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THE IRREDUCIBLE MODULES AND FUSION RULES

FOR THE PARAFERMION VERTEX

OPERATOR ALGEBRAS

CHUNRUI AI, CHONGYING DONG, XIANGYU JIAO, AND LI REN

Abstract. The irreducible modules for the parafermion vertex operator alge-
bra associated to any finite dimensional Lie algebra g and any positive integer

k are classified, the quantum dimensions are computed and the fusion rules
are determined.

1. Introduction

This paper is a continuation of [25] and [30] on the parafermion vertex opera-
tor algebra K(g, k) associated to any finite dimensional simple Lie algebra g and
positive integer k. In particular, we identify the irreducible modules listed in [25],
compute the quantum dimensions and determine the fusion rules for K(g, k). In
the case g = sl2, these results have been obtained previously in [3] and [30].

Closely related to the Z-algebras [47], [48], [49], the parafermion conformal field
theory [56] and the generalized vertex operator algebras [15], the parafermion ver-
tex operator algebra K(g, k) is the commutant of the Heisenberg vertex operator
algebra associated to the Cartan subalgebra h of g in the affine vertex operator al-
gebra Lĝ(k, 0). The structure of the parafermion vertex operator algebras has been
studied extensively in [13], [14], [27]. The representation theory of K(g, k) has
also been understood well due to the recent work [28], [3]-[4], and [25]. Precisely,
K(g, k) is C2-cofinite [3], [54], the irreducible modules for K(sl2, k) are classsified
and rationality of K(sl2, k) is obtained in [3]-[4]. The irreducible modules and the
rationality of K(g, k) for general g are determined in [25] with the help from [54],
[45], and [7].

The quantum dimensions of modules for vertex operator algebras [12] or
Frobenius-Perron dimensions for fusion category [31] play essential roles in this
paper. According to [36], [37], the category CV of modules of a rational and C2-
cofinite vertex operator algebra V under the tensor product defined in [35, 39–41]
is a braided fusion tensor category over C. It is essentially proved in [12] that the
quantum dimension of irreducible module for V is exactly the Frobenius-Perron
dimension of the simple object in the category CV . This enables us to freely use the
quantum dimensions and Frobenius-Perron dimension whenever it is convenient.
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The quantum dimensions of irreducible K(g, k)-modules are computed first. It
is well known that the irreducible modules for rational vertex operator algebra
Lĝ(k, 0) are exactly the level k integral highest weight modules Lĝ(k,Λ) where Λ
is a dominant weight of g such that (Λ, θ) ≤ k and θ is the maximal root of g and
(θ, θ) = 2 [34], [46]. The set of such Λ is denoted by P k

+. Let Q be the root lattice
of g and QL be the sublattice of Q spanned by the long roots of g. As we will see,
the dual lattice Q◦

L is exactly the weight lattice P of g. The lattice vertex operator
algebra V√

kQL
and V√

kQL
⊗K(g, k) are subalgebras of Lĝ(k, 0) [43], [29]. Then as

V√
kQL

⊗K(g, k)-module, Lĝ(k,Λ) has decomposition

Lĝ(k,Λ) =
⊕

i∈Q/kQL

V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi ,

where Q =
⋃

i∈Q/kQL
(kQL + βi) and MΛ,Λ+βi is an irreducible K(g, k)-module

[25]. It turns out that the quantum dimension of each MΛ,Λ+βi as K(g, k)-module
equals to the quantum dimension of Lĝ(k,Λ) as Lĝ(k, 0)-module. It follows from

[9] that the quantum dimension of MΛ,Λ+βi is equal to

∏
α>0

(Λ + ρ, α)q
(ρ, α)q

,

where α > 0 means that α is a positive root and nq = qn−q−n

q−q−1 with q = e
πi

k+h∨ and

h∨ is the dual Coxeter number of g. This result is very useful in identifying these
irreducible K(g, k)-modules.

Let θ =
∑l

i=1 aiαi where {α1, · · · , αl} is the set of simple roots and let Λ1, ...,Λl

be the fundamental weights of g. According to [51], [52], if ai = 1, then Lĝ(k, kΛi)

is a simple current and Lĝ(k, kΛi) � Lĝ(k,Λ) = Lĝ(k,Λ
(i)) for any Λ ∈ P k

+ where

Λ(i) ∈ P k
+ is uniquely determined by Λ and i. One can show that Lĝ(k,Λ) and

Lĝ(k,Λ
(i)) are isomorphic K(g, k)-modules. This gives a nontrivial identification

between irreducible K(g, k)-modules MΛ,λ and MΛ(i),λ+kΛi for any λ ∈ Λ+Q. As
a result, the set

{MΛ,Λ+βj |Λ ∈ P k
+, j ∈ Q/kQL}

has at most
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible K(g, k)-modules. Using the re-

lation between the global dimensions of Lĝ(k, 0) and V√
kQL

⊗ K(g, k) from the

category theory one can conclude that the identification given in [25] is complete

and K(g, k) has exactly
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible K(g, k)-modules.

For the determination of the fusion rules, the quantum dimensions are used
again. The connection between the quantum dimensions and the fusion product is
the following equality:

qdimV (M �N) = qdimV M · qdimV N

for any rational and C2-cofinite vertex operator algebra V and its irreducible mod-
ules M,N [12]. This quantum dimension equality gives an upper bound for the
fusion rules among three irreducible V -modules. In a normal situation, one has
found some intertwining operators among irreducible modules already. Using the
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upper bounds from the quantum dimension equality, one can check if these inter-
twining operators give enough fusion rules. This is exactly how the fusion product

MΛ1,Λ1+βi �MΛ2,Λ2+βj =
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2
MΛ3,Λ1+Λ2+βi+βj

is obtained for Λ1,Λ2 ∈ P k
+ and i, j ∈ Q/kQL where NΛ3

Λ1,Λ2
are the fusion rules for

irreducible Lĝ(k, 0)-modules:

Lĝ(k,Λ1)� Lĝ(k,Λ2) =
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2
Lĝ(k,Λ3).

