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ITERATED MATCHED PRODUCTS

OF FINITE BRACES AND SIMPLICITY; NEW SOLUTIONS

OF THE YANG-BAXTER EQUATION

D. BACHILLER, F. CEDÓ, E. JESPERS, AND J. OKNIŃSKI

Abstract. Braces were introduced by Rump as a promising tool in the study
of the set-theoretic solutions of the Yang-Baxter equation. It has been recently
proved that, given a left brace B, one can construct explicitly all the non-
degenerate involutive set-theoretic solutions of the Yang-Baxter equation such
that the associated permutation group is isomorphic, as a left brace, to B.
It is hence of fundamental importance to describe all simple objects in the
class of finite left braces. In this paper we focus on the matched product
decompositions of an arbitrary finite left brace. This is used to construct new
families of finite simple left braces.

1. Introduction

Braces were introduced by Rump [31] to study a class of solutions of the Yang-
Baxter equation, a fundamental equation in mathematical physics that has become,
since its origin in a paper of Yang [40], a key ingredient in quantum groups and Hopf
algebras [27]. The primary aim of this paper is to present new general constructions
of finite braces, with the main focus on constructing finite simple braces. The latter
is the key step in the challenging problem of a classification of finite simple braces.
Our approach is based on the notion of iterated matched product of braces, which
turns out to be an indispensable tool in this context.

Recall that a solution of the quantum Yang-Baxter equation is a linear map
R : V ⊗ V −→ V ⊗ V , for a vector space V , such that

R12R13R23 = R23R13R12,(1)

where Rij denotes the map V ⊗V ⊗V −→ V ⊗V ⊗V acting as R on the (i, j) tensor
factor and as the identity on the remaining factor. A central and difficult open
problem is to construct new families of solutions of this equation. An equivalent
problem is to find solutions of the Yang-Baxter equation

R12R23R12 = R23R12R23.(2)
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In fact, if τ : V ⊗ V −→ V ⊗ V is the linear map such that τ (u ⊗ v) = v ⊗ u for
all u, v ∈ V , then it is easy to check that R : V ⊗ V −→ V ⊗ V is a solution of the
quantum Yang-Baxter equation (1) if and only if R = τ ◦ R is a solution of the
Yang-Baxter equation (2). In the context of quantum groups and Hopf algebras
such solutions are often referred to as R-matrices (see for example [7,27]). Drinfeld
in [16] initiated the investigations of the set-theoretic solutions of the Yang-Baxter
equation; these are the maps r : X ×X −→ X ×X such that

r12r23r12 = r23r12r23,(3)

where rij denotes the map X × X × X −→ X × X × X acting as r on the (i, j)
components and as the identity on the remaining component. Note that if X
is a basis of the vector space V , then every such solution r induces a solution
R : V ⊗ V −→ V ⊗ V of the Yang-Baxter equation (2).

Gateva-Ivanova and Van den Bergh [21] and Etingof, Schedler, and Soloviev [17]
introduced a subclass of the set-theoretic of solutions, the nondegenerate involutive
solutions. Recall that a set-theoretic solution r : X ×X −→ X ×X of the Yang-
Baxter equation (3), written in the form r(x, y) = (fx(y), gy(x)) for x, y ∈ X, is
involutive if r2 = idX2 , and it is nondegenerate if fx and gx are bijective maps
from X to X, for all x ∈ X. This class of solutions has received a lot of attention
in recent years; see for example [8, 9, 12–14, 17–21, 25, 26, 29, 31, 39]. Braces were
introduced to study this type of solution. Recall that a left brace is a set B with
two operations, + and ·, such that (B,+) is an abelian group, (B, ·) is a group, and

a · (b+ c) + a = a · b+ a · c,(4)

for all a, b, c ∈ B. A right brace is defined similarly but replacing property (4) by
(b+c)·a+a = b·a+c·a. If B is both a left and a right brace (for the same operations),
then one says that B is a two-sided brace. Rump initiated the study of this new
algebraic structure, though, using another but equivalent definition [30–36]. In
particular, he noted that the structure group G(X, r) of a nondegenerate, involutive
set-theoretic solution (X, r) of the Yang-Baxter equation (solution of the YBE for
short) admits a natural structure of left brace, such that its additive group is the
free abelian group with basis X and xy− x = fx(y) for all x, y ∈ X. The structure
group G(X, r) was introduced and studied in [17,21] and it is defined as the group
with the following presentation:

G(X, r) = 〈X | xy = fx(y)gy(x) for all x, y ∈ X〉.
Another important group associated to a solution (X, r) of the YBE is its per-

mutation group G(X, r), which is the subgroup of the symmetric group SymX on
X generated by {fx | x ∈ X}. The map x �→ fx extends to a group epimorphism
φ : G(X, r) −→ G(X, r) with kernel Ker(φ) = {a ∈ G(X, r) | ab = a + b for all
b ∈ G(X, r)}. The group G(X, r) inherits a natural left brace structure so that φ
becomes a homomorphism of left braces.

Some important open problems have been solved in [13] using braces. Several
aspects of the theory of braces and their applications in the context of the Yang-
Baxter equation have been recently considered in [22, 37] and [11]. It is known
that every finite left brace is isomorphic to G(X, r) (as left braces) for some finite
solution (X, r) of the YBE ([13, Theorem 2]). Thus, by [17, Theorem 2.15], the
multiplicative group of every finite left brace is solvable. But not all finite solvable
groups are isomorphic to the multiplicative group of a left brace [2]. In fact, there
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exist finite p-groups that are not isomorphic to the multiplicative group of any left
brace. Given a left brace B, in [4] a method is given to construct explicitly all the
solutions (X, r) of the YBE such that G(X, r) ∼= B as left braces. Therefore, the
problem of constructing all the solutions of the YBE is reduced to describing all
left braces. The challenging problem of classifying all finite left braces naturally
splits into two parts:

(a) Classify the simple objects in the class of finite left braces.
(b) Develop an appropriate theory of extensions of left braces.

Note that by [15, Corollary II.6.12], a version of the Jordan-Hölder theorem holds
for finite left braces, emphasizing the importance of simple left braces.

Recall that an ideal of a left brace B is a normal subgroup I of its multiplicative
group such that λb(a) ∈ I for all a ∈ I and b ∈ B, where λb is the automorphism
of (B,+) defined by λb(c) = bc − b, for all b, c ∈ B. For example, the socle
Soc(B) = {b ∈ B | λb = id} is an ideal of B. A left brace B is said to be simple
if it is nonzero and {0} and B are the only ideals of B. Recall that a left brace
is said to be trivial if its multiplication coincides with its addition. The socle of
an arbitrary left brace B is a trivial brace. It is known that every simple left
brace of prime power order pn is a trivial brace of cardinality p [31, Corollary on
page 166]. Until recently, these were the only known examples of finite simple
left braces. The first finite nontrivial simple left braces have been constructed in
[3, Theorem 6.3 and Section 7], the additive groups of which are isomorphic to
Z/(p1) × (Z/(p2))

k(p1−1)+1, where p1, p2 are primes such that p2 | p1 − 1 and k
is a positive integer. We shall give a much larger class of examples based on the
construction of matched products of braces, which is introduced in [3] as a natural
extension of the matched product (or bicrossed product) of groups [27]. Note that
matched products of groups also appear in the context of solutions of the YBE; see
for example the survey of Takeuchi [38] and [22].

Every left brace B admits a left action λ : (B, ·) −→ Aut(B,+) defined by λ(b) =
λb for all b ∈ B (see [13, Lemma 1]). It is called the lambda map of the left brace
B. Recall that, given the lambda map of a left brace B, each of the structures
(B, ·) and (B,+) determines the other one uniquely.

Lambda maps are used to define the matched products of left braces.

Definition 1.1. Let G and H be two left braces. Let α : (H, ·) −→ Aut(G,+) and
β : (G, ·) −→ Aut(H,+) be group homomorphisms. One says that (G,H, α, β) is a
matched pair of left braces if the following conditions hold:

(MP1) λ
(1)
a ◦ αb = αβa(b) ◦ λ

(1)

α−1
βa(b)

(a)
,

(MP2) λ
(2)
b ◦ βa = βαb(a) ◦ λ

(2)

β−1
αb(a)

(b)
,

where α(b) = αb and β(a) = βa, for all a ∈ G and b ∈ H, with λ(1) and λ(2)

denoting the lambda maps of the left braces G and H, respectively.

Let (G,H, α, β) be a matched pair of left braces. Then by [3, Theorem 4.2] G×H
is a left brace with addition

(a, b) + (a′, b′) = (a+ a′, b+ b′)

and with lambda map given by

λ(a,b)(a
′, b′) =

(
αbλ

(1)

α−1
b (a)

(a′), βaλ
(2)

β−1
a (b)

(b′)
)
.
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Definition 1.2. Let (G,H, α, β) be a matched pair of left braces. The left brace
defined as above is called the matched product of G and H. We simply denote it
by G �� H.

Note that if β is trivial, then we get a semidirect product G�H of left braces,
considered in [34] and [13, Section 6], and then G is an ideal of G �� H; and if
additionally α is trivial, then we get the direct product G×H of left braces.

Of course, if (G,H, α, β) is a matched pair of left braces, then so is (H,G, β, α).
Furthermore, it easily is verified that the map G �� H −→ H �� G defined by
(a, b) �→ (b, a) is an isomorphism of left braces.

Recall that a left ideal of a left brace B is a subgroup S of its multiplicative
group such that λb(a) ∈ S for all a ∈ S and all b ∈ B. Note that for every
b, a ∈ S we have b − a = λa(a

−1b). Thus, in particular, S is a left subbrace of
B. If G �� H is a matched product of left braces, then G × {0} and {0} × H
are left ideals of G �� H. Conversely, it is not difficult to see (use for example
Lemma 2 in [13] to verify conditions (MP1) and (MP2)) that if B is a left brace
and B1, B2 are two left ideals of B such that (B,+) is the inner direct sum of
(B1,+) and (B2,+), then (B1, B2, α, β) is a matched pair of left braces, where
αb(a) = ba − b and βa(b) = ab − a, for all a ∈ B1 and b ∈ B2. Furthermore, the
map η : B1 �� B2 −→ B defined by η(a, b) = a+ b, for all a ∈ B1 and b ∈ B2, is an
isomorphism of left braces.

Our main starting point is the following observation, contained implicitly in
[3, Section 4].

Remark 1.3. Let B be a finite nonzero left brace. Then there exist distinct prime
numbers p1, . . . , pk and left braces H1, . . . , Hk, with k ≥ 1, such that |Hi| = pni

i

and B is an iterated matched product B = (. . . (H1 �� H2) �� . . . ) �� Hk of left
braces. Moreover, each Hi is a left ideal of B.

