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A SPECIAL CAYLEY OCTAD

ARTIE PRENDERGAST-SMITH

Abstract. We prove that a special blowup of projective space of dimension
3 in characteristic 2 is a Mori dream space. This confirms a prediction of the

Morrison–Kawamata cone conjecture.

A Cayley octad is a set of 8 points in P3 which are the base locus of a net of
quadrics. Blowing up the points of the octad gives a morphism to P2 defined by
the net; the fibres of this morphism are intersections of two quadrics in the net,
hence curves of genus 1. The generic fibre therefore has a group structure, and the
action of this group on itself extends to a birational action on the whole variety. In
particular, if the generic fibre has a large group of rational points, the birational
automorphism group, and hence the birational geometry, of the variety must be
complicated. It is natural to ask whether the converse is true: if the generic fibre
has only a small group of rational points, is the birational geometry of the variety
correspondingly simple?

In this paper we study a special Cayley octad with the property that the generic
fibre has finitely many rational points. In Section 1 we find that such an octad
only exists in characteristic 2 and is unique up to projective transformations. Our
main results then show that the simplicity of the generic fibre is indeed reflected in
the simplicity of the birational geometry of our blowup. In Section 2 we show that
the cones of nef and movable divisors are rational polyhedral, as predicted by the
Morrison–Kawamata conjecture. Finally, in Section 3 we prove that our blowup
has the “best possible” birational geometric properties: it is a Mori dream space.

1. Nets and fibrations

Throughout the paper we will consider a subset {p1, . . . , p8} ⊂ P3 of 8 distinct
points which are the intersection Q1∩Q2∩Q3 of three quadrics. In particular, this
implies that the intersections are transverse at each pi. The net spanned by the Qi

is the 2-dimensional linear system N = {
∑

i λiQi | λi ∈ k}.
We start by reproducing some lemmas from Totaro’s paper [Tot]. Since the

proofs are short and elementary, we include them.

Lemma 1.1. No 3 of the points {p1, . . . , p8} are collinear, and no 5 are coplanar.

Proof. Suppose L is a line containing 3 of the points. Then for any quadric Q ∈ N ,
we have |Q∩L| ≥ 3, so by Bézout Lmust be contained in Q. Since this is true for an
arbitrary Q ∈ N , this contradicts the hypothesis that Q1 ∩Q2 ∩Q3 = {p1, . . . , p8}.
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Now let Π be a plane containing 5 of the points. By the previous paragraph, no 3
are collinear. Then any quadric Q ∈ N must intersect Π in the unique conic through
the 5 points, again contradicting the hypothesis Q1 ∩Q2 ∩Q3 = {p1, . . . , p8}. �
Lemma 1.2. Four of the basepoints {p1, . . . , p8} are coplanar if and only if the
other four are too.

Proof. Suppose that 4 of the points lie in a plane Π. Since no 3 of the points lie
on a line, there is a pencil L � P1 of conics in Π containing these 4 points. If no
quadric in N contained Π, restriction to Π would give a morphism N → L. But
any such morphism must be constant, so any quadric Q ∩ N must intersect Π in
the same conic. Again this contradicts Q1 ∩Q2 ∩Q3 = {p1, . . . , p8}. So there is a
quadric Q containing Π, which must then be of the form Q = Π∪Π′. Since neither
plane can contain 5 basepoints, each must contain exactly 4. �

Now let X be the blowup of P3 at the points {p1, . . . , p8}. Then Pic(X) ∼= Z9

is freely generated by H, the pullback of the hyperplane class, together with the
exceptional divisors Ei for i = 1, . . . , 8.

If Q is a quadric in the net N , then its proper transform on X has class 2H −∑
i Ei = − 1

2KX . Since the quadrics in the net N intersect transversely at each
pi, their proper transforms on X form a basepoint-free linear system. So we get a
morphism f : X → P2 given by divisors in the linear system − 1

2KX .

Lemma 1.3. The generic fibre of f is a regular curve of genus 1.

Proof. The generic fibre of a surjective morphism between nonsingular varieties is
always regular.

Fibres of f are proper transforms on X of intersections of two distinct quadrics
in the net N . Since the Qi intersect transversely at the points pi, these intersections
are nonsingular at each pi. So each such intersection is isomorphic to its proper
transform on X, which is the corresponding fibre of f . By adjunction, the intersec-
tion of two quadrics in P3 is a curve of genus 1. So every fibre of f over a closed
point of P2 has genus 1, which implies the same for the generic fibre. �

If k has characteristic 0, then we can replace “regular” by smooth in the state-
ment of the lemma. However, this is false in positive characteristic, as we will
see in our main example, which lives in characteristic 2. Fibrations of this kind,
with generic fibre regular but not smooth and of arithmetic genus 1, are called
quasi-elliptic.

From now on we write η for the generic point of P2 and Xη for the generic fibre
of f . Restriction of divisors gives a surjection Pic(X) → Pic(Xη) whose kernel is
spanned by prime divisors on X which do not surject onto P2. This shows that
Pic(Xη) is a quotient of Pic(X); in particular, it is a finitely generated abelian

group. Denote by Pic0(Xη) the kernel of the degree homomorphism Pic(Xη) → Z.
We call it the Mordell–Weil group of the octad {p1, . . . , p8} or of the net N or of
the map f .

Definition 1.4. The Mordell–Weil rank ρ of the octad {p1, . . . , p8} (or of the net
N or of the map f) is defined as the rank of the Mordell–Weil group Pic0(Xη). An
octad (or net or map) with Mordell–Weil rank 0 is called extremal.

Let us explain the significance of this condition for the birational geometry of X.
The group Pic0(Xη) acts on Xη by automorphisms, and this extends to an action
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on X by birational automorphisms. By a standard fact of minimal model theory
[KM, Theorem 3.52], since KX has degree 0 on all curves contracted by f , these
birational automorphisms are in fact isomorphisms in codimension 1. So we get an
action of Pic0(Xη) on the space N1(X) of numerical classes of divisors, preserving
the cones of effective and movable divisors. If we want to find examples of blowups
X whose cones of divisors are finitely generated, we therefore need the fibration f
to be extremal.

To find our example of an extremal fibration, we will use the following formula.

Theorem 1.5 (Totaro [Tot]). The Mordell–Weil rank of the octad {p1, . . . , p8} is
given by

ρ = 7− a

2
,

where a is the number of planes in P3 containing 4 of the points {p1, . . . , p8}.
In [PS] we used this formula to deduce the following theorem.

Theorem 1.6. If the characteristic of k is not 2, there are no extremal Cayley
octads in P3

k. If the characteristic of k is 2, up to projective equivalence there is a
unique extremal Cayley octad O in P3

k, for example given by the F2-rational points
of one standard affine patch A3

k ⊂ P3
k.

The first part of the following proof was suggested by Igor Dolgachev; this sim-
plifies the proof given in [PS]. We reproduce a proof here since it gives us detailed
information about the extremal octad that we need in later sections.

Proof. Let {p1, . . . , p8} be an extremal Cayley octad. The basic idea is to study
this octad by projecting away from one of the points. First we need some basic
facts about the combinatorics of such an octad.

