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COMPLETE REDUCIBILITY IN GOOD CHARACTERISTIC

ALASTAIR J. LITTERICK AND ADAM R. THOMAS

ABSTRACT. Let G be a simple algebraic group of exceptional type, over an
algebraically closed field of characteristic p > 0. A closed subgroup H of G is
called G-completely reducible (G-cr) if whenever H is contained in a parabolic
subgroup P of G, it is contained in a Levi subgroup of P. In this paper we
determine the G-conjugacy classes of non-G-cr simple connected subgroups of
G when p is good for G. For each such subgroup X, we determine the action
of X on the adjoint module L(G) and the connected centraliser of X in G. As
a consequence we classify all non-G-cr connected reductive subgroups of G,
and determine their connected centralisers. We also classify the subgroups of
G which are maximal among connected reductive subgroups, but not maximal
among all connected subgroups.
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Let G be a connected reductive algebraic group defined over an algebraically
closed field K. Following Serre [28], a closed subgroup X of G is said to be G-
completely reducible (G-cr) if whenever X is contained in a parabolic subgroup
P of G, it is contained in a Levi subgroup of P. If G = GL(V), a subgroup
X is G-cr if and only if V' is a completely reducible K X-module, and thus G-
complete reducibility is a generalisation of the standard notion in representation
theory. Similarly, X is called G-irreducible if X is not contained in any proper
parabolic subgroup of G, and G-indecomposable if X lies in no proper Levi subgroup
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of G. The G-cr subgroups of G are precisely the L-irreducible subgroups of L, where
L ranges over the Levi subgroups of G [3| Corollary 3.5]; the case L = G yields the
G-irreducible subgroups.

By a theorem of Borel and Tits [6, Théoréme 2.5], a G-cr subgroup is necessarily
reductive. The converse is true provided that the characteristic of K is zero or large
relative to the root system of G (cf. [I5}[18,24] and [30, Theorem 4.4]); thus non-G-
cr reductive subgroups are inherently a low positive characteristic phenomenon. In
this paper we consider a weak restriction on the characteristic. Recall that Char(K)
is called bad for G if it is prime and divides some coefficient when the highest root in
the root system of G is expressed as a sum of simple roots, and good for G otherwise.
A number of useful subgroup structure results hold precisely when p = Char(K) is
good for G. For instance, a result of Bate, Martin, and Rohrle (Lemma [B.2)) states
that if p is good for G, then a closed subgroup of a subsystem subgroup H is G-cr
if and only if it is H-cr. Good characteristic is therefore a natural first scenario to
consider when studying non-G-cr subgroups.

Now let G be simple. When G has classical type, understanding reductive sub-
groups of G amounts to understanding the finite-dimensional representation theory
of reductive groups. In this paper we consider G of exceptional type, where much
more explicit results can be expected. The bad primes here are 2 and 3 for all
exceptional types, as well as 5 for Fg. A result of Liebeck and Seitz [I8, Theorem
1] states that if p > 7, then every closed connected reductive subgroup of G is G-cr.
In fact, if G is of type G5 or Fy, then p > 3 suffices, and hence for these types all
connected reductive subgroups are G-completely reducible in good characteristic.
This fails for G of type Eg, E7, or Eg. Indeed, it is shown in [33] Corollary 2] that
if p is good for G, then there exists a non-G-cr simple subgroup X of G if and only
if either X is of type Ay with p=>5or 7, or X is of type Gy with p =7 and G = Ey
or Fg. In this paper we classify all non-G-cr simple subgroups in these cases. The
results are the following. The tables referenced in the statements can be found in
Section [I0 on page

Theorem 1. Let G be a simple algebraic group of type Eg in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then p =5, X is of type Ay,
and X is Aut(Q)-conjugate to exactly one subgroup listed in Table [, all of which
are non-G-cr.

Theorem 2. Let G be a simple algebraic group of type E7 in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then either p =5, X is of type
Ay, and X is conjugate to exactly one subgroup listed in Table I2; or p =7, X is
of type A1 or Go, and X is conjugate to exactly one subgroup listed in Table 03] or
04l The subgroups in these tables are all non-G-cr.

Theorem 3. Let G be a simple algebraic group of type Eg in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then p = 7, X is of type A;
or Ga, and X is conjugate to exactly one subgroup listed in Table or [I0l, all of
which are non-G-cr.

The tables in Section [I0] contain additional information on the non-G-cr simple
subgroups in question. For each such subgroup X, we determine the X-module
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structure of the adjoint module L(G) and of a non-trivial module of least dimension
when G = Eg or E;. We also determine the connected centraliser of each non-G-cr
simple subgroup, which allows us to extend our results to a classification of all
non-G-cr connected reductive subgroups of G. In the subsequent corollaries, we
are therefore able to make a number of observations concerning general reductive
subgroups of G.

Theorem 4. Let G be an exceptional simple algebraic group in good characteristic,
and let X be a non-G-cr connected reductive subgroup of G. Then one of the
following holds:
(i) X s simple,
(il) X is Aut(G)-conjugate to a semisimple subgroup in Table [T,
(ill) Z(X)° # 1 and X is Aut(G)-conjugate to a subgroup in Table I8
Each subgroup X in Tables [[7 and 08 denotes a unique Aut(G)-conjugacy class
unless stated otherwise, and all such subgroups are non-G-cr.

The proof of Theorems [[H3] generalises the strategy developed in [35], which
classifies non-G-cr connected reductive subgroups when G has type Fy with p = 2
or 3. An outline is as follows. For each proper parabolic subgroup P of G, with
unipotent radical @) and Levi factor L, we find all L-irreducible simple subgroups of
type Ay or Go. This uses standard representation theory when L has classical simple
factors, and results of the second author [36,87] when L has exceptional simple
factors. For each such L-irreducible subgroup X, we then study the cohomology
set H'(X,Q), which parametrises the Q-conjugacy classes of complements to Q
in QX. This is the most technical part, and is discussed in detail in Section [Bl
In each case, we either describe H'(X, Q) explicitly, or we determine sufficient
information to limit the number of conjugacy classes of subgroups of P which are
isomorphic to X and not conjugate to a subgroup of L. Finally we construct explicit
representatives of each class of subgroups, for instance through known embeddings
into a proper reductive subgroup as in Corollary [6 below.

We note that the techniques described in Section [ relating to H'(X, Q) are
equally valid in bad characteristic. In addition, we still have explicit descriptions of
the simple L-irreducible subgroups of each Levi subgroup L in this case. However,
results along the lines of Lemma B2l which are intrinsic in our construction of
non-G-cr subgroups, can fail in bad characteristic. Thus extending Theorems [IH4]
to bad characteristic presents considerable technical difficulties which do not arise
here; we intend to explore this in future work.

We now present a series of consequences of Theorems [Hdl We begin with an
observation on how simple subgroups of G' act on certain G-modules of small di-
mension. Recall that a module for a reductive algebraic group is called tilting if
it has a filtration by Weyl modules and a filtration by dual Weyl modules. As de-
fined in Section @ the notation V¢ denotes a twist of the module V by a p¢-power
Frobenius morphism. Our first corollary extends Theorems 3 and 4 of [19], which
treat the case where X is G-cr.

Corollary 5. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a simple subgroup of G. Then L(G) | X is a direct sum of modules

of the form Vl[“] R Vk[r’“], and exactly one of the following holds.
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(i) Each V; is a Weyl module, a dual Weyl module, or a tilting module.
(ii) p=7 and X = G4 is a mazimal subgroup of G = Fy.
(iii) p = 7 and X = G2 is a non-G-cr subgroup of G = Es contained in a
mazimal subgroup GoFy (see Theorem []).

The subgroups in (ii) and (iii) are genuine exceptions, unique up to conjugacy
in G, and both are listed in [T9, Theorem 4], although the subgroup in (iii) was not
shown to be non-G-cr at that time.

Remark 1.1. In [19, Theorem 4], the tensor factors in the direct summands of
L(G) | X arise from a factorisation X — X x X x --- x X — G of the inclusion
of X into G. Inspecting the first and second columns of Tables shows that
in good characteristic, the same holds for non-G-cr subgroups X; if L(G) | X has
a summand which is a tensor product Vl[r] ® VQ[S]7 then X = A; lies in a subgroup
A1 Ay of G, such that V; is a Weyl module, dual Weyl module, or tilting module
for the i-th factor of this subgroup.

Remark 1.2. Inspection of Tables [TIHI4] also shows that if G = FEg or F7 and X is
non-G-cr, then V(A1) L X (resp., V(A7) L X) also satisfies part (i) of the above
corollary.

Next, we consider overgroups of the non-G-cr subgroups arising. In the following,
a subsystem subgroup of G is a semisimple subgroup which is normalised by a
maximal torus of G.

Corollary 6. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a non-G-cr connected reductive subgroup of G. Then exactly one
of the following holds:
(i) The semisimple subgroup X' is properly contained in a proper subsystem
subgroup of G.
(ii) p =T and X = Ay lies in a maximal subgroup A1Go of G = Ex.
(iii) p =7 and X = G4 is mazimal among proper connected reductive subgroups
Of G = E7.
(iv) p=7 and X = Gy lies in a mazimal subgroup GoFy of G = Es.
Therefore a connected subgroup of G which is maximal among connected reductive
subgroups, is either a mazximal connected subgroup of G, a Levi factor of a mazimal
parabolic subgroup of G, or is conjugate to the group X in (iii).
The subgroups X in (ii), (iii), and (iv) are each unique up to conjugacy in G,
and their embeddings are described in Tables [I3), I4], and [I6, respectively.

Our next result describes certain chains X < M < G where X and M are
reductive and X is G-indecomposable and M-irreducible but not G-irreducible.
This contrasts with Lemma [B.2] which tells us that M cannot be a subsystem
subgroup of GG. The notation for embeddings in Table [l is defined in Section
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Corollary 7. Let G be an exceptional simple algebraic group in good characteristic
p. Let X < M be connected subgroups of G such that M is maximal among proper
connected reductive subgroups of G, and X is M-irr and non-G-cr. Then G, p,
X, and M appear in Table I, and all such chains X < M < G satisfy the given
hypotheses.

TABLE 1. Chains X < M < G where X is non-G-cr.

G p M X Embedding of X
in M
E¢ 5 Aj (2 classes) A; — AjAs via (1, W(5)) (resp., via 2
(L, W(5)"))

E7 5 A1A1 Al — A2A5 via (2,W(5)) via (1, 1)

5 As Ay < A7 via W(7) via 2
E7 7 non-G-cr Go X =M =G —

7 Ag;non-G-cr Ay < A7 via W(7) via 2; via 6

Ga

7 A1Go; GoC4 A = A1Gs via (1,6) via (1,6); via (6,5)
Es 7 B, Ay < Ag via W(8) via 4

7 GoFy Go = G2G4 max GoFy via (10,10)  —

Recall from [I9] that a simple subgroup X of an exceptional simple algebraic
group G is called restricted if either X = A; and each high weight of a composition
factor of L(G) | X is at most 2p — 2, or X # A; and whenever a high weight of
a composition factor of L(G) | X is expressed as a sum of fundamental dominant
weights, each coefficient is at most p — 1. A semisimple subgroup is then called
restricted if each of its simple factors is restricted. Our next corollary complements
Theorem 1.1 of [27], which tells us that a restricted subgroup of type A; (called a
“good A;” there) is G-completely reducible.

Corollary 8. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a restricted semisimple subgroup of G. Then either X is G-cr,
orp =17 and X has type Go or A1Gs. In the latter cases, every such non-G-cr
subgroup X is restricted.

The connected centraliser of a G-cr subgroup is reductive [3] Lemma 3.12], and it
follows that a G-cr subgroup has trivial connected centraliser if and only if it is G-
irreducible. Theorems [TH4] allow us to classify those connected reductive subgroups
of G that have trivial connected centraliser but are not G-irreducible.

Corollary 9. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a semisimple subgroup of G. Then Cq(X)° =1 if and only if X is
either G-irreducible or conjugate to one of the non-G-cr subgroups in Table 2
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TABLE 2. Non-G-cr semisimple X with Cg(X)° = 1.

G p  Non-G-cr subgroup

Es 5 A; = AjAs via (A, W (5)E) or (17 (W (5)9))) (rs = 0)
5 AjA; < AjAs where A; < Az via W(5) or W(5)*

E; 5 Ap = AyAs via (2 W (5)E) (rs = 0)
5 AjA; < AyAs where A < Ay via 2 and Ay < Az via W(5)
5  AgsA; < AyAs where Ay < A via W(5)
7 A = 4G, via (1,6)

Es 7 A; < Agvia W(8)
7 Ay = AjAGy < Ay By via (17 1816181y (r £ 55 rs = 0)
7  A1Gy < A E; where Gy < E; is non-Eq-cr (see Theorem [))
7 Gy < GoGa < GoFy via (10,10)

Remark 1.3. Theorems [[H4] in fact classify all non-G-cr connected subgroups in
good characteristic with reductive centraliser. In particular, in good characteristic
every connected reductive subgroup of G = Fg has a reductive centraliser, but this
is not true for G = E; and FEg.

Remark 1.4. For a reductive subgroup X of G, let S be a maximal torus of Cg(X)
and let H = C(S). Then H is minimal among Levi subgroups of G containing X
(possibly H = G). We observe that for each non-G-cr subgroup X appearing in
Theorems [[H4l the reductive subgroup Ce(H') is a complement to the unipotent
radical of Cg(X)°. We are not aware of a general reason for this phenomenon.
Note that S is also a maximal torus of Cg(H'), hence Cg(X)°/R,(Ca(X)°) and
Cg(H') necessarily have the same rank.

Remark 1.5. In the corresponding scenario with G of classical type, we do not
expect to be able to classify non-G-cr subgroups X with C¢(X)° = 1. For instance,
if V is a non-trivial irreducible X-module with H'(X,V) # 0, then X occurs as
a non-G-cr subgroup in a maximal parabolic subgroup of G = SL(V @ K). The
corresponding unipotent radical is isomorphic to V' as an algebraic X-group, hence
C¢(X)° contains no unipotent elements, and is therefore a torus. Since X does not

lie in a proper Levi subgroup of G, it cannot centralise a non-trivial torus, and so
Ce(X)° =1

Lastly, we make an observation on the number of G-conjugacy classes of semisim-
ple subgroups. In principle, if P is a parabolic subgroup of G with Levi decom-
position P = @QL, and X < L is an L-irreducible reductive subgroup, then the
conjugacy classes of complements to @) in QX can depend on the cardinality of the
underlying algebraically closed field K. For instance if dim H'(X,V) = n > 2 for
some irreducible X-module V, then X occurs as a subgroup of SL(V @ K) with
image in a maximal parabolic subgroup P = QL, where L 2 GL(V) and Q 2V as
algebraic X-groups. The quotient of H!(X, Q) by the action of Z(L) is a projective
variety over K of dimension n — 1, parametrising conjugacy classes of complements
to @ in QX. We observe that this phenomenon does not occur for exceptional
groups in good characteristic.
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Corollary 10. Let G be an exceptional simple algebraic group in good characteristic
p, let P be a parabolic subgroup of G with Levi decomposition P = QL, and let
X < L be an L-irreducible simple subgroup. Then complements to Q in QX fall
into finitely many G-conjugacy classes of subgroups.

As a consequence of [22 Theorem 3|, every Levi subgroup L of G has either
finitely many L-irreducible simple subgroups of a given isomorphism type, up to L-
conjugacy, or a countably infinite number, depending on a choice of a finite number
of field twists. The following is thus immediate from Corollary [IT

Corollary 11. Let G be an exceptional simple algebraic group, over an algebraically
closed field K of characteristic p which is good for G. Then G has countably many
conjugacy classes of connected reductive subgroups.

In particular, the classes of non-G-cr simple subgroups occurring are as follows:
Countably infinitely many classes of subgroups Ay when (G,p) = (Eg,5), (E7,5),
or (Es,7); two classes of subgroups Ay and one class of subgroups Gy when (G, p) =
(E7,7); and two classes of subgroups Go when (G,p) = (Fs, 7).

Note that the corresponding result does not hold for exceptional groups in bad
characteristic, for instance if K has characteristic 2 or 3, then by [35, Theorem
1(B)] the group F4(K) has a series of pairwise non-conjugate non-G-cr subgroups
of type Ay, parametrised by closed points of a positive-dimensional variety over K.

2. NOTATION

Throughout, G denotes a simple algebraic group over an algebraically closed
field K of characteristic p > 0, where p is good for G. Subgroups of G are taken
to be closed, and homomorphisms are taken to be morphisms of varieties. For us,
“simple” and “semisimple” subgroups of G will always refer to connected subgroups.
In addition, conjugation will always be a left action.