Essentially, the key argument used in the proof is that the Sylow subgroups of
(B,+) are left ideals of B. In Section 2 we give a proof of a more general result,
Theorem 2.4.

Remark 1.3 explains why one can construct finite left braces using matched
products, with braces of prime power order as the building blocks. In particular,
all finite simple left braces can be constructed in this way. It is the aim of this paper
to construct a large class of simple braces via this method. So we focus on part (a)
of the classification problem. Some partial results on the classification of “small”
left braces can be found in [1,23,32]. Concerning part (b), i.e., developing a theory
of extensions of left braces, some preliminary results can be found in [3, 5, 6, 28].
But a general theory is missing.

In Section 2, we study iterated matched products of left braces corresponding
to an inner direct sum of left ideals. First we characterize the iterated matched
products of left braces that are of this form. Next, we give necessary and sufficient
conditions for such a matched product to be simple provided the left ideals are
simple left braces.

In Section 3, we first generalize an intriguing construction of Hegedűs [24], de-
veloped in the context of regular subgroups of the affine group, which has been
recently considered also in [3] and [9]. Next, within this class, we construct iterated
matched products of left braces and we give necessary and sufficient conditions on
the actions corresponding to these matched products for their simplicity.
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In Section 4, we construct concrete examples of simple left braces of the type
described in Section 3. We also show how to construct more examples of finite
simple left braces using the results of Section 2 and thus indicating that this may
be a very rich area to explore. In this context, as mentioned before, it is shown in
[4, Theorem 3.1] how to describe for a given left brace B all solutions of the YBE
with associated permutation group isomorphic to B (as a left brace). So the new
examples constructed in Section 4 provide new families of solutions of the YBE.

Finally, in Section 5, we state two problems that are fundamental for the program
of the classification of finite (simple) left braces and thus a description of all finite
solutions of the YBE. The first problem is concerned with the automorphism group
of a finite left brace of prime power order. The second problem deals with simplicity
of left braces of orders of the form pnqm, for two primes p, q. In this context,
Smoktunowicz in [37] recently proved the following property.

If |B| = qrk with q prime, (q, k) = 1, k �= 1, and B is a simple left brace, then
there exists a prime p such that q|(pt − 1) for some 1 ≤ t and pt|k.

So, if B is a simple left brace of order pnqm (with p and q different prime numbers
and n,m positive integers), then p|(qt − 1) and q|(ps − 1) for some 0 < t ≤ m and
0 < s ≤ n. We observe that these conditions are not sufficient for simplicity of B.

2. Finite braces as iterated matched products of left ideals

and simplicity

In the first part of this section, motivated by Remark 1.3, we characterize left
braces that are iterated matched products of subbraces that are left ideals. In the
second part, we prove a simplicity result that is later used to construct several new
families of simple left braces.

Let B be a left brace. Suppose that there exist left ideals B1, . . . , Bn of B such
that n ≥ 2 and the additive group of B is the direct sum of the additive groups of
the left ideals Bi. Denote by λ(i) the lambda map corresponding to Bi, which is the
restriction to Bi of the lambda map λ of B. For 1 ≤ j < n, denote by λ(1,...,j) the
lambda map corresponding to B1+ · · ·+Bj , which is the restriction to B1+ · · ·+Bj

of the lambda map of B. Since B1 + · · · + Bj and Bj+1 are left ideals of B, the
maps

α((1,...,j),j+1) : (B1 + · · ·+Bj , ·) −→ Aut(Bj+1,+) and

α(j+1,(1,...,j)) : (Bj+1, ·) −→ Aut(B1 + · · ·+Bj ,+)

defined by α((1,...,j),j+1)(x) = α
((1,...,j),j+1)
x , α(j+1,(1,...,j))(y) = α

(j+1,(1,...,j))
y ,

α
((1,...,j),j+1)
x (y) = xy − x, and α

(j+1,(1,...,j))
y (x) = yx− y, for all x ∈ B1 + · · ·+Bj

and y ∈ Bj+1, are homomorphisms of groups. Since λa ◦λλ−1
a (b) = λb ◦λλ−1

b (a) (see

[13, Lemma 2]), we have that

(i) λ
(j+1)
y ◦ α((1,...,j),j+1)

(α
(j+1,(1,...,j))
y )−1(x)

= α
((1,...,j),j+1)
x ◦ λ(j+1)

(α
((1,...,j),j+1)
x )−1(y)

and

(ii) λ
(1,...,j+1)
x ◦ α(j+1,(1,...,j))

(α
((1,...,j),j+1)
x )−1(y)

= α
(j+1,(1,...,j))
y ◦ λ(1,...,j+1)

(α
(j+1,(1,...,j))
y )−1(x)

.

Therefore (B1+ · · ·+Bj , Bj+1, α
(j+1,(1,...,j)), α((1,...,j),j+1)) is a matched pair of left

braces, and, by [3, Theorem 4.2], the map

η1,...,j+1 : (B1 + · · ·+Bj) �� Bj+1 −→ B1 + · · ·+Bj+1,

defined by η1,...,j+1(x, y) = x+ y, is an isomorphism of left braces.
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We define the maps β(2,(1)) = α(2,(1)), β((1),2) = α((1),2), and, for 1 < j < n,

β((1,...,j),j+1) : B1 × · · · ×Bj −→ Aut(Bj+1,+) and

β(j+1,(1,...,j)) : Bj+1 −→ Aut(B1 × · · · ×Bj ,+)

by β((1,...,j),j+1)(a1, . . . , aj) = β
((1,...,j),j+1)
(a1,...,aj)

, β(j+1,(1,...,j))(aj+1) = β
(j+1,(1,...,j))
aj+1 ,

β
((1,...,j),j+1)
(a1,...,aj)

(aj+1) = α
((1,...,j),j+1)
a1+···+aj

(aj+1), and

β(j+1,(1,...,j))
aj+1

(a1, . . . , aj) = η−1
j α(j+1,(1,...,j))

aj+1
ηj(a1, . . . , aj),

where ηk : B1×· · ·×Bk −→ B1+· · ·+Bk is defined by ηk(a1, . . . , ak) = a1+· · ·+ak,
for 1 < k ≤ n.

Proposition 2.1. With the above notation,

((. . . (B1 �� B2) �� . . . ) �� Bj , Bj+1, β
(j+1,(1,...,j)), β((1,...,j),j+1))

is a matched pair of left braces, and the map ηj+1 : (. . . (B1 �� B2) �� . . . ) ��
Bj+1 −→ B1 + · · ·+Bj+1 is an isomorphism of left braces, for all 1 ≤ j < n.

Proof. We will prove the result by induction on j. For j = 1, the result fol-
lows because β(2,(1)) = α(2,(1)) and β((1),2) = α((1),2). Suppose that j > 1 and
the result is true for j − 1. By the induction hypothesis, ηj is an isomorphism

of left braces. Thus, since α((1,...,j),j+1) and α(j+1,(1,...,j)) are homomorphisms
of groups, we have that β((1,...,j),j+1) and β(j+1,(1,...,j)) are homomorphisms of
groups. Let λ̃(1,...,j) be the lambda map of the left brace (. . . (B1 �� B2) �� . . . ) ��
Bj corresponding to the matched pair of left braces ((. . . (B1 �� B2) �� . . . ) ��

Bj−1, Bj , β
(j,(1,...,j−1)), β((1,...,j−1),j)). Since ηj is an isomorphism of left braces,

λ̃
(1,...,j)
(a1,...,aj)

= η−1
j λ

(1,...,j)
a1+···+aj

ηj .

To show that ((. . . (B1 �� B2) �� . . . ) �� Bj , Bj+1, β
(j+1,(1,...,j)), β((1,...,j),j+1)) is a

matched pair of left braces, we should check the following equalities:

(i) λ̃
(1,...,j)
(a1,...,aj)

◦β(j+1,(1,...,j))

(β
((1,...,j),j+1)

(a1,...,aj )
)−1(aj+1)

= β
(j+1,(1,...,j))
aj+1 ◦ λ̃(1,...,j)

(β
(j+1,(1,...,j))
aj+1

)−1(a1,...,aj)
,

(ii) λ
(j+1)
aj+1 ◦ β((1,...,j),j+1)

(β
(j+1,(1,...,j))
aj+1

)−1(a1,...,aj)
= β

((1,...,j),j+1)
(a1,...,aj)

◦ λ(j+1)

(β
((1,...,j),j+1)

(a1,...,aj)
)−1(aj+1)

.

We first prove equality (i):

λ̃
(1,...,j)
(a1,...,aj)

◦ β(j+1,(1,...,j))

(β
((1,...,j),j+1)

(a1,...,aj )
)−1(aj+1)

= η−1
j ◦ λ(1,...,j)

a1+···+aj
◦ α(j+1,(1,...,j))

(α
((1,...,j),j+1)
a1+···+aj

)−1(aj+1)
◦ ηj

= η−1
j ◦ α(j+1,(1,...,j))

aj+1
◦ λ(1,...,j)

(α
(j+1,(1,...,j))
aj+1

)−1(a1+···+aj)
◦ ηj

= β(j+1,(1,...,j))
aj+1

◦ λ̃(1,...,j)

(β
(j+1,(1,...,j))
aj+1

)−1(a1,...,aj)
.
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Now we prove equality (ii):

λ(j+1)
aj+1

◦ β((1,...,j),j+1)

(β
(j+1,(1,...,j))
aj+1

)−1(a1,...,aj)

= λ(j+1)
aj+1

◦ α((1,...,j),j+1)

(α
(j+1,(1,...,j))
aj+1

)−1(a1+···+aj)

= α
((1,...,j),j+1)
a1+···+aj

◦ λ(j+1)

(α
((1,...,j),j+1)
a1+···+aj

)−1(aj+1)

= β
((1,...,j),j+1)
(a1,...,aj)

◦ λ(j+1)

(β
((1,...,j),j+1)

(a1,...,aj)
)−1(aj+1)

.