Since the octad is extremal, Theorem 1.5 says that there are 14 planes each
containing four points, so the average number of planes through a point is 14·4

8 = 7.
On the other hand, by Lemma 1.2 for each plane Π containing 4 of the points
including pi, there is a plane Π′ containing the other 4 points (and not pi). So pi
can lie on at most 7 of the 14 planes. Together these statements imply that each
point pi lies on exactly 7 of the 14 planes.

Each of the 14 planes contains
(
4
2

)
= 6 pairs of the points {p1, . . . , p8}. Since

there are
(
8
2

)
= 28 such pairs in total, the average number of planes containing a

given pair of points is 14·6
28 = 3. On the other hand given any pair of points {pi, pj},

there is at most 1 plane containing these two and any other point pk, since two
distinct planes cannot share 3 noncollinear points. So there are at most 3 planes
containing pi and pj . Together these statements imply that there are precisely 3
planes containing each pair {pi, pj}.

Now fix one of the points, say p1. Projecting from p1 gives a rational map
P3 ��� P2. By the previous two paragraphs, the images of the other pi and the
planes containing p1 give 7 points and 7 lines in P2 with each line passing through 3
points and each point lying on 3 lines. This configuration is the Fano plane, which
is realised in P2

k if and only if k has characteristic 2. This proves the first claim.
Next we turn to the uniqueness statement. First I claim that given any triple

{pi, pj .pk} of basepoints, the plane containing these points must contain a fourth
basepoint pl. This follows from the argument two paragraphs back: we know there
are 3 planes containing {pi, pj} and 2 other basepoints, and no two of these planes
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can share any of the other 6 basepoints. So each of the 6 points must appear on
precisely one of the 3 planes.

Now take any 3 of the points, and label them {p1, p2, p3}. The plane spanned by
these contains a fourth basepoint, which we call p4. Let p5 be any other basepoint;
by Lemma 1.1, it does not lie on the plane containing p1, p2, p3, p4. Similarly, let p6
denote the fourth basepoint in the plane spanned by {p1, p2, p5} and let p7 denote
the fourth basepoint in the plane spanned by {p1, p3, p5}.

With this labelling, the facts that no two planes can share 3 basepoints and that
4 of the basepoints are coplanar if and only if the other 4 are too now completely
determine the configuration of 14 coplanar quadruples of basepoints. Writing i in
place of pi, the quadruples are:

{1, 2, 3, 4} {1, 2, 5, 6} {1, 2, 7, 8} {1, 3, 5, 7} {1, 3, 6, 8} {1, 4, 5, 8}
{1, 4, 6, 7} {5, 6, 7, 8} {3, 4, 7, 8} {3, 4, 5, 6} {2, 4, 6, 8} {2, 4, 5, 7}
{2, 3, 6, 7} {2, 3, 5, 8}

So far we have determined the combinatorics of an extremal fibration; now we turn
to the geometry. Denote by X,Y, Z,W the homogeneous coordinates on P3. By
projective transformations we can put any 4 noncoplanar points at the 4 coordinate
points of P3, so let us declare that we have

p1 = [1, 0, 0, 0], p2 = [0, 1, 0, 0], p3 = [0, 0, 1, 0], p5 = [0, 0, 0, 1].

By changing coordinates in the planes {Y = 0}, {Z = 0}, and {W = 0} we can
also move the points p4, p6, p7 while keeping the points above fixed. In this way
we can further arrange to have

p4 = [1, 1, 1, 0], p6 = [1, 1, 0, 1], p7 = [1, 0, 1, 1].

Now let p8 = [a, b, c, d]. Since p8 lies in the plane spanned by p2, p3, and p5, we
get a = 0. Now coplanarity of the points p1, p2, p7, p8 means the following matrix
must have determinant zero: ⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 1 0 b

0 0 1 c

0 0 1 d

⎞⎟⎟⎟⎟⎟⎟⎠
This yields c = d. A similar calculation with the quadruple {p5, p6, p7, p8} yields
b = c , so we conclude that

p8 = [0, 1, 1, 1].

This proves uniqueness of the extremal octad O up to projective equivalence.
Finally, to prove the last claim that the octad we found is projectively equiva-
lent to the F2-points of an affine patch A3 ⊂ P3, observe that the hyperplane
{X + Y + Z +W = 0} does not pass through any of the points p1, . . . , p8. �

Remark 1.7. The explicit description of our octad obtained in the proof gives us
several useful pieces of information. By changing coordinates in P3 we can take
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our octad to the set of F2-points of the affine patch {W 
= 0}. In these coordinates
there is a particularly convenient spanning set of quadrics for our net, namely

Q1 = X(X −W ), Q2 = Y (Y −W ), Q3 = Z(Z −W ).

One can easily check that every quadric in the net is singular, so this gives an
example where Bertini’s theorem fails. Similarly, the intersection of any two distinct
quadrics is a cuspidal curve; this justifies our earlier claim that the map f : X → P2

is a quasi-elliptic fibration.
Finally, although we will not use it again, let us mention that one can use the

combinatorial information in the proof to calculate the Mordell–Weil group: we

find Pic0(Xη) ∼= (Z/2Z)
3
.

To conclude this section, we record some consequences of Theorem 1.6 for use
in later sections. The first one follows immediately from linear algebra over F2.

Corollary 1.8. There is an action of the group Aff(3, 2) of affine transformations
of F3

2 on P3 which preserves the set {p1, . . . , p8} and is transitive on points, pairs,
and triples in that set. This action lifts to an action of Aff(3, 2) on X. �
Corollary 1.9. Any subset of 5 points in {p1, . . . , p8} contains a coplanar quadru-
ple.

Proof. Given 5 points, let {pi, pj , pk} be the complementary set of 3 points. As
explained in the proof of the theorem, this set is contained in a coplanar quadruple
{pi, pj , pk, pl}. By Lemma 1.2, the complement of this quadruple is then another
coplanar quadruple, contained in our original set of 5 points. �

Finally we say something about reducible fibres of f . Recall that the fibres
of f are isomorphic to intersections of two quadrics in P3, so a reducible fibre
must contain either a line or a conic. We will need to understand the first kind of
component.

Corollary 1.10. A line in P3 is the proper transform of a component of a reducible
fibre of f if and only if it is the line through two of the points {p1, . . . , p8}.

Let cij denote the proper transform on X of the line through pi and pj. Then
cij and ckl intersect on X if and only if {i, j, k, l} is a coplanar quadruple.

Proof. For the first statement, the morphism f : X → P2 is given by the linear
system of proper transforms of quadrics in the net, so the proper transform of a line
L is contained in a fibre of f if and only if it is disjoint from the proper transform of
a general quadric Q in the net. In P3 the line and the quadric intersect transversely
in two points, so blowing up makes them disjoint if and only if the two points are
among the points {p1, . . . , p8}.