The fusion rules in [8] and [30] are computed in the same fashion.
The paper is organized as follows. We review the basics on quantum dimen-

sions from the theory of vertex operator algebras [12] and the Frobenius-Perron
dimensions from the fusion tensor category [31] and discuss their properties and
connections in Section 2. We recall the construction of the parafermion vertex op-
erator algebras K(g, k) and their representations [25] in Section 3. We also give
an elementary result on the weight lattice P and the dual lattice Q◦

L for a sim-
ple Lie algebra g. In Section 4 we discuss the computation of quantum dimensions
of the irreducible K(g, k)-modules. We finish the identification of the irreducible
K(g, k)-modules and the determination of the fusion rules in Section 5.

2. The Frobenius-Perron dimensions and the quantum dimensions

In this section we review the basic properties of the Frobenius-Perron dimensions
from the fusion category and the quantum dimensions from the vertex operator al-
gebras. In the case the fusion category is the module category for a rational,
C2-cofinite vertex operator algebra, we discuss the connection between these di-
mensions.

We first collect basics of the fusion categories and the Frobenius-Perron dimen-
sions from [5], [31], and [10].

Let C be a fusion category [5]. That is, C is a semisimple rigid monoidal category
with finite dimensional spaces of morphisms, finitely many irreducible objects and
an irreducible unit object 1C . We use K(C) to denote the Grothendieck ring of C.
According to [31] we have

Theorem 2.1. There exists a unique ring homomorphism FPdim : K(C) → R

such that FPdim C(X) > 0 for all X ∈ C.

The FPdim C(X) is called the Frobenius-Perron dimension of X ∈ C. One can
also define the Frobenius-Perron dimension for the category C :

FPdim (C) =
∑

X∈O(C)
FPdim C(X)2,

where O(C) is the equivalence classes of the simple objects in C.
An algebra in a monoidal category C is an object A ∈ C which is an associative

algebra [55]. Let CA be the right A-module category. An algebra A ∈ C is said to
be étale if it is commutative and the CA is semisimple. We say that an étale algebra
A is connected if dimHomC(1, A) = 1. Using the braiding we can define two left
A-module structures on a right A-module M by

A⊗M
cA,M→ M ⊗A → M
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or

A⊗M
c−1
M,A→ M ⊗A → M,

where cA,M is the braiding. As a result we get two A-bimodules M+ and M−. An
A-module M is called dyslectic if the identity map on M gives an isomorphism
of A-bimodules M+ and M− [10]. Let C0

A be the subcategory of CA consisting
of dyslectic modules. The following result from [31] and [10] is important in this
paper.

Theorem 2.2. Let C be a fusion category and let A be a connected étale algebra in
C. Then

(FPdim CA)FPdim CA = FPdim C
and

(FPdim CA)2FPdim C0
A = FPdim C.

We now turn to the theory of vertex operator algebra. Let V = (V, Y,1, ω) be a
vertex operator algebra (cf. [6] and [33]). Here are some basics on vertex operator
algebras.

A vertex operator algebra V is of CFT type if V is simple, V =
⊕

n≥0 Vn and

V0 = C1 [22].
A vertex operator algebra V is called C2-cofinite if dimV/C2(V ) < ∞ where

C2(V ) is the subspace of V spanned by u−2v for u, v ∈ V [57].
A weak V -module M = (M,YM ) is a vector space equipped with a linear map

V → (EndM)[[z−1, z]]

v �→ YM (v, z) =
∑
n∈Z

vnz
−n−1 (vn ∈ EndM) for v ∈ V

satisfying the following conditions for u, v ∈ V , w ∈ M :

vnw = 0 for n ∈ Z sufficiently large;

YM (1, z) = 1;

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1
−z0

)
YM (v, z2)YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2).

An (ordinary) V -module is a weak V -module M which is C-graded

M =
⊕
λ∈C

Mλ

such that dimMλ is finite and Mλ+n = 0 for fixed λ and n ∈ Z small enough, where
Mλ is the eigenspace for L(0) with eigenvalue λ :

L(0)w = λw = (wtw)w, w ∈ Mλ.

An admissible V -module is a weak V -module M which carries a Z+-grading

M =
⊕
n∈Z+

M(n)

(Z+ is the set of all nonnegative integers) such that if r,m ∈ Z, n ∈ Z+ and a ∈ Vr,
then

amM(n) ⊆ M(r + n−m− 1).
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Note that any ordinary module is an admissible module.
A vertex operator algebra V is called rational if any admissible module is a

direct sum of irreducible admissible modules [17]. It was proved in [18] that if V
is rational, then there are only finitely many inequivalent irreducible admissible
modules V = M0, ...,Mp and each irreducible admissible module is an ordinary
module. Each M i has weight space decomposition

M i =
⊕
n≥0

M i
λi+n,

where λi ∈ C is a complex number such that M i
λi

	= 0 and M i
λi+n is the eigenspace

of L(0) with eigenvalue λi + n. The λi is called the conformal weight of M i. If V
is both rational and C2-cofinite, then λi and central charge c are rational numbers
[19].

In the rest of this paper we assume the following:

(V1) V =
⊕

n≥0 Vn is a vertex operator algebra of CFT type,

(V2) V is C2-cofinite and rational,
(V3) The conformal weight λi is nonnegative and λi = 0 if and only if i = 0.