Hence ((. . . (B1 �� B2) �� . . . ) �� Bj , Bj+1, β
(j+1,(1,...,j)), β((1,...,j),j+1)) is a matched

pair of left braces. Now ηj+1 = η1,...,j+1 ◦ (ηj × id). Since clearly ηj+1 is an
isomorphism of the additive groups and η1,...,j+1 is an isomorphism of left braces,
it is enough to prove that

(ηj × id)(λ̃
(1,...,j+1)
(a1,...,aj+1)

(b1, . . . , bj+1)) = λ
((1,...,j),j+1)
(a1+···+aj ,aj+1)

(b1 + · · ·+ bj , bj+1),

where λ((1,...,j),j+1) is the lambda map of the left brace (B1 + · · · + Bj) �� Bj+1.
We have that

(ηj × id)(λ̃
(1,...,j+1)
(a1,...,aj+1)

(b1, . . . , bj+1))

= (ηj × id)(β(j+1,(1,...,j))
aj+1

λ̃
(1,...,j)

(β
(j+1,(1,...,j))
aj+1

)−1(a1,...,aj)
(b1, . . . , bj),

β
((1,...,j),j+1)
(a1,...,aj)

λ
(j+1)

(β
((1,...,j),j+1)

(a1,...,aj )
)−1(aj+1)

(bj+1))

= (ηj × id)(η−1
j α(j+1,(1,...,j))

aj+1
λ
(1,...,j)

(α
(j+1,(1,...,j))
aj+1

)−1(a1+···+aj)
ηj(b1, . . . , bj),

α
((1,...,j),j+1)
(a1+···+aj)

λ
(j+1)

(α
((1,...,j),j+1)

(a1+···+aj )
)−1(aj+1)

(bj+1))

= (α(j+1,(1,...,j))
aj+1

λ
(1,...,j)

(α
(j+1,(1,...,j))
aj+1

)−1(a1+···+aj)
(b1 + · · ·+ bj),

α
((1,...,j),j+1)
(a1+···+aj)

λ
(j+1)

(α
((1,...,j),j+1)

(a1+···+aj )
)−1(aj+1)

(bj+1))

= λ
((1,...,j),j+1)
(a1+···+aj ,aj+1)

(b1 + · · ·+ bj , bj+1).

Therefore the result follows. �

Note that with the above notation

{0} × · · · × {0} ×Bi × {0} × · · · × {0}
is a left ideal of (. . . (B1 �� B2) �� . . . ) �� Bn. This motivates the following defini-
tion.

Definition 2.2. Let B1, . . . , Bn be left braces. We say that an iterated matched
product of left braces (. . . (B1 �� B2) �� . . . ) �� Bn is an iterated matched product
of left ideals if each {0} × · · · × {0} ×Bi × {0} × · · · × {0} is a left ideal of it.

Note that if B = (. . . (B1 �� B2) �� . . . ) �� Bn is an iterated matched product
of left ideals and σ ∈ Symn, by Proposition 2.1 we know that B is isomorphic to
(. . . (Cσ(1) �� Cσ(2)) �� . . . ) �� Cσ(n), where Ci = {0}×· · ·×{0}×Bi×{0}×· · ·×{0} is
a left ideal of B. Hence, in an iterated matched product (. . . (B1 �� B2) �� . . . ) �� Bn
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of left ideals the order of the factors is irrelevant, and this allows us to write it simply
as B1 �� B2 �� . . . �� Bn.

As mentioned before, if B1 �� B2 is a matched product of two left braces B1

and B2, then it easily is verified that both factors are left ideals. However, the
following example shows that a factor of an arbitrary iterated matched product is
not necessarily a left ideal of the left brace. It shows, in particular, that not every
iterated matched product of left braces is a matched product with the defining
factors as left ideals.

Example 2.3. Let A = Z/(p), where p is a prime. Then A is a trivial brace.
Consider the trivial brace A × A and the maps α : (A,+) −→ Aut(A × A,+),
defined by α(a) = αa and αa(b, c) = (b + ac, c) (here ac is the multiplication in
the field Z/(p)). Clearly α is a homomorphism of groups. The semidirect product
(A×A)�A with respect to α is a left brace with the sum defined componentwise.
This is a particular case of matched product of left braces. The direct product
A×A is also a particular case of matched product of left braces. But {0}×A×{0}
is not a left ideal of (A×A)� A; in fact λ(0,0,1)(0, 1, 0) = (α1(0, 1), 0) = (1, 1, 0).

We often will use the following useful formula, valid in any left brace B:

b1 + · · ·+ bs = (b1 + · · ·+ bs−1)λ
−1
b1+···+bs−1

(bs)

= (b1 + · · ·+ bs−2)λ
−1
b1+···+bs−2

(bs−1)λ
−1
b1+···+bs−1

(bs)

...

= b1λ
−1
b1

(b2)λ
−1
b1+b2

(b3) · · ·λ−1
b1+···+bs−1

(bs),(5)

for any s ≥ 1 and bi ∈ B, i = 1, . . . , s.

Theorem 2.4. Let B1, . . . , Bn be left braces with n ≥ 2. An iterated matched
product B = (. . . (B1 �� B2) �� . . . ) �� Bn of left braces is an iterated matched
product of left ideals if and only if there exist homomorphisms of groups

α(j,i) : (Bj , ·) −→ Aut(Bi,+)

satisfying the following conditions:

(IM1) λ
(i)
a ◦ α(j,i)

(α
(i,j)
a )−1(b)

= α
(j,i)
b ◦ λ(i)

(α
(j,i)
b )−1(a)

and

(IM2) α
(k,i)
c ◦ α(j,i)

(α
(k,j)
c )−1(b)

= α
(j,i)
b ◦ α(k,i)

(α
(j,k)
b )−1(c)

,

for all a ∈ Bi, b ∈ Bj, c ∈ Bk, i, j, k ∈ {1, 2, . . . , n}, j �= i, k �= i, and k �= j, where

λ(i) is the lambda map of the left brace Bi and α(i,j)(a) = α
(i,j)
(a) , and furthermore

(. . . (B1 �� B2) �� . . . ) �� Bj+1 is the matched product corresponding to the matched
pair of left braces

((. . . (B1 �� B2) �� . . . ) �� Bj , Bj+1, α
(j+1,(1,...,j)), α((1,...,j),j+1)),

where

α
((1,...,j),j+1)
(a1,...,aj)

= α(1,j+1)
a1

α
(2,j+1)

(α
(1,2)
a1

)−1(a2)
· · ·α(j,j+1)

(α
((1,...,j−1),j)

(a1,...,aj−1)
)−1(aj)

,(6)

α(j+1,(1,...,j))
aj+1

(a1, . . . , aj) = (α(j+1,1)
aj+1

(a1), . . . , α
(j+1,j)
aj+1

(aj)).(7)



ITERATED MATCHED PRODUCTS OF FINITE BRACES AND SIMPLICITY 4889

Proof. Denote the lambda map of Bi by λ(i) and the lambda map of (. . . (B1 ��
B2) �� . . . ) �� Bj+1 by λ(1,...,j+1), for all 1 ≤ j < n. Suppose first that there exist

homomorphisms of groups α(j,i) : (Bj , ·) −→ Aut(Bi,+) satisfying all the conditions
in the statement. We shall prove that {0} × · · · × {0} × Bk × {0} × · · · × {0} is a
left ideal of B by induction on n. For n = 2, the result follows by [3, Theorem 4.2].
Suppose that n > 2 and that {0}× · · · × {0}×Bi ×{0}× · · · × {0} is a left ideal of
(. . . (B1 �� B2) �� . . . ) �� Bn−1 for all i = 1, . . . , n−1. Let (a1, . . . , an), (b1, . . . , bn) ∈
B1 × · · · ×Bn. We have that

λ
(1,...,n)
(a1,...,an)

(0, . . . , 0, bn) = (0, . . . , 0, α
((1,...,n−1),n)
(a1,...,an−1)

λ
(n)

(α
((1,...,n−1),n)

(a1,...,an−1)
)−1(an)

(bn))

and for i < n,

λ
(1,...,n)
(a1,...,an)

(0, . . . , 0, bi, 0, . . . , 0)

= (α(n,(1,...,n−1))
an

λ
(1,...,n−1)

(α
(n,(1,...,n−1))
an )−1(a1,...,an−1)

(0, . . . , 0, bi, 0, . . . , 0), 0).

By the induction hypothesis, there exists ci ∈ Bi such that

λ
(1,...,n−1)

(α
(n,(1,...,n−1))
an )−1(a1,...,an−1)

(0, . . . , 0, bi, 0, . . . , 0) = (0, . . . , 0, ci, 0, . . . , 0).

Hence

λ
(1,...,n)
(a1,...,an)

(0, . . . , 0, bi, 0, . . . , 0)

= (α(n,(1,...,n−1))
an

(0, . . . , 0, ci, 0, . . . , 0), 0)

= ((0, . . . , 0, α(n,i)
an

(ci), 0, . . . , 0), 0) (by (7)).

Thus {0}×· · ·×{0}×Bk×{0}×· · ·×{0} is a left ideal of B for every k = 1, . . . , n.
Therefore B = (. . . (B1 �� B2) �� . . . ) �� Bn is an iterated matched product of left
ideals.

Suppose now that B = (. . . (B1 �� B2) �� . . . ) �� Bn is an iterated matched
product of left ideals. Let πk be the natural projection πk : B1 × · · · ×Bn −→ Bk.
We define

α(j,i)
aj

(ai) = πiλ
(1,...,n)
(0,...,0,aj ,0,...,0)

(0, . . . , 0, ai, 0, . . . , 0),

for all ai ∈ Bi, aj ∈ Bj , i, j ∈ {1, 2, . . . , n}, and i �= j. Note that since {0} × · · · ×
{0} ×Bi × {0} × · · · × {0} is a left ideal of B, we have that

λ
(1,...,n)
(0,...,0,aj ,0,...,0)

(0, . . . , 0, ai, 0, . . . , 0) = (0, . . . , 0, α(j,i)
aj

(ai), 0, . . . , 0).

Now it is clear that α
(j,i)
aj ∈ Aut(Bi,+) and

(α(j,i)
aj

)−1(ai) = πi(λ
(1,...,n)
(0,...,0,aj ,0,...,0)

)−1(0, . . . , 0, ai, 0, . . . , 0).

We shall prove by induction on n that

λ
(1,...,n)
(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0) = (0, . . . , 0, λ(i)
ai
(bi), 0, . . . , 0),

for all ai, bi ∈ Bi, and i = 1, . . . , n. For n = 2, this follows easily by the definition
of λ(1,2). Suppose that n > 2 and that

λ
(1,...,n−1)
(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0) = (0, . . . , 0, λ(i)
ai
(bi), 0, . . . , 0),
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for all ai, bi ∈ Bi and i = 1, . . . , n− 1. Suppose that i < n. In this case

λ
(1,...,n)
(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0)

= (λ
(1,...,n−1)
(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0), 0)

= ((0, . . . , 0, λ(i)
ai
(bi), 0, . . . , 0), 0).

For i = n we have

λ
(1,...,n)
(0,...,0,an)

(0, . . . , 0, bn) = (0, . . . , 0, λ(n)
an

(bn)).