For the second statement, first note that if {i, j, k, l} is a coplanar quadruple,
then the two lines corresponding to cij and ckl meet in a point in the plane. Since
the first line contains pi and pj and the second contains pk and pl, the intersection
point is not a basepoint of the net. So after blowing up, the lines still intersect.
Conversely suppose cij and ckl intersect on X. Then their proper transforms on
P3 are a pair of intersecting lines, spanning a plane. If the lines intersect at a
nonbasepoint of the net, then {i, j} and {k, l} are distinct indices, so {i, j, k, l} is a
coplanar quadruple. If the lines intersect at a basepoint, then i = k, say. But then
we have two distinct lines in P3 through pi; after blowing up they become disjoint
on X, contrary to assumption. �
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Figure 1. Configuration of lines in fibres. The curve cij is labelled ij.

For later reference the configuration of the curves cij on X is shown in Figure 1.

2. Nef and movable cone

From now on we fix k = F2. We write O to denote the unique extremal Cayley
octad {p1, . . . , p8} in P3

k found in the previous section and X to denote the blowup
of P3

k at this set of points. In this section we prove that the cones of nef and
movable divisors on X are finitely generated polyhedral cones.

This result is interesting because it gives evidence for a version of the Morrison–
Kawamata cone conjecture [Mo, Ka]. The most general form of this conjecture,
first stated in [Tot], says that if Y is a projective variety with an effective divisor
Δ such that (Y,Δ) is a klt pair and KY + Δ is numerically trivial, then the nef
and movable cones of X should have finite polyhedral fundamental domains for the
actions of the groups of automorphisms and pseudo-automorphisms respectively.
Let us check that this conjecture applies to our variety:

Lemma 2.1. There is a Q-divisor Δ on X such that (X,Δ) is klt and KX +Δ is
numerically trivial. Therefore the Morrison–Kawamata conjecture applies to X.

Since −KX is basepoint-free, in characteristic 0 this would follow immediately
from Bertini’s theorem by taking an appropriate multiple of a smooth member of
| −mKX | for any m > 1. In our example we cannot invoke Bertini, so instead we
argue directly.

Proof. As explained in the remarks after the proof of Theorem 1.6 we can assume
that {p1, . . . , p8} are the F2-points of the affine patch {W 
= 0} ⊂ P3. Let

Q1 = X(X −W ), Q2 = Y (Y −W ), Q3 = Z(Z −W ),

each of which is a reducible quadric in our net, and let D be the proper transform of
Q1∪Q2∪Q3 on X. Then D = 6H−3

∑
i Ei = − 3

2KX , so KX + 2
3D is numerically

trivial. We will show that the pair (X, 23D) is klt. The singular locus of D is a
union of 3 lines L1 ∪ L2 ∪ L3, where Li is the intersection of the two components
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of Qi. These 3 lines lie in the plane {W = 0}, so the divisor D has nonnormal
crossing singularities precisely at the 3 intersection points Li ∩ Lj , near each of
which D is a union of 4 planes. Let ρ : Y → X be the blowup of these 3 points,

with exceptional divisors denoted Fi. The proper transform D̃ of D on Y is a
simple normal crossing and meets the exceptional divisors transversely, so this is a
log resolution of (X, 23D). We calculate

ρ∗(KX +
2

3
D) = KY − 2

∑
i

Fi +
2

3

(
D̃ + 4

∑
i

Fi

)

= KY +
2

3

(
D̃ +

∑
i

Ei

)
.

The term in parentheses is then a simple normal crossing divisor and appears with
all coefficients less than 1, so the pair (X, 23D) is klt, as required. �

We will show that the Morrison–Kawamata conjecture is true for X for the
simplest reason: the nef and movable cones are themselves finite polyhedral cones.
This is interesting since most of the nontrivial examples in which the Morrison–
Kawamata conjecture has been verified are over a field of characteristic 0, but the
conjecture itself is equally meaningful in all characteristics. Our example therefore
gives one of the few pieces of evidence for this broader version of the conjecture.
(The other main example I am aware of is Totaro’s proof of the conjecture for
rational elliptic surfaces [Tot, Theorem 8.2].)

We use the following notation in the rest of the paper. We denote by N1(X)
the real vector space Pic(X)⊗R, and by N1(X) the real vector space spanned by
numerical equivalence classes of curves on X. We denote by H the pullback of the
hyperplane class to X, and by Ei the exceptional divisor over the point pi. Dually,
we denote by h the class in N1(X) of the proper transform of a line in P3, and by
ei the class of a line in Ei. The intersection pairing N1(X)×N1(X) → R is given
by

H · h = 1,

H · ei = Ei · h = 0 (i = 1, . . . , 8),

Ei · ej = −δij (i, j = 1, . . . , 8).

Note that the action of Aff(3, 2) described in Corollary 1.8 extends to an action on
X and hence on N1(X); any σ ∈ Aff(3, 2) fixes the class H and sends Ei to Eσ(i).

2.1. The nef cone. First we prove the statement on the nef cone of X. Recall
that a divisor class D on X is nef if D · C ≥ 0 for every curve C ⊂ X; the nef
cone Nef(X) is the convex cone in N1(X) spanned by the classes of nef divisors.
A class D is semi-ample if mD is basepoint-free for some natural number m. Any
semi-ample class is evidently nef.

Theorem 2.2. Let X be as above. Then Nef(X) is spanned by the semi-ample
divisors

• H;
• H − Ei (i = 1, . . . , 8);
• 2H −

∑
I Ei where I ⊂ {1, . . . , 8} is any subset with |I| ≥ 3.
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Proof. The dual of the nef cone is the closed cone of curves Curv(X) ⊂ N1(X),
meaning the smallest closed cone containing all classes of effective curves on X.
Any cone C spanned by a set of effective curves is a subcone of Curv(X), and so
its dual cone C∗ := {D ∈ N1(X) | D · c ≥ 0 for all c ∈ C} is a cone containing
Nef(X).

Now let C be the cone spanned by the classes ei (i = 1 . . . , 8) of lines in ex-
ceptional divisors and the classes cij = h − ei − ej (i 
= j = 1, . . . , 8) of proper
transforms of lines through two basepoints. These classes are all effective, so C is
indeed a subcone of Curv(X). A computer calculation shows that the dual cone
C∗ is indeed spanned by the divisor classes listed in the statement of the theorem.
So the listed classes span a cone containing Nef(X); to show it equals Nef(X), it
is enough to prove that each of these classes is semi-ample.

The class H is evidently basepoint-free, hence semi-ample. The class H − Ei is
represented by the proper transform of a plane in P3 through pi; since such planes
have no common tangent directions at pi, their proper transforms have no common
points in the exceptional divisor Ei, so these classes are basepoint-free also.

