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CURVE PACKING AND MODULUS ESTIMATES

KATRIN FÄSSLER AND TUOMAS ORPONEN

Abstract. A family of planar curves is called a Moser family if it contains
an isometric copy of every rectifiable curve in R

2 of length one. The classical
“worm problem” of L. Moser from 1966 asks for the least area covered by the
curves in any Moser family. In 1979, J. M. Marstrand proved that the answer
is not zero: the union of curves in a Moser family always has area at least c
for some small absolute constant c > 0. We strengthen Marstrand’s result by
showing that for p > 3, the p-modulus of a Moser family of curves is at least
cp > 0.

1. Introduction

The modulus of a curve family is a fundemental tool in the study of quasi-
conformal mappings and in other areas of mapping theory; see for instance the
monograph by O. Martio et al. [9] for an overview. In a metric measure space
(X,μ), the p-modulus of a family Γ of arcs is the number

modp(Γ) = inf
ρ∈adm(Γ)

∫
X

ρp dμ,

where adm(Γ) is the collection of Γ-admissible functions, namely,

adm(Γ) =

{
ρ : X → [0,∞] Borel :

∫
γ

ρ dH1 ≥ 1 for all locally rectifiable γ ∈ Γ

}
.

To obtain an upper bound for the modulus of a given family, it is sufficient to find
one appropriate admissible density ρ, but an estimate from below requires a lower
bound for the Lp(μ)-norms of all admissible densities. To find an optimal lower
bound, or even to show that the modulus of a curve family is positive, is therefore
often a challenging task. So far, this task has mainly been performed for families of
curves which either (i) foliate some domain (in this case a non-vanishing modulus
corresponds to a Fubini-type theorem) or (ii) consist of all curves connecting two
given continua (the p-modulus of such a curve family coincides with the p-capacity
of the said pair of continua).

In this paper, μ is Lebesgue measure in X = R
2, and we consider certain curve

families that are quite far from either type (i) or (ii), namely, ones that arise from
a classical curve packing problem. The prototypical example of a curve packing
problem is Kakeya’s question from the early 1900’s: if a set K ⊂ R

2 contains a
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translate of every unit line segment in R
2, what is the minimal (or infimal) area

of K? The famous answer, due to Besicovitch [1], is “zero”, and indeed there are
compact Besicovitch sets of vanishing measure which satisfy Kakeya’s condition.

For the moment, a curve family Γ containing a translate of every unit line seg-
ment in R

2 will be called a Kakeya family. With this terminology, Besicovitch’s
result can be rephrased by saying that the curves in a Kakeya family Γ need not
cover a positive area, and in particular Γ need not have positive p-modulus for any
1 ≤ p < ∞. Indeed, if K is a Besicovitch set, then χK ∈ adm(Γ) for a certain
Kakeya family Γ, yet ‖χK‖Lp = 0 for every 1 ≤ p < ∞. The same conclusion holds
if the line segments are replaced by n-sided polygons (see [13]) or even circular arcs;
see [2, 4, 7].

In short, if Γ contains a translate of every curve in some rather small collection
of initial suspects – such as line segments or circular arcs – there is little hope of
positive modulus. So, for positive results, the collection of suspects needs to be
enlarged, and a natural candidate for this is the collection of all plane curves of
length one. Indeed, around 1966, L. Moser [11] proposed1 the following question:
If Γ is a family of curves containing an isometric copy of every plane curve of length
one, then what is the minimal area covered by the curves in Γ? The question, known
as “Moser’s worm problem”, has attracted considerable interest in computational
geometry. As far as we know, the best upper bound known to date is due to
Norwood and Poole [12], showing that a Moser family of curves need not cover an
area larger than ≈ 0.260437 in general. We refer to the monograph by P. Brass et
al. [3, Section 11.4] for a bibliographical overview. From our point of view, however,
more interesting is a theorem of J. M. Marstrand [8] from 1979, which states that
the answer to Moser’s question is not zero: the curves in a Moser family Γ always
cover a positive area, and a quantitative (if very small) lower bound for the measure
can be extracted from Marstrand’s argument.

Encouraged by Marstrand’s result, one could hope that a Moser family of curves
has positive p-modulus for some 1 ≤ p < ∞. This cannot happen for 1 ≤ p ≤ 2,
however: all the curves in a Moser family can contain the origin, and even the family
of all curves containing the origin has vanishing 2-modulus; see Corollary 7.20 in
Heinonen’s book [5]. Our main result states that the p-modulus is non-vanishing
for all p > 3; the cases 2 < p ≤ 3 remain open.

Theorem 1.1. Let Γ be a family of curves which contains an isometric copy of
every set of the form

Gf := {(x, f(x)) : x ∈ [0, 1]},
where f : [0, 1] → [0, 1] is 1-Lipschitz. Then modp(Γ) ≥ c > 0 for every p > 3,
where c > 0 is a constant depending only on p.

We recover Marstrand’s theorem or, in fact, a slightly stronger version:

Corollary 1.2. Let δ ∈ (0, 1], and associate to every length-1 rectifiable curve γ in
R

2 an H1-measurable subset Eγ of length at least δ and an isometry ιγ . Then, the
union of the sets ιγ(Eγ) has Lebesgue outer measure at least � cpδ

p for any p > 3.

1The book [11] is from 1980 and hence not the original reference for Moser’s question, which
made its first appearance in an unpublished, mimeographed problem list entitled “Poorly formu-
lated unsolved problems of combinatorial geometry”.
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1.1. Notational conventions. A closed disc of radius r > 0 and centre x ∈ R
2

is denoted by B(x, r) ⊂ R
2. The notation A � B means that A ≤ CB for some

absolute constant C ≥ 1, and the two-sided inequality A � B � A is abbreviated
to A ∼ B. Throughout the text, we use the letter C to denote a (large) constant,
whose value may change from one occurrence to the next.

The Lebesgue outer measure of an arbitrary set A ⊂ R
2 is denoted by |A|, and

we often write “area” instead of “Lebesgue measure”. One-dimensional Hausdorff
measure in R

2 is denoted by H1; for the definition and basic properties of Hausdorff
measures, see Mattila’s book [10].