Let ® be a set of roots of GG, with respect to a fixed maximal torus T < G.
Let II = {a1,...,q;} be a base of simple roots corresponding to a choice of Borel
subgroup containing T, and let W(G) = N¢(T)/T be the Weyl group of G. Let
{A1,..., A1} be the set of fundamental dominant weight of G. We use the Bour-
baki ordering on nodes of the Dynkin diagram; cf. [8, Ch. VI, Planches I-1X]. We
sometimes use ajas ...a; to denote either a root ajoq + asas + ldots + ajay or a
dominant weight a1 A1 + asAs + - - - 4+ a;\;; context will prevent ambiguity.

For a root «, we make the following definitions. The Weyl group W (G) acts
on the left on Z® ® R, and we let s, denote the reflection in the hyperplane
perpendicular to a. We let U, = {z4(t) : t € K} denote the T-root subgroup of G
corresponding to a, and for t € K* we let n,(t) = 24 (t)r_o(—t 1)z (t) € No(T),
so that n4(t) maps to s, € W(G) under Ng(T) — W(Q) (cf. [9, §6.4]). We set
No = N(1l). Furthermore we let hy(t) = no(t)na(—1) € T. If a = «; is a simple
root, we set s; = Sq,, and similarly n; = n,, and h;(t) = hq, (1).

For a dominant weight A, we denote by Vg (A) (or just A) the irreducible G-
module of highest weight A. Similarly, the Weyl module of highest weight A is
denoted W(\) = Wg(A), and the tilting module of highest weight A is denoted by
T(A). The dual of a G-module V is V* = Homg (V, K). If Y = Y1Y5...Y} is a com-
muting product of simple algebraic groups, then (V7,. .., V) denotes the Y-module
Vi®- - ® Vi where V; is a Y;-module for each i. Let F : G — G be the Frobenius
endomorphism of G which acts by sending the root element z,(c) to x4(c?), and
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let V be a G-module afforded by a representation p : G — GL(V). Then VIl de-

notes the module afforded by the representation pl”] def poF". Let My,..., My be
X-modules and my, ..., my be positive integers. Then M{"* /... /M;"* denotes an
X-module having the same composition factors as M{"* &---@ M,"*. Furthermore,
V = My|...|Mj denotes an X-module with a series V=V > Vo > ... > V41 =0
of submodules such that soc(V/Vi41) = V;/Viy1 & M; for 1 < i < k. Finally,
we let L(G) denote the adjoint module for G, which is always irreducible for G of
exceptional type when p is good for G. For G of type Eg we set Vor = Vg (A1), and
for G of type E7 we set Vsg = Vg (A7).

The notation A; denotes a subgroup A; of G which is generated by long root
subgroups; we use this to help keep track of simple factors in semisimple groups.
If the root system of G contains short roots, then /11 and 1212 are used to denote
subgroups generated by short root subgroups.

Let J = {oj,,05,,...,a;.} C II and define ®; = ® N ZJ. Then the standard
parabolic subgroup corresponding to J is P = P}, ;. = (I,Uy : @« € ;U DT).
The Levi decomposition of P is P = QL where Q = Qj,j,..5. = Ru(P) =
Uy : €@\ ®,), and L = Lj,j, . = (.U, : a € @) is the standard Levi
complement. If the semisimple subgroup L’ has Lie type X, for brevity we refer
to P as an “X-parabolic subgroup of G”, so for instance the parabolic subgroup of
G = Eg corresponding to the roots {as, ag, g, a5} is a Dy-parabolic subgroup.

For a standard Levi subgroup L, we use the following notation. If Ly is a
simple component of L, then the simple roots for Ly are a subset of II, say ¥ =
{af,...,a},}. Order II according to o; < «; if ¢ < j. If Lo has Lie type A,,, the
embedding is chosen such that o} is the least simple root of G contained in ¥. If L
has type Eg or E7, then o = o for all i. If Ly has type Dy, then (o], b, a5, o)) =
(o, g, a3, a5). If Lo has type Ds, then (of, ob, af, o), of) = (a1, as, ag, as, az)
or (o, a5, g, g, a9). If Lo has type Dg, then

/ / / / / AN
(0417@2’043704@045’046) = (047,046’0457014,0437042)-

Finally, if L has multiple components of the same type, then these components are
ordered according to the position of their least simple root “a}” as an element of
II. For instance, if G = E7 and L = Lyo567 is a Levi subgroup of type A;A;As,
then the first A; factor corresponds to «y, and the second to as.

For i > 1 we define the subgroups

Q(i):<U7:'y:ana, Z ca2i>.

a€ell a€ell\J

The i-th level of Q is V; def Q(i)/Q(i + 1), which is central in Q/Q(i + 1). By

[2, Theorem 2] each level of @ has the structure of a completely reducible L-module.
The level of a root v = 3" CqQ is the sum ZaeH\J Co, and the height of ~ is
Zaeﬂ Ca-

When G has type FE; or Eg, we will need to distinguish between certain iso-
morphic subsystem subgroups of G. In E7; there are two conjugacy classes of Levi
subgroups of type As, with representatives As = Lags67 and AL = Lzgse7, where
our notation follows that of [I8 Table 8.2]. These subgroups have connected cen-
tralisers Cg(As)° = Ay and Cg(AL)° = ATy where T is a 1-dimensional torus.
Furthermore Af is contained in a subgroup Eg whereas A; is not. In Eg there
are two conjugacy classes of subgroups A7, with representatives the Levi subgroup

acll
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L1345678, which we denote by A7, and a subgroup A} which is a subsystem subgroup
of a Levi subgroup E7. Then Cg(A7)° is a 1-dimensional torus, and Cg(A%)° = A;.
Next, suppose that G is of classical type or of type G2, and that X has type
Ay or Go. Then the notation “X < G via M” denotes an embedding X — G
such that V(A1) | X & M. Since p # 2 throughout, this determines the image
of X up to G-conjugacy, unless G has type D,,, in which case there are potentially
two G-conjugacy classes with this action and we use this notation to refer to both
simultaneously, specifying additional information when appropriate.

Now let Y = H1Hs...Hy be a commuting product of simple subgroups H;
all having the same type, A1 or G3. Then the simply-connected cover of Y is
Y~HxH---xH (k terms), where H is simply-connected of type A; or Gs.
We have a natural isogeny Y — Y, and a diagonal subgroup of Y is the image in
Y of a subgroup of the form {(¢1(h),...,¢x(h)) : h € H}, where each ¢; is an
endomorphism of H. By [3I, Chapter 12], an endomorphism of H is a product of
an inner, graph and field morphism. Since A; and G5 have no non-trivial graph
automorphisms, to specify a diagonal subgroup of Y up to Y-conjugacy it suffices
to specify non-negative integers r1,..., 7, and we then take ¢; = F" for each i. A
diagonal subgroup X of Y is thus denoted by “X < Y via (/\[1”], /\[fQ]7 ce /\[1”'])”.

Taking this further, let X have type Ay or Go, and let Y = HiHy ... H; (k> 1)
be semisimple, where each simple factor H; is classical or of type G3. Then “X — Y
via (Ml[rl], e M,LT’C])” denotes a diagonal subgroup of X; ... Xy, with field twists
r1,...,Tk, where each X; has the same type as X, and X; < H; via M;.

When discussing the centraliser of a subgroup X of G, we will use the notation U;
to denote an i-dimensional unipotent group, and 7 to denote a j-dimensional torus.
For instance Cg(X)° = UsTy means that C(X)° has a 5-dimensional unipotent
radical, with corresponding quotient a 1-dimensional torus.

3. PRELIMINARY RESULTS

3.1. Exhibiting non-G-cr subgroups. In this section we present preliminary
results required for the proofs of Theorems [[H3] and their corollaries. The first of
these limits the isomorphism types of non-G-cr simple subgroups occurring.

Lemma 3.1. Let G be an exceptional algebraic group in good characteristic p, and
suppose G has a non-G-cr simple subgroup of type X. Then (G,X,p) is one of
(E@, Al, 5), (.E77 Al, 5 or 7), (E7, GQ, 7), or (Eg, Al or Gg, 7)

Proof. This follows immediately from [I8 Theorem 1] and [33, Theorem 1], the
latter result ruling out the possibility (Er, Aa,5). |

Recall that our basic strategy for finding non-G-cr subgroups of G is to iterate
through the parabolic subgroups P = QL of G, letting X be an L-irreducible
subgroup A; or Gy of L, and then studying complements to @ in the semidirect
product QX. We derive an upper bound for the number of such complements
(up to G-conjugacy), and it then remains to exhibit an explicit representative of
each conjugacy class of subgroups. The next result allows us to quickly find such
representatives.

Recall that a simple group H of classical type is related by isogenies to a
special linear, orthogonal, or symplectic group, say Cl(V). For p # 2, a sub-
group X of Cl(V) is Cl(V)-cr if and only if V is a completely reducible X-module
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(cf. Lemma [B.4] below). Since complete reducibility is well behaved with respect to
isogenies [3, Lemma 2.12], a subgroup of a simple algebraic group H of classical
type is H-completely reducible if and only if the corresponding subgroup of CI(V)
acts completely reducibly on V. We now appeal to the following.

Lemma 3.2 ([3, Theorem 3.26]). Let G be a simple algebraic group in good char-
acteristic and let M be a subsystem subgroup of G. Then a subgroup H of M is
G-crif and only if it is M -cr.

Thus a non-completely reducible X-module V' gives rise to an embedding of X
into a classical group H with non-H-cr image. If H is a subsystem subgroup of G
this then gives rise to a non-G-cr subgroup of G.

In employing Lemma [3.2, we will often refer to mazimal connected subgroups of
G, that is, subgroups which are maximal among connected subgroups of G. The
following result determines all reductive such subgroups up to G-conjugacy.

Lemma 3.3 ([20, Corollary 2]). Let G be a simple exceptional algebraic group in
characteristic p=>5 or 7. Let M be a reductive, mazximal connected subgroup of G.
Then M is G-conjugate to a subgroup in Table Bl where each isomorphism type X
denotes a unique G-conjugacy class of subgroups.

TABLE 3.

G X

Gy Ao, Alfzil, A (p=17)

Fy By, A1C3, A1Ga, AsAs, Gy (p=T)

Es A1As, A3, Fy, Cy, AsGa, Go (p = 5, two classes), Ay (two classes)
Er  A1Dg, A7, A2 As, G2Cs, A1Fy, A1Ga, A1 Ay, Ao

Es  Dg, Ag, A\Er7, AyEg, A%, G3Fy, Bo, A1 Ay

For L a Levi subgroup of an exceptional algebraic group, the following results
yield all L-irreducible subgroups of type A; or Gs.

Lemma 3.4 ([22, Lemma 2.2]). Let G = CI(V) be a classical simple algebraic
group in characteristic p # 2, and let X be a G-irreducible semisimple subgroup of
G. Then one of the following holds:
(i) G = A, and X is irreducible on V.
(i) G = B,,Cp or Dy and V| X =Vy L ... L Vi with the V; all non-
degenerate, irreducible, and inequivalent as X -modules.

Lemma 3.5. Let p > 2 and let X be simple of type Ay. Let V = Vx(n) be a
restricted irreducible X -module (so n < p). Then X preserves a non-degenerate
symplectic form on V if n is odd, and X preserves a non-degenerate orthogonal
form on V if n is even.

Proposition 3.6. Let Ly be a simple factor of a proper Levi subgroup of G = Eg or
E7 withp =5, or of G = E7 or Eg withp = 7. Tabled lists all simple Lg-irreducible
subgroups X of type A1, up to Lg-conjugacy.
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TABLE 4. Lg-irreducible subgroups of type Aj.

Lo p Embedding of X of type A;
A 57 X=Lo
Ay 5,7 Vay(M) L X =
As 5,7 Vas(M) 1 X =
57 Vas() I X =121" (> 0)
Ay 5,7 Va,(M) 1 X =4
As 7 Va. (M) 1L X =5
57 Va,(M) 4 X =200@106) (r £ 5 rs = 0)
As T Vag(h) L X =
Dy 7 VD4(A1)¢X_6+0
57 Vp,(A1) L X =4 426 (rs = 0)
5,7 Vp,(A1) L X =301 (1 #£ 5, 75 = 0) (two classes)
57 Vo)X =241 @18 40 (s < t; rst = 0)
57 V, 4(A1)¢X—1®1[T]+1[S]®1[t] (r#0;s#t; {s,t} #{0,7})
Ds 7 Vpy(\) X =6"4206 (rs=0)
5,7 Vps (A1)¢X—4+4W (r > 0)
57 Vps(M) 4 X =4l 11 @1 10 (s < t; rs = 0)
57 Vpy(\i) 4 X =2 poll p 1 @1l (r < 55t # w; rtu = 0)
57 Vps(M) L X =242 428 10 (0<r<s)
Ds 7 Vps(M) L X =5"0106 (r#£s; rs = 0) (two classes)
7 Vpg(A) L X =6 448 (rs = 0)
7 VpgM) L X =6+ 18 @10 40 (s <t rs =0)
57 Vbog(A1) L X =216 @1l (7 s, ¢ distinct; s < ¢; 7st = 0) (two classes)
5,7 Vpg(\i) L X =20 @2l 4ol (- < 5, 7t = 0)
5,7 VDG(A1)¢X=4[’"J+2[51+1W®1“ (t < u; rst = 0)
57 Vog() L X =31 @16 1l @1 (1 £ 55t # u; rstu = 0)
5,7 Vpg(Ai) 4 X =4l 2ll 4ol 0 (s < t;rs =0)
57 Vpg(Ai) L X =3 @1l 42l 40 (r #£ 55 rst = 0)
5,7 v6(,\1)¢X—2+2W+2[sl+2[ﬂ (0<r<s<t)
57 Vo)L X =20 4160 g1l 41l g1 4o
(s <tiu<wv;s <w;if s=wu, then t < wv; rs =0)
57 Vpg(M) I X =1®1 416 @ 1 410 g 1]
(r#0; s #t, u#v; s <min{t,u,v}; {0,7}, {s,t}, {u,v} pairwise
distinct.)
D; 7 Vo,(A) L X =646 (r>0)
7 Vo, (M) L X =60 26 4ol Lo (s < t;rs =0)
7 Vo,(M) L X =60 4268 118 @ 1 (¢ < u; st = 0)
7 Vo, ) L X =4 pall p il e 1l (r < st < us rt = 0)
7 Vo, (\) L X =4l 4l ol Lo (r < 55 0t = 0)
7 V(M) L X =4 43 @1 10 (s £t rst = 0)
7 Vp(Ai) b X =4l poll g ol ol (s <t <y rs = 0)
7 V(M) L X =3 @1l 4ol 4ol (L st < s rst = 0)
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7 Vo)L X =4l p 1kl e 1M 1l e 1 40
(s<tiu<v;s<uif s=u, thent<v;rsu:O)
7 Vo, (A1) 4 X =2 42l ol 4 1l @1 10 (r < s <t u < vy ru = 0)
7 Vp(\) 4 X =20 okl 1l g by 1l g ]
(r<s;t<u;v<w;t<w;if ¢ =wv, then u < w; rtv = 0)
Es 7 X< AiAs via (17, 56)) (rs = 0)
7 X < AsGy via (217,68 (r # 5, rs = 0)
5,7 X < Ay As via (10726 @ 10 (s #£ t; rst = 0)
5,7 X < A3 via (2,27 28 (0 < r < )
E; 7 X < A1 Dg see [37, Theorem 4] for explicit classes
X < A1 Ay via (l[r] 1) (r # 5, 7s = 0)
X < A1Go via (107 6)) (r # s; 75 = 0)
X < G203 via (6[""] 5[é ) (r # s;7s =0)
X < G2C; via (61,20 @ 1) (s ¢ {r,t}; rst = 0)

~ N

Proof. For Ly = Eg and E7, this follows from [37, Theorems 3 and 4]. For Lg
of type A, this follows from Lemmas [3.4] and For Lg of type D,, Lemmas
B4 and imply that the given subgroups of type A; are distinct and unique up
to conjugacy as a subgroup of GOz, (K) = SOz, (K)(7), where 7 induces a graph
automorphism on SOs, (K). It remains to determine whether such a conjugacy class
of subgroups splits into two classes of subgroups of SOs,, (K). This is equivalent to
determining whether Ngo,, (k) (X) < SO2,(K). Since X = A; has no non-trivial
outer algebraic automorphisms, there are precisely two possibilities: Either X lies
in the centraliser of some element of GOay,(K) \ SOz, (K), which by [14, Table
4.3.1] is the stabiliser By By,—x—1 (n/2 < k <n —1) of a direct-sum decomposition
of the natural orthogonal module; or X is irreducible on the natural module, and
is not normalised by any element in GO, (K) \ SO2,(K), and so gives rise to two
classes of subgroups in SO, (K) by the orbit-stabiliser theorem. O

Proposition 3.7. Let Ly be a simple factor of a proper Levi subgroup of G = Ex
or Eg with p = 7. Table Bl lists all simple Lg-irreducible subgroups X of type Ga,
up to Lo-conjugacy.