Now we turn to classes of the form D = 2H −
∑

I Ei. Given such a class, let
π : X → Y be the blow-down of the set of divisors {Ei | i /∈ I}. Then D = π∗DY ,
where DY is the linear system of proper transforms on Y of quadrics through the
points {pj | j ∈ I}. If |I| ≤ 6, the class DY is basepoint-free, as one can see for
example by considering pairs of planes through the points of I. If |I| = 7, the base
locus of DY is a single point pi, so by Zariski’s theorem [Laz, Remark 2.1.32] DY

is semi-ample. Therefore in all cases, D = π∗DY is the pullback of a semi-ample
class, hence is semi-ample. �

2.2. The movable cone. Next we prove that the movable cone of X is a ra-
tional polyhedral cone. By definition, a class D on X is movable if the subset⋂

Δ∈|D| Supp(Δ) has codimension at least 2 in X; the movable cone Mov(X) is the

smallest closed cone in N1(X) containing all movable classes. For general properties
of movable divisors and the movable cone, a reference is [ADHL, Section 3.3.2].

Theorem 2.3. The movable cone Mov(X) is the rational polyhedral cone consisting
of all classes x ∈ N1(X) satisfying the following conditions:

x · ei ≥ 0 for i = 1, . . . , 8;

x · (h− ei) ≥ 0 for i = 1, . . . , 8;

x · qijkl ≥ 0 for every coplanar quadruple {i, j, k, l} ⊂ {1, . . . , 8}.

Here for a coplanar quadruple I = {i, j, k, l} the notation qijkl means the class
2h−ei−ej −ek −el of the proper transform on X of a conic in P3 passing through
the four points.

Proof. First observe that if C is any class in N1(X) such that there exist curves on
X with class C whose unions fill up a subset of codimension ≤ 1, then any class
x ∈ N1(X) which lies in the movable cone must satisfy x · C ≥ 0. (This is clear
for movable divisors; since the condition is closed, it remains true for the whole
movable cone.)
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The inequalities in the theorem follow by applying this to various curve classes
on X. First, ei is the class of a line in the exceptional divisor Ei, and these lines
cover Ei. Second, h−ei is the class of the proper transform of a line through pi, and
these lines fill up P3. Finally, qijkl is the class of the proper transform of a conic
passing through the four points of I, and these conics cover the plane Πijkl (since
any 5 points in a plane are contained in a conic). So by the previous paragraph,
these conditions are necessary for a class x to lie in the cone Mov(X).

To see that the conditions are sufficient, we simply compute the extremal rays
of the cone M ⊂ N1(X) defined by our inequalities. This is easy to do using a
computer algebra system: I used the package VertexEnum for Mathematica. If we
can show that the extremal rays of M are indeed spanned by movable divisors, then
the proof of the proposition is complete.

The output of the computer calculation tells us that M is spanned by the fol-
lowing classes:

(1) H: 1 class.
(2) H − Ei : 8 classes.
(3) 2H − Ei1 − · · · − Ei7 : 8 classes.
(4) 2H − E1 − · · · − E8: 1 class.
(5) H − Ei − Ej :

(
8
2

)
= 28 classes.

(6) 2H − 2Ei − Ej − Ek − El (i, j, k, l not coplanar) :
(
8
3

)
· 4 = 224 classes.

(7) 2H − Ei − Ej − Ek − El − 2Em (i, j, k, l coplanar) : 8 · 7 = 56 classes.

(8) 3H − 2Ei− 2Ej − 2Ek − 2El (i, j, k, l not coplanar) :
(
8
4

)
− 14 = 56 classes.

(9) 3H − 3Ei −Ej −Ek −El − 2Em (i, j, k, l coplanar) :
(
8
3

)
· 4 = 224 classes.

(10) 3H −Ei −Ej −Ek −El − 2Em − 2En − 2Ep (i, j, k, l coplanar) : 8 · 7 = 56
classes.

(11) 3H − 3Ei1 − Ei2 − · · · − Ei8 : 8 classes.

The first 4 types of classes already appeared as extremal rays of the nef cone Nef(X),
and we saw that they are in fact semi-ample on X. In particular, they are movable.

Classes of the form H − Ei − Ej are represented by proper transforms on X of
planes in P3 passing through the points pi and pj . The base locus of the linear
system of such planes is precisely the proper transform of the line through pi and
pj , which has codimension 2 in X. So these classes are movable also.

For the remaining classes, we will show they are movable by decomposing them
into effective divisors in different ways. (These decompositions will be used again
later, when we verify the conditions of Hu–Keel’s theorem for X.) For simplicity
of notation in each case we will fix a set of indices satisfying the stated conditions.

(6) D = 2H−2E1−E2−E3−E5. We can decompose this as a sum of effective
divisor classes in two different ways as follows:

D = (H − E1 − E2 − E3 − E4) + E4 + (H − E1 − E5)

= (H − E1 − E2 − E5 − E6) + E6 + (H − E1 − E3).

We have seen that the base locus of the last class in both decompositions has
codimension 2 in X. Each decomposition also has two fixed components,
one a plane through 4 basepoints and the other an exceptional divisor. But
none of these components is common to both decompositions, so the base
locus has codimension at least 2. We conclude that this class is movable.
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(7) D = 2H −E1−E2−E3−E4− 2E5. Again we decompose in two ways and
observe that no prime divisor is common to both decompositions:

D = (H − E1 − E2 − E5 − E6) + E6

+ (H − E3 − E4 − E5 − E6) + E6

= (H − E1 − E3 − E5 − E7) + E7

+ (H − E2 − E4 − E5 − E7) + E7.

(8) D = 3H − 2E1 − 2E2 − 2E3 − 2E5. Here the decomposition we need is

D = (H − E1 − E2 − E3 − E4) + E4

+ (H − E2 − E3 − E5 − E8) + E8

+ (H − E1 − E5)

= (H − E1 − E2 − E5 − E6) + E6

+ (H − E1 − E3 − E5 − E7) + E7

+ (H − E2 − E3).

(9) D = 3H − 3E1 − E2 − E3 − E4 − 2E5. Here the decomposition we need is

D = (2H − 2E1 − E2 − E3 − E5)

+ (H − E1 − E4 − E5 − E6) + E6

= (2H − 2E1 − E2 − E4 − E5)

+ (H − E1 − E3 − E5 − E7) + E7.

In Case 7 we already showed that the first term in each decomposition is a
movable class. Since the remaining terms are distinct prime divisors, this
shows our class is movable.

(10) D = 3H −E1 −E2 −E3 −E4 − 2E5 − 2E6 − 2E7. Here the decomposition
we need is the following:

D = (2H − E1 − · · · − E7) + (H − E5 − E6 − E7 − E8) + E8

= (2H − E1 − E2 − E5 − E6 − 2E7) + (H − E3 − E4 − E5 − E6).

In the first decomposition, we already saw that the first term is semi-ample.
In the second decomposition, we saw that the second term is movable in
Case 7 above. Again, the remaining terms are distinct prime divisors.

(11) D = 3H − 3E1 − E2 − · · · − E8. Here the decompositions we need are the
following:

D = (2H − 2E1 − E2 − E4 − E6 − E8) + (H − E1 − E3 − E5 − E7)

= (2H − 2E1 − E3 − E4 − E5 − E6) + (H − E1 − E2 − E7 − E8).

In each decomposition, the first term has already been shown to be movable
on X. The remaining terms are distinct prime divisors, and this completes
the proof.