Let M =
⊕

λ∈C
Mλ be a V -module. Set M ′ =

⊕
λ∈C

M∗
λ , the restricted dual of

M . It is proved in [32] that M ′ = (M ′, Y ′) is naturally a V -module such that

〈Y ′(a, z)u′, v〉 = 〈u′, Y (ezL(1)(−z−2)L(0)a, z−1)v〉,

for a ∈ V, u′ ∈ M ′ and v ∈ M, and (M ′)′ ∼= M . Moreover, if M is irreducible, so is
M ′. A V -module M is said to be self dual if M and M ′ are isomorphic.

Recall from [32] the notion of intertwining operator and fusion rule. Let W i =
(W i, YW i) for i = 1, 2, 3 be V -modules. An intertwining operator Y(·, z) of type(

W 3

W 1 W 2

)
is a linear map

Y(·, z) : W 1 → Hom(W 2,W 3){z}, v1 �→ Y(v1, z) =
∑
n∈C

v1nz
−n−1

such that

(i) For any v1 ∈ W 1, v2 ∈ W 2 and λ ∈ C, v1n+λv
2 = 0 for n ∈ Z sufficiently

large.
(ii) For any a ∈ V, v1 ∈ W 1,

z−1
0 δ(

z1 − z2
z0

)YW 3(a, z1)Y(v1, z2)− z−1
0 δ(

z1 − z2
−z0

)Y(v1, z2)YW 2(a, z1)

= z−1
2 δ(

z1 − z0
z2

)Y(YW 1(a, z0)v
1, z2).

(iii) For v1 ∈ W 1,
d

dz
Y(v1, z) = Y(L(−1)v1, z).

The intertwining operators of type

(
W 3

W 1 W 2

)
form a vector space denoted by

IV

(
W 3

W 1 W 2

)
.
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The dimension NW 3

W 1,W 2 of IV

(
W 3

W 1 W 2

)
is called the fusion rule of type(

W 3

W 1 W 2

)
. It is proved in [1] that the fusion rules for three irreducible modules

are finite.
The following two propositions can be found in [2].

Proposition 2.3. Let V be a vertex operator algebra and let W 1, W 2, W 3 be V -
modules among which W 1 and W 2 are irreducible. Suppose that U is a vertex
operator subalgebra of V (with the same Virasoro element) and that N1 and N2

are irreducible U-submodules of W 1 and W 2, respectively. Then the restriction map

from IV
(

W 3

W 1 W 2

)
to IU

(
M3

N1 N2

)
is injective. In particular,

dim IV

(
W 3

W 1 W 2

)
≤ dim IU

(
W 3

N1 N2

)
.

Let V 1 and V 2 be vertex operator algebras, let W i (i = 1, 2, 3) be V 1-modules
and let N i (i = 1, 2, 3) be V 2-modules. Then W i ⊗ N i (i = 1, 2, 3) are V 1 ⊗ V 2-
modules [32].

Proposition 2.4. If NW 3

W 1,W 2 < ∞ or NN3

N1,N2 < ∞, then

NW 3⊗N3

W 1⊗N1,W 2⊗N2 = NW 3

W 1,W 2NN3

N1,N2 .

Let W 1 and W 2 be two V -modules. A tensor product for the ordered pair
(W 1,W 2) is a pair (W,F (·, z)), which consists of a V -module W and an intertwin-

ing operator F (·, z) of type

(
W

W 1 W 2

)
, such that the following universal prop-

erty holds: For any V -module M and any intertwining operator I(·, z) of type(
M

W 1 W 2

)
, there exists a unique V -homomorphism φ from W to M such that

I(·, z) = φ ◦ F (·, z). It is clear from the definition that if a tensor product of W 1

and W 2 exsits, it is unique up to isomorphism. In this case, we denote the tensor
product by W 1 �W 2.

The following results are obtained in [39], [40], [41] and [35], [36], [37].

Theorem 2.5. Let V be a vertex operator algebra satisfying conditions (V1)-(V3).
1. The tensor product of any two V -modules M � N exists. In particular,

M i �M j of M i and M j exists and is equal to
∑

k N
k
i,jM

k for any i, j ∈ {0, ..., p}.
2. The V -module category CV is a fusion category.

The modular transformation of trace functions of irreducible modules of vertex
operator algebra [57] is another important ingredient in this paper. Another vertex
operator algebra structure (V, Y [·, z],1, ω−c/24) is defined on V in [57] with grading

V =
⊕
n≥0

V[n].

For v ∈ V[n] we write wt[v] = n. We denote vn−1 by o(v) for v ∈ Vn and extend to
V linearly. For i = 0, ..., p and v ∈ V, we set

Zi(v, q) = trMi o(v)qL(0)−c/24 =
∑
n≥0

(trMi
λi+n

o(v))qλi+n−c/24
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which is a formal power series in variable q. The constant c here is the central charge
of V. The Zi(1, q) which is denoted by chq M

i sometimes is called the q-character
of M i. The Zi(v, q) converges to a holomorphic function in 0 < |q| < 1 [57]. Let
H = {τ ∈ C | im τ > 0} be the upper half complex plane and q = e2πiτ with τ ∈ H.
Denote by Zi(v, τ ) the holomorphic function Zi(v, q) on H.

Note that the modular group SL2(Z) acts on H in an obvious way.

Theorem 2.6. Let V be a vertex operator algebra satisfying (V1)-(V3).
(1) There is a group homomorphism ρ : SL2(Z) → GLp+1(C) with ρ(γ) = (γij)

such that for any 0 ≤ i ≤ p and v ∈ V[n]

Zi(v, γτ ) = (cτ + d)n
p∑

j=0

γijZj(v, τ ).

(2) Each Zi(v, γτ ) is a modular form of weight n over a congruence subgroup Γ(m)
for some m ≥ 1.

Part (1) of the theorem was obtained in [57] and Part (2) was established in [23].
The matrices

S = ρV

([
0 −1
1 0

])
and T = ρV

([
1 1
0 1

])
are respectively called the genus one S and T -matrices of V .