TABLE 5. Lg-irreducible subgroups of type Gs.

Ly Embedding of X of type G»

As X < Ag via 10

Dy X < D4 via 10+ 00

D; X < D7 via 01 (two classes)

Eg Vor | X =204 00, X maximal in F}y

Proof. For Ly exceptional, the result follows from [36, Theorems 2 and 3]. For Lg
classical, this is similar to the previous proposition, using Lemma [B4] and [23], and
easier since (G5 has far fewer modules of low dimension. [l

3.2. Complements and non-abelian cohomology. In this section, we describe
a method for classifying complements in parabolic subgroups by approximating
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certain non-abelian cohomology sets. The technique was pioneered by D. Stewart
in his Ph.D. thesis, and our definitions and strategy are taken from [35, Section
3.2].

Recall that if X and @ are algebraic groups over K, with a morphism X x@Q — Q
giving an action of X on @, then complements to @ in the semidirect product
QX correspond bijectively with rational I-cocycles, which are variety morphisms
¢+ X — @ such that ¢(zy) = ¢(x)(z.¢(y)) for all z,y € X. Here, a complement
X' to Q is a closed subgroup of QX satisfying (i) QX' = QX, (ii)) QN X’ =1,
and (iii) L(Q) N L(X') = {0} (cf. 25, 4.3.1]). By [34, Lemma 3.6.1], a subgroup
satisfying (i) and (ii) automatically satisfies (iii) when X is connected reductive, Q
is unipotent, and p # 2.

Two cocycles ¢, 1 are cohomologous if there exists ¢ € @ such that ¢(z) =
q¢ 1 (x)(z.q) for all z € X. This defines an equivalence relation on the set Z1(X, Q)
of 1-cocycles, and the corresponding quotient is called the cohomology set H(X, Q),
which parametrises complements up to Q-conjugacy. The set H!(X, Q) has a dis-
tinguished element, denoted [0], which is the class of the map sending every element
of X to the identity of Q. In general, H'(X, Q) is only a pointed set, but if Q is a
K X-module, then H'(X, Q) is a K-vector space in a natural way.

In our calculations X will always be simple, and @) will always be connected and
unipotent, with a filtration by X-stable connected subgroups @ = Q(1) > Q(2) >

...> Q(r + 1) = 1 such that each section V; def Q(#)/Q(i + 1) is a rational K X-
module which is central in Q/Q(i + 1). This allows us to study H'(X, Q) in terms
of the vector-space direct-sum

V=VxoEPHX, V)
=1

and then appeal to the representation theory of the simple group X.

We first recall some results from non-abelian cohomology, using [29, §1.5] as a
standard reference. If R is an X-stable central subgroup of @, then the short exact
sequence

0-R—>Q—>Q/R—0

gives rise to a long exact sequence of pointed sets:
0-R*—=Q*—(Q/R)*—-H"(X,R)—»H"(X,Q)—»H"(X,Q/R)—~H*(X,R)

where —% denotes a fixed-point subgroup, and where H?(X, R) is the usual second
abelian cohomology group, defined for example in [16] §I1.4.2]. Since R is central
in @, the group H'(X, R) acts on H'(X, Q) on the left; for [¢] € H'(X,R) and
[V] € H'(X, Q) we have [¢].[1)] = [¢ - ], where ¢ ¢(z) & p(a)y(x) for all z € X.
Since we shall use this in LemmaB.10 below, we note that the condition for a group

action becomes [@].([¢/].[)]) = [¢ + ¢'].[¢] if H (X, R) is written additively.

Lemma 3.8 ([29] §1.5.7, Proposition 42]). With X, Q and R as above, two elements
of HY(X, Q) have the same image in H' (X, Q/R) if and only if they lie in the same
HY(X, R)-orbit.

Definition 3.9 (cf. [35] Definition 3.2.5]). For i = 1,...,r we define a partial map
pi + V= HYX,Q/Q(i+ 1)) as follows. For i = 1, set p1([v1],--.,[v]) = [1]. For
i>1,if p;—1([n], ..., [vr]) is defined and lifts to some element [I'] under the natural
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map Hl(Xa Q/Q(Z + 1)) - Hl(Xa Q/Q(Z))v then set pl([’yl]a ceey [’VTD = [Pyl][r]v
otherwise declare p; undefined at ([v1],...,[v+]).

We set p = p,.. Note that p;([v1],...,[V~]) depends only on the first ¢ coordinates
of its argument, but does depend on the choice of lifts made. We pick lifts to be
consistent with the convention that p;([0],[0],...,[0]) = [0] for all 7.

Lemma 3.10 (cf. [35] Proposition 3.2.6]). Each partial map p; is surjective.

Proof. Proceed by induction on i. The result is trivial for ¢ = 1. If ¢ > 1, then
a class [¢p] € HY(X,Q/Q(i + 1)) gives a class [¢'] € HY(X,Q/Q(i)) under the
natural map. By induction, there exists v = ([n],[y2],..-,[1]) € V such that
pi—1(v) = [¢']. Since [¢'] has a lift in H'(X,Q/Q(i + 1)), namely [¢], the class
pi(v) is defined. Now, p;(v) and [¢] have the same image in H*(X,Q/Q(i)), hence
by Lemma [B.8 there exists [§] € H'(X,V;) such that [¢] = [5].p;(v). But by
definition of p;, the right-hand side is equal to [6].([y;].[T']) = [§ + vi]-[[], where [T]
is the chosen fixed lift of [¢'] to H(X,Q/Q(i + 1)). Then we have [§ + ~;].[[] =
pi(lnls [vals - - -5 [vie1l, [0 + 76l [Yisa]s - - - s [7]), hence [¢] lies in the image of p;. O

As an immediate consequence, we obtain the following.

Corollary 3.11. If HY(X,V;) = 0 for each i, then H*(X,Q) = 0. In this case,
every complement to @ in QX is Q-conjugate to X.

Since the map p is a surjection from a subset of V to H*(X, Q), choosing a basis of
V allows us to parametrise conjugacy classes of complements to @) in QX by certain
ordered m-tuples (ki, ..., k) of elements of K, for some m > 0. We denote by
Xiky bz, k] @ fixed complement to @ in QX corresponding to (ky, ko, ..., k) €V,
when p is defined at this point.

We now consider the question of when p(v) = p(w) for v, w € V. If Q =
R, (P) for a parabolic subgroup P of G, the Chevalley commutator relations give
us precise information about the X-group structure of ), which in turn lets us
derive information about the set H(X, Q).

For each i and j, we have the containment [Q(7), Q(j)] C Q(i+j), where Q(i) = 1
for all ¢ > 7. Thus for each v € Vj, we get a map Qi) — Q(i + j), sending
q € Q(i) to [0, q], where 0 is a fixed lift of v to Q(j). Composition with the quotient
Qi+ j) = Viyj gives amap ¢, = ¢; : Q(i) — Vit,; which is independent of the
choice of lift 0. From standard properties of commutators,

co(uw) = [0, uw]Q(i +j + 1)
= [0,u] ("[0,w]) Qi + 5 + 1)
and since V4, is central in Q/Q(i + j + 1), the above is equal to ¢, (u)c,(w), so ¢,

is a group homomorphism. In addition, if v € V; is fixed by X, then we claim ¢, is
X-equivariant. Indeed, if u € Q(4), then for all x € X we have

ey (Pu) = [0,%u]Q( + 75+ 1)
= [("0)v","u]Q(i + j + 1)
for some v' € Q(j+1). Since v' commutes with Q(7) modulo Q(i+j+1), the above
equals *[0,u]Q(i + j + 1) = *c,(u). Moreover, since Q(i + 1) lies in the kernel of
Cy,i, this descends to a homomorphism V; — Vi, ; of X-modules.

Our next proposition is rather technical, so we take a moment to discuss its use
in proving our main theorems. Informally, it states that if U and W are summands
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occurring in levels of Q, with H(X,U) = HY(X,W) = K, and if € Q¥ induces
an isomorphism U — W then the partial maps p; are surjective on the subset of
V which gives a cocycle on at least one of U or W. If elements of V= H'(X,U) @
HY(X,W)®... are given by tuples (ki, ko, .. .), then this allows us to assume that
kike = 0.

Proposition 3.12. With X and Q as above, suppose that v € VJX for some j <,
and let n be minimal such that c,n @ Vi — Vpqj is non-zero. Suppose that the
subspace (v) lifts to a 1-dimensional subgroup of (Q/Q(n + j + 1))X. Let U and
W be direct summands of V,, and V,y;, respectively, such that c,n : Vi — Vg
restricts to an isomorphism U — W. Suppose also that HY(X,U) = K.

Pick a basis {e; : 1 =1,...,m} of V, where each vector e; lies in the image of
some inclusion H*(X,V;) — V, and where e; and ez, respectively, lie in the images

of HY(X,U) and H (X, W). Finally, define

m

Vo = {Ztlel it €K, ity = 0}.
1=1

Then for each i > n + j, the restricted partial map p; : Vo — HY(X,Q/Q(i + 1))

18 surjective.

Proof. Note first that by our choice of basis, if i # n, n + j, then the image of
H(X,V;) is spanned by some vectors e; with [ ¢ {1,2}. In particular, if w € Vg
and if w’ lies in the image of H'(X,V;) with i # n, n + j, then w +w’ € Vo. We
will make use of this shortly.

By Lemma B0 if 1 < i < r, then every element of H*(X,Q/Q(i + 1)) is of
the form p;(v) = [¢].p}_;(v) for some [¢] € H*(X,V;) and some v € V, where
pi_1(v) € HY(X,Q/Q(i + 1)) is the fixed lift of p;_1(v) € HY(X,Q/Q(i)).

For an induction on 4, suppose that r > ¢ — 1 > n + j, and suppose that the
restriction p; 1 : Vo — HY(X,Q/Q(i)) is surjective. Let

pi(v) € HY(X,Q/Q(i + 1)),

and write p;—1(v) = p;—1(w) for some w € Vy. Then p}_,(v) = p,_;(w) since
the choice of lift is fixed, and thus p;(v) = [¢].pi_1(v) = [¢].pi_,(w) for some
[¢] € H*(X,V;). Moreover, by definition of p; we have [¢].p}_;(w) = p:i([¢] + W),
where on the right-hand side we have identified [¢] with its image under the natural
inclusion H'(X,V;) — V. By the observation in the first paragraph above, we have
[¢] + w € Vj, and the restriction of p; to Vy is surjective, as required.

It remains to prove that p,+; : Vo = HY(X,Q/Q(n + j + 1)) is surjective. For
ease of notation we may replace Q with Q/Q(n + j + 1) without loss of generality,
so that p = pr = pp4j-

Suppose that p(v) is defined, where v = Y, t;e; and t1t5 # 0. By minimality
of n, conjugation by a lift o € QX of v € VjX sends a complement corresponding to
[¢] € H'(X,Q) to a complement corresponding to [c, ,, o ¢].[¢], where [c, ., 0 @] €
HY(X,Q(n+ j)). Therefore these cohomology classes correspond to the same Q-
conjugacy class of complements to @ in QX, and hence are equal. Since W is an
X-module direct summand of Q(n+j), there is a natural projection Q(n+j5) — W,
and the image of [c,,, o ¢] under the induced map H'(X,Q(n+j)) — H' (X, W) is
a multiple of es. Moreover this multiple must be non-zero, since by hypothesis the
map ¢, , induces an isomorphism U — W and therefore induces an isomorphism



5294 ALASTAIR J. LITTERICK AND ADAM R. THOMAS

HY(X,U) — H'(X,V). Scaling ey if necessary, we can assume that this image is

—taes. So if [¢] = p(v), then [¢] = [cy.n © B.[¢] = [—t2ea].p(V) = p(V — taes), and
the vector v — tqes lies in V, which proves the desired result. O

As a special case, we obtain the following.

Corollary 3.13. With X and Q as above, suppose that V= HY (X, U)o HY (X, W),
where U and W are direct summands in levels of Q with H*(X,U) = HY (X, W) =
K. Fiz a basis of V consisting of non-zero elements from H'(X,U) and H*(X,W).
Suppose that QX contains a 1-dimensional subgroup inducing isomorphisms U —
W. Then the restriction p : {(ki,k2) € V : kika =0} — HY(X,Q) is surjective.

3.3. Representations and abelian cohomology. In light of the preceding sec-
tion, we now wish to describe H' (X, V) for various X-modules V, when X is simple
of type A; or Go. It will also be useful to understand H?(X, V') in some cases, since
if X lies in a parabolic subgroup P = QL and H?(X,V;) = 0 for some level V;,
then it follows from the long exact sequence that every element of H'(X,Q/Q(i))
lifts to an element of H*(X,Q/Q(i + 1)).

Lemma 3.14 ([Il Corollary 3.9]). Let X be simple of type A1 and let M be an
irreducible X -module. Then H'(X, M) # 0 if and only if M is a Frobenius twist
of (p—2) @ 1 in this case H'(X, M) = K.

Lemma 3.15 ([32, Theorem 1]). Let X be simple of type A1 and let M be an
irreducible X -module. Then H?(X, M) # 0 if and only if M is a Frobenius twist
of Vx(r) where ris 2p, 2p* — 2p — 2 or 2p — 2+ (2p — 2)p° (e > 1); in this case
H?>(X,M)= K.

The next result is a special case of results due to Cline, Parshall, Scott, and van
der Kallen [T} Corollaries 3.9, 3.10]. Recall that Wx (\) denotes the Weyl module
for X of highest weight A\, and additionally let M (\) denote the unique maximal
submodule of W ().

Lemma 3.16. Let X be a simple algebraic group. Then for any dominant weight
A there are isomorphisms H*(X,Vx(\)) = HY(X,M(\)*) and H'(X,Vx())) =
HO(X, M(\)*).

It follows that H?(X,Vx()\;)) = 0 for any simple algebraic group X and ev-
ery fundamental dominant weight ;. We now give a description of certain Weyl
modules and tilting modules for X of type G2, to which we will refer later on.

Lemma 3.17. Let X be simple of type Gy in characteristic 7, and let \ be one of
10, 20, 11, 01, 30. Then the Weyl modules W (X) and tilting modules T (X\) have the
following structure:
(i) W(10) = T(10) = 10,
(ii) W(01) = T(01) = 01,
(iii) W (20) = 20|00, T(20) = 00/20|00,
(iv) W(11) = 11]20, T(11) = 20|(11 + 00)|20,
(v) W(30) = T(30) = 30.

Proof. The composition factors of the Weyl modules are well known; see for instance
[23]. The submodule structure of these, as well as the composition factors and sub-
module structure of each T'(\), follows easily from the fact that W (\)/soc(W(\)) =
Vx (A) for each A, and that T'(\) admits both a filtration by Weyl modules and a
filtration by duals of Weyl modules. O



COMPLETE REDUCIBILITY IN GOOD CHARACTERISTIC 5295

In Sections BH7 we will make implicit use of the following results on tilting
modules.

Lemma 3.18. Let X be an algebraic group and let A be a dominant weight for X.
Then:
(i) A direct summand of a tilting module is tilting.
(ii) The tensor product of two tilting modules is tilting.
(iii) If p > r, then the r-th symmetric and alternating powers of a tilting module
are tilting.
(iv) HY(X,T()\)) = 0.

Proof. Parts (i), (ii) and (iv) are well known; see for instance [I6], §E.1, E.2, E.7].
For part (iii), if p > r, then the symmetric power S™(V) and alternating power
A"(V) can each be realised as the image of a projection operator V& — V& (see
for instance [13] §11.5, Proposition 40]), and therefore as a direct summand of V®".
Now apply parts (i) and (ii). O

Lemma 3.19. Let X be a simple algebraic group of type A1, and let V =T (n) be a
tilting module for X, where n > 0. Then V supports a non-degenerate X -invariant
bilinear form, which is symmetric if n is even, and skew-symmetric otherwise.