1.2. Proof sketch and the structure of the paper. We close the introduction
with a quick overview of the paper. In Section 2, we define a large family of Lipschitz
graphs G(ω) parametrised by a probability space Ω � ω. In Section 3, a sequence
of three lemmas establishes that given a fixed small set E ⊂ R

2 of area |E| ≤ ε, it
is highly unlikely that the intersection of E with any isometric copy of G(ω) should
have H1-measure significantly larger than ε1/3. The exponent 1/3 is responsible for
the restriction p > 3 in Theorem 1.1. After these preparations, the proof of Theorem
1.1, contained in Section 4, is fairly quick. Assume that Γ contains an isometric
copy of every graph G(ω) with ω ∈ Ω. For ρ ∈ adm(Γ), write ρ ∼

∑
2jχEj

, where

Ej = {x : ρ ∼ 2j}. Assuming, towards a contradiction, that ‖ρ‖pLp < c for some
p > 3 and small c > 0, the areas of the sets Ej decay like O(2−pj). Hence, it is

very unlikely that H1(ι(G(ω)) ∩ Ej) � 2−(p/3)j for any isometry ι. Since p/3 > 1,
this allows us to find a graph G(ω) such that H1(ι(G(ω))∩Ej) = o(c)2−j/j2 holds
simultaneously for all isometries ι and j ∈ N. It follows that the H1-integral of ρ
over any isometric copy of G(ω) falls short of 1. Since one such copy is contained
in Γ, we get ρ /∈ adm(Γ), and the ensuing contradiction gives a lower bound for c.

The final section of the paper contains the proof of Corollary 1.2 and some
further remarks.

2. A probability space of Lipschitz graphs

2.1. Families of parallelograms. Let (mk)k∈N be an non-decreasing sequence of
integers such that m0 = 1; write

(2.1) nk :=
∏
j≤k

mj ,

and assume that
∑

k≥1 2
k/nk < 1. We consider a space of random Lipschitz graphs

in [0, 1]2 constructed in the following way. For each “generation” k, we define a
(random) family Tk of 2k increasingly thin and long closed parallelograms Tk :=
{T k

1 , . . . , T
k
2k} with the following properties:

(i) The parallelograms in Tk are all contained in [0, 1]2.
(ii) Two sides of the parallelograms are parallel to the y-axis; these will be

referred to as the “vertical” sides.
(iii) The base and height of every parallelogram in Tk are 2−k and 1/nk, respec-

tively, so that |T | = 2−k/nk for every T ∈ Tk.
(iv) For 1 ≤ j < 2k, the right vertical side of Tj coincides with the left side of

Tj+1.
(v) Fix λ = 1/2. Roughly 2λk of the parallelograms in Tk are called excep-

tional, and the rest are normal. The collections of exceptional and normal
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parallelograms are denoted by Ek and Nk, respectively. The exceptional
parallelograms are quite evenly distributed: between every consecutive pair
of parallelograms T k

i , T
k
j ∈ Ek, there are roughly 2k(1−λ) parallelograms in

Nk. Moreover, no exceptional parallelogram has common boundary with
[0, 1]2.

Heuristically, it follows from (i)–(iv) that the union of the parallelograms in
Tk roughly forms the (1/nk)-neighbourhood of the graph of a continuous function
fTk

: [0, 1] → [0, 1]. It will later be shown that all functions fTk
obtained this way

are Lipschitz.
To begin the construction, let T0 := [0, 1]2. We declare the only element of T0

normal, so there are no exceptional parallelograms at the 0th level. Then, assume
that Tk, Ek, and Nk have already been defined for some k ≥ 0. To define the family
Tk+1, consider any maximal “string” of consecutive normal parallelograms (that is,
a maximal collection of normal parallelograms with the property that the union is
connected). By (v), this collection consists of roughly 2(1−λ)k parallelograms with
base 2−k and height 1/nk. Subdivide each of them into a “pile” of mk parallelo-
grams with base 2−k and height (1/nk) · (1/mk) = 1/nk+1 in the obvious way; see
Figure 1.

k+1

k

Figure 1. A string of three normal parallelograms in Tk, and how
to construct Tk+1 inside them. Here mk = 5.

Then, pick a number j at random in {1, . . . ,mk}, and from each “pile” pick the
jth parallelogram (so the number j is common for this particular string of normal
parallelograms). The new parallelograms obtained in this manner clearly satisfy
(i)–(iv), except that the length of their base is two times too long. To remedy this,
we simply cut the parallelograms in half with vertical lines.

We repeat the procedure inside every maximal string of normal parallelograms,
that is, roughly 2λk times. On each occasion, the random integer in {1, . . . ,mk}
is reselected independently of previous choices. Now, the construction of Tk+1 is
nearly complete: we only need to specify what to do inside the parallelograms in
Ek. Let T := T k

j ∈ Ek. Then, T is adjacent to two normal parallelograms T ′ and
T ′′. The construction of Tk+1 inside T ′ and T ′′ is already finished, so, for instance,
T ′ contains a parallelogram in Tk+1, whose right vertical side V ′ is contained in
the right vertical side of T ′. The same is true of T ′′, with “right” replaced by
“left”, and V ′ replaced by V ′′. Now, there is a unique parallelogram inside T with
base 2−k and height 1/nk+1, which “connects” V ′ to V ′′; see Figure 2. We split
this parallelogram into two halves with a vertical line through the middle, and the
ensuing two parallelograms are added to Tk+1. Repeating this procedure inside
each parallelogram in Ek, the construction of Tk+1 is complete.
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k

k

k

T'
T''

V'

V''

T

Figure 2. The construction of Tk+1 inside a parallelogram in Ek.

Finally, we need to specify Ek+1 and Nk+1. To do this, we declare the first
∼ 2(1−λ)k leftmost parallelograms in Tk+1 to be normal. The next one is excep-
tional. Then, again ∼ 2(1−λ)k normal parallelograms, followed by one exceptional.
Continue this until the right vertical side of [0, 1]2 is reached. If, now, the right-
most parallelogram happens to end up in Ek+1 or the rightmost string of normal
parallelograms contains far fewer than 2(1−λ)k sets, readjust the cardinalities of the
previous strings slightly so that the rightmost parallelogram belongs to Nk+1, and
every string contains ∼ 2(1−λ)k normal parallelograms.