Note that

(0, . . . , 0, ai, 0, . . . , 0)(0, . . . , 0, bi, 0, . . . , 0)

= (0, . . . , 0, ai, 0, . . . , 0) + λ
(1,...,n)
(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0)

= (0, . . . , 0, ai + λ(i)
ai
(bi), 0, . . . , 0)

= (0, . . . , 0, aibi, 0, . . . , 0).

Hence

λ
(1,...,n)
(0,...,0,ajbj ,0,...,0)

= λ
(1,...,n)
(0,...,0,aj ,0,...,0)

λ
(1,...,n)
(0,...,0,bj ,0,...,0)

.

Therefore we get that α
(j,i)
ajbj

= α
(j,i)
aj α

(j,i)
bj

. Hence the map α(j,i) : (Bj , ·) −→
Aut(Bi,+), defined by α(j,i)(aj) = α

(j,i)
aj , is a homomorphism of groups. Now

we shall check condition (IM1). Note that

(0, . . . , 0, λ(i)
ai
α
(j,i)

(α
(i,j)
ai

)−1(aj)
(bi), 0, . . . , 0)

= λ
(1,...,n)
(0,...,0,ai,0,...,0)

(0, . . . , 0, α
(j,i)

(α
(i,j)
ai

)−1(aj)
(bi), 0, . . . , 0)

= λ
(1,...,n)
(0,...,0,ai,0,...,0)

λ
(1,...,n)

(0,...,0,(α
(i,j)
ai

)−1(aj),0,...,0)
(0, . . . , 0, bi, 0, . . . , 0)

= λ
(1,...,n)

λ
(1,...,n)

(0,...,0,ai,0,...,0)
(0,...,0,(α

(i,j)
ai

)−1(aj),0,...,0)

λ
(1,...,n)

(λ
(1,...,n)

λ
(1,...,n)
(0,...,0,ai,0,...,0)

(0,...,0,(α
(i,j)
ai

)−1(aj ),0,...,0)
)−1(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0)

= λ
(1,...,n)
(0,...,0,aj ,0,...,0)

λ
(1,...,n)

(λ
(1,...,n)

(0,...,0,aj,0,...,0)
)−1(0,...,0,ai,0,...,0)

(0, . . . , 0, bi, 0, . . . , 0)

= λ
(1,...,n)
(0,...,0,aj ,0,...,0)

λ
(1,...,n)

(0,...,0,(α
(j,i)
aj

)−1(ai),0,...,0)
(0, . . . , 0, bi, 0, . . . , 0)

= (0, . . . , 0, α(j,i)
aj

λ
(i)

(α
(j,i)
aj

)−1(ai)
(bi), 0, . . . , 0),

where in the third equality [13, Lemma 2] is used. Hence λ
(i)
ai α

(j,i)

(α
(i,j)
ai

)−1(aj)
=

α
(j,i)
aj λ

(i)

(α
(j,i)
aj

)−1(ai)
and (IM1) is proved. Similarly one can check that condition

(IM2) is satisfied. Before proving (6) we claim that

λ
(1,...,j+1)
(a1,...,ak,0,...,0)

(0, . . . , 0, ak+1, 0, . . . , 0) = (0, . . . , 0, α
((1,...,k),k+1)
(a1,...,ak)

(ak+1), 0, . . . , 0),

for all 1 ≤ k ≤ j < n. We will prove the claim by induction on j. For j = 1, we
have

λ
(1,2)
(a1,0)

(0, a2) = (0, α(1,2)
a1

(a2)),
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by the definition of λ(1,2). Suppose that j > 1 and that the claim is true for j − 1.
For k = j we have that

λ1,...,j+1
(a1,...,aj ,0)

(0, . . . , 0, aj+1) = (0, . . . , 0, α
((1,...,j),j+1)
(a1,...,aj)

(aj+1)),

by the definition of λ(1,...,j+1). For k < j we have

λ
(1,...,j+1)
(a1,...,ak,0,...,0)

(0, . . . , 0, ak+1, 0, . . . , 0)

= (λ
(1,...,j)
(a1,...,ak,0,...,0)

(0, . . . , 0, ak+1, 0, . . . , 0), 0)

= (0, . . . , 0, α
((1,...,k),k+1)
(a1,...,ak)

(ak+1), 0, . . . , 0),

where the first equality is by the definition of λ(1,...,j+1), and the second is by the
induction hypothesis. Hence the claim follows. Now we will prove condition (6).
We have

(0, . . . , 0, α
((1,...,j),j+1)
(a1,...,aj)

(aj+1))

= λ
(1,...,j+1)
(a1,...,aj ,0)

(0, . . . , 0, aj+1)

= λ
(1,...,j+1)

(a1,0,...,0)(λ
(1,...,j+1)

(a1,0,...,0)
)−1(0,a2,0,...,0)···λ(1,...,j+1)

(a1,...,aj−1,0,0)
)−1(0,...,0,aj ,0)

(0, . . . , 0, aj+1)

= λ
(1,...,j+1)

(a1,0,...,0)((0,α
(1,2)
a1

)−1(a2),0,...,0)···(0,...,0,α((1,...,j−1),j)

(a1,...,aj−1)
)−1(aj),0)

(0, . . . , 0, aj+1)

= λ
(1,...,j+1)
(a1,0,...,0)

λ
(1,...,j+1)

(0,(α
(1,2)
a1

)−1(a2),0,...,0)
· · ·λ(1,...,j+1)

(0,...,0,(α
((1,...,j−1),j)

(a1,...,aj−1)
)−1(aj),0)

(0, . . . , 0, aj+1)

= (0, . . . , 0, α(1,j+1)
a1

α
(2,j+1)

(α
(1,2)
a1

)−1(a2)
· · ·α(j,j+1)

(α
((1,...,j−1),j)

(a1,...,aj−1)
)−1(aj)

(aj+1)),

where the first equality is by the definition of λ(1,...,j+1), the second follows from
(5), the third follows by the claim, the fourth is because of the properties of the

lambda maps, and the last follows because λ
(1,...,j+1)
(0,...,0,ai,0,...,0)

(0, . . . , 0, ak, 0, . . . , 0) =

(0, . . . , 0, α
(i,k)
ai (ak), 0, . . . , 0) for all i �= k. Therefore (6) follows. To prove (7), note

that

(α(j+1,(1,...,j))
aj+1

(a1, . . . , aj), 0)

= λ
(1,...,j+1)
(0,...,0,aj+1)

(a1, . . . , aj , 0)

=

j∑
i=1

λ
(1,...,j+1)
(0,...,0,aj+1)

(0, . . . , 0, ai, 0, . . . , 0)

=

j∑
i=1

(0, . . . , 0, α(j+1,i)
aj+1

(ai), 0, . . . , 0)

= (α(j+1,1)
aj+1

(a1), α
(j+1,2)
aj+1

(a2), . . . , α
(j+1,j)
aj+1

(aj), 0).

Hence (7) follows. This finishes the proof of the theorem. �

Using the notation of Theorem 2.4, for an iterated matched product of left ideals
B = (. . . (B1 �� B2) �� . . . ) �� Bn, it can be checked that the i-th component of
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λ
(1,...,n)
(a1,...,an)

(b1, . . . , bn) is of the form

α(1,i)
a1

α
(2,i)

(α
(1,i)
a1

)−1(a2)
· · ·α(i−1,i)

(α
((1,...,i−2),i−1)

(a1,...,ai−2)
)−1(ai−1)

λ
(i)

(α
((1,...,i−1),i)

(a1,...,ai−1)
)−1(ai)

·α(i+1,i)

(α
((1,...,i),i+1)

(a1,...,ai)
)−1(ai+1)

· · ·α(n,i)

(α
((1,...,n−1),n)

(a1,...,an−1)
)−1(an)

(bi).(8)

Note that one can interpret B1, . . . , Bn as left ideals of B such that the additive
group of B is the direct sum of the additive groups of the left ideals Bi. Then
(a1, . . . , an) corresponds to a1+· · ·+an, the maps α correspond to some restrictions
of the lambda map of B, and formula (8) follows from (5).

In the remainder of this section we focus on simplicity of left braces that are
iterated matched products of left ideals.

We will use the following easy but useful result.

Lemma 2.5. If I is an ideal of a left brace B, then (λb − id)(a) ∈ I, for all a ∈ B
and b ∈ I.

Proof. Let a ∈ B and b ∈ I. Then (λb − id)(a) = ba − b − a = λa(a
−1ba)− b ∈ I,

so the assertion follows. �

Let B be an iterated matched product of its left ideals B1, . . . , Bs of relatively
prime orders. Consider the oriented graph Γ(B) = (V,E), defined as follows. The
set of vertices V = {1, . . . , s} and (i, j) ∈ E is an edge if the corresponding map
α(i,j) : Bi −→ Aut(Bj ,+) is nontrivial. We call Γ(B) the graph of (nontrivial)
actions of B.

Theorem 2.6. With the above notation and assumptions, assume that every Bi is
a simple left brace. Then the left brace B is simple if and only if Γ = Γ(B) contains
a full (oriented) cycle, i.e., a cycle that contains all vertices.

Proof. Suppose Γ contains a full cycle. Let I be a nonzero ideal of B. Choose a
nonzero element b1+· · ·+bs ∈ I, with bi ∈ Bi. Since B is a direct sum of its additive
subgroups Bi of relatively prime orders, it is easy to see that 0 �= bi ∈ I ∩ Bi for
some i. Let j ∈ V be such that (i, j) ∈ E. Hence there exists an element aj ∈ Bj

such that α
(i,j)
bi

(aj) �= aj . Recall that α
(i,j)
ai (aj) = aiaj − ai = λai

(aj). So, by

Lemma 2.5, 0 �= α
(i,j)
bi

(aj) − aj ∈ I ∩ Bj . It follows that Bj ⊆ I because Bj is a
simple left brace. Since Γ contains a full cycle, this easily implies that Bk ⊆ I for
every k, and consequently I = B.

Conversely, assume that Γ contains no full cycle. Then there exists i such that
W = {k ∈ V : there exists a path in Γ from i to k} �= V . Let I =

∑
j∈W Bj .

Clearly, I is a left ideal of B. Hence I is λ-invariant. We will check that I is an
ideal of B. Then the result follows. Let b ∈ B. Write b = b1+ · · ·+bs, with bi ∈ Bi.
From (5) we know that b = c1 · · · cs for some ci ∈ Bi. Let a ∈ Bj for j ∈ W , so that
a ∈ I. Since λc(c

−1ac) = λa(c)− c+ a, we get that c−1ac = λ−1
c (λa(c)− c+ a). If

c ∈ Bk for some k /∈ W , then λa(c) = c, so that c−1ac = λ−1
c (a) ∈ I. On the other

hand, if c ∈ Bk for some k ∈ W , then c, a ∈ I and thus also c−1ac ∈ I.
We know that a =

∑
j∈W aj , with aj ∈ Bj , j ∈ W . Therefore, again by (5), we

also have a = aj1 · · · ajk , where j1, . . . , jk ∈ W . Now c−1ac = c−1aj1cc
−1aj2c · · ·

c−1ajkc ∈ I for every c ∈ Bi and any i. Since b = c1 · · · cs, we get that b−1ab ∈ I.
Hence, I is an ideal of B and the result follows. �
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Notice that the proof of the necessity in the above theorem does not require the
hypothesis that Bi are simple left braces. Hence, the existence of a full oriented
cycle in Γ(B) is a necessary condition for B to be simple.