�
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3. X is Mori dream space

In this section we strengthen the results of the previous section to show that
our variety X is a Mori dream space (see below for the definition). This class of
varieties was defined by Hu and Keel; they showed [HK, Theorem 2.9] that Mori
dream spaces are exactly the varieties with finitely generated Cox ring, implying
that they have the best possible properties from the point of view of Mori theory.
In particular, the minimal model programme terminates for any effective divisor on
a Mori dream space. It is a fundamental issue in birational geometry to determine
whether a given variety is a Mori dream space. By Cox [C], every toric variety is
a Mori dream space; the deepest known result is the theorem of Birkar–Cascini–
Hacon–McKernan [BCHM] that varieties of Fano type are Mori dream spaces.

Beyond these classes of varieties not many nontrivial examples seem to be known.
One family of examples is due to Hausen–Laface–Tironi–Ugaglia [HLTU] and to
Laface–Tironi–Ugaglia [LTU]: these examples are extremal fibrations of blowups of
del Pezzo manifolds of degree at most 4. Our example can be viewed as an extension
of these results: indeed, the blowup of P3 at a point is a del Pezzo manifold, and
our variety X is then a blowup of this del Pezzo manifold, again with the structure
of an extremal (quasi-)elliptic fibration. The interesting difference between the two
cases is that our example has larger Picard number and much more complicated
cones of nef and movable divisors: we saw in the previous section that the movable
cone of X has 670 extremal rays, and in this section we will see that this cone
decomposes into 78125 nef cones of small modifications of X!

We begin with the following definition [HK, Definition 1.10].

Definition 3.1 (Hu–Keel). Let X be a Q-factorial projective variety with Pic(X)
finitely generated. We say X is a Mori dream space if the following conditions hold:

(1) Nef(X) is rational polyhedral, spanned by semi-ample divisors.
(2) There is a finite collection of small Q-factorial modifications X ��� Xi such

that each Xi satisfies the previous condition and Mov(X) is the union of
the nef cones Nef(Xi).

By definition, a small Q-factorial modification (SQM) of X is a rational map
f : X ��� Y to another Q-factorial projective variety such that f is an isomorphism
in codimension 1.

The main result of this paper is the following:

Theorem 3.2. Let X be the blowup of P3
k at the unique extremal Cayley octad O.

Then X is a Mori dream space.

Notation. Let us fix the following notation for use in the proof.

(1) For a pair of distinct indices i, j = 1, . . . , 8, we write cij to denote the
proper transform on X of the line in P3 through pi and pj .

(2) For a subset Γ ⊂ {cij}, we denote by N(Γ) the rational polyhedral subcone
of Mov(X) defined by the additional inequalities

x · cij ≤ 0 if cij ∈ Γ,

x · cij ≥ 0 otherwise.

(3) For a class D ∈ Mov(X), we denote by Γ(D) the subset of {cij} consisting
of curves such that D · cij < 0. For simplicity we write N(D) instead of
N(Γ(D)). Note that by definition we have D ∈ N(D).
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(4) For a disjoint set of curves Γ ⊂ {cij}, we denote by XΓ the space obtained
by flopping all the curves cij ∈ Γ. (See Definition 3.4 for a precise definition
of flop.) For simplicity we write XD instead of XΓ(D).

(5) E denotes the set of primitive generators of the extremal rays of Mov(X)
listed in Theorem 2.3.

Here is an outline of our proof. We already proved in Theorem 2.2 that condition
(1) of Definition 3.1 holds forX, so we need to verify condition (2). The hyperplanes
c⊥ij partition the movable cone Mov(X) into the finitely many rational polyhedral
subcones N(Γ), one for each subset Γ ⊂ {cij}. We remarked above that D ∈ N(D)
by definition, so the cone Mov(X) is in fact covered by the smaller collection of
cones of the form N(D), for movable divisors D. We will show in Lemma 3.3 that
for any movable divisor D, the set Γ(D) ⊂ {cij} consists of pairwise disjoint curves.
Therefore we get an SQM X ��� XD obtained by flopping all the curves in Γ(D),
and we show in Lemma 3.6 that Nef(XD) must be a subset of N(D). Finally we
show in Theorem 3.9 that each extremal ray of N(D) is semi-ample on XD. This
shows that N(D) = Nef(XD), and at the same time that condition (2) in Definition
3.1 is satisfied.

To put this strategy into practice we need some reductions. There are 57 = 78125
choices for Γ, and each of the corresponding cones N(Γ) may have many extremal
rays. The action of the group Aff(3, 2) of order 1344 simplifies things somewhat,
but there is more we can do. We will show that if a divisor spans an extremal
ray of several cones N(Γ), then we need only check semi-ampleness of one of the
corresponding models XΓ. So if we can find a convenient subset E of SQMs whose
nef cones include all the extremal rays of all the other cones, then it is enough to
check semi-ampleness on this smaller set.

Figure 2 illustrates the idea. Here the hexagon represents a slice of the movable
cone. The small cones are the nef cones N(D), and the shaded cones are the nef
cones of SQMs in the collection E . The key point is that every extremal ray of
every cone N(D) is an extremal ray of at least one shaded cone.

Figure 2. Nef cones inside Mov(X).
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We now begin the proof described above.

Lemma 3.3. For a class D ∈ Mov(X), any two curves in Γ(D) are disjoint.

Proof. Suppose that cij and ckl are intersecting curves on X. Then their proper
transforms on X are two lines whose union contains the 4 points {pi, pj , pk, pl} and
lies in a plane. Then cij + ckl = 2h − ei − ej − ek − el = qijkl is the class of the
proper transform of a conic in the plane passing through the 4 points. By Theorem
2.3 we must then have D · (cij + ckl) ≥ 0, so the two classes cannot both belong to
Γ(D). �

Figure 1 shows the configuration of the 28 curves cij on X. Any choice of a
subset Γ containing at most 1 curve from each of the 7 sets of 4 intersecting curves
gives us a nonempty subcone N(Γ) ⊂ Mov(X), so as mentioned above there are 57

cones in our decomposition.

Definition 3.4. Let Y be a smooth threefold and let C ⊂ Y be a smooth rational
curve with normal bundle NC/Y

∼= O(−1)⊕O(−1). Blowing up along C and con-

tracting the exceptional divisor E ∼= P1 ×P1 in the other direction yield a smooth
algebraic space Y ′ with a rational map ϕ : Y ��� Y ′ which is an isomorphism
outside C. We call Y ′ (or ϕ) the flop of Y along C. The curve C is called the
centre of the flop, and the curve C ′ ⊂ Y ′ along which ϕ−1 is not defined is called
the cocentre of the flop.

Existence of flops in this setting follows from Artin’s contractibility criterion [Art,
Corollary 6.11]. Note that if C and C ′ are disjoint smooth rational curves on Y ,
both with normal bundle O(−1)⊕O(−1), then we can flop them one after another,
and the resulting space is independent of the order. The same applies to any finite
set of disjoint smooth rational curves each with normal bundle O(−1)⊕O(−1). In
particular, the notation XΓ defined in the list above makes sense whenever Γ is a
set of disjoint curves. Note also that in our example, each of the curves cij ⊂ X
has the correct normal bundle O(−1)⊕O(−1) to be flopped, since a line in P3 has
normal bundle O(1) ⊕ O(1) and blowing up a point twists the normal bundle by
O(−1).