2.2. A space of Lipschitz graphs. Let (Tk)k∈N be a sequence of families of
parallelograms such that Tk+1 is obtained from Tk via the preceding construction;
we abbreviate this by saying that Tk+1 is a child of Tk. The unions

GTk
:=

2k⋃
j=1

T k
j , k ≥ 0,

then form a nested sequence of non-empty compact sets inside [0, 1]2. Hence the
intersection

⋂
k GTk

is non-empty, and it follows from the construction that this
intersection is in fact the graph of a certain [0, 1]-valued function f defined on the
interval [0, 1]. We now prove that such functions f are 1-Lipschitz.

Lemma 2.2 (Lipschitz lemma). If
∑∞

k=1 2
k/nk < 1, then any function of the form

f above is 1-Lipschitz.

Proof. Recall the definition of the numbers mk and nk from (2.1). For every integer
k ≥ 0, we define fk := fTk

: [0, 1] → [0, 1] to be the function whose graph is the
“core curve” of the set GTk

. More precisely, for 1 ≤ j ≤ 2k the graph of fk over the
interval Ik := [(j − 1)2−k, j2−k] coincides with the line segment which is obtained
if the midpoints of the vertical sides of the parallelogram T k

j are connected. The
construction ensures that |fk(x)− f(x)| ≤ 1/nk for all x ∈ [0, 1] and k ≥ 0, so that
the sequence (fk)k converges uniformly to f . In order to show that f is 1-Lipschitz,
it suffices therefore to prove that fk is 1-Lipschitz for every k.

Since the function fk is piecewise affine, it is Lipschitz with Lipschitz constant

Lk = max{Lj
k : 1 ≤ j ≤ 2k},

where Lj
k denotes the Lipschitz constant of fk|Ij . The Lipschitz constant can in-

crease from one generation to the next, but only in a controlled manner. If a
parallelogram T k

j belongs to a normal string, then the parallelograms T k+1
j′ ∈ Tk+1

contained in T k
j have exactly the same slope. This means that fk|Ik and fk+1|Ik

have the same Lipschitz constant Lj
k = Lj

k+1.
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If T k
j is exceptional, then it is possible that the Lipschitz constant increases. The

largest change occurs if the parallelogram T ′ constructed inside T k
j connects the

lower left (or upper right) corner of T k
j to the upper right (or lower left) corner of

T k
j . This yields the following bound for the Lipschitz constant:

Lk+1 ≤ Lk +
mk+1 − 1

nk+12−k
= Lk +

2k

nk
− 2k

nk+1
.

By construction L0 = L1 = 0 and hence

L2 ≤ 2

n1
− 2

n2
.

It follows by induction that

Lk ≤
k−1∑
l=1

2l

nl
− 2k−1

nk
, for k ≥ 2.

Hence

Lk ≤
∞∑
l=1

2l

nl
< 1

for all k ≥ 0, and the proof is complete. �

With the previous lemma in mind, we see that any sequence (Tk)k∈N, where
Tk+1 is a child of Tk, can be identified with a Lipschitz graph in [0, 1]2. In essence,
we wish to define a probability measure on the space of all possible graphs so
obtained, but in practice it is slightly easier to work with probabilities in the space
of all sequences (Tk)k∈N.

Let Ω be the space of all such sequences. Then Ω can be viewed as the set of
infinite branches in a tree rooted at T0. By definition, the only vertex of height 0
is T0, and the vertices of height k + 1 are obtained by considering each height-k
vertex Tk and adding a vertex for each of its children Tk+1. As a technical point,
it is conceivable that some fixed collection Tk corresponds to several vertices in the
tree in case Tk can be obtained via several different sequences starting from T0 (this
is most likely not possible in practice, but even if it is, nothing changes below).

The space Ω supports a natural probability measure P: assume that k0 ≥ 0 is
given, and there are Nk0

∈ N finite sequences of the form (Tk)k0

k=0 (where Tk+1

is a child fo Tk). Then, if (T ′
k)

k0

k=0 is any one of these finite sequences, P assigns
probability 1/Nk0

to the set of infinite sequences

{(Tk)k∈N : Tk = T ′
k for all 0 ≤ k ≤ k0}.

The numbers Nk grow very rapidly: in fact

Nk+1 = Nk ·mCk

k , k ∈ N,

with Ck ∼ 2λk, but this is rather irrelevant for us.
From now on, we denote the generic element of Ω by ω. Thus, every ω ∈ Ω is a

sequence of the form (Tk)k∈N, and we write ωk := Tk. If T ′
k is a fixed parallelogram

collection of generation k, it then makes sense to speak of events of the form {ω ∈
Ω : ωk = T ′

k}, and indeed events of this form partition Ω, as T ′
k ranges over

all possible parallelogram collections of generation k. As discussed earlier, every
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sequence ω ∈ Ω corresponds to a Lipschitz graph contained in [0, 1]2, and we denote
this graph by G(ω). Thus, if ω = (Tk)k∈N, then

G(ω) =
⋂
k∈N

Gk(ω),

where Gk(ω) is the “level k approximation” Gk(ω) := GTk
.

3. Lemmas on intersections

From now on, a generic isometry in R
2 will be denoted by ι. Given a measurable

set E ⊂ R
2 with |E| > 0, we are interested in bounding the P-probability that

G(ω) ∩ ι(E) has large H1-measure for some isometry ι. This will be accomplished
in Lemma 3.27 (far) below. However, to get our hands on H1(G(ω)∩ ι(E)), we first
need to study a sequence of intermediate quantities, namely the densities of ι(E)
inside Gk(ω), k ∈ N. More generally, if A,B ⊂ R

2 are two Borel sets with |B| > 0,
then the density of A inside B is

DA(B) :=
|A ∩B|
|B| .

For the rest of the paper, we fix the sequence (mk)k∈N introduced in the previous
section. Any sequence so that

100k2 · 2k ≤ nk =
∏
j≤k

mj ≤ 10000k2 · 2k

will do. In particular, then the graphs we are considering are 1-Lipschitz by Lemma
2.2.