Proof. The result holds for n = 1 since T'(1) is the natural 2-dimensional module
for X = SLy(K) = Spa(K). Now let n > 1, and for an induction, assume that the
result holds for all integers 1 < m < n. If n is even, then let W = T'(n/2) @ T (n/2),
otherwise let W = T'(%52) ® T(%EL). Then W supports the non-degenerate tensor
product form, which is symmetric in the first case and skew-symmetric in the sec-
ond. Moreover, T'(n) occurs as a direct summand of W, and is the unique indecom-
posable summand containing a vector of weight n. Hence the natural isomorphism
W/T(n)*+ — T(n)*, and the fact that T'(n) = T'(n)*, shows that T'(n)*NT(n) = 0.
Thus T'(n) is a non-degenerate subspace of W, and the result follows. O

Lemma 3.20. Let X be a simple algebraic group of type A1 or Go with an in-
decomposable orthogonal module V' of dimension 2n. Then there are precisely two
conjugacy classes of subgroups of Da,, isomorphic to X acting on Vp, (A1) via V.

Proof. Since neither A1 nor G5 have any non-trivial outer algebraic automorphisms,
the result follows from the discussion in the proof of Proposition 3.0l O

3.4. Explicit cohomology calculations for A;. When X has type A;, we some-
times adopt a computational approach to studying H'(X, Q). Lemma B.21] below
lets us verify that a given subset of QX indeed generates a subgroup of type Aj;.
Lemma 322 gives us an explicit formula for a cocycle X — V = 111 @ (p — 2) when
p > 2, which restricts the possibilities for a cocycle X — Q/[Q, Q).

Lemma 3.21 ([9, 12.1.1 and Remark p. 198]). Let K be any field and let X be a
group generated by {x4(t), x_(t) : t € K}, with relations
(1) z4(t1)zs(t2) = v1(t1 + t2),

(i) h()h(u) = h(tu),

(iii) n(t)z(t)n(t) ™ =x_(—t72%t)
for all t1, toa € K and all t, w € K*, where n(t) = x4 (t)xr_(—t"Yay(t) and
h(t) = n(t)n(-1).

Then X is abstractly isomorphic to SLy(K) or PSLy(K).
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Now let X be as in Lemma [B.2T] where K has characteristic p > 2. Let T =
{h(t) : t € K*} be a maximal torus of X, with corresponding root subgroups
Uy ={zx(t) : t € K}. Let K[v1,v2] be a polynomial algebra in two variables with
X acting as algebra automorphisms induced via:

x4 (t)vy = v, x4 (t)vg = wvo + tuy,

z_(t).v1 = v1 + tug, z_(t).va = va.
View (p—2) as the K X-submodule of all homogeneous polynomials of degree p — 2
in v; and vs, and view 111 as the submodule spanned by f; df o} and f_q def vh.
Then the basis

{vf_lvg_r_l R fr1:0<r<p-— 1}

of V.= (p—2) ® 11 consists of weight vectors. For each 0 < 7 < p — 1 let ea,
denote the vector v} ~'vE "' @ f; and let e_g, denote v? "'t @ f_;. Clearly
each ey, has weight +2r, and the elements x4 (¢) act as follows:

p—2—a

o _9_ o

2 (). (Vi 057 = vf (for +v2)P T = Y (p j a)tp_z_a_j”f g,
3=0

a
2 ()00l 27 = (01 + tug) 0 2= 3 (a) Ry )
7=0

and from this for any r > 1 it follows that

p—r—1
—r-1 o
T4 (t).e2r = Z (p ‘ )tprljvf oyl @f

=0 J
1

S /p-r-1
_ < )tm'r‘GQm.
m-—r

m=r

Similarly, we find that

r—1
r—1 e o i .
Ty (t).eor = Z< j )tr I ) @ (fa 4+ 17 )

J
r p—1
_ r—1\ ,_, r—1 s
_<Z<S_1>t 625>+<Z (s+r—p t' eas
s=1 s=p—r
with similar expressions for z_(¢).e1a2,. As expected, it also follows that
n(t).exor = (—tﬂ)re:Fgr,

h(t) E4or = tizreig,«.

Lemma 3.22. Let X be simple of type A1 and V = (p—2)@ 111, With the notation
above, for each k € K define v, : Uy — V by

(1) = kz (p; 1)1%%
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Then each 7y, extends to a rational cocycle X — V', with

(@ () = kg (p; 1>tre2r

for all t € K. Furthermore, two such cocycles vy and v, are cohomologous if and
only if k =1, and every cocycle X — V is cohomologous to some .

Proof. 1t is clear that k — -, is a linear map between K and the vector space
ZY (U4, V) of 1-cocycles Uy — V. Therefore, once we have shown that each -
extends to a cocycle X — V, and that ~; and 7; are cohomologous if and only if
k = I, it follows that this map induces an isomorphism K — H'(X,V), so that
every cocycle X — V is cohomologous to exactly one such ~.

Clearly, ~; is a rational map on U,. To prove that 4 extends to a cocycle on X,
we check first that the cocycle condition holds on Uy, and that 7 is a coboundary
if and only if £ = 0, so that v, and ~; are cohomologous if and only if Kk = 1. We
then check that h(u).yx(z,(t) = v ("®x () for all t € K and u € K*, so that
[vk] € HY(U;,V)T. By [11, Lemma 1.1 and Theorem 2.1], we have vector-space
isomorphisms H' (U, V)T — HY(U,T,V) + H*(X,V), and we deduce that each
v extends to a cocycle X — V| again with [y;] = [y;] if and only if £ = I. Finally,
since z_ (—t) = (=D x, (t) and n(—1) sends each vector ea, to (—1)"e_a,, it follows
immediately that 4 has the stated form on U_.

So consider vi (24 (t1)) + 24 (t1).- k(24 (t2)). Substituting the expression above
for x4 (t1).e25, this becomes

(B0 OB )

(0] (L0 )
{0y EEC) )
(E (o))

= V(4 (t1 + t2))

and so 7, : Uy — V is a cocycle. Here we have used the following identity, which
holdsforall 1 <s<r<p-—1:

p—1\(p—s—=1\ [(p—1\/(r
"0 -00)

Next, fix 0 # k € K and suppose that 7y is a coboundary on Uy, so v (z4(t)) =
(x4(t).v) — v for some v € V. Express v = f: (creor + dre_o.). Tt is easily
shown that if d,. # 0 for some r > 1, then e_s(_1) has non-zero coefficient in
(x4(t).v) — v, contradicting the definition of ;. So d, = 0 for » > 1. It then
follows that the coefficient of ez in (x4 (t).v) — v is identically zero for all ¢ and k,
while by definition the coefficient of es in vi (x4 (t)) is kt(p — 1), a contradiction.
Thus 7 is a coboundary if and only if k£ = 0.
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It remains to show that h(u).ye (x4 (1)) = 3 ("®a, (t)). This is straightforward:

t"h(u).eor

as required. O
An entirely similar proof to the above yields the following.

Corollary 3.23. If X is simple of type Ay, with root elements x4 (t) and if Vsl
denotes the Frobenius twist of V = (p — 2) ® 101, then VI*! has a basis

{62,21,, 64,21,, ce.,€_92,€92,€4,..., 62p,2},

where es; has weight 2i(p®) for each i, such that every cocycle X — Vsl is coho-
mologous to exactly one cocycle 7y, where

p—1
p—1\ ¢
vk(m(t)):k;( } )t

(- (1)) = kz (" )erean

Remark 3.24. We will apply the above results in the context of a simple group
X of type A; acting on a group U, where X and U are generated by products of
root elements in a simple algebraic group G. We therefore perform a number of
intricate calculations involving products and commutators of root elements of the
simple algebraic group G. These calculations can in principle be carried out by
hand, however we have made use of the computational algebra package MAGMA [7]
for both speed and accuracy. We have therefore taken our structure constants for
computing commutators in G to be consistent with those found in MAGMA.

3.5. From @-conjugacy to G-conjugacy. If P = QL is a parabolic subgroup
of G and X is a connected subgroup of the Levi factor L, then we now have the
necessary tools to study H' (X, Q), but it remains to consider how the corresponding
conjugacy classes of subgroups fuse in G, and also to consider conjugacy between
subgroups in non-conjugate parabolic subgroups of G.

Consider first the non-trivial torus Z(L). This centralises X and normalises
each root subgroup of G. Moreover, the action of Z(L) on each such root subgroup
in @ is non-trivial since C(Z(L)) = L. This fuses together various classes of
complements to @ in QX.

Lemma 3.25. Let G be a simple algebraic group over an algebraically closed field
K and let P be a parabolic subgroup of G with Levi decomposition P = QL. Let
V =@;_, Vi be the sum of the levels of Q, let X be a subgroup of L, and suppose
that V.= (@2, M;) ® (B!, W;) as X-modules, where each M; and each W; is
indecomposable, and H' (X, M;) = K, HY (X, W;) = 0.
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If for each i, the action of Cz(p) (EBJ‘# Mj> on M; is non-trivial, then comple-
ments to Q in QX fall into at most 2™ classes of subgroups in G.

Proof. Recall that V=Vx o =>"_ H'(X,V;), and fix a basis of V consisting of a
non-zero element from each of the m spaces H'(X, M;) (i = 1,...,m). Recall also
the surjective map p : V — H'(X,Q) from Definition B9 If p(ky, ks, ..., kn) €
H'(X,Q), then the hypotheses imply that whenever k; # 0 for some i, we may
assume that k; = 1 by replacing the corresponding complement with a Z(L)-

conjugate, without changing the other k;. Hence we may take each k; to be either
Oor 1. |

Next, let w be an element of the Weyl group W (G) and let w be a fixed preimage
of w in Ng(T). Let I and J be subsets of the simple roots II of G, and let
Pr=Q;L; and Py = Q L; be standard parabolic subgroups of GG, where L; and
L are standard Levi subgroups. Let X be a subgroup of L; and suppose that:

(i) w(l) = J,
(ii) For some subgroup R; of ; generated by root subgroups of G, the inclusion
R; — Q7 induces a bijection H' (X, R;) — HY(X,Qr),

(iii) For each root subgroup U, < Ry we have Uy ) < Q..

Then from it follows that ¥ X is a subgroup of L;. By|[(ii)l every complement to
Q7 in Q7 X is Qr-conjugate to a subgroup of R; X, and b these are therefore
G-conjugate to a subgroup of Q;(¥X) < Pj.

Conjugation by elements of W (G) can also fuse different subgroup classes within
a single parabolic. Suppose that @ € Ng(T') normalises X, and suppose also that w
stabilises a certain set of roots, such that the corresponding root subgroups generate
an X-stable normal subgroup R of . Then if ¢ is a cocycle X — R and X, is
the corresponding complement to R in RX, then conjugation by 1 sends Xy to
another complement to R in RX.

Rephrasing this in terms of V| if elements are represented by m-tuples (k1, ..., k)
with respect to an appropriate basis, then conjugation by w induces a permutation
on the indices. We will encounter our first instance of this, and the first non-trivial
application of Lemma [3.25] in Section

Two parabolic subgroups of G are called associated if their Levi subgroups are
G-conjugate to one another. The following lemma shows that up to association,
there is a unique minimal parabolic subgroup of G containing a given non-G-cr
subgroup X. This prevents double-counting of subgroups during our classification
in Sections @HT

Lemma 3.26. Let X be a closed subgroup of G, and let P, and P> be minimal
among parabolic subgroups of G containing X. Then P; and P» are associated.

Proof. Let I and J be subsets of the simple roots of G such that the standard
parabolic subgroups P; and Pj are respectively conjugate to P; and P». It is a
standard result [I0, Propositions 2.8.2, 2.8.3] that P;NP; is contained in a conjugate
of the standard parabolic subgroup P, () for some element w of the Weyl group.
From the minimality of P; it follows that I N w(J) = I, hence w(J) 2 I. By
symmetry, there exists an element w’ of the Weyl group such that w'(I) 2 J.
Hence I and J have the same size, so w(J) = I, and if w € Ng(T) is a lift of w to
an element of Ng(T), then YL; = Lj. O
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4. PROOF OF THEOREM[} G =Fg, p=5

In this section, we show that when p = 5, each non-G-cr subgroup of G is
conjugate to a subgroup listed in Table [[Il Since every subgroup in Table [I1] is
indeed non-G-cr by Lemma [3.2], this proves Theorem [I1

Let P = QL be a parabolic subgroup of G, such that P contains a non-G-cr
subgroup X necessarily of type A1, and further assume that P is minimal among
parabolic subgroups of G containing X. Then the image of X in L is an L'-
irreducible subgroup of L’. Moreover, by Corollary [311], there is some level M
of Q such that H'(X,M | X) # 0. The following lemma classifies the possible
occurrences of this scenario.

Lemma 4.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type Ay. If there exists a parabolic subgroup P of G with Levi factor L and
unipotent radical Q, such that H*(X,M | X) # 0 for some level M of Q, then X
and the type of L' appear in Table Gl

TABLE 6. L'-irreducible X with H'(X, M | X) # 0.

r Embedding of X
Ds X < Dsvia 4l 41t @106 0 (rs =0; 7 +1 # 5)
Dy, X < Dy via 4+ 21,
X < Dy via 3® 11 (two L'-classes)
AjAs X < Ay Az via (11,3)
A3A; X < A2A, via (1,11M2) or (111, 2)

Proof. Let P = QL be a parabolic subgroup of G. The action of L’ on the levels of
Q is straightforward to determine, as described in [2]. Now Proposition gives
all L'-irreducible subgroups of type Aj, and it is straightforward to determine the
action of each such subgroup X on the levels of @, for instance using the tables
of Section [l Checking each level M against Lemma [B.14] tells us whether or
not HY(X,M | X) = 0. Whenever we find a module M such that H'(X, M |
X) # 0, the full description of the action of X on the levels of @ is given in the
relevant section below. So let us illustrate the process with an example where
HY(X,M | X) =0 for all levels M of Q.

Let L be the unique standard Levi subgroup of G such that L’ = As. Since
p = 5, the only L’-irreducible subgroup X of type A; acts on the natural module
as 21 @ 105] where rs = 0 and r # s. In Q, there are two levels. As an L’-module,
Q/Q(2) is irreducible with high weight A3, and is generated by the image of the
root subgroup U,,, and Q(2) is irreducible with high weight 0, and is generated
by Uiaasz21. Using Table [[Q and the fact that Vy, (A3) = /\S(VA5(/\1)), it follows
that Va, (\3) 4 X = (4" @ 16)) + (207 @ 16s]) + 315). Lemma B14 shows that no
indecomposable summand of such a module has a non-vanishing first cohomology
group. (Il

The remainder of this section is as follows. There is a subsection for each Lie
type of L' in Table For each type, we enumerate the standard parabolics with
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Levi factor of that type and let X vary over the L’-irreducible subgroups in Ta-
ble Bl Using the tools from Section Bl we bound the number of possible classes of
complements to @ in QX, as @ varies over unipotent radicals of these parabolics,
and we thus determine a global bound on the number of non-G-cr subgroups arising
from such a parabolic. Finally, we exhibit representatives of each possible conju-
gacy class and calculate their connected centralisers. Lemma shows that two
such subgroups lying in non-associated parabolics cannot be G-conjugate. Table
[Tl contains precisely these representatives.

4.1. L' = Ds. The two standard Ds-parabolic subgroups of G are Pjs3s45 and
Pa3456. By Lemma [£]], the only embeddings of A; into D5 that we need to consider
are X = A; < Dj via 4"l + 10+ @ 151 4+ 0, where rs = 0 and r + 1 % s.

Consider first P = Pjao345 = QL. Then @ has a single level, and is a 16-
dimensional irreducible module for L’ of high weight A\4. From the action of X
on the natural Ds-module, we see that X lies in a subgroup A3By of L', via
(1[s], 107+ 471y In turn, this subgroup lies in a subgroup A?As of L’. Now,
the restriction of a spin module for D,, (n > 4) to a subgroup B,,_1, or from B,
or D, to a proper Levi subgroup of the same type, is itself a sum of spin mod-
ules [I8, Prop. 2.7]. It follows that Vp, (A\4) | 4343 = (1,0, A1) + (0,1, A3), hence
VD5(/\4) 1 A%BQ = VD5(/\5) 1 A%BQ = (1,0,)\2) + (0,1,)\2), and so VDs()\4) A
X =Vp,(Ns) L X = (381 @ 1+1) 4 (3" @ 11¥]). By Lemma B4l V = K, since
r+1 # s. The 1-dimensional torus Z(L) acts non-trivially on each summand of @Q,
hence by Lemma there is at most one G-conjugacy class of non-G-cr comple-
ments to @ in QX. An entirely similar argument applies to the parabolic subgroup
Ps3456, yielding at most one G-conjugacy class of non-G-cr complements to Q23456
in Q23456X.