We shall see in Example 4.3 that the following result provides an effective way
for constructing matched products of left braces.

Proposition 2.7. Let B1, . . . , Bs be left braces. Assume that α(i,j) : (Bi, ·) −→
Aut(Bj ,+, ·) are group homomorphisms, for all i, j ∈ {1, . . . , s}, i �= j. Assume
also that

(i) α
(i,j)

α
(k,i)
ak

(ai)
= α

(i,j)
ai ,

(ii) α
(j,i)
aj α

(k,i)
ak = α

(k,i)
ak α

(j,i)
aj ,

for all i, j, k ∈ {1, . . . , s} with i �= j and i �= k, where am ∈ Bm for every m. Then
the maps α(i,j) satisfy conditions (IM1) and (IM2), and defining α(j+1,(1,...,j)) and
α((1,...,j),j+1) as in (6) and (7), we get an iterated matched product of left ideals
B1 �� . . . �� Bs.

Proof. It is enough to verify conditions (IM1) and (IM2) stated in Theorem 2.4:

λ(i)
ai
α
(j,i)

(α
(i,j)
ai

)−1(aj)
(bi) = λ(i)

ai
α(j,i)
aj

(bi)

= aiα
(j,i)
aj

(bi)− ai

= α(j,i)
aj

((α(j,i)
aj

)−1(ai)bi − (α(j,i)
aj

)−1(ai))

= α(j,i)
aj

◦ λ(i)

(α
(j,i)
aj

)−1(ai)
(bi),

for ai, bi ∈ Bi and aj ∈ Bj , where λ(i) is the lambda map of Bi. Thus (IM1)
follows. Now we verify condition (IM2):

α(k,i)
ak

◦ α(j,i)

(α
(k,j)
ak

)−1(aj)

= α(k,i)
ak

◦ α(j,i)
aj

= α(j,i)
aj

◦ α(k,i)
ak

= α(j,i)
aj

◦ α(k,i)

(α
(j,k)
aj

)−1(ak)
,

for ai ∈ Bi, aj ∈ Bj , and ak ∈ Bk. Thus the result follows. �

3. Constructions of simple braces

In this section, we first present a family of left braces with trivial socle that
generalizes the family presented by Hegedűs [24] and Catino and Rizzo in [10].
Then we use it to construct a broad family of simple left braces.

Let p be a prime number, and let r, n be positive integers. Assume Q is a
quadratic form over (Z/(pr))n (considered as a free module over the ring Z/(pr))
and suppose f is an element in the orthogonal group of Q (that is, an element
f ∈ Aut((Z/(pr))n) such that Q(f(v)) = Q(v) for any v ∈ (Z/(pr))n). Assume

that f has order pr
′
for some 0 ≤ r′ ≤ r. Consider the additive abelian group

A = (Z/(pr))n+1. The elements of A will be written in the form (�x, μ), with
�x ∈ (Z/(pr))n and μ ∈ Z/(pr). Consider the maps λ(�x,μ) : A −→ A defined by

λ(�x,μ)(�y, μ
′) := (fq(�x,μ)(�y), μ′ + b(�x, fq(�x,μ)(�y))),(9)

for (�x, μ), (�y, μ′) ∈ A, where q(�x, μ) := μ−Q(�x), and b is the bilinear form b(�x, �y) :=
Q(�x + �y) − Q(�x) − Q(�y) associated to Q. Note that λ(�x,μ) is well-defined since q

takes values in Z/(pr) and f is of order pr
′
, for some 0 ≤ r′ ≤ r.
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Recall that Q is nondegenerate if and only if the matrix of b in the standard
basis of (Z/(pr))n is invertible.

Theorem 3.1. The abelian group A has a structure of a left brace with lambda
map defined in (9) and with multiplication given by a · b = a+ λa(b). Moreover, if
Q is nondegenerate, then the socle of this left brace is

Soc(A) = {(�0, μ) | μ ∈ pr
′
Z/(pr)}.

In particular, if r′ = r, then the socle of this left brace is zero.

Proof. Since f is bijective, it is clear that λ(�x,μ) is bijective. By the definition of
λ(�x,μ), it also is clear that it is an automorphism of the abelian group A.

To prove the first part of the result, by [3, Lemma 2.6], it is enough to check
that λ(�x,μ)λ(�y,μ′) = λ(�x,μ)+λ(�x,μ)(�y,μ′). On one side,

λ(�x,μ)λ(�y,μ′)(�z, η)

= λ(�x,μ)(f
q(�y,μ′)(�z), η + b(�y, fq(�y,μ′)(�z)))

= (fq(�x,μ)+q(�y,μ′)(�z), η + b(�y, fq(�y,μ′)(�z)) + b(�x, fq(�x,μ)+q(�y,μ′)(�z))).(10)

Note that

q((�x, μ) + λ(�x,μ)(�y, μ
′))

= q(�x+ fq(�x,μ)(�y), μ+ μ′ + b(�x, fq(�x,μ)(�y)))

= μ+ μ′ + b(�x, fq(�x,μ)(�y))−Q(�x+ fq(�x,μ)(�y))

= μ+ μ′ + b(�x, fq(�x,μ)(�y))−Q(�x)−Q(fq(�x,μ)(�y))− b(�x, fq(�x,μ)(�y))

= μ+ μ′ −Q(�x)−Q(�y)

= q(�x, μ) + q(�y, μ′).

Hence

q((�x, μ) + λ(�x,μ)(�y, μ
′)) = q(�x, μ) + q(�y, μ′).(11)

On the other side we have

λ(�x,μ)+λ(�x,μ)(�y,μ′)(�z, η)

= (fq((�x,μ)+λ(�x,μ)(�y,μ
′))(�z), η + b(�x+ fq(�x,μ)(�y), fq((�x,μ)+λ(�x,μ)(�y,μ))(�z)))

= (fq(�x,μ)+q(�y,μ′)(�z), η + b(�x+ fq(�x,μ)(�y), fq(�x,μ)+q(�y,μ′)(�z))) (by (11))

= (fq(�x,μ)+q(�y,μ′)(�z), η + b(fq(�x,μ)(�y), fq(�x,μ)+q(�y,μ′)(�z)) + b(�x, fq(�x,μ)+q(�y,μ′)(�z)))

= (fq(�x,μ)+q(�y,μ′)(�z), η + b(�y, fq(�y,μ′)(�z)) + b(�x, fq(�x,μ)+q(�y,μ′)(�z))).

Therefore, by (10), λ(�x,μ)λ(�y,μ′) = λ(�x,μ)+λ(�x,μ)(�y,μ′), as desired.
To prove the second part of the statement, assume that Q is nondegenerate.

Let (�x, μ) be an element of the socle of the left brace A. Then fq(�x,μ) = id and
b(�y, fq(�x,μ)(�x)) = 0 for all �y. Since Q is nondegenerate, �x = 0. On the other hand,

since fq(�x,μ) = id and f has order pr
′
, we have μ = μ−Q(�x) = q(�x, μ) ∈ pr

′
Z/(pr).

Therefore, the result follows. �

Notation. The left brace described in Theorem 3.1 is denoted by H(pr, n,Q, f).
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Let R be a ring. For any matrix A over R, we denote by At the transpose of
A. Sometimes we identify Rn with the row matrices of length n over R. So, for
x ∈ Rn, xt is the column transpose of the row x.

Now we shall construct iterated matched products of left braces of the form
H(pr, n,Q, f) and, as a consequence, we will give some new constructions of finite
simple left braces. To do so we will make use of the existence of elements C of order
pr in GLn(Z/(q

s)) for two different primes p and q. Note that the natural image of C
in GLn(Z/(q)) also has order p

r and therefore pr has to divide (qn−1) · · · (qn−qn−1).
In particular, p | qt − 1 for some 1 ≤ t ≤ n. In light of the necessary condition
for the existence of finite simple left braces mentioned in the introduction this is a
natural assumption which will implicitly show up throughout the paper.

We will fix some notation. Let s be an integer greater than 1 and let p1, p2, . . . , ps
be different prime numbers. Assume that p1, p2, . . . , ps−1 are odd. For 1 ≤ i ≤ s,
assume that finite left braces Hi = H(prii , ni, Qi, fi) are constructed as in Theo-
rem 3.1, with additive groups (Z/(prii ))ni+1 (ri and ni are positive integers) and
with the corresponding lambda map defined by

(12) λ
(i)
(�xi,μi)

(�yi, μ
′
i) = (f

qi(�xi,μi)
i (�yi), μ

′
i + bi(�xi, f

qi(�xi,μi)
i (�yi))),

where

- Qi is a nondegenerate quadratic form over (Z/(prii ))ni ,

- fi is an element of order p
r′i
i in the orthogonal group determined by Qi, for

some 0 ≤ r′i ≤ ri,
- qi(�xi, μi) = μi −Qi(�xi) (with μi ∈ Z/(prii )),
- bi(�xi, �yi) = Qi(�xi + �yi)−Qi(�xi)−Qi(�yi).

For 1 ≤ i < s, suppose ci is an element of order p
ri+1

i+1 in the orthogonal group
determined by Qi, cs is an element of order pr11 of Aut((Z/(prss ))ns), and vs ∈
(Z/(prss ))ns , such that

Qs(cs(�x)) = Qs(�x) + vs�x
t(13)

and

fici = cifi,

for 1 ≤ i ≤ s. For 1 ≤ i, j ≤ s, define the maps

α(j,i) : (Hj , ·) −→ Aut(Hi,+) : (�xj , μj) �→ α
(j,i)
(�xj ,μj)

,

with

α
(k+1,k)
(�xk+1,μk+1)

(�xk, μk) = (c
qk+1(�xk+1,μk+1)
k (�xk), μk), for 1 ≤ k < s,

α
(1,s)
(�x1,μ1)

(�xs, μs) = (cq1(�x1,μ1)
s (�xs), μs + vs((id+cs + · · ·+ cq1(�x1,μ1)−1

s )(�xs))
t),

and α
(j,i)
(�xj ,μj)

= idHi
otherwise. It is easy to check that

bs(cs(�xs), cs(�ys)) = bs(�xs, �ys).