Before stating the first probabilistic lemma, we formulate a geometric one:

Lemma 3.1 (Continuity lemma). Let T be a parallelogram in Tk, and let E be a
measurable set in R

2. Then, for all isometries ι1, ι2,

|T ∩ ι1(E)| − |T ∩ ι2(E)| � 2−k‖ι1 − ι2‖,
where ‖ · ‖ stands for operator norm ‖L‖ := sup{|Lx| : |x| ≤ 1}.

Proof. Denote the δ-neighbourhood of a set A ⊂ R
2 by N(A, δ). It follows from the

Lipschitz lemma, or rather its proof, that the parallelogram T cannot be too tilted:
all of its sides have length � 2−k; in particular |N(∂T, δ)| � δ ·2−k for 0 < δ ≤ 2−k.

The lemma is clear for 2−k ≤ ‖ι1 − ι2‖, because |T | � 2−2k. So, we assume
that 0 < ‖ι1 − ι2‖ ≤ 2−k. Now Lemma 8 in Marstrand’s paper [8] says that
|ι1(T ) \ ι2(T )| ≤ |N(∂T, ‖ι1 − ι2‖)| � 2−k‖ι1 − ι2‖. Consequently,

|T ∩ ι1(E)| − |T ∩ ι2(E)| = |ι−1
1 (T ) ∩ E| − |ι−1

2 (T ) ∩ E|
≤ |ι−1

1 (T ) \ ι−1
2 (T )|+ |ι−1

2 (T ) ∩E| − |ι−1
2 (T ) ∩ E|

� 2−k‖ι1 − ι2‖,
as claimed. �
Lemma 3.2 (Density lemma). Fix ε, κ > 0, and let E be a Borel set with |E| ≤ ε
and diamE ≤ 2. Then

P

{
sup
k∈N

sup
ι

Dι(E)(Gk(ω)) ≥ ε1/3−κ

}
≤ ε3

if ε > 0 is small enough, depending only on κ.
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Remark 3.3. A quick word on the numerology. The threshold 1/3 has a real mean-
ing: if we could replace it by 1/q for some q < 3, then we could prove Theorem 1.1
for p > q instead of p > 3. In particular, the lemma ceases to be true for q < 2,
since Theorem 1.1 fails for p = 2. On the other hand, the exponent 3 on the right
hand side of the inequality is arbitrary; one could replace it by any number k > 1
by requiring ε to be even smaller.

Proof of Lemma 3.2. We may assume that κ ≤ 1/3.
Fix ω = (Tk)k∈N and write Gk := Gk(ω). We start with the trivial estimate

(3.4) Dι(E)(Gk) =
|Gk ∩ ι(E)|

|Gk|
≤ |E|

|Gk|
≤ nkε ≤ 10000k2 · 2kε.

In particular, for any isometry ι, we have Dι(E)(Gk) < ε1/3−κ/2 as long as

(3.5) 10000k2 · 2kε < ε1/3−κ/2,

which is true if 2k ≤ ε−(2+κ)/3, and assuming that ε > 0 is small enough depending
on κ. Consequently, assuming that

(3.6) ε−(2+κ)/3 = 2kε

for some kε ∈ N, we have

(3.7) sup
k≤kε

sup
ι

Dι(E)(Gk(ω)) <
ε1/3−κ

2
, ω ∈ Ω.

Let rkε
:= ε1/3−κ/2, and

rk := rk−1 +
ε1/3−κ

2(k − kε + 1)2
, k > kε.

Observe that rk ↗ π2ε1/3−κ/12 < ε1/3−κ. So, if supk supι Dι(E)(Gk(ω)) ≥ ε1/3−κ,
(3.7) implies that there exists k > kε such that supι Dι(E)(Gk(ω)) ≥ rk. In partic-
ular, there exists a smallest k such that this happens. Thus, writing

gk(ω) := sup
ι

Dι(E)(Gk(ω)),

we have

(3.8) P{sup
k

gk(ω) ≥ ε1/3−κ} ≤
∞∑

k=kε+1

P{gk−1(ω) < rk−1 and gk(ω) ≥ rk}.

We now fix k > kε and estimate the term with index k in (3.8). The value of the
function gk−1 only depends on the collection Tk−1. So, the event we are interested
in, namely {gk−1(ω) < rk−1 and gk(ω) ≥ rk}, can be partitioned into events of the
form

{Gk−1(ω) = GTk−1
and gk(ω) ≥ rk},

where Tk−1 is some fixed collection of parallelograms with the property that

(3.9) sup
ι

Dι(E)(GTk−1
) < rk−1.

Then, we write

P{Gk−1(ω) = GTk−1
and gk(ω) ≥ rk}

= P{Gk−1(ω) = GTk−1
} · P{gk(ω) ≥ rk | Gk−1(ω) = GTk−1

}(3.10)
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and focus on estimating the conditional probabilities P{gk(ω) ≥ rk | Gk−1(ω) =
GTk−1

}. We fix the collection Tk−1 satisfying (3.9), and we abbreviate the condi-
tional probability P{· | Gk−1(ω) = GTk−1

} to Pk{·}. Then, we also fix an isometry
ι0. The first step is to estimate the Pk-probability of the event

(3.11) Dι0(E)(Gk(ω)) ≥ rk−1 +
ε1/3−κ

4(k − kε + 1)2
.

For notational convenience, we assume ι0 = Id. The Pk-probability of the event
in (3.11) is quite tractable: the approximate graph Gk(ω) only depends on the
parallelogram collection Tk, which is constructed inside the fixed collection Tk−1

using the random process described in Section 2.1.
Let Nk−1 and Ek−1 be the collections of normal and exceptional parallelograms

of Tk−1, respectively. Recall that Ek−1 contains ∼ 2λk parallelograms and that the
parallelograms in Nk−1 can be partitioned into ∼ 2λk “strings” of parallelograms,
each containing ∼ 2(1−λ)k elements in Tk−1 (recall that λ = 1/2). We denote the
collection of such strings by Sk−1, so that every set S ∈ Sk−1 is a union of ∼ 2(1−λ)k

consecutive sets in Tk−1. Now, for any child Tk of Tk−1, we have

|GTk
∩ E| =

∑
S∈Sk−1

|S ∩GTk
∩ E|+

∑
T∈Ek−1

|T ∩GTk
∩ E|.