Let Y and Z be subgroups of the subsystem subgroup A;As of G, respectively
embedding via (1B, W (5)') and (1, (W (5)"1)*) (rs = 0; r + 1 # s). Note that
Y and Z are Aut(G)-conjugate, since a graph automorphism of Fg induces a graph
automorphism of A;As. Both Y and Z are non-A; As-cr, hence by Lemma B.2] they
are non-G-cr. We claim that Y and Z each lie in a Ds-parabolic subgroup of G,
with irreducible image in a Levi factor. Their actions on the natural A; As-modules
imply that Y and Z are each contained in an A} Asz-parabolic subgroup of A;A4s,
and it follows that Y and Z each lie in a parabolic subgroup of G whose Levi factor
contains a subgroup of type A?As. The only such subgroups are Ds-parabolic
subgroups, hence Y and Z each lie in a Ds-parabolic.

The action of Y on Va7 is given in Table[[I] and this determines the action of Z
since the outer automorphism of G swaps the G-modules V57 and V55, and swaps
the subgroup classes of Y and Z. Now, if Y and Z were G-conjugate, then the
submodule lattices of Vo7 | Y and Va7 | Z would be identical. But this is not the
case, since Y has an 8-dimensional submodule 11" @ 3051 ¢ 1"l @ W (5)[], while Z
does not. Finally, the G-conjugacy class of a reductive subgroup determines its high
weights on each G-module, up to multiplying by a power of p. Therefore if v/, s’ are
non-negative integers with r’s’ = 0 and (r/, s’) # (r, s), then the corresponding non-
G-cr subgroups arising are not conjugate to Y or to Z. Thus for each (r,s), there
are precisely two classes of non-G-cr subgroups A; contained in a Ds-parabolic with
irreducible image in a Levi factor, with representatives Y and Z.

Inspecting Table [Tl we see that Cp)(Y) = Cr(e)(Z) = {0}, and thus Cg(Y)°
=Ce(Z)° =1.
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Remark 4.2. The condition r + 1 # s is only necessary to ensure that X is Ds-
irreducible. If instead (r,s) = (0, 1), the subgroups Y and Z described above are
still non-G-cr and non-conjugate. The images of these subgroups in D5 now lie in a
Levi subgroup Dy, and hence these provide two non-conjugate, non-G-cr subgroups
lying in a D4-parabolic subgroup of G.

4.2. L' = D4. Let P = Py345 = QL be the unique standard D4-parabolic subgroup
of G. Let X, Y, Z be representatives of the three L’-conjugacy classes of L'-
irreducible subgroups, with Vp, (A1) } X 2 Vp,(A3) L Y = Vp,(\y) | Z = 4 + 211,
so that the remaining 8-dimensional modules Vp, ();) restrict as 3 ® 1. Now, Q
has two levels: Q/Q(2) = Vp,(As) + Vp, (A1), the factors respectively generated as
a Dy-module by the images of the root groups U,, and U,,, and Q(2) = Vp, (A1),
generated by Uigp1111-
The action of X on @ is as follows:

Q/QR2) L X =Be1l) +Be1l),
Q2) | X =4+ 211
And thus Vx o = K? by Lemma 314l In the second level, H?(X,21) = K by
Lemma 310l This means that not all pairs (k,1) € Vx ¢ necessarily give rise to an
element of H*(X, Q). We will show that the condition kI = 0 is necessary.

For this, we now describe X explicitly in terms of the root groups of GG, which
allows us to identify the weight vectors of X in its action on each level of ), and
hence apply Lemma [3.22] to give an explicit description of cocycles X — Q. Using
the module decomposition V(A1) | X =4 + 201 we can identify root elements
x4 (t) of X:

T4 (1) = Tas (38) 7001100 (263) 2001110 (12) T ey (28) 2000110 (482 T s (1)
X To10110(2t°)To11100(£7),

T (t) = 0y ()2 _001100(1*)T 001110 (t*) 2 _ 0, (26) T _000110(3t%) 70y (31)
X & _o10110(3t”)z_011100 (")

Furthermore, a maximal torus of X is given by Tx = {h(t) : t € K*} with h(t)
as defined in Lemma B22T] Multiplying out the above elements gives the following
formula for h(t):

h(t) = ho(t'0) hs(t®) ha(t1*) s (12).

It can now be checked directly that each non-trivial element of the form
2111100 (t)Z010111 () has weight 2 under the action of Tx. Next, when p = 5 the
formula for x4 (t).e2 on page (296 becomes

x4 (t).e2 = ea + 3teq + 3t2eq + t2es.

In Q/Q(?) we can therefore 1et €y = $111100(1)Q(2) (resp., I010111(1)Q(2)) and
calculate the conjugate *+ ey, and then equate coefficients with the equation above

to find that €4 = 1‘111110(3), g = I111210(3), €y = 1'112210(4) (resp., 517011111(1)’
2011211 (1), Zo11221(1)). Hence by Lemma B:22] a general cocycle X — Q/Q(2) is
cohomologous to exactly one map vj,; as follows:

. 24 (c) = z111100(ke)x11110(2k¢?) 111210(3kC?) 2119210 (Rc?)
' X $010111(ZC)$011111(4102)%11211(l03)$011221(4l04)Q(2)-
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Now if ¢ € Z1(X, Q) has image x; under composition with Q — Q/Q(2), then it
follows that for each x € X we have ¢(x) = v (x)q for some ¢ € Q(2) = Z(Q)
depending on x. From the identity rq = zqz 'z = (*q)x, for all ¢ € Z(Q), = € X,
we then have

(G(a+(6))4(6))° = (Y (4 (¢))g4 (€))°
= q(*+ ) (= ) () (O g) (yk (24 (€) )24 (0)) .

Since x4 (c) induces a linear transformation of order 5 on the vector space Q(2), call
it T, in additive notation the first five terms in the above product are (1+7T+T2+
T3 +T*)(q), which is identically zero. So the above is equal to (v, (24 (c))z+(c)).
Substituting, and using MAGMA to simplify calculations, we find that this is equal
to 122321 (—klc®). But since ¢ is a cocycle, the element ¢(z (c))z(c) is a positive
root element in a complement to @ in QX, and in particular its order divides 5.
Thus Z199321 (—klc®) = 1 for all ¢ € K, hence kI = 0 as claimed.

The 2-dimensional torus Z (L) consists of elements of the form

h(t,u) S hy (87202 ho () ha (w)ha () s (30 Y h (tHu2)
for t, u € K*. Now "Wz, (c) = 24, (t*u=3c) and "Wz, (c) = 244t 5uc).
Thus the action of Z(L) on @ satisfies Lemma [3.25] and each complement to X in
QX is G-conjugate to one of the complements X = Xjg o}, X[1,0] or X|o,1) (recall the
notation from Section B.2). So in particular, there exist at most two G-conjugacy
classes of non-G-cr complements to @ in QX.
Next consider the action of Y on Q:

Q/Q2) 1Y =4+21 + (31,
QE2) LY =311,

and thus Vy g & K? by Lemma B.14l Again, by Lemma each complement to
Q in QY is G-conjugate to one of Y = Y(gq], ¥[1,0), ¥[0,1) Or Y[1,1]- By an identical
argument, each complement to @ in QZ is G-conjugate to one of Z = Zjg o}, Z[1,0),
Zpp) or Zj1,1)- We now exhibit G-conjugacies between these various subgroup
classes, and then construct a representative of each possible distinct class that
remains.

We claim that Y[y q), ¥[o,1j and X|o 1) are G-conjugate to one another, and that
Z11,0)5 Zpo,1), and X[ g are G-conjugate to one another. Indeed, recalling nota-
tion from Section 2 the element wy = ningngnonsngnsny € Ng(T) acts as an
outer involution in Dy4.Ss, preserving Y whilst swapping X and Z. Furthermore,
wi; swaps the root subgroups U,, and Ujpi1111, hence swaps the two Y-modules
generated by these elements, and also swaps the X-invariant and Z-invariant sub-
groups generated by these. It follows that Y[; ¢ is G-conjugate to Y[g 1), and X[y g
is G-conjugate to Zjg 17. Similarly, the element ngnsnanansninsne stabilises Z and
swaps X and Y, and also swaps the root subgroups U,, and Uip1111, and therefore
Z[1,0) is G-conjugate to Zjg 1) and X[g 1) is G-conjugate to Yo ). This proves the
claim, and we now have at most four G-conjugacy classes of non-G-cr subgroups
Ay of P, namely X o), X0,1), Y[1,1] and Z; 1)

Consider the following four A; subgroups of G: Two subgroups A; — A;A;
via (10, W (5)) and via (11, W (5)*), respectively; and two classes of subgroups
A1 < Ds via T'(8) (these exist by Lemma B.20). Each of these four subgroups is
non-G-cr by Lemma The two subgroups of A;As are interchanged by a graph
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automorphism of A;As, hence by a graph automorphism of Eg, and similarly the
two subgroups of Dy are exchanged by a graph automorphism of Fg. The third and
fourth lines of Table [l give the actions of one subgroup of A; A5 and one subgroup
of D5 on the modules Va7 and L(G), which also determines the actions of the other
two subgroups. In particular, we see that no two of these four subgroups have the
same lattice of submodules on Va7, and hence all four are pairwise non-conjugate
in G.

The subgroups in A; As each lie in an A? Az-parabolic subgroup of A; As, which
is contained in a Ds-parabolic subgroup of G. The images of these subgroups in
the Levi factor D5 then act on Vp, (A1) as 4 + 11 @ 111 40 = 4 + 2[4 402, and so
these images are Dy-irreducible subgroups of a Levi subgroup Dy.

Similarly, from the module structure of T'(8) = 0|(3 ® 1[1)|0 it follows that the
two subgroups in Ds each lie in a Dy-parabolic subgroup of Ds, and hence of G.
Thus all four of these subgroups lie in a Dy-parabolic subgroup of G.

The connected centraliser of the non-G-cr subgroups contained in Aj Ay is triv-
ial, as their fixed-point space on L(G) is zero. The connected centraliser of each
subgroup X = A; < D5 via T'(8) is T1. Indeed dim(Cqs(X)°) < 1 by Table [l and
T = Ce(D5)° < Ca(X)°.

4.3. L' = A;A3. The four standard A;As-parabolic subgroups of G are Pisge,
P2346, P1456, and P1245. For each, let X = A1 — A1A3 via (1[1],3)
First, consider Pj346. Then QQ = Q1346 has four levels and X acts as follows:

Q/Q2) L X =@Bo1l)+3,
Q(2)/Q3) L X = (4@ 1M) 4101,
Q(3)/Q(4) | X =3,

QM) L X =0,

where the module of highest weight 3 ® 1[] is generated by U,,Q(2). By Lemma
BI4 Vx 0.5 = K. Applying Lemma [B.25] we have at most one class of non-G-cr
complements to Q1346 in @1346X. The same argument applied to Po346 allows us
to conclude that there is at most one class of non-G-cr complements to Q2346 in
Q2346 X, with the module of highest weight 3 ® 1[! in the action of X on Q2346
generated by Uig1110Q2346(3). Conjugation by the element ningnsns € Ng(T)
sends Lis4e to Lagss, and also sends U, to Ujpi110- It follows that any non-G-cr
A; subgroup of Pj346 with irreducible image in L1346 is G-conjugate to a subgroup
of Pa346.

Similarly, considering the parabolic subgroups Pi456 and Pjo45 leads to at most
one G-conjugacy class of non-G-cr subgroups, where now conjugation by the ele-
ment NegNsNaNg € Ng(T) sends L1456 to L1245 and sends Ua3 to U001111.

Consider the subgroups Y, Z = A; < As via W(5) and W (5)*, respectively.
Each of these is non-G-cr by Lemma B2l and they are contained in an A; As-
parabolic subgroup of G since they are contained in an A; As-parabolic subgroup
of As. They are exchanged by an outer automorphism of As, and are therefore
Aut(G)-conjugate. Thus the first line of Table [[T] determines the action of each on
Va7 and L(G), and in particular we see that the subgroups have different submodule
lattices on Va7, and are therefore not G-conjugate. Hence these are representatives
of the above conjugacy classes of non-G-cr subgroups in A; As-parabolic subgroups
of G.
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From Table [[I] we see that Cg(Y) and Cg(Z) are each at most 3-dimensional,
and so Cg(Y)? = Cg(Z)° = Ca(A5)° = Ay

4.4. I' = A2 A,. The five standard A? As-parabolic subgroups of G are Pja3s, Pi23s,
P1o56, Passe, and Pjogg. For each, we need to consider subgroups X and Y, respec-
tively embedded in A3A, via (111,1,2) and (1,101, 2).

First, consider Pj235. Then @@ = Q1235 has four levels, and

Q/Q(2) | Liazs = (1,1,01) + (0,1, 00),
Q(2)/Q(3) J L1235 = (1,0,01) + (0,0, 10),
Q(3)/Q(4) | L1235 = (0,1,10),
Q4) | L1235 = (1,0,00).
Applying Lemma 314 it follows that Vx o = Vy g = K. Applying Lemma
yields at most one class of non-G-cr complements to @ in QX and at most one
class of non-G-cr complements to @ in QY.

With entirely similar calculations, we find that there are at most two G-conjugacy
classes of non-G-cr simple subgroups of type A; in each of the other four stan-
dard parabolic subgroups having irreducible image in the corresponding Levi fac-
tor. Moreover, for each such parabolic P, we find an element of Ng(T), given in
the table below, whose image in the Weyl group sends the roots of the standard
Levi factor to those of Lia35 and sends « to ay, where the image of U, generates
the X-module of high weight 3 ® 1!l in the appropriate level. This element there-
fore conjugates each non-G-cr subgroup A; of P, with irreducible image in L, to a
subgroup of Pja35.

P | Root a Element of Ng(T)
Pya36 | 000110 ngns
Pioss | 001100 NEN5N4MNIN3NI NYNINEN4NONEN5TLY
Pa3s6 Qg NEN5M4N2N3N1T4NZN5T4N2NEN5TI4N3 T
P1246 001110 NeMN51M4M2M371 104N 3

Note that the element above sending Lasss to Liasgs sends Uy, to Uy, and U,, to
U,,, hence sends the subgroup embedded in Losss via (1[1], 1,2) to the subgroup of
Ly235 embedded via (1, 101, 2), and vice versa.

Therefore there are at most two G-conjugacy classes of non-G-cr subgroups aris-
ing in this case. By Lemma [3.20] there are two conjugacy classes of subgroups
embedded in Dj via T'(6). Let Z; and Z3 be representatives of these. As Dj is a
Levi subgroup of G, both Z; and Z, are non-G-cr by Lemma [3.2l They are each
contained in an A2 Ap-parabolic subgroup of Ds, hence in such a parabolic of G, and
they are exchanged by an outer automorphism of D5, hence are Aut(G)-conjugate.
Therefore the second line of Table [[T] determines their actions on Va7, and we see
that they are not G-conjugate.

Since dim(Cs(Z;)) and dim(Cq(Z2)) < 1, we find that Cq(Z1)° = Ca(Z2)° =
Cq(Ds)° =Ty.

5. PROOF OF THEOREME: G=FE7;, p=5

In this section we prove Theorem P]in the case p = 5. Again, our starting point
is to determine those parabolics P = QL of G and L-irreducible subgroups X of L,
such that H'(X, Q) may be non-zero.
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Lemma 5.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type Ay. If there exists a parabolic subgroup P of G with Levi factor L and
unipotent radical Q, such that HY(X, M | X) # 0 for some level M of Q, then X
and the type of L' appear in Table [0

TABLE 7. L'-irreducible X with H*(X, M | X) #0

r Embedding of X

Es X < Ay A5 < Eg via (1,2 ® 111)

A1 Dj X — Ay D5 via (107 207 420+ L 17T @ 10]) (rs = 0; r # s)
A1AsAz X < Ay Ay Ag via (171 201 317 (rs = 0)

Ds X < Dy via dlrl 4 1+ @ 1181 40 (rs = 0; r 4+ 1 # 5)
A1Dy X < A1 Dy via (117 305] @ 115+ (15 = 0) (two L’-classes)
A2A3 X — A2A3 via (2,1 ® 1[1])

(2,
A2 A5 X — A3Az via (1071 1051 3]y op (1041 1071 3ls]) (rs = 0),
X — A?Az via (1,1,1® 1[11)
A3 A, X s A3 Ay via (117101 10t 2luly
(rstu=0;u=1i —j -1 Where i,j €{rs,t})
D, X < Dy via 4+ 201
X < Dy via 3® 11 (two L'-classes)
A1A3 X — A1A3 via (1[1],3)
A3 A, X — A2 A, via (1,111,2) or (11,1, 2)

Proof. As in the proof of Lemma (1] this is straightforward. For each parabolic
P = QL and each L-irreducible subgroup X of type A;, we systematically check
the action of X on each level of () using Proposition a

5.1. L' = FEg. Let P = Pi3456 = QL be the unique standard Fg-parabolic sub-
group of G. Let X = A; — A A5 < Eg via (1,2 ® 111). Then Q is abelian, and
carries the structure of a rational K L-module, with Q | X = 3@ 11 +1® 11U 4+
2®2M +440. By LemmaBI4 V= H'(X,Q) = K. By Lemma 327 there is at
most one class of non-G-cr complements to @ in QX.