Thus, if ps �= 2, then vs = 0. Note that α
(k+1,k)
(�xk+1,μk+1)

is well-defined since qk+1 takes

values in Z/(p
rk+1

k+1 ) and the ck are of order p
rk+1

k+1 . Similarly α
(1,s)
(�x1,μ1)

is well-defined

since q1 takes values in Z/(pr11 ) and cs is of order pr11 . Note also that

qi : (Hi, ·) −→ (Z/(prii ),+)
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is a homomorphism of groups, because

(�z, ν) · (�t, ν′) = (�z, ν) + λ
(i)
(�z,ν)(

�t, ν′)

and by (11)

qi((�z, ν) + λ
(i)
(�z,ν)(

�t, ν′)) = qi(�z, ν) + qi(�t, ν
′).

Therefore, each α(j,i) is a group homomorphism.

Lemma 3.2. With the above notation, for 1 ≤ i, j ≤ s, and (�xi, μi) ∈ Hi,

qi(α
(j,i)
(�xj ,μj)

(�xi, μi)) = qi(�xi, μi).

Proof. Let (�xk, μk) ∈ Hk, for k = 1, . . . , s. For i = 1, . . . , s− 1, we have

qi(α
(i+1,i)
(�xi+1,μi+1)

(�xi, μi)) = qi(c
qi+1(�xi+1,μi+1)
i (�xi), μi)

= μi −Qi(c
qi+1(�xi+1,μi+1)
i (�xi))

= μi −Qi(�xi)

= qi(�xi, μi).

On the other hand,

qs(α
(1,s)
(�x1,μ1)

(�xs, μs))

= qs(c
q1(�x1,μ1)
s (�xs), μs + vs((id+cs + · · ·+ cq1(�x1,μ1)−1

s )(�xs))
t)

= μs + vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(�xs))

t −Qs(c
q1(�x1,μ1)
s (�xs))

= μs −Qs(�xs) (by (13))

= qs(�xs, μs).

Therefore, the result follows. �

It follows from the definitions that the map α
(j,i)
(�xj ,μj)

does not depend directly on

the element (�xj , μj) but just on the value qj(�xj , μj). Therefore Lemma 3.2 leads to
the following consequence.

Lemma 3.3. With the above notation, we have

α
(j,i)

α
(k,j)

(�xk,μk)
(�xj ,μj)

= α
(j,i)
(�xj ,μj)

.

Lemma 3.4. With the above notation, we have that α
(j,i)
(�xj ,μj)

∈ Aut(Hi,+, ·).

Proof. Since α
(j,i)
(�xj ,μj)

∈ Aut(Hi,+), to prove the result it is enough to show that

α
(j,i)
(�xj ,μj)

λ
(i)
(�xi,μi)

(�yi, μ
′
i) = λ

(i)

α
(j,i)

(�xj,μj)
(�xi,μi)

α
(j,i)
(�xj ,μj)

(�yi, μ
′
i).(14)

For 1 ≤ i < s we have that

α
(i+1,i)
(�xi+1,μi+1)

λ
(i)
(�xi,μi)

(�yi, μ
′
i)

= α
(i+1,i)
(�xi+1,μi+1)

(f
qi(�xi,μi)
i (�yi), μ

′
i + bi(�xi, f

qi(�xi,μi)
i (�yi)))

= (c
qi+1(�xi+1,μi+1)
i f

qi(�xi,μi)
i (�yi), μ

′
i + bi(�xi, f

qi(�xi,μi)
i (�yi)))
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and

λ
(i)

α
(i+1,i)

(�xi+1,μi+1)
(�xi,μi)

α
(i+1,i)
(�xi+1,μi+1)

(�yi, μ
′
i)

= λ
(i)

α
(i+1,i)

(�xi+1,μi+1)
(�xi,μi)

(c
qi+1(�xi+1,μi+1)
i (�yi), μ

′
i)

= (f
qi(α

(i+1,i)

(�xi+1,μi+1)
(�xi,μi))

i c
qi+1(�xi+1,μi+1)
i (�yi), μ

′
i

+bi(c
qi+1(�xi+1,μi+1)
i (�xi), f

qi(α
(i+1,i)

(�xi+1,μi+1)
(�xi,μi))

i c
qi+1(�xi+1,μi+1)
i (�yi)))

= (c
qi+1(�xi+1,μi+1)
i f

qi(�xi,μi)
i (�yi), μ

′
i

+bi(�xi, f
qi(�xi,μi)
i (�yi))) (by Lemma 3.2 and because fici = cifi).

Hence

α
(i+1,i)
(�xi+1,μi+1)

λ
(i)
(�xi,μi)

(�yi, μ
′
i) = λ

(i)

α
(i+1,i)

(�xi+1,μi+1)
(�xi,μi)

α
(i+1,i)
(�xi+1,μi+1)

(�yi, μ
′
i).

Because fscs = csfs and since fs is orthogonal with respect to Qs, using (13) one
easily verifies that vsfs(�y

t) = vs�y
t. Hence, we also have that

α
(1,s)
(�x1,μ1)

λ
(s)
(�xs,μs)

(�ys, μ
′
s)

= α
(1,s)
(�x1,μ1)

(fqs(�xs,μs)
s (�ys), μ

′
s + bs(�xs, f

qs(�xs,μs)
s (�ys)))

= (cq1(�x1,μ1)
s fqs(�xs,μs)

s (�ys), μ
′
s + bs(�xs, f

qs(�xs,μs)
s (�ys))

+vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(fqs(�xs,μs)

s (�ys)))
t)

= (cq1(�x1,μ1)
s fqs(�xs,μs)

s (�ys), μ
′
s + bs(�xs, f

qs(�xs,μs)
s (�ys))

+vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(�ys))

t) (by (13))

and

λ
(s)

α
(1,s)

(�x1,μ1)
(�xs,μs)

α
(1,s)
(�x1,μ1)

(�ys, μ
′
s)

= λ
(s)

α
(1,s)

(�x1,μ1)
(�xs,μs)

(cq1(�x1,μ1)
s (�ys), μ

′
s

+vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(�ys))

t)

= (f
qs(α

(1,s)

(�x1,μ1)
(�xs,μs))

s cq1(�x1,μ1)
s (�ys), μ

′
s

+vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(�ys))

t)

+bs(c
q1(�x1,μ1)
s (�xs), f

qs(α
(1,s)

(�x1,μ1)
(�xs,μs))

s cq1(�x1,μ1)
s (�ys)))

= (cq1(�x1,μ1)
s fqs(�xs,μs)

s (�ys), μ
′
s

+vs((id+cs + · · ·+ cq1(�x1,μ1)−1
s )(�ys))

t)

+bs(�xs, f
qs(�xs,μs)
s (�ys))) (by Lemma 3.2 and because fscs = csfs).

Hence

α
(1,s)
(�x1,μ1)

λ
(s)
(�xs,μs)

(�ys, μ
′
s) = λ

(s)

α
(1,s)

(�x1,μ1)
(�xs,μs)

α
(1,s)
(�x1,μ1)

(�ys, μ
′
s),

and the result follows. �
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Lemma 3.5. With the above notation, we have that

α
(k,i)
(�xk,μk)

◦ α(j,i)
(�xj ,μj)

= α
(j,i)
(�xj ,μj)

◦ α(k,i)
(�xk,μk)

,

for all i, j, k ∈ {1, 2, . . . , s}, j �= i, k �= i, and k �= j.

Proof. This follows from the definition of the maps α(j,i) (recall that α
(j,i)
(�xj ,μj)

= idHi

if (j, i) /∈ {(l + 1, l) | l = 1, . . . , s− 1} ∪ {(s, 1)}). �

By Lemmas 3.3, 3.4, and 3.5 the maps α(j,i) satisfy the hypothesis of Proposi-
tion 2.7. Therefore the maps α(j,i), with 1 ≤ i, j ≤ s, define an iterated matched
product H1 �� . . . �� Hs of left ideals.

Theorem 3.6. With the above notation, the left brace H1 �� . . . �� Hs is simple if
and only if ci − id is an automorphism for all 1 ≤ i ≤ s.

Proof. Let I be a nonzero ideal of H1 �� . . . �� Hs. Let (�x1, μ1, . . . , �xs, μs) ∈ I be
a nonzero element. Suppose that �xi �= 0 for some i. Since the orders of the left
braces Hi are pairwise coprime, we may assume that �xk = �0 and μk = 0 for each
k �= i and �xi �= �0. Note that for (�yj , Qj(�yj)) ∈ Hj we have that qj(�yj , Qj(�yj)) = 0,
for every j. Hence, by (12)

λ
(i)
(�yi,Qi(�yi))

(�xi, μi) = (�xi, μi + bi(�yi, �xi)).

So, (�0, 0, . . . ,�0, bi(�yi, �xi), . . . ,�0, 0) ∈ I (where bi(�yi, �xi) is in position 2i). Since Qi is

nondegenerate and �xi �= �0, there exists �yi such that bi(�yi, �xi) �= 0. We may assume
that bi(�yi, �xi) = psii , for some 0 ≤ si < ri.

On the other hand, if �xk = 0 for all k = 1, . . . , s, then μi �= 0 for some i. In this
case, we also get that (�0, 0, . . . ,�0, psii , . . . ,�0, 0) ∈ I (where psii is in position 2i), for
some 0 ≤ si < ri.

Thus, without loss of generality, we may assume that �xl = �0, for all l = 1, . . . , s,
and there exists i such that μi = psii and μk = 0 for each k �= i. By Lemma 2.5, if
i = 1, then

(λ(�x1,μ1,...,�xs,μs) − id)(�y1, μ
′
1, . . . , �ys, μ

′
s)

= ((λ
(1)
(�x1,μ1)

− id)(�y1, μ
′
1),�0, 0, . . . ,�0, 0, (α

(1,s)
(�x1,μ1)

− id)(�ys, μ
′
s))

= ((fμ1

1 − id)(�y1), 0,�0, 0, . . . ,�0, 0, (c
μ1
s − id)(�ys),

vs((id+cs + · · ·+ cμ1−1
s )(�ys))

t) ∈ I,

for all (�y1, μ
′
1, . . . , �ys, μ

′
s) ∈ H1 �� . . . �� Hs. If 1 < i ≤ s, then

(λ(�x1,μ1,...,�xs,μs) − id)(�y1, μ
′
1, . . . , �ys, μ

′
s)

= (�0, 0, . . . , (α
(i,i−1)
(�xi,μi)

− id)(�yi−1, μ
′
i−1), (λ

(i)
(�xi,μi)

− id)(�yi, μ
′
i), . . . ,�0, 0)

= (�0, 0, . . . , (cμi

i−1 − id)(�yi−1), 0, (f
μi

i − id)(�yi), 0, . . . ,�0, 0) ∈ I.