For the second sum, we use the trivial estimate |T ∩ GTk
∩ E| ≤ |T | ∼ 2−2k/k2,

which gives

1

|GTk
|

∑
T∈Ek−1

|T ∩GTk
∩E| � 2k(λ−2)/k2

2−k/k2
= 2−k/2 = 2−kε/22(kε−k)/2

= ε(2+κ)/6 · 2(kε−k)/2 = ε7κ/6 · ε1/3−κ · 2(kε−k)/2.

It follows that if ε > 0 is small enough, depending on κ, we have

1

|GTk
|

∑
T∈Ek−1

|T ∩GTk
∩ E| < ε1/3−κ

8(k − kε + 1)2
, k > kε.

Thus, if (3.11) holds, we must have

1

|GTk
|

∑
S∈Sk−1

|S ∩GTk
∩ E| ≥ rk−1 +

ε1/3−κ

8(k − kε + 1)2
.

Assume for convenience that all the strings in Sk−1 have the same measure.2 Then,
also the sets S ∩ GTk

have the same measure regardless of the choice of Tk, and
we denote this quantity by |S ∩GTk

|. Now (cardSk−1) · |S ∩GTk
| ≤ |GTk

|, so the
previous inequality implies that

(3.12)
1

cardSk−1

∑
S∈Sk−1

|S ∩GTk
∩E|

|S ∩GTk
| ≥ rk−1 +

ε1/3−κ

8(k − kε + 1)2
.

The left hand side of (3.12) can be interpreted as the average of the random variables

XS :=
|S ∩GTk

∩E|
|S ∩GTk

| , S ∈ Sk−1.

2This can be easily arranged for all but one of the strings during the construction, and then
the total area of the one remaining “bad” string is so small, at most � 2−3k/2/k2, that it can be
added to the exceptional parallelograms in the above estimation.
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The set E and the collection Tk−1 being fixed, it follows from the construction that
the variables XS are independent. They take values in [0, 1], and the expectation
of XS is

(3.13) Ek[XS] =
|E ∩ S|
|S| , S ∈ Sk−1.

This follows from the fact that the mk possible sets S∩GTk
partition S∩E (except

for zero measure boundaries), and the quantity |S ∩ GTk
| does not depend on the

choice of Tk.
Since we can rather easily estimate the expected value of the average of the

random variables XS, S ∈ Sk−1, we wish to ensure that the empirical mean does
not deviate too much from this expected average. Such an estimate is provided by
Hoeffding’s inequality, which we apply below after some preparations. We quickly
recall the inequality for the reader’s convenience:

Proposition 3.14 (Hoeffding’s inequality [6]). Let X1, . . . , Xn be independent ran-
dom variables such that ai ≤ Xi ≤ bi almost surely. Then, for t > 0,

(3.15) P(X − E(X) ≥ t) ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

We will apply the inequality to the random variables XS , so we need to find
aS ≤ bS such that XS ∈ [aS , bS ] almost surely. Clearly, aS = 0 will do. To find bS ,
we estimate

XS =
|S ∩GTk

∩E|
|S ∩GTk

| ≤ min

{
1,

|S ∩ E|
|S ∩GTk

|

}
.

Since all normal strings have the same area, we find that

card(Sk−1) · |S ∩GTk
| = |GTk

| −
∑

T∈Ek−1

|T ∩GTk
| � 2−k

k2

and thus

|S ∩GTk
| � 2−k

k2
1

card(Sk−1)
.

It follows that there exists a positive and finite constant C such that XS is bounded
from above by

bS := min
{
1, C|S ∩ E| · k2 · 2kcard(Sk−1)

}
.

Therefore, recalling that aS = 0, we have∑
S∈Sk−1

(bS − aS)
2 =

∑
S∈Sk−1

b2S ≤
∑

S∈Sk−1

bS � k22k(1+λ)
∑

S∈Sk−1

|S ∩ E|.

In order to estimate this expression further from above, our task is to find a good
estimate for the sum

∑
|E ∩ S|. To this end, recall that we are working with a

fixed collection Tk−1 of parallelograms, which we have chosen so that (3.9) holds.
In particular, we have

(3.16) |E ∩GTk−1
| < ε1/3−κ|GTk−1

|.
Hence ∑

S∈Sk−1

|E ∩ S| ≤ |E ∩GTk−1
| < ε1/3−κ|GTk−1

| � ε1/3−κ2−k/k2,
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and therefore ∑
S∈Sk−1

(bS − aS)
2 � k22k(1+λ)

∑
S∈Sk−1

|S ∩ E| � 2λkε1/3−κ.

We now apply Hoeffding’s inequality (3.15), which gives here for t > 0 that

Pk

⎧⎨
⎩ 1

cardSk−1

∑
S∈Sk−1

XS − 1

cardSk−1

∑
S∈Sk−1

Ek[XS ] ≥ t

⎫⎬
⎭(3.17)

≤ exp

(
−2(cardSk−1)

2t2

C2λkε1/3−κ

)
.

The average of the variables XS over S ∈ Sk−1 is precisely the quantity in (3.12)
we are interested in. On the other hand, by (3.13), the average over the expectations
E[XS] equals

1

cardSk−1

∑
S∈Sk−1

Ek[XS] =
1

|S| · cardSk−1

∑
S∈Sk−1

|E ∩ S| ≤
|GTk−1

∩ E|
|S| · cardSk−1

.

The denominator |Nk−1| := |S| · cardSk−1 equals the total measure of the par-
allelograms in Nk−1, and this is nearly as large as |GTk−1

|. More precisely, the
difference |GTk−1

| − |Nk−1| equals the total measure of the parallelograms in Ek−1,

say |Ek−1|, which is bounded by C2(λ−2)k/k2. Now, using (3.9) and the trivial
estimate |Nk−1| ≥ |GTk−1

|/2, we obtain

|GTk−1
∩E|

|Nk−1|
−

|GTk−1
∩ E|

|GTk−1
| =

|GTk−1
∩E|(|GTk−1

| − |Nk−1|)
|GTk−1

||Nk−1|

< 2rk−1
|Ek−1|
|GTk−1

|
≤ 2Crk−12

(λ−1)k.