Let Y &2 A) < A7 via W(7). Then Y is non-Az-cr, lying in an A; As-parabolic
subgroup of A;. By Lemma B2 Y is non-G-cr. The projection of Y to A;As
embeds via (1,2® 1Y), The only subgroups A; A5 of G which lie in a subgroup Ay
are those in the conjugacy class of 41 AL < Eg. Moreover, the only Levi subgroup
of G that contains A; AL is Eg. Therefore, the A; As-parabolic subgroup of A7 must
lie in an Ejg-parabolic subgroup of G. Hence Y lies in an Ejg-parabolic subgroup of
G and the projection of Y to Fg is Eg-irreducible by Proposition Hence Y is
a representative of the G-conjugacy class above.

From Table [[2], we see that dim(Cg(Y)°) < 1. Since @ is abelian and X cen-
tralises a 1-dimensional subgroup U; of @, we deduce that U; < Cg(QX)° <
Cg(Y)°, and so Cg(Y)° =U;.
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5.2. L' = A1Ds. Let P = Pia3457 = QL be the unique standard A;Ds-parabolic
subgroup of G. Let X = A; < A, D5 via (17 11 @ 105l - 20T 4 2l +1)) (5 = 0,1 #£
5). Then the projection of X to Ds is contained in a subgroup 4242 < A2A3. The
two A factors of this latter group are generated by the root subgroups Ui,, and
Ui, respectively, and the Ag factor is generated by Uia,, Uta, and Usi122100-
This allows us to pick the following root elements of X:

4 (t) = Ta, (t5r)$a2 (tST)fas (tSS )$71122100(155T)$o‘1 (t5T)$71112100 (t5

)s
r r s r r r+1
T_(t) = T, (12 )T 0y (7 )T (7 ) 1122100 (8 )T -0y (t° ) 1112100 (8

+1
!

and the actions of X on the levels of @ are:
Q/Q(2) | X = 3l @ 1lr+ 4l @ qlr+ 4 olr] @ 1Ir+1 1[81,
Q(2) | X =2l olr+1l 4 4 g 11l
where the summand 31" ® 1"+ of Q/Q(2) is generated as an X-module by the
image of the root subgroup Ujy11111. Using Corollary B.23] we find that a complete
set of representatives of H'(X,Q/Q(2)) is given by
Yot 2 (t) = w1 (k) 2111111 (BkE3C) ) 1011111 (3KE3CT))
x 21111110 (263G ) 20011111 (26125 ) 21011110 (3KE2C 7))
x zo111110 (3Kt ) 20011110 (K° ) Q(2).
Now, suppose that vy lifts to a cocycle ¢ : X — Q. Then ¢(x,(t)) is a prod-
uct of the above root elements with an element ¢, € Q(2). If we let xx(t) =
d(x4(t))x4(t), we find that
2 ()° = 112000 (2K265).

On the other hand, zx(t) is a root element in a group of type A;, hence has order
dividing 5; it follows that k = 0. Thus the map H'(X,Q) — H'(X,Q/Q(2))
is zero, so HY(X,Q) = H'(X,Q(2)) = 0 and all complements to @ in QX are
conjugate to X, hence are G-cr.

5.3. L' = A1A2A3. Let P = P123567 = QL be the unique standard A1A2A3—
parabolic subgroup of G. Let X & A; — A; Ay Az via (1071 201 37y (rs = 0).
This determines root elements of X as in Section [5.2] and the actions of X on the
levels of () are as follows:

Q/Q?2) | X =3l galsl g1+l
Q(2)/Q(3) | X = 4l @ 2lsl 4 ols],
Q(3)/Q4) | X =3 g 1+,
Q4)/Q(5) L X =2l

Thus HY(X,Q(3)/Q(4)) = K for all r, s, while H'(X,Q/Q(2)) = K if (r,s) =
(0,1), and H'(X,Q/Q(2)) = 0 otherwise. Moreover, by Lemma if s > 0,
then there are direct summands in levels 2 and 4 with non-vanishing second coho-

mology group. With similar calculations to Section 5.2 we find that every cocycle
X — Q(3)/Q(4) lifts to a cocycle X — Q(3), while if (r,s) = (0,1), a cocycle

r+1
)

r4+1
X 1010000 (t

)

X T_1010000 (%
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X — Q/Q(2) lifts to a cocycle X — Q/Q(3) if and only if it is a coboundary. This
shows that V= H(X,Q(3)/Q(4)) = K, for any choice of r and s.

Therefore, for each r and s, elements of H*(X, Q) are parametrised by elements
of K. Applying Lemma[B.25] for each possible (r, s) we have at most one conjugacy
class of non-G-cr complements to @ in QX.

Let Y = A} — ApAs via (261, W (5)[") where rs = 0. By Lemma B2 Y is
non-G-cr. Moreover, Y is contained in an Aj; A; As-parabolic subgroup of AjAs,
and hence in such a parabolic subgroup of G. Thus there is exactly one conjugacy
class of non-G-cr complements to @ in QX for each pair (r,s) with rs = 0.

From Table [[2] we find that dim(Cr(g)(Y)) = 0 and hence Cg(Y)° = 1.

5.4. L' = Ds. The two standard Ds-parabolic subgroups of G are Pjs345 and
Pysyss. Let X = Ay < Dy via 401 + 10+ @ 1081 40 (rs = 0; r +1 # 5). Let
P = Pjo345 = QL. The action of X each level of @ is as follows:

Q/Q(2) L X =3 @1l 4 30 @101 4o,
Q(2)/Q(3) | X =3 g 1lr+1 4 3l 1181,

Let U and V' be the respective summands of Q/Q(2) and Q(2)/Q(3) which are
isomorphic to 3" @ 1"+, By Lemma BI4 Vxo = H'(X,U)® H'(X,V) =
K2, The modules U and V are respectively generated by the images of the root
subgroups Uy, and Uggta,. The root group U, commutes with L', hence gives a 1-
dimensional subgroup of Q¥ , and does not commute with U,,. Hence, as described

in Section B.2] conjugation by v Lef Zo, (1) induces a non-trivial homomorphism of
L’-modules ¢, 1 @ Q/Q(2) — Q(2)/Q(3), which restricts to an isomorphism U — V.

We now apply Corollary B.I3l This tells us that, with respect to a basis of V
consisting of a non-zero element from each of H'(X,U) and H*(X,V), elements of
H'(X,Q) are parametrised by pairs (k1, k2) € V with k1ko = 0.

Next, the element n; of Ng(T') normalises each root subgroup in L', and swaps
Uae with Uygta,. It follows that two complements to ) in QX corresponding to
(k1, ko) and (ko, k1) are conjugate in G. Together with the previous paragraph, this
means we can assume that (k1, k2) = (k1,0). By considering the non-trivial action
of Z(L) on each summand in @, we therefore deduce that there is at most one class
of non-G-cr complements to @ in QX.

Now consider Ps3y56. We claim that a non-G-cr subgroup A; with irreducible
image in Lag456 must be G-conjugate to a subgroup of Pjosqs. It suffices to exhibit
an element of Ng(T') which sends the root subgroups in Lfs,ss to those of Lfoqys,
and also sends U,, to U,,, since the image of U,, generates the Lasyss-module of
high weight Ay in Q23456/Q23456(2). The following element fits the bill:

NrNeNs5MN4MN3N2MAN5NgT 71 N3TANE N2 4T 53104 T 1 3N T4 N5 Mg T Y

and hence up to G-conjugacy there is at most one non-G-cr subgroup A; in a
Ds-parabolic subgroup of G, with irreducible image in the Levi factor.

Recall that A; AL denotes a subgroup of this type lying in a Levi Eg subgroup
of G, and let Y = A; — A AL via (1151, W(5)I"), where s # 7 + 1. From Section
AT we know that Y is non-Fg-cr, lying in a Ds-parabolic subgroup of Eg, with
irreducible image in the Levi factor. Hence by Lemma[B.2] Y is non-G-cr, and thus
Y is a representative of the unique class of non-G-cr subgroups of QX.
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From Table 02, we find that dim(Cr)(Y)) = 3, and since Y < Eg we know
that Cg(Y') contains a 1-dimensional torus. We now construct a 2-dimensional
unipotent subgroup of @ centralising a conjugate of Y'; it then follows that Cq(Y)°
has the form UsT;.

First note that Z(Q) contains a trivial X-submodule, which therefore centralises
QX, and in particular centralises every complement to @) in @QX. Moreover, the
root subgroup U, commutes with Q(2), since there is no root « of level 2 such that
a + a7 is also a root. Therefore, if we can show that some non-G-cr complement Z
to @ in QX is contained in Q(2)X, it follows that U, also lies in Cx(Z)°.

The natural map H°(X,Q) — H°(X,Q/Q(2)) is surjective since H*(X,Q) =
U, has trivial intersection with Q(2). From the long exact sequence of cohomology,
it follows that we have an exact sequence 0 — H (X, Q(2)) — H'(X, Q) of pointed
sets, so a non-zero element of H'(X,Q(2)) gives rise to a non-zero element of
H'(X,Q). Thus there exists a non-G-cr complement Z to Q(2) in Q(2)X, and as
described in the previous paragraph we have Cg(Z2)° = UsTh.

5.5. L' = A1Dy4. Let P = Ps3457 = QL be the unique standard A;D4-parabolic
subgroup of G. Let X,Y = A; — A;Dy via (1" 36] @ 11571) (rs = 0) where
Vp,(M1) L X =Vp,(\3) L Y =48] 420511 The levels of Q are as follows:

Q/Q(2)] X =3 3] @ 1[s+1]) (1[7“] ® 4[5]) + (1[7‘] ® 2[5+1])’
Q(2)/Q(3) 4 X = (1M @ 38 @ 15+1) 1 0,
Q3)/Q) | X = 3 @ 161
(4)

Q) | X =0.

By Lemma B4 for any r and s we have Vx o = K?. The trivial module in
Q(2)/Q(3) is generated by the image of the root subgroup Up112221, which commutes
with X, hence induces a homomorphism Q/Q(2) — Q(3)/Q(4) of X-modules,
which is non-trivial since xg112201(1) does not commute with all of Q/Q(2), for
instance it does not commute with z,, (1). This must therefore induce an isomor-
phism from the summand 3[*! @ 1511 to Q(3)/Q(4).

Applying Corollary B.13] complements to ) in QX are parametrised by pairs
(k1, ko) of elements of K with kjke = 0. In addition, the element ng112221 of Ng(T)
normalises each root subgroup in L' and swaps Uy, and Ujj12201. It follows that any
complements corresponding to (k,0) and (0, k) are G-conjugate. Lastly, the non-
trivial action of Z(L) reduces us to the cases (k1,k2) = (1,0) and (0,0), by Lemma
Hence we have at most one G-conjugacy class of non-G-cr complements to Q
in QX.

With similar reasoning, there is at most one G-conjugacy class of non-G-cr com-
plements to @ in QY. Furthermore, the Weyl group element

Nn(0112221M2234321M1M3N4N2N5NaN3N € Ng (T)

normalises U,, and induces an outer automorphism of L’. Hence a lift of this
element to Ng(T') conjugates each complement to @ in QY to a subgroup of QX,
and so up to conjugacy in G there is at most one non-G-cr subgroup A; with
irreducible image in a Levi factor A;Dy.
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Let Z = Ay — A D5 via (1, T(8)l*])). By Lemma B2 Z is non-G-cr. Since Z
is contained in an A;D4-parabolic subgroup of A;Ds, it is contained in an A;Dy-
parabolic subgroup of G. Hence Z is a representative for the unique G-conjugacy

class of non-G-cr subgroups A; in P.
For each r and s, dim(Cr()(Z)) =1, and so Cq(Z)° = Cg(A1D5)° = T1.

5.6. L' = AyAs. The three standard Ay As-parabolic subgroups of G are Pi3s67,
P13467, and P23467. Let X = Al — A2A3 via (2, 1®1[1]) First let P = P13567 = QL
Then the actions of X on the levels of @ are as follows:

Q/Q(2) |l X =301 +101M 40,
2)/Q3) L X =32 1M 1010
3)/Q4) L X =44+ 2+2x2M 1o,
4)/Q(5)

5)/@(6)¢X—1®1[”,

Q(6)/Q(7) | X =2.

By Lemma 314, we have V = K2. The root group U,, gives rise to the trivial
L'-submodule in @/Q(2), and does not commute with the root group U,,. A non-
trivial element of U, therefore induces a non-trivial homomorphism of L’-modules
Q/Q(2) — Q(2)/Q(3), and hence by Corollary BI3] parametrising complements
to @ in QX by pairs (k1,ks) of elements of K, we may assume that kike = 0.
Further, using Lemma [3:225] the action of the torus Z(L) reduces us to the cases
(k1,k2) = (1,0) or (0,1). Lastly, the element ny € Ng(T) normalises the root
subgroups in L’ and swaps U,, and Ug,tq,; hence we may assume (k1,k2) = (0,1)

r (0,0), and we have at most one conjugacy class of non-G-cr complements to Q
in QX.

Similar calculations hold for P13467 = Q13467L13467. We have V = KQ, the
modules with non-vanishing first cohomology group appearing in levels 1 and 3,
respectively generated by the images of Uy, and Up112210. The subgroup X < Li3467
commutes with elements of Q13467/Q13467(4) of the form

O O O

(
(
(
(

@

z1112100(t)T1111110(8)Zo112110 () To111111 (£) Q13467 (4)

and these induce non-zero X-module homomorphisms

Q13467/Q13467(2) = Q13467(3)/Q13467(4).

An element of Ng(T) normalising L' and fusing complements corresponding to
(kl, 0) and (0, kl) eVis 1122322171112210070101100- MOTQOVGI‘, the element

TgM3N1N5N4N3NENETI4TLTTIE TS

conjugates the root subgroups in Li3467 to those in L3567, and also conjugates
Upi12210 to a subgroup of Q13567. It follows that each complement to Q13467 in
Q13467 X is G-conjugate to a subgroup of Pi3567.

In Pysus7 = Qo3467Lazagr we again have V 22 K2, the modules with non-vanishing
first cohomology group appearing in levels 2 and 3, generated by the images of
U1011100 and U1112210. The element Nn1111000 € NG(T) conjugates the root sub-
groups in L23467 to those in L13467, and sends both U1011100 and U1112210 to sub-
groups of Q13467. Thus each non-G-cr subgroup of Pssgugr is G-conjugate to a
subgroup of Pj3467, hence is also conjugate to a subgroup of Pj3567.
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Up to G-conjugacy, there is therefore at most one non-G-cr subgroup A; con-
tained in an A As-parabolic of G with irreducible image in the Levi factor. Let
Y = A; < Ag via W(6). Then Y is non-G-cr by Lemma B2l and is contained in an
Ay Az-parabolic subgroup of Ag and hence of G. Therefore, Y is a representative
of this conjugacy class of subgroups.

Now, from Table 02l Cpg)(Y) is 3-dimensional. Also, Cg(Y)° contains the

1-dimensional torus Cg(Ag)°. Moreover, with similar considerations to those in
Section [5.4] we see that a complement X|o 1) < Q(2)L13567 commutes with U,, as
well as with the 1-dimensional subgroup giving rise to the trivial submodule in
Q(3)/Q(4); hence Cq(Xio,1))° = UaT1.
5.7. L' = A2Ajz. The three standard A?Ajs-parabolic subgroups of G are Piase7,
P12457, and P23567. Let X,Y — A%Ag via (1[T],1[S+1],3[S]) and (1[S+1],1[T],3[5])
respectively (rs = 0 in both cases), and let Z = A; — A3A3 via (1,1,1 @ 1),
First consider Piosg7 = P = QL. Then L’ acts on the levels of Q) as follows:

Q/Q(2) L L' = (1,0,000) + (0,1,100),

Q(2)/Q(3) L L' = (1,1,100),
Q(3)/Q4) | L' = (1,0,010),
Q4)/Q(5) L L' = (0,0,010),
Q(5)/Q(6) L L' = (0,1,001),
Q(6)/Q(7) L L' = (0,0,000),

Q(7) L L' = (1,0,000).