Lemma 3.5. Let D be a movable divisor on X. Then XD as defined above is a
projective variety.

Proof. Note that XD is well-defined since by Lemma 3.3 any two curves in Γ(D)
are disjoint.

First assume that no two curves in the set Γ = Γ(D) have disjoint index sets.
Suppose that Γ1 is some proper subset of Γ such that XΓ1

is projective. Choose a
curve ckl in Γ \Γ1. Then H − Ek − El is an effective class on X whose base locus
is ckl and is represented by a divisor disjoint from all the curves cij ∈ Γ1 (by the
condition on index sets). Therefore the proper transform of H − Ek − El on XΓ1

has degree −1 on ckl and nonnegative degree on every other curve. Let A be any
ample divisor A on XΓ1

and let a = A · ckl. Note that since A is ample, a is a
strictly positve integer. Then the divisor Dkl := (H − Ek − El) +

1
aA is nef and

big and has degree zero precisely on ckl. By Keel’s Basepoint-Freeness Theorem
[Ke, Theorem 0.5], the divisor Dkl is then semi-ample.
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Putting Γ2 = Γ1 ∪ {ckl}, the flop of the curve ckl can be seen as a commutative
diagram

XΓ1

fkl ���
��

��
��

�
φ ��������� XΓ2

f+
kl����

��
��
��

YΓ1

in which fkl and f+
kl denote the contraction of ckl and c′kl (the cocentre of the flop),

respectively. Since fkl is defined by the semi-ample line bundle Dkl, we get that YΓ1

is projective. Moreover since the proper transform (H − Ek − El)
′ is (f+

kl)-ample,

we get that f+
kl is a projective morphism, and so XΓ2

is also projective. Since X is
projective, induction on the cardinality of Γ then tells us that XΓ is projective, as
required.

Now we prove the general case, in which Γ may contain curves with disjoint
index sets. We can assume first without loss of generality that D · cij 
= 0 for any i
and j. This is valid because if D is any movable divisor, then for any ample divisor
A and any sufficiently small ε > 0, the divisor D′ = D + εA is movable, it has the
property assumed, and Γ(D′) = Γ(D).

So suppose now that D satisfies the assumption above, and Γ contains 2 curves
cij with disjoint index sets, say, without loss of generality, c12 and c35. (Recall that
a movable divisor D cannot have {cij , ckm} ⊂ Γ(D) for {i, j, k,m} coplanar.) I
claim that there is an SQM X ��� X1 to a projective variety X1 (which is in fact
isomorphic to X) such that |Γ1| < |Γ|, where Γ1 denotes the set of those cij whose
proper transform on X1 has negative intersection with the proper transform of D.
Given this, we are done by induction: repeatedly applying these SQMs, eventually
we must reach a variety Xk on which either |Γk| = 0, in other words Xk = XΓ,
or no two curves in Γk have disjoint index sets, in which case we can flop them
all to obtain XΓ, by the previous argument. (This explains the need to perturb
D: without this, it could be that Xk differs from XΓ by flopping some D-trivial
curves.)

To prove the claim, let X ��� X1
∼= X be the standard cubic transformation

based at {p1, p2, p3, p5}; this is the same thing as the flop of all the curves {cij :
i, j ∈ {1, 2, 3, 5}}. By assumption D ·c12 < 0 and D ·c35 < 0; putting these together,
we get

0 > D · (c12 + c35) = D · (c13 + c25) = D · (c15 + c23).

So at least one curve from each pair {c13, c25} and {c15, c23} is in Γ, so we have
|Γ ∩ {cij : i, j ∈ {1, 2, 3, 5}}| ≥ 4. Flopping the 6 curves cij , we get |Γ1 ∩ {cij :
i, j ∈ {1, 2, 3, 5}}| ≤ 2. Since flopping these curves does not change the intersection
number of D with any other curve cij ∈ Γ, the claim is proved. �

Lemma 3.6. For any D ∈ Mov(X) we have Nef(XD) ⊂ N(D).

Proof. The nef cone of any SQM of X is automatically a subcone of Mov(X). We
must show that any nef divisor on XD satisfies the other defining inequalities of
N(D). The SQM X ��� XD is the flop of all the curves cij in Γ(D), so all of the
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following are classes of curves on XD:

−cij for cij ∈ Γ(D),

cij for cij /∈ Γ(D).

Any nef divisor must have nonnegative intersection with all these classes, and the
resulting inequalities are exactly the inequalities we used to define N(D) inside
Mov(X). �

Theorem 3.7. For any D ∈ E , the cone N(D) is spanned by semi-ample classes
on XD. In particular Nef(XD) = N(D).

Proof. The proof is a long check similar in spirit to the proof of Theorem 2.3. Given
D ∈ E we find the set of curves Γ(D), and this gives the inequalities defining N(D)
inside Mov(X). Again we use computer algebra to compute the extremal rays of
N(D), and we check by hand that each of them is semi-ample of XD. The details
are straightforward but simple, so we relegate them to Appendix A. �

Lemma 3.8. If ϕ : Y ��� Z is the flop of a curve C, and Δ is a semi-ample class
on Y such that Δ ·C = 0, then the proper transform of Δ is semi-ample on Z too.

Proof. Replacing Δ with a positive multiple if necessary, we can assume it is
basepoint-free. The condition Δ ·C = 0 implies that Δ has a representative which
is disjoint from C. Taking proper transform gives a representative which is disjoint
from the cocentre C ′. Finally, since ϕ is an isomorphism on the complement of C,
the proper transform of Δ has no basepoints in Z \ C ′ either. �

Theorem 3.9. For any D ∈ Mov(X), the cone N(D) is spanned by semi-ample
divisor classes on XD. In particular Nef(XD) = N(D).

Proof. Let Δ be a divisor spanning an extremal ray of N(D). Assume first that Δ
also spans an extremal ray of a cone N(D′) for some D′ ∈ E . Then XD is obtained
from XD′ by flopping all the curves cij in Γ(D) \ Γ(D′). Since by assumption
Δ belongs to the intersection N(D) ∩ N(D′), we must have Δ · cij = 0 for all
cij ∈ Γ(D) \Γ(D′). By Theorem 3.7 the class Δ is semi-ample on XD′ , so applying
Lemma 3.8 repeatedly we get that Δ is semi-ample on XD, as required.

So it remains to prove that each extremal ray of each cone N(D) is also an
extremal ray of a cone N(D′) for some D′ ∈ E . In principle this is simple. Each
cone N(D) is cut out inside Mov(X) by hyperplanes dual to curves of the form cij .
So we have a set of 58 curve classes

ei, h− ei, cij (i 
= j), 2h− ei − ej − ek − el ({i, j, k, l} coplanar)

and we are looking for subsets {γ1, . . . , γ8} of 8 of these classes such that the linear
map

N1(X) −→R8

x �→

⎛⎜⎜⎜⎝
γ1 · x
...