Consequently, and recalling that rk−1 < ε1/3−κ, we have

1

cardSk−1

∑
S∈Sk−1

Ek[XS ] ≤
|GTk−1

∩E|
|GTk−1

| +2Crk−12
(λ−1)k ≤ rk−1+2Cε1/3−κ2(λ−1)k.

Further, recalling that k ≥ kε and kε grows as ε diminishes, we can assume that ε
is so small that 2Cε1/3−κ2(λ−1)k < ε1/3−κ/[16(k − kε + 1)2)].

After this preparation, we apply (3.17) with t = ε1/3−κ/[16(k − kε + 1)2]:

Pk

⎧⎨
⎩ 1

cardSk−1

∑
S∈Sk−1

|S ∩GTk
∩E|

|S ∩GTk
| ≥ rk−1 +

ε1/3−κ

8(k − kε + 1)2

⎫⎬
⎭

≤ Pk

⎧⎨
⎩ 1

cardSk−1

∑
S∈Sk−1

XS − 1

cardSk−1

∑
S∈Sk−1

Ek[XS ] ≥
ε1/3−κ

16(k − kε + 1)2

⎫⎬
⎭

≤ exp

(
−2

(cardSk−1)
2

C2λkε1/3−κ
·
[

ε1/3−κ

16(k − kε + 1)2

]2)
.
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Here

cardSk−1 ∼ 2λk=(2kε)λ2(k−kε)λ=(ε−(2+κ)/3)λ2λ(k−kε)=ε−(2/3)λε−(κ/3)λ2λ(k−kε)

≥ε−(2/3)λ2(k−kε)λ.

Hence, recalling that λ = 1/2, we find that

2
(cardSk−1)

2

C2λkε1/3−κ
·
[

ε1/3−κ

16(k − kε + 1)2

]2

∼ cardSk−1 · cardSk−1 ·
1

2k/2ε1/3−κ

ε2/3−2κ

162(k − kε + 1)4

� 2k/2 · ε−1/32(k−kε)/2 · 1

2k/2ε1/3−κ

ε2/3−2κ

162(k − kε + 1)4

= ε−κ/22(k−kε)/4

[
ε−κ/22(k−kε)/4

2

162(k − kε + 1)4

]
.

Now, by assuming that ε > 0 is small enough (depending on κ), the bracketed
expression on the right hand side above can be made as large as we wish. This
gives

exp

(
−2

(cardSk−1)
2

C2λkε1/3−κ
·
[

ε1/3−κ

16(k − kε + 1)2

]2)
≤ exp

(
−ε−κ/2 · 2(k−kε)/4

)
.

Combining the efforts so far, we have managed to show that

(3.18) Pk

{
Dι0(E)(Gk(ω)) ≥ rk−1 +

ε1/3−κ

4(k − kε + 1)2

}
≤ exp

(
−ε−κ/2 · 2(k−kε)/4

)
,

for any fixed isometry ι0. Next, the Continuity Lemma 3.1 will be applied in a
fairly standard manner to infer the bound

(3.19) Pk

{
sup
ι

Dι(E)(Gk(ω)) ≥ rk

}
≤ ε3 · 2kε−k,

valid for ε > 0 small enough (depending only on κ).
The isometries of R2 have the form ι(·) = O(· − x), where O is an orthogonal

transformation (rotation or reflection), and x ∈ R
2. Since diamE ≤ 2, and all the

sets Gk(ω) lie inside [0, 1]2, the vectors x such that

(3.20) Gk(ω) ∩ ι(E) = Gk(ω) ∩O(E − x) �= ∅

for some orthogonal transformation O must lie inside some fixed ball B(z, 10),
z ∈ E. For a suitable parameter δ > 0, we choose a δ-net {x1, . . . , xn} inside
B(z, 10); then n ∼ δ−2. We also choose a δ-net of orthogonal transformations
{O1, . . . , Om}: this simply means that min{‖O − Oj‖ : 1 ≤ j ≤ n} ≤ δ for any
orthogonal transformation O. Such a δ-net can be found with cardinality m � δ−1.
Consequently, the family of isometries ιij(·) := Oi(·−xj) has cardinality mn � δ−3.
Moreover, if ι(·) = O(·−x) is any isometry with the property (3.20), then |x−xj | ≤ δ
and ‖O −Oi‖ ≤ δ for some i, j. It follows that
(3.21)

min{‖ι− ιij‖ : 1 ≤ i ≤ m and 1 ≤ j ≤ n} � δ, whenever ι satisfies (3.20).
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For any ω ∈ Ω, the set Gk(ω) is a union of 2k parallelograms in a certain family
Tk. Hence, by the Continuity Lemma 3.1, for two isometries ι1, ι2, we have

Dι1(E)(Gk(ω))−Dι2(Gk(ω)) =
1

|Gk(ω)|
∑
T∈Tk

(|T ∩ ι1(E)| − |T ∩ ι2(E)|)

� nk

∑
T∈Tk

2−k‖ι1 − ι2‖ = nk‖ι1 − ι2‖.

It follows from this and (3.21) that if

(3.22) max
i,j

Dιij(E)(Gk(ω)) < rk−1 +
ε1/3−κ

4(k − kε + 1)2
,

and nkδ < ε1/3−κ/[C(k − kε + 1)2] for some suitable constant C ≥ 1, then in fact

sup
ι

Dι(E)(Gk(ω)) < rk−1 +
ε1/3−κ

2(k − kε + 1)2
= rk.

We now let δ = ε1/3−κ/[2Cnk(k− kε +1)2] � ε1/3/[k4 · 2k] be small enough for this
purpose. Then, recalling that 2kε = ε−(2+κ)/3 ≥ ε−2/3, the family of isometries ιij
has cardinality at most

mn � δ−3 � k12 · 23k · ε−1 � 26k, k > kε,

and the probability that (3.22) should fail for even one of these ιij is hence bounded
by ∼ 26k times the bound from (3.18):

Pk

{
max
i,j

Dιij(E)(Gk(ω)) ≥ rk−1 +
ε1/3−κ

4(k − kε + 1)2

}
� 26k exp

(
−ε−κ/2 · 2(k−kε)/4

)
.