Finally we can define the quantum dimension. Let V be as before and let M be
a V -module. Then M =

∑p
i=0 M

i is a direct sum of finitely many irreducible V -
modules. Then both ZV (τ ) = Z0(1, τ ) and ZM (τ ) = ZM (1, τ ) exist. The quantum
dimension of M over V is defined as

qdimV M = lim
y→0

ZM (iy)

ZV (iy)
= lim

q→1

chq M

chq V
,

where y is real and positive and chq M is the q-character of M .
The following result was given in [12].

Theorem 2.7. Let V be a vertex operator algebra satisfying (V1)-(V3).
(1) qdimV M i = Si0

S00
exists and is greater than or equal to 1 for all i where

S = (Sij).
(2) qdimV M i is the maximal eigenvalue of the fusion matrix N(i) = (Nk

ij)jk.

(3) qdimV M i �M j = qdimV M i · qdimV M j for all i, j.
(4) M i is a simple current if and only if qdimV M i = 1.

By Theorems 2.1, 2.5 and 2.7, we see the relation between the quantum dimen-
sion and the Frobenius-Perron dimension: qdimV M i = FPdim CV

(M i) for all i.
We also define the global dimension

glob(V ) =

p∑
i=0

(qdimV M i)2.

It is clear that glob(V ) = FPdim (CV ).
An extension U of V is a simple vertex operator algebra containing V. Then U

is again C2-cofinite [1]. Here we quote a recent result from [38].

Theorem 2.8. Let V be a vertex operator algebra satisfying (V1)-(V3).
(1) If U is an extension vertex operator algebra of V , then U induces an étale

algebra AU in CV such that AU is isomorphic to U as a V -module.
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(2) If U is a V -module having integral conformal weight and U is a commutative
algebra in CV , then U has a vertex operator algebra structure such that U is an
extension vertex operator algebra of V .

(3) U is rational.

Theorem 2.9. Let V be a vertex operator algebra satisfying (V1)-(V3) and let
a simple vertex operator algebra U be an extension of V. Then U also satisfies
(V1)-(V3) and

glob(V ) = glob(U)(qdimV U)2.

Proof. The theorem is a combination of [44], Theorem 2.2, [12], and [38]. In this
case, let C be the category of V -modules and A = U an algebra in C. Then C0

A is
the U -module category by [44]. �

We now consider two vertex operator algebras V 1, V 2 satisfying conditions (V1)-
(V3). Then it is easy to see that the tensor product vertex operator algebra V 1⊗V 2

[32] also satisfies assumptions (V1)-(V3).

Lemma 2.10. Let M be a V 1-module and let N be a V 2-module. Then

qdimV 1⊗V 2 M ⊗N = qdimV 1 M · qdimV 2 N,

glob(V 1 ⊗ V 2) = glob(V 1)glob(V 2).

Proof. The equality qdimV 1⊗V 2 M ⊗ N = qdimV 1 M · qdimV 2 N follows from the
fact that ZM⊗N (τ ) = ZM (τ )ZN(τ ) and the equality

glob(V 1 ⊗ V 2) = glob(V 1)glob(V 2)

follows from the first equality and the fact that the irreducible V 1 ⊗ V 2-modules
are exactly M ⊗N where M is an irreducible V 1-module and N is an irreducible
V 2-module [32]. �

3. Parafermion vertex operator algebras

In this section we recall the parafermion vertex operator algebra K(g, k) and
its representations associated to any finite dimensional simple Lie algebra g and
positive integer k from [25].

Let g be a finite dimensional simple Lie algebra with a Cartan subalgebra h.
We denote the corresponding root system by Δ and the root lattice by Q. Fix an
invariant symmetric nondegenerate bilinear form 〈, 〉 on g such that 〈α, α〉 = 2 if α
is a long root, where we have identified h with h∗ via 〈, 〉. We denote the image of
α ∈ h∗ in h by tα. That is, α(h) = 〈tα, h〉 for any h ∈ h. Fix simple roots {α1, ..., αl}
and let Δ+ be the set of corresponding positive roots. Denote the highest root by
θ.

Recall that the weight lattice P of g consists of λ ∈ h∗ such that 2〈λ,α〉
〈α,α〉 ∈ Z for all

α ∈ Δ. It is well-known that P =
⊕l

i=1 ZΛi where Λi are the fundamental weights

defined by the equation
2〈Λi,αj〉
〈αj ,αj〉 = δi,j . Let P+ be the subset of P consisting of the

dominant weight Λ ∈ P in the sense that
2〈Λ,αj〉
〈αj ,αj〉 is nonnegative for all j. For any

nonnegative integer k we also let P k
+ be the subset of P+ consisting of Λ satisfying

〈Λ, θ〉 ≤ k.
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Let Q =
∑l

i=1 Zαi be the root lattice and QL be the sublattice of Q spanned by
the long roots. Recall that the dual lattice Q◦

L consists λ ∈ h∗ such that 〈λ, α〉 ∈ Z

for all α ∈ QL.
For the purpose of identifying the irreducible K(g, k)-module, we need the fol-

lowing lemma.

Lemma 3.1. For any simple Lie algebra g, Q◦
L = P.

Proof. The result is obvious if g is a Lie algebra of type A,D,E as 〈α, α〉 = 2 if α
is a long root. We now assume that g is a Lie algebra of other type. First, observe
that P ⊂ Q◦

L. It remains to show that Q◦
L ⊂ P. We will do a verification case by

case using the root systems given in [42].
(1) Type Bl. Let E = R

l with the standard orthonormal basis {ε1, ..., εl}. Then

Δ = {±εi,±(εi ± εj)|i 	= j}.

Let λ ∈ Q◦
L. Then 〈λ, (εi ± εj)〉 ∈ Z for all i 	= j. This implies that 〈λ, εi〉 ∈ 1

2Z and
2〈λ,α〉
〈α,α〉 ∈ Z if α is a short root. That is, λ ∈ P.