From Lemma B4 it follows that Vx o = K2, Vyg = 0, and Vz o = K. Both
X and Z have summands in some level with a non-vanishing second cohomology
group. We first analyse complements to @ in QX.

Note first that Q(4)/Q(5) | X = 4151 + 0. We can identify the following positive
and negative root elements of X:

2 (1) = oy (17 )0, (17 )@y (7 )2 (17 )20, (1)
X 20000110(2¢2C ) 20000011 (26220000111 (3t3C),
T () =0, (7 )2y (17 )2y (37 )0 (447 )7, (387)

x 2_0000110 (t*®)z _g000011 (t*®”))z _0000111 (3¢5 7)),

and these elements commute with every element of Q(4) of the form z1129210(u)
21122111 (w). If w # 0, then this element does not commute with U,, and there-
fore induces a non-trivial homomorphism of X-modules Q/Q(2) — Q(5)/Q(6).
Therefore, applying Corollary BI3] and Lemma [B25 there are at most two con-
jugacy classes of non-G-cr complements to @ in QX, corresponding to (1,0) and
(0,1) € Vx g. Furthermore, the element ni122100n112222116MsN7Ne € Ng(T') sta-
bilises the set of root subgroups in L, inducing an outer automorphism on the As
factor. This element also swaps the root subgroups U,, and Uji2s210. Since the
images of these root groups generate the two X-modules with non-vanishing first
cohomology group, a lift of this Weyl group element exchanges complements to @
in QX corresponding to (1,0) and (0,1) € V.

Since Vy,¢ = 0, all complements to @ in QY are Q-conjugate to Y. Also, with
similar calculations to those of Section 5.2 we find that a cocycle Z — Q(2)/Q(3)
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lifts to a cocycle Z — Q(2) only if it is a coboundary. Hence every complement to
Q in QZ is QQ-conjugate to Z.

Now consider Pjo457. With identical arguments, we find that there are no non-
G-cr complements to Q12457 In Q12457Y or Q124577 , and that there is exactly one
G-conjugacy class of non-G-cr complements to Q12457 in Q12457X . Moreover, the el-
ement 71234321711 N3NaNaN5N4N3NNs NN N7 NeN5NaNs € Ng(T) conjugates the root
subgroups of Li2457 to those in L1567, and sends the subgroup X < Ljio457 to the
corresponding subgroup of Lias67. This element also conjugates U,,, which gives
rise to the module in (12457 with non-vanishing first cohomology group, to U,,,
and hence complements to @ in Q12457 X are G-conjugate to subgroups of Pjosg7.

An entirely similar argument shows that for Pa3567 there are no non-G-cr comple-
ments to Q23567 in Q23567X or Qa3567Z, and there is exactly one G-conjugacy class
of non-G-cr complements to Q23567 in Qo3567Y. Moreover, the element ngn, €
Ng(T) conjugates Lhgsgr to Ligser, sending YV < Lisse- to the subgroup X <
LY 9567 This also fixes Uy123210, hence complements to Qass67 in QasserY are also
conjugate to a subgroup of Pia567.

Therefore, for each r and s, there is at most one G-conjugacy class of non-
G-cr subgroups A; with irreducible image in a Levi factor of type A?As. Let
A= A < AAs via (1, W (5)6)). Then A is non-G-cr by Lemma and is
contained in an A% Az-parabolic subgroup of the Levi A; A5 and hence in an A% A3-
parabolic subgroup of G. It is also clear from Table that distinct choices of
(r, s) lead to non-conjugate subgroups of G, and thus each G-conjugacy class above
exists.

Finally, the complement X[g 1 to @ in QX < Pia567 above commutes with
the 2-dimensional subgroup <(]12243217 1‘1122210(t)1‘1122111(t) 1 te K> Since A lies
in a Levi subgroup A;As, we see C(A)° contains a 1-dimensional torus, hence
Ca(A)° =UTh.

5.8. L' = A3Ay. Let P = Pia357 = QL be the unique standard A$As-parabolic
subgroup of G. Let X = A; «— A3 Ay via (107 101 108 2[4y The action of L’ on
the levels of @ is as follows:

Q/Q(2) | L' = (1,1,0,01) + (0,1,1,00),
Q(2)/Q(3) L L' = (1,0,1,01) + (0,0,0,10),
Q(3)/Q(4) L L = (0,1,1,10),

Q(4)/Q(5) L L' = (0,0,0,10) + (1,0,1,00),
Q(5)/Q(6) L L' = (1,1,0,00),
Q(6) L L' = (0,0,0,01).

We may assume rstu =0. fu=r=s—1oru=s=r—1, then H(X,Q/Q(2)) =
K, and similarly if u =r =t —1loru=¢=r — 1, then H(X,Q(2)/Q(3)) = K,
andifu=s=t—1loru=t=s—1, then H'(X,Q(3)/Q(4)) & K. Each of these
cohomology groups vanishes if neither of the two corresponding conditions holds,
and no other X-module occurring can have non-zero first cohomology group. Hence
V # 0 if and only if (r, s,t) is a permutation of (u,u + 1, a) for some a € K. In this
case, V= K unless a = u or a = v + 1, in which case V= K? and u = 0.

If V= K, then by Lemmal3.25 there is at most one G-conjugacy class of non-G-cr
complements to @ in QX.
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Now suppose V =2 K2 so that u = 0 and (r, s,t) is a permutation of (1,0,0) or
(1,1,0). If s=t¢, or if s # ¢t but r = s = 0, then there is a trivial X-submodule in
level 1, inducing non-zero X-module homomorphisms Q/Q(2) — Q(2)/Q(3) and
Q(2)/Q(3) — Q3)/Q(4). If s # t and r = s = 1, then level 5 contains an X-
direct summand 2!, which has non-vanishing second cohomology group. Finally,
if s £ t and r # s, then either r = ¢ = 1 and level 4 contains an X-direct summand
200 or r = ¢t = 0 and level 2 contains a trivial submodule, inducing a non-zero
homomorphism of X-modules Q/Q(2) — Q(3)/Q(4).

With similar calculations to previous sections, using the above paragraph we find
that whenever V = K2, so that complements are parametrised by (kq,k2) € K2,
then either kiky = 0 is necessary for the partial map p : V — H'(X,Q) to be
defined, or Corollary B.I3] applies and a complement to @) in QX corresponding to
(k1, k2) is Q-conjugate to one corresponding to either (k1,0) or (0, k2). Applying
Lemma 3225 reduces us to (k1, k2) = (1,0) or (0,1) or (0,0).

Next, the element ngnsning € Ng(T') stabilises the set of root subgroups con-
tained in L, swapping those in the second and third A; factors, and also swaps
U, and Uppoi110, which give rise to the modules in levels 1 and 2 with non-
vanishing first cohomology group. Similarly, the element ngi121001113M4N2N5M1Y
swaps the root subgroups in the first two A; factors and swaps Upgo1110 and Ugi12110
which give rise to the relevant modules in levels 2 and 3, and finally the element
Mn0112221M1011110M1111111 11 NeN3ny swaps the root subgroups in the first and third
A, factors, and swaps the appropriate root subgroups in levels 1 and 3. It follows
that for each (r, s,t,u) there is at most one non-G-cr complement to @ in QX, up
to conjugacy in G, and furthermore, the six potential non-G-cr subgroups corre-
sponding to permutations of (r,s,t) are all conjugate in G. Hence there exists at
most one non-G-cr subgroup A; of P with irreducible image in the Levi factor, for
each set of twists (u,u + 1, a,u) with ua = 0.

Let Y = Ay — A, D5 via (119, 7(6))), where ua = 0. By Lemma B2 Y is
non-G-cr. Moreover, Y is contained in an A3 As-parabolic subgroup of A; D5 and
hence of G. Therefore, Y is a representative of the conjugacy class found in the
above analysis.

From Table we see that Cp(g)(Y)) has dimension 1 if a # w,u + 1; 2 if
a=u+1; and 3 if a = u. In each case, Cq(Y)° > Cg(A41D5)° = Ty.

If X above corresponds to twists (0,1,1,0), then we check that X centralises
the abelian group {xo000110(¢)Zo000011(c) : ¢ € K}, which also commutes with the
root groups giving rise to the module in level 2 with non-vanishing first cohomology
group. If instead X corresponds to twists (0,1,0,0) we check that X centralises
the 2-dimensional unipotent group

551011110(0)330111110(—0)330101111(36)3?0011111(6)951112221(02) cede K
X I1223210(d)331123211(d) 7

which also commutes with the root subgroups giving rise to the X-module in level
3 with non-zero first cohomology group.

It follows that Cq(Y)° =T if a # u,u+1; Cg(Y)° = UyTy if a = u+ 1; and
CG(Y)O = U2T1 if a = u.

5.9. L' = Dy. Let P = Ps345 = QL be the unique standard D4-parabolic subgroup
of G. Let X, Y, Z be representatives of the three L’-conjugacy classes of L’-
irreducible subgroups, with X (resp., Y, Z) acting on Vp, (A1) (resp., Vp,(As),
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Vp,(\1)) as 4 + 2I1 (in this case, the remaining 8-dimensional modules Vp, (\;)
restrict as 3 ® 1[1). The action of Dy on the levels of Q is as follows:

Q/Q(2) L L' = X3+ X +0,
Q(2)/QB) L L' =M + A4,
Q(3)/Q(4) L L' =\ +0,
QRQ(4)/Q() L L' = s,
Q(5)/Q(6) | L' = 0.

Reading left-to-right and down the levels, the non-trivial L’-modules are generated
by the images of the root groups Ua, , Uag, Uto11110, Uooooo11, Uro11111, and Ur112221.

The element w def ngNsNaNaNa3niNanansninangnsningn, € Ng(T) induces a tri-
ality automorphism on L’ and sends Ugoooor1 — Uri12221 — Uior1111 — Uoooooii-
This element will shortly be used to show that all non-G-cr subgroups A; of QL
are conjugate to a subgroup of QX.

Now, Vx g 2 Vy g 2 Vz o = K% The trivial summands in levels 1 and 3 are
respectively generated by the root groups U,, and Upi12221, inducing isomorphisms
between the L’-modules of high weight A4 in levels 1 and 2 and between the modules
of high weight A; in levels 2 and 3, and between the modules of high weight A3 in
levels 1 and 4.

First consider X. Then HY(X,Q/Q(2)) = K?, and H'(X,Q(2)/Q(3)) =
HY(X,Q(4)/Q(5)) = K, and also H2(X,Q(2)/Q(3)) = H(X,Q(3)/Q(4)) = K.
With similar calculations to Section 2], we find that a cocycle corresponding to
(k1,k2) € HY(X,Q/Q(2)) lifts to a cocycle X — Q/Q(3) only if k1ky = 0, and
also a cocycle X — Q/Q(3) corresponding to (k1, ke, k3) lifts to Q/Q(4) only if
k1ks = 0. Moreover, using the isomorphisms of L’-modules coming from U, and
Up112291, if cocycles X — @ are parametrised by (kq, ko, k3, k4) € V, then we may
assume that koks = k1ks = 0.

Next, the element n; € Ng(T') normalises the root subgroups in L' and the
positive root groups giving rise to L-modules of high weight A3 in the filtration
of @@, while exchanging the root groups giving rise to the two L-modules of high
weight A4. Hence a complement to @ in QX corresponding to (kq1, ke, k3, k4) € V is
G-conjugate to one corresponding to (k1, k3, ko, k4). Similarly, the element 19112221
normalises the root subgroups in L’ and swaps the positive root groups which give
rise to the two X-modules of high weight A3, and so a complement corresponding to
(0,0,0, ky) is G-conjugate to one corresponding to (k4,0,0,0). Finally, the element
ni122210N 1112110 Normalises L’ and Uipi1111, and sends Upgooo11 t0 Uri22201 (level
4) and sends Uj112221 to Upgoor11 (level 2). It follows that complements to X in
QX corresponding to (0,0, ks, k4) and (0,0, kg, k3) are G-conjugate.

Putting this together and applying Lemma B25] it follows that there are at
most two non-G-cr complements to @ in QX up to G-conjugacy, corresponding
to (k1,ke, ks, ks) = (0,0,0,1) and (0,0,1,1). Similar reasoning gives the same
conclusion for QY and QZ, hence each of these contains at most two non-G-cr
complements to @ up to conjugacy in G. Moreover, these complements each cor-
respond to 4-tuples (ki, ko, k3, ks) of elements of K with at most two non-zero
entries, thus these complements lie in the subgroup (U,, Ugs, L) for two appropriate
positive roots a, 8 € {a1, ag,1011110,0000011,1011111,1112221}. The element w
above now conjugates X — Z — Y and also permutes the positive root groups
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appropriately, and hence each complement to @ in QY or QZ is G-conjugate to
a subgroup of @QX. Thus there are at most two G-conjugacy classes of non-G-cr
subgroups A; in a D4-parabolic subgroup with irreducible image in the Levi factor.

Let A= A; < D5 via T(8) and B = A; — Ay AL via (111, W(5)) (recall that
A1 A} is the conjugacy class of A; A5 subgroups contained in Fg). Then A and B
are non-G-cr by Lemma Moreover, A is contained in a D4-parabolic subgroup
of D5 and hence in a Dy-parabolic subgroup of G, and B is contained in a Dy-
parabolic subgroup of Eg by Theorem [Il and hence in a D4-parabolic subgroup of
G. From Table [I2] we find that A and B are not GLsg-conjugate and hence are
not G-conjugate. Therefore, A and B are representatives of the two G-conjugacy
classes of non-G-cr subgroups in Dy-parabolic subgroups.

From Table I2, dim(Crg)(A)) = 6 and dim(Crq)(B)) = 4. Also Cg(A)° >
Ca(Ds)° = ATy, and Cg(B)° > Cg(A1AL) = T1. Now, in the above analysis
we have shown that a complement to @ in QX is G-conjugate to a subgroup of
(Uooooo11s Uror1111, X). But each of these three groups commutes with each of
the positive root groups Uy, Upi112221, and Usszasai, so each complement to X in
@X must centralise a 3-dimensional unipotent group generated by positive root
elements. It follows that Cg(A)° = UsA1Ty and Cg(B)° = UsTh.

5.10. L' = A;As. There are 11 standard A;Az-parabolic subgroups of G. The
corresponding Levi factors fall into two conjugacy classes; nine standard parabolic
subgroups have Levi factor conjugate to L1567, and two have Levi factor conjugate
to Losg7. For each standard parabolic P = QL, we need to consider X < L via
(101 3).

Let P = QL be a standard parabolic subgroup whose Levi factor is G-conjugate
to L1sg7. Then for each of the nine choices of P, we get V =2 K2, In each case, one
of two scenarios occurs:

Case 1). There exists a root element in @, centralised by L', inducing a non-zero
isomorphism between the two modules 3 ® 111 in the filtration of Q, and there also
exists an element of N (T') which fixes the root subgroups in L’ and swaps the root
subgroups giving rise to these two X-modules. By Corollary B.I3 and Lemma [3.25]
in this case, up to G-conjugacy there exists at most one non-G-cr complement to
Q in QX, corresponding to (0,1) € V.

Case 2). There exists an L'-module (0, A2) in some level V; = Q(j)/Q(j + 1) of
Q, which restricts to X as A°(3) = 4+ 0. In this case, the 1-dimensional trivial
submodule lifts to an X-invariant subgroup {xa(c)zg(kc) : ¢ € K} C Q¥ for some
pair of roots a, 5 and some fixed k € K; again we get a non-zero homomorphism
of X-modules between the two modules 3 ® 11! occurring in the filtration of Q.
Furthermore there exists an element of Ng(T') stabilising the root subgroups in L
and swapping the appropriate root subgroups in @), and so by Corollary B.13] and
Lemma [3.28], up to G-conjugacy there exists at most one non-G-cr complement to
Q@ in QX, corresponding to (0,1) € V.