Note that if 1 < i ≤ s, then the endomorphism of (Z/(pi−1))
ni−1 induced by

c
p
si
i

i−1 − id is nonzero and thus there exists �yi−1 such that (c
p
si
i

i−1 − id)(�yi−1) /∈
(pi−1Z/(p

ri−1

i−1 ))
ni−1 . If i = 1, then the endomorphism of (Z/(ps))

ns induced by

c
p
s1
1

s −id is nonzero and thus there exists �ys such that (c
p
s1
1

s −id)(�ys) /∈ (psZ/(p
rs
s ))ns .

Hence we may assume that

(�0, 0, . . . , �zk, νk, . . . ,�0, 0) ∈ I,
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for some �zk ∈ (Z/(prkk ))nk \ (pkZ/(p
rk
k ))nk and some νk ∈ Z/(prkk ). As above, we

get that

(�0, 0, . . . ,�0, bk(�yk, �zk), . . . ,�0, 0) ∈ I

(where bk(�yk, �zk) is in position 2k). SinceQk is nondegenerate and �zk∈(Z/(prkk ))nk\
(pkZ/(p

rk
k ))nk , there exists �yk ∈ (Z/(prkk ))nk \ (pkZ/(prkk ))nk such that bk(�yk, �zk) is

an invertible element in Z/(prkk ). Hence

wk = (�0, 0, . . . ,�0, 1, . . . ,�0, 0) ∈ I

(where 1 is in position 2k). We get by the above argument that

w1 = (�0, 1,�0, 0, . . . ,�0, 0), . . . , ws = (�0, 0, . . . ,�0, 0,�0, 1) ∈ I.

Now it is easy to see that the ideal generated by {w1, . . . , ws} is equal to

{(�z1, ν1, . . . , �zs, νs) | νi ∈ Z/(prii ), �zi ∈ Vi},
where

Vi = 〈(fa1
i ca2

i − f
a′
1

i c
a′
2

i )(�y) | ak, a′k ∈ Z, �y ∈ (Z/(prii ))ni〉+,
for 1 ≤ i ≤ s. Note that fi and ci are elements of relative prime order in the
group Aut((Z/(prii ))ni). Hence the subgroup generated by fi and ci is 〈fici〉, for
1 ≤ i ≤ s. Therefore

Vi = Im(fici − id),

for 1 ≤ i ≤ s. Note that

(fici − id)p
ri
i = f

p
ri
i

i c
p
ri
i

i − id+pihi

= c
p
ri
i

i − id+pihi

= (ci − id)p
ri
i + pih

′
i,

for some hi, h
′
i ∈ End((Z/(prii ))ni). Clearly, pih

′
i is in the Jacobson radical of the

ring End((Z/(prii ))ni). Hence fici − id is an automorphism if and only if ci − id is
an automorphism. Thus the result follows. �

4. Realizations of constructions of simple braces

In this section concrete examples of finite simple left braces constructed as in
Theorem 3.6 are given. Using Proposition 2.7 and Theorem 2.6, we then also
construct more examples of simple left braces.

First, we need some computations for matrices over Z, which we will later reduce
to Z/(pr). Consider the companion matrix of the polynomial xn−1 + xn−2 + · · ·+
x+ 1,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −1
1 0 · · · 0 −1

0
. . .

. . .
...

...
...

. . .
. . . 0 −1

0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ GLn−1(Z),

that has multiplicative order n. Let E ∈ Mn−1(Z) be the matrix given by

E =
1

2
(Id+DtD + (D2)tD2 + · · ·+ (Dn−1)tDn−1).
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By a straightforward computation, one can check that

E =

⎛
⎜⎜⎜⎜⎝
n− 1 −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 n− 1

⎞
⎟⎟⎟⎟⎠ .

Since Dn = Id, it follows that DtED = E. It is an easy exercise to check that
det(E) = nn−2.

Consider the quadratic form Q over Z defined as

Q(�x) =
∑

1≤i<j≤n−1

xixj

for �x = (x1, x2, . . . , xn−1) ∈ Z
n−1. One can check that

Q(D(�x)) = Q(�x) +

(
n− 1

2

)
x2
n−1 − (n− 1)

n−2∑
i=1

xixn−1.(15)

Let s be an integer greater than 1. Let p1, p2, . . . , ps be different prime numbers
and let r1, r2, . . . , rs be positive integers. Assume that p1, . . . , ps−1 are odd. If
ps = 2, then we also assume that rs = 1. Consider the following matrices:

Di ≡ D (mod prii ), Ei ≡ E (mod prii )

with Di, Ei ∈ GL
p
ri+1
i+1 −1

(Z/(prii )), for 1 ≤ i < s, and Ds, Es ∈ GLp
r1
1 −1(Z/(p

rs
s )).

Recall that det(Ei) = nni−2
i , where ni = p

ri+1

i+1 , for 1 ≤ i < s, and ns = pr11 . The

order of Dj is nj , and Dt
jEjDj = Ej . Hence, Dj is an element of order nj in the

orthogonal group determined by the nonsingular quadratic form corresponding to
Ej on the free module (Z/(pj)

rj )nj−1 if pj is odd. Moreover Dj − Id is invertible
(because 1 is not an eigenvalue of Dj modulo (pj)).

If ps=2, then we consider the quadratic formQs on the vector space (Z/(2))p
r1
1 −1

defined by Qs(x1, . . . , xp
r1
1 −1) =

∑
1≤i<j≤p

r1
1 −1 xixj . In this case, let vs = (0, . . . , 0,(

p
r1
1 −1
2

)
) ∈ (Z/(2))p

r1
1 −1. By (15) we have that

Qs(Ds(�x)) = Qs(�x) +

(
pr11 − 1

2

)
xp

r1
1 −1 = Qs(�x) + vs�x

t.

Let 0 ≤ r′i ≤ ri. Consider in M
p
r′
i

i (ni−1)
(Z/(prii )) the block diagonal matrices

with p
r′i
i blocks of degree ni − 1:

Ci =

⎛
⎜⎜⎜⎜⎝
Di 0 · · · 0

0 Di
. . .

...
...

. . .
. . . 0

0 · · · 0 Di

⎞
⎟⎟⎟⎟⎠ and Bi =

⎛
⎜⎜⎜⎜⎝
Ei 0 · · · 0

0 Ei
. . .

...
...

. . .
. . . 0

0 · · · 0 Ei

⎞
⎟⎟⎟⎟⎠ .
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Consider the following block permutation matrix:

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 Ji

Ji 0
. . . 0

0
. . .

. . .
. . .

...
...

. . . Ji 0 0
0 · · · 0 Ji 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ji ∈ Mni−1(Z/(p
ri
i )) is the identity matrix. Notice that F t

i = F−1
i and

F t
iBiFi

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Ji · · · 0 0

0 0
. . . 0

0
. . .

. . .
. . .

...
...

. . . 0 0 Ji
Ji · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ei 0 · · · · · · 0

0 Ei
. . .

...
...

. . .
. . .

. . .
...

...
. . . Ei 0

0 · · · · · · 0 Ei

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 Ji

Ji 0
. . . 0

0
. . .

. . .
. . .

...
...

. . . Ji 0 0
0 · · · 0 Ji 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Bi.

Therefore, Fi is an element of order p
r′i
i in the orthogonal group determined by

the nonsingular quadratic form corresponding to Bi on the free module

(Z/(prii ))p
r′i
i (ni−1) if pi is odd.

For ps = 2, if r′s = 0, then Fs is the identity matrix. If r′s = 1, then we
consider the quadratic form Q′

s on the vector space (Z/(2))2(ns−1) defined by
Q′

s(x1, . . . , x2(ns−1)) = Qs(x1, . . . , xns−1) + Qs(xns
, . . . , x2(ns−1)) and the element

v′s = (vs, vs) ∈ (Z/(2))2(ns−1). In this case Fs is an element of order 2 in the or-
thogonal group determined by the nonsingular quadratic form Q′

s. We also have
that Q′

s(Cs(�x)) = Q′
s(�x) + v′s�x

t.
Moreover, we have F−1

i CiFi = Ci, so that CiFi = FiCi, and Ci− Id is invertible
because Di − Id is invertible.

By Theorem 3.6, we can construct a simple left brace with additive group

(Z/(pr11 ))p
r′1
1 (p

r2
2 −1)+1×· · ·×(Z/(p

rs−1

s−1 ))
p
r′s−1
s−1 (prs

s −1)+1 ×(Z/(prss ))p
r′s
s (p

r1
1 −1)+1. First

take the quadratic form Qi corresponding to the matrix Bi if pi is odd and fi cor-
responding to the matrices Fi. Further, take ci corresponding to the matrix Ci for
1 ≤ i ≤ s.

Note that simplicity follows from Theorem 3.6 because ci − id is invertible for
i = 1, 2, . . . , s.

One can also construct concrete examples of simple left braces using Theorem 2.6.
For this we will need the following lemma.

Lemma 4.1. With the notation of Section 3, consider the left brace H1 �� . . . �� Hs

of Theorem 3.6. Then the map

ϕi : (H1 �� . . . �� Hs, ·) −→ Z/(prii )
(�x1, μ1, . . . , �xs, μs) �→ qi(�xi, μi)

is a homomorphism of groups.
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Proof. Let (�x1, μ1, . . . , �xs, μs), (�y1, μ
′
1, . . . , �ys, μ

′
s) ∈ H1 �� . . . �� Hs. Using the

formula (8) of the lambda map, we get

ϕi((�x1, μ1, . . . , �xs, μs) · (�y1, μ′
1, . . . , �ys, μ

′
s))

= ϕi((�x1, μ1, . . . , �xs, μs) + λ(�x1,μ1,...,�xs,μs)(�y1, μ
′
1, . . . , �ys, μ

′
s))

= ϕi((�x1, μ1, . . . , �xs, μs) + (λ
(1)
(�x1,μ1)

α
(2,1)
(�x2,μ2)

(�y1, μ
′
1), . . . ,

λ
(s−1)
(�xs−1,μs−1)

α
(s,s−1)
(�xs,μs)

(�ys−1, μ
′
s−1), λ

(s)
(�xs,μs)

α
(1,s)
(�x1,μ1)

(�ys, μ
′
s)))

=

{
qi((�xi, μi) + (λ

(i)
(�xi,μi)

α
(i+1,i)
(�xi+1,μi+1)

(�yi, μ
′
i))) if 1 ≤ i < s,

qs((�xs, μs) + (λ
(s)
(�xs,μs)

α
(1,s)
(�x1,μ1)

(�ys, μ
′
s))) if i = s.