(2) Type Cl. In this case,

Δ = {±
√
2εi,±

1√
2
(εi ± εj)|i 	= j}.

If λ ∈ Q◦
L, then 〈λ, εi〉 ∈ 1√

2
Z and 2〈λ,α〉

〈α,α〉 ∈ Z if α is a short root.

(3) Type F4. Let E = R4. Then

Δ = {±εi,±(εi ± εj),±
1

2
(ε1 ± ε2 ± ε3 ± ε4)|i 	= j}.

If λ ∈ Q◦
L, then 〈λ, εi〉 ∈ 1

2Z and 2〈λ,α〉
〈α,α〉 ∈ Z if α is a short root.

(4) Type G2. Let E be the subspace of R3 orthogonal to ε1 + ε2 + ε3. Then

Δ = ± 1√
3
{εi − εj , 2ε1 − ε2 − ε3, 2ε2 − ε1 − ε3, 2ε3 − ε1 − ε2|i 	= j}.

If λ ∈ Q◦
L, then

〈λ, 1√
3
(2ε1 − ε2 − ε3 − 2ε2 + ε1 + ε3)〉 ∈ Z.

This gives 〈λ, ε1 − ε2〉 ∈ 1√
3
Z and

2〈λ, 1√
3
(ε1−ε2)〉

1
3 〈ε1−ε2,ε1−ε2〉 ∈ Z. Similarly, one can verify that

2〈λ,α〉
〈α,α〉 ∈ Z for any short root α. The proof is complete. �

Let ĝ = g⊗C[t, t−1]⊕CK be the affine Lie algebra. Fix a nonnegative integer k.
For any Λ ∈ P k

+ let L(Λ) be the irreducible highest weight g-module with highest
weight Λ and let Lĝ(k,Λ) be the unique irreducible ĝ-module such that Lĝ(k,Λ) is
generated by L(Λ) and g ⊗ tnL(Λ) = 0 for t > 0 and K acts as constant k. The
following result is well known (cf. [34],[46], [57]):

Theorem 3.2. The Lĝ(k, 0) is a vertex operator algebra satisfying conditions (V1)-
(V3). Namely, Lĝ(k, 0) is a simple, rational and C2-cofinite vertex operator algebra

whose irreducible modules are Lĝ(k,Λ) for Λ ∈ P k
+ and the weight λLĝ(k,Λ) of

Lĝ(k,Λ) is
〈Λ+2ρ,Λ〉
2(k+h∨) where ρ =

∑l
i=1 Λi and h∨ is the dual Coxeter number.
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Let θ =
∑l

i=1 aiαi. Here is a list of ai = 1 using the labeling from [43]:

Al : a1, ..., al,

Bl : a1,

Cl : al,

Dl : a1, al−1, al,

E6 : a1, a5,

E7 : a6.

Denote by I the set of i with ai = 1. It is easy to see that the cardinality of I is
equal to |P/Q| − 1 [52].

Let M
̂h
(k) be the vertex operator subalgebra of Lĝ(k, 0) generated by h(−1)1

for h ∈ h. For λ ∈ h∗, denote by M
̂h
(k, λ) the irreducible highest weight module

for ĥ with a highest weight vector eλ such that h(0)eλ = λ(h)eλ for h ∈ h. The
parafermion vertex operator algebra K(g, k) is the commutant [34] of M

̂h
(k) in

Lĝ(k, 0). We have the following decomposition:

Lĝ(k,Λ) =
⊕

λ∈Q+Λ

M
̂h
(k, λ)⊗MΛ,λ

as M
̂h
(k)⊗K(g, k)-module. Moreover, M0,0 = K(g, k) and MΛ,λ is an irreducible

K(g, k)-module [25].
It is proved in [29] that the lattice vertex operator algebra V√

kQL
is a vertex

operator subalgebra of Lĝ(k, 0) and the parafermion vertex operator algebraK(g, k)
is also a commutant of V√

kQL
in Lĝ(k, 0). This gives us another decomposition

Lĝ(k,Λ) =
⊕

i∈Q/kQL

V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi

as modules for V√
kQL

⊗K(g, k) where MΛ,λ is as before and Q =
⋃

i∈Q/kQL
(kQL+

βi).
Here are the main results on K(g, k).

Theorem 3.3. Let g be a simple Lie algebra and let k be a positive integer.
(1) The K(g, k) is a vertex operator algebra satisfying conditions (V1)-(V3).
(2) For any Λ ∈ P k

+, λ ∈ Λ +Q and α ∈ QL, M
Λ,λ = MΛ,λ+kα.

(3) For each i ∈ I, Λ ∈ P k
+ there exists a unique Λ(i) ∈ P k

+ such that for any

λ ∈ Λ +Q, MΛ,λ = MΛ(i),λ+kΛi .
(4) Any irreducible K(g, k)-module is isomorphic to MΛ,λ for some Λ ∈ P k

+ and
λ ∈ Λ +Q.

The C2-cofiniteness of K(g, k) was obtained in [3] (also see [54]) and the rest of
the results in the theorem can be found in [4] and [25].

The following result will be useful later.

Lemma 3.4. Fix Λ ∈ P k
+ and λ ∈ Λ + Q. Let A = {Λ + βj + kQL|j ∈ Q/kQL}.

Then the set {(Λ, λ+kQL), (Λ
(i), λ+kΛi+kQL)|i ∈ I} gives exactly |I|+1 elements

in P k
+ ×A.
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Proof. It is proved in [25] that (Λ, λ+ kQL) is different from (Λ(i), λ+ kΛi + kQL)
for i ∈ I. Let i, j ∈ I be distinct. We can assume that Λ(i) = Λ(j). Then

(Λ(i), λ+ kΛi + kQL) = (Λ(j), λ+ kΛj + kQL)

if and only if Λi − Λj ∈ QL. If g is of A,D,E type, this cannot happen. For type
Bl and Cl the cardinality of I is 1. The proof is complete. �

From Theorem 3.3 and Lemma 3.4 we immediately have:

Corollary 3.5. Let g be a simple Lie algebra and let k be a positive integer. Then

K(g, k) has at most
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible modules.