γ8 · x

⎞⎟⎟⎟⎠
has rank 8 and kernel intersecting Mov(X) nontrivially. This is now a finite check
which can in principle be carried out by computer.
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In practice checking all
(
58
8

)
possible subsets is not computationally feasible,

so some reductions are necessary. We use the following approach: for a vector
x ∈ N1(X), we can use the natural basis given by H and the Ei to write it in the
form

x = aH −
∑
i

biEi

for some real numbers a, b1, . . . , b8. (We include the negative sign above for conve-
nience so that all these numbers will be nonnegative for the classes we are interested
in.) In this notation, the conditions x · γm = 0 cutting out our extremal rays then
take the form:

bi = 0 for curve classes ei,

bi = a for curve classes h− ei,

bi + bj = a for curve classes cij ,

bi + bj + bk + bl = 2a for curve classes 2h− ei − ej − ek − el.

We simplify the problem by fixing the number of bi which equal zero and checking
each case in turn.

Let us give details in the case where 3 of the coefficients bi are zero and the
others are nonzero. So x = aH − b1E1 − · · · − b5E5. We have exactly 3 equations
bi = 0 (i = 6, 7, 8), so we need 5 additional equations from the other 55 classes.
We know the equations bi = 0 (i = 1, 2, 3, 4, 5) and bi = a (i = 6, 7, 8) do not hold,
so we can discard those 8 classes from the list. Next, each equation bi + bj = a
for i = 6, 7, 8 becomes identical to the equation bj = a, so we can discard another
7+6+5 = 18 classes. Finally, since x ∈ Mov(X) we know that b1+b2+b3+b4 ≤ 2a,
so since these coefficients are nonzero we know that bi + bj < 2a for any {i, j} ⊂
{1, 2, 3, 4}. Therefore if {i, j, k, l} is a coplanar quadruple not containing 5, we have
bi+ bj + bk+ bl < 2a since two summands must come from {1, 2, 3, 4} and the other
two from {6, 7, 8}. This allows us to eliminate another 7 classes. So finally we are
looking for a subset of 5 equations from a list of 55 − 8 − 18 − 7 = 22, and this
is tractable by computer. The output tells us that the only classes satisfying 5 of
these 22 equations and lying in the movable cone are (up to the action of Aff(3, 2))
the following:

2h− e1 − e2 − e3 − e4 − e5, 2h− e1 − e2 − e3 − e4 − 2e5,

3h− e1 − e2 − e3 − 3e4 − 2e5, 3h− e1 − e2 − 2e3 − 2e4 − 2e5,

4h− e1 − 2e2 − 2e3 − 3e4 − 3e5, 5h− e1 − 3e2 − 3e3 − 3e4 − 4e5.

These all appear on our list in the proof of Theorem 3.7, as required. �

Finally we can deduce Theorem 3.2:

Corollary 3.10. The variety X is a Mori dream spaces.

Proof. We proved in the previous section that Nef(X) is rational polyhedral and
spanned by semi-ample classes. Theorem 3.9 shows that Mov(X) is covered by the
finite collection of nef cones {Nef(XD) | D ∈ Mov(X)}, and each cone is spanned
by semi-ample classes. Therefore both conditions of Definition 3.1 are satisfied. �

Remark 3.11. In Section 1 we showed that there is a unique extremal net of quadrics
with distinct basepoints, but it is also interesting to consider nets of quadrics with
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infinitely near basepoints. In [PS] we classifed all extremal nets, including those
with infiinitely near basepoints (subject to some restrictions on characteristic of the
base field), and found 11 other examples. It seems very likely that the techniques of
the present paper can be applied to verify that these varieties are also Mori dream
spaces.

Appendix A. Proof of Theorem 3.7

In this appendix we give details of the proofs of Theorem 3.7.
We need to calculate the cones N(D) for D ∈ E , a generator of an extremal ray

of Mov(X). Recall that N(D) is defined by the inequalities defining Mov(X) in
Theorem 2.3 together with the extra conditions

x · cij ≤ 0 if cij ∈ Γ(D),

x · cij ≥ 0 if cij /∈ Γ(D).

We calculate the extremal rays of each of the resulting cones for each D ∈ E listed
in the proof of Theorem 2.3. The results are shown in the table below. For brevity,
we make a number of reductions:

• We only list one representative of each Aff(3, 2)-orbit in E in the left-hand
column and one representative of each Aff(3, 2)-orbit in the set of extremal
rays of N(D) in the right-hand column.

• In the left-hand column we omit elements of E which lie in the nef cone of
X, since the corresponding SQM XD is X itself, and we proved that all the
relevant divisors are semi-ample in Theorem 2.2.

• As in the proof of Theorem 3.9 if a class Δ belongs to two cones N(D) ∩
N(D′) it suffices to prove semi-ampleness on one of the two SQMs. So
for each D ∈ E we will only list extremal rays of N(D) which did not yet
appear on our list. This explains the heading of the rightmost column.

We explain why each class in the right-hand column is semi-ample on the relevant
SQM XD.

(1) D = H−E1−E2: here the only class to consider isD itself. D is represented
on X by the proper transform of any plane through p1 and p2. The base
locus on X is therefore c12 itself. Since these planes have no common
normal directions along c12, after flopping to get XD the class becomes
basepoint-free.

(2) D = 2H − 2E1 − E2 − E3 − E5: again we only need to consider D itself.
As in the proof of Theorem 2.3 we write

2H − 2E1 − E2 − E3 − E5 = (H − E1 − E2 − E3 − E4) + E4 + (H − E1 − E5)

= (H − E1 − E2 − E5 − E6) + E6 + (H − E1 − E3),

and intersecting these representatives shows that the base locus of D is
exactly the curves in Γ(D). When we flop, the proper transform of (H −
E1−E2−E3−E4) and (H−E1−E2−E5−E6) are both divisors intersecting
the cocentre c′12 transversely in a single point, and these points are different
since the planes have different normal directions along c12. Moreover the
proper transforms of (H−E1−E5) and (H−E1−E3) are disjoint from c′12.
So after flopping c12 there are no basepoints in the cocentre c′12. Similarly,
flopping c13 and c15 will remove all the other basepoints, so D is basepoint-
free on XD.
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D Γ(D) New rays of N(D)

H − E1 − E2 c12 H − E1 − E2

2H − 2E1 − E2 − E3 − E5 {c12, c13, c15} 2H − 2E1 − E2 − E3 − E5

2H − E1 − E2 − E3 − E4 − 2E5 {ci5 | i = 1, 2, 3, 4} 2H − E1 − E2 − E3 − E4 − 2E5

3H − 2E1 − 2E2 − 2E3 − 2E5 {cij | {i, j} ⊂ {1, 2, 3, 5} 3H − 2E1 − 2E2 − 2E3 − E5