By the discussion around (3.22), this implies that

Pk

{
sup
ι

Dι(E)(Gk(ω)) ≥ rk

}
� 26k exp

(
−ε−κ/2 · 2(k−kε)/4

)
= 26kε26(k−kε) exp

(
−ε−κ/2 · 2(k−kε)/4

)
.

Finally, observe that

sup
x≥1

CR1xR2 exp(−Cr1xr2) → 0, as C → ∞

for any (fixed) choices of R1, R2 ≥ 1 and r1, r2 > 0. Recalling from (3.6) that
ε−(2+κ)/3 = 2kε , this implies (with C = 2kε , x = 2k−kε , and suitable choices of
R1, R2, r1, r2 depending on κ) that

ε−32k−kεPk

{
sup
ι

Dι(E)(Gk(ω)) ≥ rk

}
≤ 1,

and thus (3.19) for small enough ε > 0 (depending only on κ).
Recalling the discussion leading to (3.10), we have managed to prove that

P{gk−1(ω) < rk−1 and gk(ω) ≥ rk} ≤ ε3 · 2kε−k

for ε > 0 small enough, and it then follows from (3.8) that

P{sup
k

gk(ω) ≥ ε1/3−κ} ≤
∞∑

k=kε+1

ε3 · 2kε−k = ε3.

This completes the proof of the lemma. �
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The statement of the next lemma is very similar to the previous one, except that
Dι(E)(Gk(ω)) has been replaced by H1(G(ω) ∩ ι(E)):

Lemma 3.23 (First intersection lemma). Fix ε, κ > 0, and let E ⊂ R
2 be a Borel

set with |E| < ε and diamE ≤ 2. Then,

P{sup
ι

H1(G(ω) ∩ ι(E)) > ε1/3−κ} ≤ ε2

if ε > 0 is small enough, depending only on κ.

Proof. Cover E with a sequence of dyadic squares Q1, Q2, . . . such that
∑

|Qj | < ε.
Then, let

En :=

n⋃
j=1

Qj .

For a fixed n ∈ N, the set En is a finite union of dyadic squares, so it can be covered
by a finite union of dyadic squares of a fixed side-length δn without altering the
total measure |En| < ε. We do this, but for convenience we continue to denote the
constituent squares of En by Q1, . . . , Qn.

For each ω ∈ Ω such that supι H1(G(ω) ∩ ι(E)) > ε1/3−κ, there exists n(ω) ∈ N

such that

sup
ι

H1(G(ω) ∩ ι(En)) > ε1/3−κ, n ≥ n(ω).

In particular, if the claim of the lemma fails for some small ε > 0, there exists an
integer n = n(ε) ∈ N such that

(3.24) P

{
sup
ι

H1(G(ω) ∩ ι(En)) > ε1/3−κ

}
> ε2.

Recall that En consists of squares of side-length δn, and pick k ∈ N so large that
2−k < δn. Then, we claim that

(3.25) sup
ι

Dι(En)(Gk(ω)) � sup
ι

H1(G(ω) ∩ ι(En)).

In particular, for any ω ∈ Ω in the event displayed in (3.24), this gives

(3.26) sup
ι

Dι(En)(Gk(ω)) ≥ cε1/3−κ,

where c > 0 is an absolute constant.
To prove (3.25), assume that the right hand side is > A, and pick an isometry ι

such that H1(G(ω) ∩ ι(En)) > A. Assume for convenience that ι = Id. Let Tk be
the collection of parallelograms constituting Gk(ω), and observe that

A < H1(G(ω) ∩En) � 2−k card{T ∈ Tk : T ∩En �= ∅},

because the base width of each T is 2−k, and G(ω) is a 1-Lipschitz graph. In
other words, at least � 2kA parallelograms T ∈ Tk meet at least one square Qj(T ),

1 ≤ j(T ) ≤ n; see Figure 3. Now, since 2−k < δn, the parallelogram T would fit
entirely inside Qj(T ), and it is easy to see the following: there is a fixed family of

unit vectors {e1, . . . , e100} ⊂ S1 such that

max
1≤j≤100

|T ∩ [Qj(T ) + 2−kej ]|
|T | ≥ c,
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Figure 3. A parallelogram T ∈ Tk intersecting the square Qj(T ) ⊂ En.

where c > 0 is an absolute constant. It follows that there is a fixed vector x0 :=
2−kej0 and � 2kA parallelograms T ∈ Tk such that for all these T ’s,

|T ∩ [Qj(T ) + x0]|
|T | ≥ c.

Consequently, denoting the common size of the parallelograms T ∈ Tk by |T |,
|Gk(ω) ∩ (En + x0)| � 2kA · c|T | = cA|Gk(ω)|,

or DEn+x0
(Gk(ω)) � cA. This proves (3.25), hence (3.26), and shows that

P

{
sup
ι

H1(G(ω) ∩ ι(En)) > ε1/3−κ

}
≤ P

{
sup
k∈N

sup
ι

Dι(En)(Gk(ω)) ≥ cε1/3−κ

}
.

But, writing cε1/3−κ = [c3/(1−3κ)ε]1/3−κ, Lemma 3.2 says that the latter probability
is bounded by (c3/(1−3κ)ε)3 as soon as ε > 0 is small enough, depending only on κ.
For ε > 0 small enough, this contradicts (3.24) and completes the proof. �

The next lemma is the same as the previous one without the assumption diamE
≤ 2:

Lemma 3.27 (Second intersection lemma). Fix ε, κ > 0, and let E ⊂ R
2 be a

Borel set with |E| < ε. Then

P

{
sup
ι

H1(G(ω) ∩ ι(E)) > ε1/3−κ

}
≤ ε

if ε > 0 is small enough, depending only on κ.

Proof. Let D be the collection of dyadic squares of side-length 1, and write

Dj := {Q ∈ D : ε2−j−1 < |E ∩Q| ≤ ε2−j}, j ≥ 0.