4. Quantum dimensions of the parafermion vertex operator algebras

In this section we compute the quantum dimensions of irreducible K(g, k)-
modules. The ideas and methods here are different from those used in [28]. We do
not need the S-matrix for the computation.

First we need a result on the quantum dimension in orbifold theory from [12].
Let V be a simple vertex operator algebra and G a finite automorphism group of
V. Then V G is a vertex operator subalgebra and V has a decomposition

V =
⊕
χ∈ ̂G

Wχ ⊗ Vχ,

where Ĝ is the set of irreducible characters of G and Wχ is the simple G-module
with the character χ and Vχ is an irreducible V G-module [24], [16]. We need the
following result from [12].

Theorem 4.1. Let V be a vertex operator algebra satisfying (V1)-(V3) and let G
be a finite automorphism group of V such that V is g-rational for every g ∈ G
and any irreducible g-twisted V -module M =

⊕
n≥0 Mλ+ n

T
has positive conformal

weight λ if g 	= 1 where T is the order of g. Then qdimV G Vχ = dimWχ.

The next result tells us how the rationality of V G implies the g-rationality of all
g ∈ G.

Lemma 4.2. Let V be a simple vertex operator algebra and let G be a finite au-
tomorphism group of V such that both V and V G satisfies assumptions (V1)-(V3).
Then V is g-rational for all g ∈ G and the conformal weight of any irreducible
g-twisted V -module is positive.

Proof. Since V G satisfies assumptions (V1)-(V3), the vertex operator subalgebra
V 〈g〉 of V is C2-cofinite [1] and rational [38]. Here we need some facts about
associative algebra Ag,n(V ) for g ∈ G and 0 ≤ n ∈ 1

T Z from [20], [21] where
T is the order of g. Let Am(V ) = A1,m(V ). The following are true: (1) V is g-
rational if and only if Ag,n(V ) is semisimple for all n, (2) There is an onto algebra

homomorphism from A[n](V
〈g〉) to Ag,n(V ) where [n] is the largest integer less

than or equal to n. Since V 〈g〉 is rational, Am(V 〈g〉) is semisimple for all m. Thus,
Ag,n(V ) is semisimple for all n and V is g-rational.

It remains to prove that the conformal weight λ of any irreducible g-twisted V -
module M is positive if g 	= 1. Let T be the order of g. Then M has decomposition

M =

∞⊕
n=0

Mλ+ n
T
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such that Mλ 	= 0 where Mλ+ n
T

is the eigenspace of L(0) with eigenvalue λ + n
T

[18]. Moreover, for each s = 0, ..., T − 1 the subspace
⊕

n∈Z
Mλ+n+ s

T
	= 0. If λ = 0,

then there exists an irreducible V G-submodule W of M isomorphic to V G as V G

is the only irreducible V G-module whose conformal weight is 0. Let V =
⊕

s V
s

where V s is the irreducible V G-module. Then M =
∑

s V
s ·W where V s ·W is a

subspace spanned by unW for u ∈ V s and n ∈ Z. It is easy to see that V s ·W is
isomorphic to V s as V G-module. This implies that M has only integral weights.
This is a contradiction as T 	= 1. �

Recall the irreducible K(g, k)-module M0,βi for i ∈ Q/kQL from Section 3.

Lemma 4.3. The M0,βi is a simple current.

Proof. We need to introduce a finite abelain group G following [25]. Let G be the
dual group of the finite abelian group Q/kQL. Then G is a group of automorphisms
of Lĝ(k, 0) such that g ∈ G acts as g(βi + kQL) on V√

kQL+ 1√
k
βi

⊗M0,βi . Clearly,

each βi + kQL is an irreducible character of G. So V√
kQL+ 1√

k
βi

⊗ M0,βi in the

decomposition

Lĝ(k, 0) =
⊕

i∈Q/kQL

V√
kQL+ 1√

k
βi

⊗M0,βi

corresponds to the character βi+kQL. In particular, Lĝ(k, 0)
G = V√

kQL
⊗K(g, k).

It follows from Theorem 4.1 and Lemma 4.2, qdimV√
kQL

⊗K(g,k) V
√
kQL+ 1√

k
βi

⊗
M0,βi = 1. We can also use the g-rationality of Lĝ(k, 0) from [50]. It is well known
that every irreducible V√

kQL
-module is a simple current [15]. Then by Lemma 2.10,

qdimK(g,k)M
0,βi = 1. Since K(g, k) satisfies conditions (V1)-(V3). It follows that

M0,βi is a simple current. �

One can also obtain Lemma 4.3 by using the mirror extension [53].
The next result asserts that all the irreducible K(g, k)-modules occurring in

Lĝ(k,Λ) for Λ ∈ P k
+ have the same quantum dimension.

Lemma 4.4. Let Λ ∈ P k
+ Then qdimK(g,k)M

Λ,λ = qdimK(g,k)M
Λ,Λ for all λ ∈

Λ +Q.

Proof. By Theorem 3.3, every MΛ,λ for λ ∈ Λ + Q is isomorphic to MΛ,Λ+βi for
some i ∈ Q/kQL. So it is sufficient to show that all the MΛ,Λ+βi have the same
quantum dimension.

Recall the decompositions

Lĝ(k,Λ) =
⊕

i∈Q/kQL

V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi

and

Lĝ(k, 0) =
⊕

i∈Q/kQL

V√
kQL+ 1√

k
βi

⊗M0,βi .