Now we have that

qi((�xi, μi) + (λ
(i)
(�xi,μi)

α
(i+1,i)
(�xi+1,μi+1)

(�yi, μ
′
i)))

= qi(�xi, μi) + qi(α
(i+1,i)
(�xi+1,μi+1)

(�yi, μ
′
i)) (by (11))

= qi(�xi, μi) + qi(�yi, μ
′
i) (by Lemma 3.2)

and

qs((�xs, μs) + (λ
(s)
(�xs,μs)

α
(1,s)
(�x1,μ1)

(�ys, μ
′
s)))

= qs(�xs, μs) + qs(α
(1,s)
(�x1,μ1)

(�ys, μ
′
s)) (by (11))

= qs(�xs, μs) + qs(�ys, μ
′
s) (by Lemma 3.2).

Therefore, the result follows. �

Lemma 4.2. With the notation of Section 3, assume that for some i ∈ {1, . . . , s}
there exists a divisor m of ni such that

Qi(�xi) =

m∑
j=1

Q(�xi,j),

fi(�xi) = (f(�xi,1), . . . , f(�xi,m)), and ci(�xi) = (c(�xi,1), . . . , c(�xi,m)),

where �xi = (�xi,1, . . . , �xi,m); �xi,j ∈ (Z/(prii ))
ni
m ; Q is a nonsingular quadratic form

over (Z/(prii ))
n1
m ; f is an element in the orthogonal group determined by Q; if i �= s,

then c also is an element in the orthogonal group determined by Q; and if i = s, then
c is an automorphism of (Z/(prss ))

ns
m , vs = (v, . . . , v), for some v ∈ (Z/(prss ))

ns
m ,

and Q(c(�x)) = Q(�x) + v�xt. Let σ ∈ Symm. Then the map

ψσ : H1 �� . . . �� Hs −→ H1 �� . . . �� Hs,

defined by

ψσ(�x1, μ1, . . . , �xs, μs)

= (�x1, μ1, . . . , �xi−1, μi−1, �xi,σ(1), . . . , �xi,σ(m), μi, �xi+1, μi+1, . . . , �xs, μs),

is an automorphism of the left brace H1 �� . . . �� Hs of Theorem 3.6.
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Proof. Let (�x1, μ1, . . . , �xs, μs), (�y1, μ
′
1, . . . , �ys, μ

′
s) ∈ H1 �� . . . �� Hs. Clearly, ψσ is

an automorphism of the additive group of the left brace H1 �� . . . �� Hs. Thus, to
prove the result, it is enough to show that

ψσ(λ(�x1,μ1,...,�xs,μs)(�y1, μ
′
1, . . . , �ys, μ

′
s))

= λψσ(�x1,μ1,...,�xs,μs)ψσ(�y1, μ
′
1, . . . , �ys, μ

′
s).(16)

Note that if 1 ≤ i < s, then the component i of λ(�x1,μ1,...,�xs,μs)(�y1, μ
′
1, . . . , �ys, μ

′
s) is

λ
(i)
(�xi,μi)

α
(i+1,i)
�xi+1,μi+1

(�yi, μ
′
i).

The component s of λ(�x1,μ1,...,�xs,μs)(�y1, μ
′
1, . . . , �ys, μ

′
s) is λ

(s)
(�xs,μs)

α
(1,s)
�x1,μ1

(�ys, μ
′
s).

Since qi(�xi, μi) = μi −
∑m

j=1Q(�xi,j) and bi(�xi, �zi) =
∑m

j=1 b(�xi,j , �zi,j), where

b(�xi,j , �zi,j) = Q(�xi,j + �zi,j) − Q(�xi,j) − Q(�zi,j), the reader easily can check (16)
using the form of fi, ci (and vs in the case where i = s). �

Because of Proposition 2.7 and Theorem 2.6, we are now in a position to con-
struct more concrete examples of simple left braces that are iterated matched prod-
ucts of left ideals.

Example 4.3. Let p1, p2, p3, p4 be different prime numbers. For simplicity, assume
that all are odd. We can construct as above two simple left braces H1 �� H2 and
H3 �� H4, where

H1 = H(p1, p4(p2 − 1), Q1, id), H2 = H(p2, p1 − 1, Q2, id),

H3 = H(p3, p2(p4 − 1), Q3, id), H4 = H(p4, p3 − 1, Q4, id),

for some nonsingular quadratic forms Qj where

Q1(x1, . . . , xp4(p2−1)) =

p4−1∑
j=0

Q′
1(x1+(p2−1)j , . . . , xp2−1+(p2−1)j),

Q3(y1, . . . , yp2(p4−1)) =

p2−1∑
k=0

Q′
3(y1+(p4−1)k, . . . , yp4−1+(p4−1)k),

Q′
1 is a nonsingular quadratic form over (Z/(p1))

p2−1, Q2 is a nonsingular quadratic
form over (Z/(p2))

p1−1, Q′
3 is a nonsingular quadratic form over (Z/(p3))

p4−1, and
Q4 is a nonsingular quadratic form over (Z/(p4))

p3−1. Let c′1 be an element of
order p2 in the orthogonal group determined by Q′

1, let d1 be an element of order
p1 in the orthogonal group determined by Q2, let c′2 be an element of order p4
in the orthogonal group determined by Q′

3, and let d2 be an element of order
p3 in the orthogonal group determined by Q4. Assume that the endomorphisms
c′1 − id, d1 − id, c′2 − id, and d2 − id are invertible. Note that the maps c1 ∈
Aut((Z/(p1))

p4(p2−1)) and c2 ∈ Aut((Z/(p3))
p2(p4−1)) defined by

c1(�x1, . . . , �xp4
) = (c′1(�x1), . . . , c

′
1(�xp4

))

and

c2(�y1, . . . , �yp2
) = (c′2(�y1), . . . , c

′
2(�yp4

)),

for �xj ∈ (Z/(p1))
p2−1 and �yk ∈ (Z/(p3))

p4−1, are elements in the orthogonal
groups determined by Q1 and Q3 respectively. The actions of the matched pairs
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(H1, H2, α
(2,1), α(1,2)) and (H3, H4, α

(4,3), α(3,4)) are defined by α(j,i)(�z, μ′) = α
(j,i)
(�z,μ′)

and

α
(2,1)
(�z,μ′)(�x, μ) = (c

q2(�z,μ
′)

1 (�x), μ),

α
(1,2)
(�x,μ)(�z, μ

′) = (d
q1(�x,μ)
1 (�z), μ′),

α
(4,3)
(�u,ν′)(�y, ν) = (c

q4(�u,ν
′)

2 (�y), ν),

α
(3,4)
(�y,ν)(�u, ν

′) = (d
q3(�y,ν)
2 (�u), ν′).

Let σ1 and σ2 be the cyclic permutations σ1 = (1, 2, . . . , p2) and σ2 = (1, 2, . . . , p4).
By Lemma 4.2, the maps ψσ1

: H3 �� H4 −→ H3 �� H4, defined by

ψσ1
(�y1, . . . , �yp2

, ν, �u, ν′) = (�yσ1(1), . . . , �yσ1(p2), ν, �u, ν
′),

and ψσ2
: H1 �� H2 −→ H1 �� H2, defined by

ψσ2
(�x1, . . . , �xp4

, μ, �z, μ′) = (�xσ2(1), . . . , �xσ2(p4), μ, �z, μ
′),

are automorphisms of left braces. We define α : (H3 �� H4, ·) −→ Aut(H1 ��
H2,+, ·) and β : (H1 �� H2, ·) −→ Aut(H3 �� H4,+, ·) by

α(�y1, ν, �u, ν
′) = ψq4(�u,ν

′)
σ2

and β(�x1, μ, �z, μ
′) = ψq2(�z,μ

′)
σ1

.

By Lemma 4.1, α and β are homomorphisms of groups. Denote α(�y1, ν, �u, ν
′) by

α(�y1,ν,�u,ν′) and denote β(�x1, μ, �z, μ
′) by β(�x1,μ,�z,μ′). Note that

αβ(�x,μ,�z,μ′)(�y,ν,�u,ν
′) = α

ψ
q2(�z,μ′)
σ1

(�y,ν,�u,ν′)
= ψq4(�u,ν

′)
σ2

= α(�y,ν,�u,ν′)

and

βα(�y,ν,�u,ν′)(�x,μ,�z,μ
′) = β

ψ
q4(�u,ν′)
σ2

(�x,μ,�z,μ′)
= ψq2(�z,μ

′)
σ1

= β(�x,μ,�z,μ′).

Hence, by Proposition 2.7, (H1 �� H2, H3 �� H4, α, β) is a matched pair of left
braces, and the matched product (H1 �� H2) �� (H3 �� H4) is a simple left brace.

Remark 4.4. Clearly Example 4.3 can be generalized to matched products of arbi-
trary two simple braces of coprime orders constructed as in Theorem 3.6; namely,
by replacing H1 �� H2 and H3 �� H4 by any braces as in Theorem 3.6. Even
more, we can construct simple braces as iterated matched product of left ideals
B1 �� . . . �� Bn, where every Bi is a simple left brace as in Theorem 3.6.

5. Comments and questions

In view of Remark 1.3 and the comment following Theorem 2.6, the following
seems to be a crucial step in the general program of describing all finite simple left
braces.

Problem 5.1. Describe the structure of all left braces of order pn for a prime p
and describe the group Aut(B,+, ·) of automorphisms for all such left braces.

Given two distinct primes p and q, in the previous sections we constructed many
simple left braces of order pαqβ with some natural restrictions on the positive
integers α and β. As mentioned in the introduction, these natural restrictions
come from a recent result of Smoktunowicz that yields a necessary condition for a
left brace of order pαqβ to be simple. Namely, q | (pi − 1) and p | (qj − 1), for some
1 ≤ i ≤ α and 1 ≤ j ≤ β. Hence, the following seems to be an interesting problem.
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Problem 5.2. Determine for which prime numbers p, q and positive integers α, β,
there exists a simple left brace of cardinality pαqβ .

An easy observation shows that not all such orders can occur.

Remark 5.3. Let G be a group of order pnq, where n is the multiplicative order
of p in (Z/(q))	 and p and q are distinct prime numbers. Because of the Sylow
theorems, it is easy to see that either a Sylow p-subgroup or a Sylow q-subgroup of
G is a normal subgroup. By Proposition 6.1 in [3], every normal Sylow subgroup
of the multiplicative group of a left brace B is an ideal of B. Therefore, G does not
admit a structure of a simple left brace. For instance, any group of order 23 · 7 has
a normal Sylow 2-subgroup or a normal Sylow 7-subgroup, so there is no simple
left brace of order 23 · 7.
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