Then

(3.28) cardDj < 2j+1,

and diam(E ∩ Q) ≤ 2 for any Q ∈ D. Write D∞ for those Q ∈ D with |Q ∩ E| =
0. Recalling that G(ω) ⊂ [0, 1]2 for all ω ∈ Ω gives the following observation:
if H1(G(ω) ∩ ι(E)) > ε1/3−κ for some ω ∈ Ω and isometry ι, then H1(G(ω) ∩
ι(E ∩ Q)) > ε1/3−κ/10 for some Q ∈ D. Fixing j ≥ 0, Lemma 3.23 and (3.28)
imply that

P

{
sup
ι

H1(G(ω) ∩ ι(E ∩Q)) > ε1/3−κ/10 for some Q ∈ Dj

}
� 2j(ε2−j)2 =

ε2

2j
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for all ε > 0 small enough (depending only on κ > 0); in fact we could even replace
ε1/3−κ by (ε2−j)1/3−κ and still have the same bound. For j = ∞, the probability
above is just zero, as it is clearly zero for each individual Q ∈ D∞.

Combining everything,

P

{
sup
ι

H1(G(ω) ∩ ι(E ∩Q)) > ε1/3−κ/10 for some Q ∈ D
}

�
∑
j

ε2

2j
∼ ε2,

and so the claim of the lemma certainly holds for ε > 0 small enough. �

4. Proof of the main theorem

We quickly recall the main result and then prove it.

Theorem 4.1. Let Γ be a family of curves which contains some isometric copy of
every set of the form

Gf := {(x, f(x)) : x ∈ [0, 1]},
where f : [0, 1] → [0, 1] is 1-Lipschitz. Then modp(Γ) ≥ cp > 0 for every p > 3.

Proof. We assume that Γ contains an isometric copy of every graph G(ω), ω ∈ Ω.
We then make a counter assumption: fixing p > 3, assume modp(Γ) < c for some
small constant c > 0. Then, there exists a Γ-admissible Borel function ρ : R2 →
[0,∞] such that ∫

ρp(x) dx < c.

Since p > 3, we may further choose q = q(p) > 1 such that p > 3q. In particular,
q/p = 1/3− κ for some κ > 0. Now, write

ρ :=

∞∑
j=0

ρχEj
,

where E0 := {x : 0 ≤ ρ(x) < 1/4}, and Ej := {x : 2j−3 ≤ ρ(x) < 2j−2} for
j ≥ 1. For every graph G(ω), ω ∈ Ω, the family Γ contains some isometric copy
γω := ιω(G(ω)). Since ρ is admissible, we have

1 ≤
∫
γω

ρ dH1 ≤ H1(γω)

4
+

1

2

∞∑
j=1

2jH1(γω ∩Ej) ≤
1

2
+

1

2

∞∑
j=1

2jH1(γω ∩ Ej).

In particular, for every ω ∈ Ω, we ought to have H1(γω∩Ej) ≥ 2−j/(10j2) for some
j. So, to produce a contradiction, it suffices to find a graph G(ω), ω ∈ Ω, such that

(4.2) sup
j≥1

sup
ι
(10j22j) · H1(Ej ∩ ι(G(ω)) < 1.

To do this, first observe that

|Ej | ≤ (2j−3)−p

∫
Ej

ρp(x) dx ≤ c · (2j−3)−p, j ≥ 1.

Then, Lemma 3.27 applied with ε = c · (2j−3)−p and κ = 1/3 − q/p > 0 implies
that

P

{
sup
ι

H1(Ej ∩ ι(G(ω))) ≥ cq/p2q(3−j)

}
≤ c · (2j−3)−p
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for small enough c > 0 (depending only on p, since q, hence κ, also only depends on
p). In particular, if c is, in addition, so small that cq/p2q(3−j) ≤ 2−j/(10j2), j ≥ 1,
we have

P

{
sup
ι

H1(Ej ∩ ι(G(ω))) ≥ 2−j

10j2

}
≤ c · (2j−3)−p.

Finally, we choose c so small that the upper bounds c·(2j−3)−p sum up to something
strictly less than one. This guarantees the existence of a graph G(ω) such that (4.2)
holds, and the ensuing contradiction gives a lower bound for c, which only depends
on p. �

5. Proof of Corollary 1.2 and further remarks

We recall the statement of Corollary 1.2:

Corollary 5.1. Let δ ∈ (0, 1], and associate to every length-1 rectifiable curve γ in
R

2 an H1-measurable subset Eγ of length at least δ and an isometry ιγ . Then, the
union of the sets ιγ(Eγ) has Lebesgue outer measure at least � cpδ

p for any p > 3.

Proof. Denote the said union by K, and assume that K has finite Lebesgue outer
measure. Cover K by squares with total area at most 2|K|, and write K̃ for the
union of these squares. Then ρ := δ−1χK̃ ∈ adm(Γ), where Γ is the family of
curves Γ := {ιγ(γ) : H1(γ) = 1}. Since the Lipschitz graphs Gf in Theorem 1.1
have length at least one, every one of them contains some sub-curve γf of length
exactly one, and we can consider the associated isometries ιf := ιγf

; then ρ is
admissible for the family {ιf (Gf ) : f : [0, 1] → [0, 1] is 1-Lipschitz}, and Theorem
1.1 with p > 3 implies that

|K| ≥ |K̃|
2

=
δp

2

∫
ρp dx ≥ cpδ

p

2
.

This completes the proof. �

Remark 5.2. It would be interesting to know inf{p ≥ 2 : modp(Γ) > 0} for every
Moser family Γ, and we strongly suspect that 3 is not the answer. For instance,
using the technique of the paper, it is not hard to show the following: if Γ is a family
of sets containing an isometric copy of every 1-Ahlfors-David regular set in [0, 1]2

(with regularity constants bounded by 10, say), then Γ has positive p-modulus for
every p > 2. Here modulus is defined in the obvious way, with ρ ∈ adm(Γ) if∫
K
ρ dH1 ≥ 1 for every set K ∈ Γ. The proof is simpler than that of Theorem 1.1,

mainly because it is easier to construct random 1-Ahlfors-David regular sets than
random graphs (subdivide [0, 1]2 into four sub-squares and select two at random;
then subdivide the remaining squares into four pieces, select two at random inside
each, and continue ad infinitum). From a technical point of view, the improvement
from 3 to 2 is caused by the fact that there is no longer a need for “exceptional
sets”, and one can prove an analogue of the second intersection lemma with ε1/3−κ

replaced by ε1/2−κ.
We conjecture that inf{p ≥ 2 : modp(Γ) > 0} = 2 for every Moser family Γ.
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