Since Lĝ(k,Λ) is an irreducible Lĝ(k, 0)-module, we see that

Lĝ(k, 0) · V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi = Lĝ(k,Λ)
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for any i ∈ Q/kQL. Here we use X ·W to denote the subspace spanned by unW
for u ∈ X and n ∈ Z where X is a subspace of a vertex operator algebra and W is
a subset of a V -module. It follows that⊕

j∈Q/kQL

V√
kQL+ 1√

k
βj

⊗M0,βj · V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi = Lĝ(k,Λ).

This implies that

V√
kQL+ 1√

k
βj

⊗M0,βj · V√
kQL+ 1√

k
(Λ+βi)

⊗MΛ,Λ+βi

= V√
kQL+ 1√

k
(Λ+βi+βj)

⊗MΛ,Λ+βi+βj

for all j. By Lemma 4.3, V√
kQL+ 1√

k
βj

⊗M0,βj is a simple current. It follows from

Lemma 2.10 that

qdimK(g,k)M
Λ,Λ+βi+βj = qdimK(g,k)M

0,βj · qdimK(g,k)M
Λ,Λ+βi

= qdimK(g,k)M
Λ,Λ+βi .

The proof is complete. �

We now can give an explicit expression for the quantum dimension of any
irreducible K(g, k)-module MΛ,λ. Recall from [9] that the quantum dimension

qdimLĝ(k,0)
Lĝ(k,Λ) =

∏
α>0

(Λ+ρ,α)q
(ρ,α)q

(see Introduction).

Theorem 4.5. For any Λ ∈ P k
+ and λ ∈ Λ +Q,

qdimK(g,k)M
Λ,λ = qdimLĝ(k,0)

Lĝ(k,Λ).

Proof. The proof is a straightforward computation by noting that the irreducible
modules of V√

kQL
are simple currents:

qdimLĝ(k,0)
Lĝ(k,Λ) = lim

q→1

chq Lĝ(k,Λ)

chq Lĝ(k, 0)

= lim
q→1

∑
i∈Q/kQL

chq V√
kQL+ 1√

k
(Λ+βi)

· chq MΛ,Λ+βi∑
i∈Q/kQL

chq V√
kQL+ 1√

k
βi

· chq M0,βi

= lim
q→1

(∑
i∈Q/kQL

chq V√
kQL+ 1√

k
(Λ+βi)

· chq MΛ,Λ+βi
)
/
(
chq V√

kQL
· chq K(g, k)

)
(∑

i∈Q/kQL
chq V√

kQL+ 1√
k
βi

· chq M0,βi
)
/
(
chq V√

kQL
· chq K(g, k)

)

=

∑
i∈Q/kQL

limq→1

chq V√
kQL+ 1√

k
(Λ+βi)

chqV√
kQL

limq→1
chq MΛ,Λ+βi

chq K(g,k)∑
i∈Q/kQL

limq→1

chq V√
kQL+ 1√

k
βi

chq V√
kQL

limq→1
chq M0,βi

chq K(g,k)

=

∑
i∈Q/kQL

limq→1
chq MΛ,Λ+βi

chq K(g,k)

|Q/kQL|

=
|Q/kQL| · qdimK(g,k)M

Λ,Λ+βi

|Q/kQL|
= qdimK(g,k) M

Λ,Λ+βi

for any i ∈ Q/kQL. �



5976 CHUNRUI AI, CHONGYING DONG, XIANGYU JIAO, AND LI REN

We remark that one can also use the S-matrix given in [43] to compute the
quantum dimension of MΛ,λ from the definition. But it will be very complicated
as we do not have a complete classification of the irreducible K(g, k)-modules at
this point.

For an arbitrary simple vertex operator algebra V and a finite automorphism
group G such that V G is regular, the quantum dimensions of irreducible V G-
modules are determined in terms of the quantum dimensions of g twisted modules
for g ∈ G recently in [26]. Theorem 4.5 also follows from these results easily.

5. Classification of the irreducible modules and the fusion rules

In this section, we classify the irreducible K(g, k)-modules and determine the
fusion rules.

By Theorem 3.3, there are at most
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible K(g, k)-

modules. We prove that there are exactly
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible

K(g, k)-modules. Namely, the identification given in [25] is complete.

Theorem 5.1. Let g be a simple Lie algebra and k a positive integer. Then there

are exactly
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible K(g, k)-modules.

Proof. Recall that Lĝ(k, 0) = ⊕i∈Q/kQL
V√

kQL+ 1√
k
βi
⊗M0,βi . By Theorem 2.9 and

Lemmas 2.10 and 4.3 we have

glob(V√
kQL

⊗K(g, k))

= glob(Lĝ(k, 0)) ·
(
qdimV√

kQL
⊗K(g,k)

∑
i∈Q/kQL

V√
kQL+ 1√

k
βi

⊗M0,βi
)2

= glob(Lĝ(k, 0))
( ∑
i∈Q/kQL

qdimV√
kQL

V√
kQL+ 1√

k
βi

· qdimK(g,k)M
0,βi

)2
= glob(Lĝ(k, 0))|Q/kQL|2.

From Lemma 2.10 or Lemma 4.7 of [26] we have

glob(V√
kQL

)glob(K(g, k)) = glob(Lĝ(k, 0))|Q/kQL|2.