3H − 2E1 − 2E2 − 2E3 − E5 − E6

3H−2E1−2E2−2E3−E5−E6−E7

3H − 2E1 − 2E2 − 2E3 − 2E5

4H − 3E1 − 2E2 − 2E3 −E4 − 3E5

4H−3E1−3E2−2E3−2E5−E7−
E8

5H−3E1 − 3E2 − 3E3 −E4 − 4E5

3H − 3E1 − E2 − E3 − E4 − 2E5 {c1j | j = 2, 3, 4, 5} 3H − 3E1 − E2 − E3 − E4 − 2E5

3H − 3E1 − E2 − · · · − E8 {c1j | j = 2, . . . , 8} 3H − 3E1 − 2E2 − E3 − E5 − E7

3H − 3E1 − E2 − · · · − E8

3H − E1 − E2 − E3 − E4 − 2E5 −
2E6 − 2E7

{c56, c57, c67} 3H − E1 − 2E5 − 2E6 − 2E7

3H − E1 − E2 − 2E5 − 2E6 − 2E7

3H−E1−E2−E3−2E5−2E6−2E7

3H − E1 − E2 − E3 − E4 − 2E5 −
2E6 − 2E7

(3) 2H − E1 − E2 − E3 − E4 − 2E5: here we decompose D as

2H − E1 − E2 − E3 − E4 − 2E5 = (H − E1 − E2 − E5 − E6) + E6

+ (H − E3 − E4 − E5 − E6) + E6

= (H − E1 − E3 − E5 − E7) + E7

+ (H − E2 − E4 − E5 − E7) + E7,

and intersecting these shows that the base locus of D is exactly the curves
in Γ(D). Just as in the previous case, we see that flopping ci5 removes all
basepoints on that curve, proving that D becomes basepoint-free on XD.

(4) D = 3H − 2E1 − 2E2 − 2E3 − 2E5: here there are several extremal rays
Δ of N(D) to deal with. For brevity, from now on we will just write the
necessary decompositions of Δ and omit the details of checking that Δ is
basepoint-free on XD, since in each case the argument is very similar to
the preceding ones.
(a) Δ = 3H − 2E1 − 2E2 − 2E3 − E5:

= (H − E1 − E2 − E5 − E6) + E6 + (H − E1 − E3) + (H − E2 − E3)

= (H − E2 − E3 − E5 − E8) + E8 + (H − E1 − E2) + (H − E1 − E3)

(b) Δ = 3H − 2E1 − 2E2 − 2E3 − E5 − E6:

= (H − E1 − E3 − E6 − E8) + (H − E2 − E3 − E5 − E8)

+ 2E8 + (H − E1 − E2)

= (H − E2 − E3 − E6 − E7) + (H − E2 − E3 − E5 − E7)

+ 2E7 + (H − E1 − E2)
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(c) Δ = 3H − 2E1 − 2E2 − 2E3 − 2E5:

= (H − E1 − E2 − E3 − E4) + (H − E2 − E3 − E5 − E8)

+ E4 + E8 + (H − E1 − E5)

= (H − E1 − E2 − E5 − E6) + (H − E1 − E3 − E5 − E7)

+ E6 + E7 + (H − E2 − E3)

(d) Δ = 4H − 3E1 − 2E2 − 2E3 − E4 − 3E5:

= (2H − E1 − E2 − E3 − E4 − E5) + (H − E1 − E2 − E5)

+ (H − E1 − E3 − E5)

= (H − E1 − E2 − E3) + (H − E1 − E4 − E5) + (H − E2 − E3 − E5)

+ (H − E1 − E5)

= (H − E1 − E2 − E5) + (H − E1 − E4 − E5) + (H − E1 − E3 − E5)

+ (H − E2 − E3)

(e) Δ = 4H − 3E1 − 2E2 − 2E3 − 2E5 − E7 − E8:

= (2H − E1 − E2 − E3 − E5 − E7 − E8) + (H − E1 − E2 − E3)

+ (H − E1 − E2 − E5)

= (H − E1 − E2 − E7) + (H − E1 − E3 − E5)

+ (H − E2 − E3 − E5) + (H − E1 − E2 − E8)

(f) Δ = 5H − 3E1 − 3E2 − 3E3 − E4 − 4E5:

= 2(2H − E1 − E2 − E3 − 2E5) + (H − E1 − E2 − E3 − E4)

= (H − E1 − E2 − E3) + (H − E1 − E2 − E5) + (H − E1 − E3 − E5)

+ (H − E2 − E3 − E5) + (H − E4 − E5)

= (H − E1 − E2) + (H − E1 − E2 − E5) + (H − E1 − E3 − E5)

+ (H − E2 − E3 − E5) + (H − E3 − E4 − E5)

(5) D = 3H − 3E1 − E2 − E3 − E4 − 2E5:

= (2H − 2E1 − E2 − E3 − E5) + (H − E1 − E4 − E5)

= (2H − 2E1 − E2 − E4 − E5) + (H − E1 − E3 − E5)

(6) D = 3H − 3E1 − E2 − · · · − E8:
(a) Δ = 3H − 3E1 − 2E2 − E3 − E5 − E7:

= 2(H − E1 − E2) + (H − E1 − E3 − E5 − E7)

= (H − E1 − E2 − E3) + (H − E1 − E2 − E5) + (H − E1 − E7)

(b) Δ = 3H − 3E1 − E2 − · · · − E8:

= (2H − 2E1 − E2 − E4 − E6 − E8) + (H − E1 − E3 − E5 − E7)

= (2H − 2E1 − E3 − E4 − E5 − E6) + (H − E1 − E2 − E7 − E8)

= (2H − 2E1 − E3 − E4 − E7 − E8) + (H − E1 − E2 − E5 − E6)

(7) D = 3H − E1 − E2 − E3 − E4 − 2E5 − 2E6 − 2E7:
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(a) Δ = 3H − E1 − 2E5 − 2E6 − 2E7:

= 2(H − E5 − E6 − E7) + (H − E1)

= (H − E5 − E7 − E1) + (H − E5 − E6) + (H − E6 − E7)

= (H − E5 − E6 − E1) + (H − E5 − E7) + (H − E6 − E7)

(b) Δ = 3H − E1 − E2 − 2E5 − 2E6 − 2E7:

= 2(H − E5 − E6 − E7) + (H − E1 − E2)

= (H − E5 − E6 − E1) + (H − E5 − E7 − E2) + (H − E6 − E7)

= (H − E5 − E6 − E2) + (H − E5 − E7 − E1) + (H − E6 − E7)

(c) Δ = 3H − E1 − E2 − E3 − 2E5 − 2E6 − 2E7:

= 2(H − E5 − E6 − E7) + (H − E1 − E2 − E3)

= (H − E5 − E6 − E1) + (H − E5 − E7 − E2) + (H − E6 − E7 − E3)

= (H − E5 − E6 − E3) + (H − E5 − E7 − E1) + (H − E6 − E7 − E2)

(d) Δ = 3H − E1 − E2 − E3 − E4 − 2E5 − 2E6 − 2E7:

= (2H − E1 − E2 − E3 − E4 − E5 − E6 − E7) + (H − E5 − E6 − E7)

= (2H − E1 − E2 − E5 − E6 − 2E7) + (H − E3 − E4 − E5 − E6)
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