJM-2012-040-2
- [GK17] Robert Guralnick and Kiran S. Kedlaya, Endomorphism fields of abelian varieties, Res. Number Theory 3 (2017), Art. 22, 10. MR 3720508, https://doi.org/10.1007/s40993-017-0088-4
- [Hei34] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 2 5 (1934), 150-160.
- [Kar87] Gregory Karpilovsky, The algebraic structure of crossed products, North-Holland Mathematics Studies, vol. 142, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 118. MR 894031
- [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
- [LMFDB]
The LMFDB Collaboration, The
-functions and Modular Forms Database, http://www.lmfdb.org, 2013 [Online; accessed 16 September 2013].
- [Mer81] A. S. Merkur′ev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542–547 (Russian). MR 638926
- [Mil72] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177–190. MR 330174, https://doi.org/10.1007/BF01425446
- [MRS07] B. Mazur, K. Rubin, and A. Silverberg, Twisting commutative algebraic groups, J. Algebra 314 (2007), no. 1, 419–438. MR 2331769, https://doi.org/10.1016/j.jalgebra.2007.02.052
- [Nak04] Tetsuo Nakamura, Elliptic ℚ-curves with complex multiplication, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 181–187. MR 2058651
- [Pari2] The PARI Group, PARI/GP version 2.7.0, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/.
- [Pyl02] Elisabeth E. Pyle, Abelian varieties over ℚ with large endomorphism algebras and their simple components over \overline{ℚ}, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 189–239. MR 2058652
- [Que95] Jordi Quer, Liftings of projective 2-dimensional Galois representations and embedding problems, J. Algebra 171 (1995), no. 2, 541–566. MR 1315912, https://doi.org/10.1006/jabr.1995.1027
- [Que00] Jordi Quer, 𝑄-curves and abelian varieties of 𝐺𝐿₂-type, Proc. London Math. Soc. (3) 81 (2000), no. 2, 285–317. MR 1770611, https://doi.org/10.1112/S0024611500012570
- [Rib92] Kenneth A. Ribet, Abelian varieties over 𝑄 and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. MR 1212980
- [Rib94] Kenneth A. Ribet, Fields of definition of abelian varieties with real multiplication, Arithmetic geometry (Tempe, AZ, 1993) Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 107–118. MR 1299737, https://doi.org/10.1090/conm/174/01854
- [S14]
W. A. Stein et al.,
Sage Mathematics Software (Version 6.1.1),
The Sage Development Team, 2014,
http://www.sagemath.org. - [Ser84] Jean-Pierre Serre, L’invariant de Witt de la forme 𝑇𝑟(𝑥²), Comment. Math. Helv. 59 (1984), no. 4, 651–676 (French). MR 780081, https://doi.org/10.1007/BF02566371
- [Ser98] Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971 (French). Deuxième édition, refondue. MR 0352231
- [Ser12] Jean-Pierre Serre, Lectures on 𝑁_{𝑋}(𝑝), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11, CRC Press, Boca Raton, FL, 2012. MR 2920749
- [Sil92] A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra 77 (1992), no. 3, 253–262. MR 1154704, https://doi.org/10.1016/0022-4049(92)90141-2
- [Sil86] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
- [Sil94] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368
- [Wat03] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), no. 246, 907–938. MR 2031415, https://doi.org/10.1090/S0025-5718-03-01517-5
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G10, 11G15, 14K22
Retrieve articles in all journals with MSC (2010): 11G10, 11G15, 14K22
Additional Information
Francesc Fité
Affiliation:
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Edifici Omega, C/Jordi Girona 1–3, 08034 Barcelona, Catalonia
Email:
francesc.fite@gmail.com
Xavier Guitart
Affiliation:
Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran via de les Corts Catalanes, 585, 08007 Barcelona, Catalonia
Email:
xevi.guitart@gmail.com
DOI:
https://doi.org/10.1090/tran/7074
Received by editor(s):
February 11, 2016
Received by editor(s) in revised form:
September 19, 2016
Published electronically:
January 18, 2018
Additional Notes:
The first author was funded by the German Research Council via SFB/TR 45
The second author was partially funded by MTM2012-33830 and MTM2012-34611.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152).
Article copyright:
© Copyright 2018
by Francesc Fité and Xavier Guitart