We need to determine the global dimension of V√
kQL

first. Note that V√
kQL

has

exactly |(
√
kQL)

◦/QL| inequivalent irreducible modules [11] and each irreducible is

a simple current. It is evident that (
√
kQL)

◦ = 1√
k
Q◦

L. Then

glob(V√
kQL

) =
∑

i∈ 1√
k
Q◦

L/
√
kQL

(qdimV√
kQL

V√
kQL+λi

)2 = |Q◦
L/kQL| = |P/kQL|,

where we have used Lemma 3.1 in the last equality.
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Also recall that the irreducible Lĝ(k, 0)-modules are {Lĝ(k,Λ) | Λ ∈ P k
+}. Using

Theorem 4.5 gives

glob(Lĝ(k, 0)) · |Q/kQL| =
∑

Λ∈Pk
+

|Q/kQL| · (qdimLĝ(k,0)
Lĝ(k,Λ))

2

=
∑

Λ∈Pk
+

|Q/kQL| · (qdimK(g,k) M
Λ,λ)2

=
∑

Λ∈Pk
+

∑
i∈Q/kQL

(qdimK(g,k) M
Λ,Λ+βi)2,

where λ is any fixed element in Λ +Q. So we get

glob(K(g, k)) =
glob(Lĝ(k, 0))|Q/kQL|2

glob(V√
kQL

)

=
glob(Lĝ(k, 0))|Q/kQL|2

|P/Q||Q/kQL|

=
glob(Lĝ(k, 0))|Q/kQL|

|P/Q|

=

∑
Λ∈Pk

+

∑
i∈Q/kQL

(qdimK(g,k)M
Λ,Λ+βi)2

|P/Q| .

It follows from Theorem 3.3, Lemma 3.4 that the identification in Theorem 3.3

is complete and K(g, k) has exactly
|Pk

+||Q/kQL|
|P/Q| inequivalent irreducible K(g, k)-

modules. �

Finally we determine the fusion rules among the irreducible modules for K(g, k).
Let

Lĝ(k,Λ
1)� Lĝ(k,Λ

2) =
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2Lĝ(k,Λ3),

where Λ1,Λ2 ∈ P k
+ and NΛ3

Λ1,Λ2 are the fusion rules for the irreducible Lĝ(k, 0)-
modules.

Theorem 5.2. Let Λ1,Λ2 ∈ P k
+ and i, j ∈ Q/kQL. Then

MΛ1,Λ1+βi �MΛ2,Λ2+βj =
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2MΛ3,Λ1+Λ2+βi+βj .

Moreover, MΛ3,Λ1+Λ2+βi+βj with NΛ3

Λ1,Λ2 	= 0 are inequivalent K(g, k)-modules.

Proof. We first prove that MΛ3,Λ1+Λ2+βi+βj with NΛ3

Λ1,Λ2 	= 0 are inequivalent

K(g, k)-modules for Λ3 ∈ P k
+. Note from Theorem 3.3, Lemma 3.4 and Theorem

5.1 that

MΛ3,Λ1+Λ2+βi+βj = M Λ̄,Λ1+Λ2+βi+βj

for some Λ3, Λ̄ ∈ P k
+ if and only if Λ̄ = (Λ3)(s) for some s with as = 1 and

Λ1 + Λ2 + βi + βj + kΛs − (Λ1 + Λ2 + βi + βj) ∈ kQL.

That is, Λs ∈ QL. But this is impossible [25].



5978 CHUNRUI AI, CHONGYING DONG, XIANGYU JIAO, AND LI REN

For any Λ3 ∈ P k
+, let NMΛ3,Λ1+Λ2+βi+βj

MΛ1,Λ1+βi ,MΛ2,Λ2+βj
be the fusion rules determined by

the irreducible K(g, k)-modules MΛ1,Λ1+βi , MΛ2,Λ2+βj and MΛ3,Λ1+Λ2+βi+βj . We
claim that

NMΛ3,Λ1+Λ2+βi+βj

MΛ1,Λ1+βi ,MΛ2,Λ2+βj
≥ NΛ3

Λ1,Λ2 .

For short we set λ = Λ1 + βi and μ = Λ2 + βj . By Proposition 2.3 we know that

NΛ3

Λ1,Λ2 ≤ N
Lĝ(k,Λ

3)

V√
kQL+ 1√

k
λ
⊗MΛ1,λ,V√

kQL+ 1√
k

μ
⊗MΛ2,μ

= N
V√

kQL+ 1√
k

(λ+μ)
⊗MΛ3,λ+μ

V√
kQL+ 1√

k
λ
⊗MΛ1,λ,V√

kQL+ 1√
k

μ
⊗MΛ2,μ

.

Using Proposition 2.4 and the identity

N
V√

kQL+ 1√
k

(λ+μ)

V√
kQL+ 1√

k
λ
,V√

kQL+ 1√
k

μ
= 1

from [15] proves the claim.

From the discussion above, we see that
∑

Λ3∈Pk
+
NΛ3

Λ1,Λ2MΛ3,Λ1+Λ2+βi+βj is a

K(g, k)-submodule of MΛ1,Λ1+βi �MΛ2,Λ2+βj . On the other hand, by Theorem 4.5
we have

qdimK(g,k)M
Λ1,Λ1+βi �MΛ2,Λ2+βj

= qdimK(g,k)M
Λ1,Λ1+βi qdimK(g,k)M

Λ2,Λ2+βj

= qdimLĝ(k,0)
Lĝ(k,Λ

1) qdimLĝ(k,0)
Lĝ(k,Λ

2)

= qdimLĝ(k,0)
Lĝ(k,Λ

1)� Lĝ(k,Λ
2)

=
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2 qdimLĝ(k,0)
Lĝ(k,Λ

3)

=
∑

Λ3∈Pk
+

NΛ3

Λ1,Λ2 qdimK(g,k) M
Λ3,Λ1+Λ2+βi+βj .

So the quantum dimension of the submodule
∑

Λ3∈Pk
+
NΛ3

Λ1,Λ2MΛ3,Λ1+Λ2+βi+βj of

MΛ1,Λ1+βi �MΛ2,Λ2+βj equals the quantum dimension of MΛ1,Λ1+βi �MΛ2,Λ2+βj .
The theorem follows immediately. �
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