Finally, for each of these nine parabolics, there exists an element of Ng(T)
sending root subgroups of the standard Levi factor to those of Liss7, and also
sending the root subgroups generating one of the modules 3® 1M to the appropriate
root subgroups in Q1567. It follows that all non-G-cr subgroups A; of these nine
Ay Az-parabolic subgroups of G, with irreducible image in the Levi factor, are G-
conjugate.
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Next consider the two remaining standard parabolics, Pase7r and Pays7, whose
Levi factors are G-conjugate. Then for each, we get V =2 K*. In Pys567, we find that
the subgroup X < L given by the root elements

T4 () = Tap (1°)Tas () Tag (26)Tas (3t) Toooo110 (462 Tooooo11 (262 ) Toooo111 (3t2),
T () = T, ()T 05 (38) T — 06 (2) T — v () — 0000110 (3%)Z 0000011 (£2) T —0000111 (3t*)

commutes with the 9-dimensional unipotent subgroup of @ given by

3 b 3b
$0112210(a)$0112111( G)$1112210( )531112111( ) cabce K
X x1122210(€) 21122111 (3€)

X UaUayUqyUr224321U1234321 U2234321,

and this group induces non-zero X-module homomorphisms between each pair of
modules in @ with non-vanishing first cohomology group. By Proposition and
Lemma every complement to @ in QX is G-conjugate to one corresponding
to the vector (K1, ko, k3, k) € V where at most one coordinate is non-zero. Further-
more, for each pair of modules 3 ® 1" occurring in the filtration of Q, there exists
an element of N¢(7T) sending the root subgroups giving rise to one module to those
giving rise to the other. It follows that up to G-conjugacy there is at most one
non-G-cr subgroup A; in Pssg7 with irreducible image in the Levi factor. Entirely
similar calculations hold for the parabolic subgroup Ps457, and furthermore the el-
ement n3ngnonsningngnsngnoningnsning € Ng(T) sends the root subgroups in
Loss7 to those in Losg7, and also sends Uy, to U,,. Since these each give rise to
an X-module 3 ® 1[U in the filtration of the corresponding unipotent radical, it
follows that the classes of non-G-cr subgroups A; arising in each of these parabolic
subgroups are G-conjugate.

Let Y =2 A; < Af via W(5), and let Z = A; < Aj via W(5). Then Y and
Z are non-G-cr by Lemma B2l and considering their composition factors on L(G)
and Vg tells us that that Y and Z are not conjugate in G, and also that Y lies
in a parabolic subgroup whose Levi factor is G-conjugate to Lis67, and Z lies in a
parabolic subgroup whose Levi factor is G-conjugate to Laosgr. Hence each of the
two possible classes of non-G-cr subgroups above exists.

From Table T2, dim(Cf ) (Y)) = 6 and so dim(Cg(Y)°) < 6. Also, Cq(Y)° >
Cg(Af)° = A1Ty. Moreover in P567, the root subgroups giving rise to an X-module
3@ 1M in Q(3)/Q(4) each commute with the elements z,(c), 1224321(c) and
Z1122210(€) 1122111 (3¢), for all ¢ € K, which generate the 3-dimensional unipotent
subgroup Q. Since A; < Cg(AL) does not contain a 2-dimensional unipotent
subgroup, it follows that Cg(Y)° = Uy A1T7.

Similarly, from Table 12 dim(Cp ) (Z)) = 14 and so dim(Cg(Z)°) < 14. Also
Ca(Z)° > Cg(A5)° = Ay. Above, we have found a 9-dimensional subgroup of
Q2567 centralised by X < Laosg7. On the other hand, let [ be maximal such that
Q2567(1) contains a module 3 ® 111 (in fact I = 6 here). Then any complement to
Q2567(1) in Qa2567(1)X must commute with all of Q25-, since each element of this
induces a homomorphism Qa567(1) = Q2567(1 + j) for some j, which must be the
zero map by maximality of [. Hence a non-G-cr complement to Q2567 in Qo567 X,
which we have shown is conjugate to a subgroup of Qa567(1)X by an element of
Ng(T), centralises a 9-dimensional unipotent subgroup generated by positive root
elements. Since As does not contain a 4-dimensional unipotent subgroup, it follows
that Cg(Z)O = UGAQ.
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5.11. L' = A%?A,. There are 12 standard A?A,-parabolic subgroups of G. Let
X,Y =2 A} < A3A; via (1,101,2) and (111, 1, 2) respectively. In each such standard
parabolic subgroup P = QL, there is precisely one level of @) containing an A% A,-
module of the form (1,1,10) or (1,1,01), and it follows that V = K in each case.
In the standard parabolic subgroup Piass = (Q1235L1235, the module (1,1,01) is
generated as an X-module by the image of the root group U,,. Then the element
N0112221M2234321 M1 N3NaNansnansny € Ng(T) fixes U, and swaps the A; factors of
L1235, hence each complement to Q1235 in @1235X is G-conjugate to a subgroup of
Q1235Y .

For P equal to each of the other 11 standard parabolic subgroups, the following
element of the Weyl group sends the roots of the standard Levi subgroup of P to
the roots in Lq235 and also sends a positive root «, whose root group generates
the X-module (1,1,01) or (1,1,10), to ay. Thus a lift of this element conjugates
non-G-cr subgroups of these standard parabolics to subgroups of Pa3s. See Table[8l

TABLE 8.

P Root « Element of Ng(T)
Pi4s7 | 0111110 NEgN5MN4MN2N3N1NAN3NTNENET4T2
P2367 0001100 NeN5MN4M2M3M1NANZNENATIZNENETL4TL3TLI TV NG5
Py357 | 0112110 70112221710111117111111071 72713
Pio56 | 0011000 NgN5N4M2N3N1 NN N5N 4N NG5 Y
P1236 0001100 Negns
Py467 | 0111100 10112221710111107010111072713714 N5
Po3s6 7] NeNsN4T2N3N 1 T4M3T 514125 T4 13T
P1267 0011100 NeN5MN4M2M3MN1NAN3NEN4 N2 T5TIA VT NG TS
P1237 0001110 NeNsNtNg
Piog7 | 0011110 NgN5N4NaNI N1 NAN3NTNG
P1246 0011100 NneN5MN4aMN2M3MN1M4N3

And therefore there is at most one G-conjugacy class of non-G-cr subgroups A;
in an A% A-parabolic subgroup with irreducible image in a Levi factor.

Let Z = Ay < D5 via T(6). Then Z lies in an A? Ay-parabolic subgroup of the
Levi subgroup Ds and is non-Ds-cr. Hence Z lies in an A2 Ay-parabolic subgroup
of G, and by Lemma it is non-G-cr. From Table 2] dim(Cr(g)(Z)) = 4, and
SO Cg(Z)O = Cg(D5)o = A1T1.

6. PROOF OF THEOREMPE: G=FE7, p=7

In this section we prove Theorem [2]in the case p = 7, in which case both A; and
G subgroups occur. The starting point is the following lemma.

Lemma 6.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type A1 or Go. If there exists a parabolic subgroup P of G with Levi factor L
and unipotent radical Q, such that H*(X, M | X) # 0 for some level M of Q, then
X and the type of L' appear in Table Bl
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TABLE 9. L'-irreducible X with H*(X, M | X) # 0.

r Embedding of X
Es X = (G5, see Proposition [3.7]

X = Ay < A As via (11 5)
A1AsAs X = A — AjAxAs via (111)2,3)

Proof. This follows in the same manner as Lemma Il where the classes of sub-
groups X = (G follow from Proposition Bl We note that X = Gy < Ag via
10 has a composition factor 20 on V4 (A3). This module occurs in the filtra-
tion of the unipotent radical of an Ag-parabolic and has non-vanishing first co-
homology group by Lemma However, Va,(As) = A*(Va,(M1)), hence
Vag(A3) L X = N’ (Ve (10)) is tilting, by Lemma BIR(iii). By Lemma BI8(iv), it
follows that H*(X,Va,(A3) } X) = 0. O

6.1. L' = Eg. The unique standard Eg-parabolic subgroup of G is P = Pjo3456 =
QL. In this case ) is an irreducible L’-module of high weight A;. First, let X =
Ay — AL AL via (11)5). Since Vi (M) 4 A1 AL = (1, A1) + (0, \y), it follows that
Vi,(\1) 4 X = (1M ®5) +T(8) 4 0. Therefore, H'(X,Q) = K and by Lemma 325
we find that there is exactly one G-conjugacy class of non-G-cr complements to )
in QX. Let A~ Ay < A7 via W(7). Then A is non-G-cr by Lemma and is
contained in an A; As-parabolic subgroup of A7, and therefore in an Eg-parabolic
subgroup of G. Thus Y is a representative of this class of non-G-cr subgroups of
P.

Still with P = QL as above, we now let Y be the L’-irreducible subgroup of
L’ of type G2. Then Y is contained in a subgroup Fy of L', and hence Vg (A1) |
Y =20+ 00. By Lemma BI7 H*(Y,Q) = K and thus by Lemma we have
exactly one G-conjugacy class of non-G-cr complements to @ in QY. We let B
be a representative of such a non-G-cr complement and now prove that B is not
properly contained in any proper connected reductive subgroup of G. Suppose that
H is maximal among proper reductive subgroups of G containing B. Using Lemma
B3 the restriction Vs | B = T/(20)? as given in Table [[4, and the restrictions in
[18, Tables 8.2, 8.6], we see that H must be simple of type A7. But this implies
that B stabilises a 1-space on V4. (A1), since the only non-trivial irreducible Ga-
modules of dimension at most 8 are Frobenius twists of the 7-dimensional module
10. Thus B lies in an Ag-parabolic subgroup of H; but Vss | As = A1/Aa/A5/ X6
by [I8, Table 8.6], which implies that V56 | B has a 7-dimensional section as a
B-module; a contradiction. Thus B does not lie in any proper reductive subgroup
of G.

Now dim(Crg)(A)) = dim(Cr(g)(B)) = 1; since @ is abelian and contains a
1-dimensional trivial L’-submodule, this submodule is a 1-dimensional unipotent
group centralised by A and by B. Thus Cg(A)° = Ce(B)° = Us.

For use later in Section @ when computing the restriction of G-modules Vsg
and L(G) to B, we now show that a conjugate of A is in fact a subgroup of B.
We let Z be a maximal subgroup A; of Y, so that Vi, (10) | Z = 6. Since
Ve, (10) is tilting and p > 2, by considering weight multiplicities it follows that the
symmetric square S?(Vg,(10)) = T(20). Since the Z-module 6 is tilting, it follows
that S2(6) = T'(12) + T(8), and therefore Q | Z = 12 + T(8) + 0. This shows two
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things: First, Z is L’-irreducible, since its composition factors on @ = Vg, (A1) are
incompatible with the actions of every proper Levi subgroup of L’ (see [I8, Table
8.7]), and furthermore H'(Z,Q) = K. Thus Z is L'-conjugate to the subgroup X
above, so without loss of generality we assume Z = X. Second, there exists a non-
trivial extension of Y-modules V' = 00/20 such that V | Z = (0|12) + T'(8) does not
contain a trivial submodule. Since H!(Y,20) and H'(Z,12) are each 1-dimensional,
the restriction map H'(Y,20) — H'(Z,12) is an isomorphism of vector spaces. In
particular each non-G-cr complement to X in QX lies in a non-G-cr complement
to Z in QZ and it follows that a conjugate of A is contained in B.

6.2. L' = A1A2A3. Let P = P123567 = QL by the unique standard A1A2A3—
parabolic subgroup of G. Let X = A; < A;AyAsz via (101,2,3). Using Lemma
[B.I4 as in previous calculations, we find that H*(X,Q/Q(2)) = K, while the cor-
responding cohomology group for the other levels of @ vanishes. By Lemma [3.25]
there is at most one conjugacy class of non-G-cr subgroups in QX.

Let Y &2 Ay — A1G2 via (1,6) and Z = A; — G5C3 via (6,5). Using the
restrictions of L(G) and V(A7) to A1G2 and G2Cs5 as given in [20, Table 10.1,
10.2], we find that the action of Y and Z on these modules is as given in Table
I3 In particular, Y and Z each fix a non-zero element of Vi (A7), and therefore
lie in a proper subgroup of dimension at least 133 — 56 = 77; all such subgroups
are contained in parabolics. Furthermore dim(Cr)(Y)) = 0, and so Y and Z
cannot centralise a non-trivial torus of G, and thus do not lie in a proper Levi
subgroup. Hence Y and Z are non-G-cr. Since the action of Y and Z on L(G)
does not agree with a non-G-cr subgroup A; in a parabolic subgroup of type FEj,
we deduce that Y and Z lie in a parabolic subgroup of type A;AsA3 and hence
both are representatives of the unique class above.

Since dim(Cr ) (Y)) = 0 we deduce that Ce(Y)° = 1.

7. PROOF OF THEOREMBL G =Eg, p=7

In this section we prove Theorem[3l As in the previous sections, the starting point
is the following lemma, which determines parabolics P = QL of G and L-irreducible
subgroups X such that H!'(X, Q) may be non-zero. The proof is identical to that
of Lemma [G.1]

Lemma 7.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type Ay or Go. If there exists a parabolic subgroup P of G with Levi factor L
and unipotent radical Q, such that H*(X, M | X) # 0 for some level M of Q, then
X and the type of L' appear in Table [IQ.

TABLE 10. L'-irreducible X with H'(X, M | X) # 0.

L Embedding of X
D X = G5 < Dy via 01 (two L'-conjugacy classes)
A, Fg X = Ay — AjA1As < A Eg via (171541 16]) (rs = 0)
AsDs X 2 A; < AyDy via (27 4l 4 10+ @ 15]) (rs = 0; 7 + 1 # 5)
AzAy X = Ay — AzAy via (1@ 101 4)
FEg X = Ay < A Ay via (10 5)
X = (9, see Proposition [3.7]
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Dg X = A < Dg via 11 @ 5 (two L'-conjugacy classes)
Ay As X = A; < A As via (111 5)
Ay Dy X = A« AyDy via (2,4 + 211
X = A« AyDy via (2,3® 111) (two L'-conjugacy classes)
A2A, X = A — A?A, via (1, 1[11,4)
X A — A2A, via (1191, 4)
A1AsAs X =2 A — A Ar Az via (112,3)

7.1. L' = Dy. Let P = Ps345678 = QL be the unique standard D7-parabolic sub-
group of G. Let X = Gy < L' with Vp,.(A\1) J X = 01. Then there are two
L-conjugacy classes of such subgroups in D7, which are distinguished by their ac-
tion on Vp,(A7). Indeed, as outlined in Section[d] if X and Y are representatives of
these subgroup classes, then we can verify computationally that Vp. (A7) I X and
Vp,(A7) } Y are uniserial with two composition factors, of dimension 26 and 38,
and we can therefore pick Vp. (A7) | X = 11|20 and Vp, (A7) | Y = 20|11.

Now @ has two levels, and as L’-modules we have Q/Q(2) = A7 and Q(2) = A;.
By Lemma B.I7(i) and Lemma BI8(iv) we have H' (X, Q(2)) = H (Y, Q(2)) = 0.
By Lemma BI7iii) and (iv) we have W (20) = 20|00 and W (11) = 11|20. This
implies that H'(G2,20) &2 K and H'(Gz,11) = H%(G2,11) = 0. From the long
exact sequence of cohomology induced from 20 < 11|20 — 11, we deduce that
H'(G,11|20) =2 H'(G>,20) = K. Now assume that H'(G>,20[11) # 0. If V is
a corresponding indecomposable extension of 20|11 by the trivial module, then V*
has shape 11](20/00). Since all high weights here are less than 11, this module
is an image of W (11), which is absurd. Therefore H!(G2,20[11) = 0. We have
just shown that H*(X,Q/Q(2)) 2 K and H'(Y,Q/Q(2)) = 0. Hence Vx o ¥ K
and Vy o = 0, and by Lemma there exists at most one G-conjugacy class of
non-G-cr complements to @ in QX , and none in QY.

Consider Z = Gy — GoGo < GoFy via (10,10), where the second factor G is
maximal in Fy. By [36, Lemma 7.13], Z is contained in a Dr-parabolic subgroup
of G. Furthermore, from Table [[5] we see that L(G) | Z has no non-zero trivial
submodules and hence Z is not contained in any Levi subgroup of G. Therefore,
Z is a representative of the conjugacy class of non-G-cr subgroups in QX. Since
dim(Cr(e)(Z)) = 0, it follows that Cg(Z)° = 1.

7.2. L' = A1Eg. Let P = Pia34568 = QL be the unique standard A, Eg-parabolic
subgroup of G. Let X = A; — Aj A1 Ay < A1Eg via (17 115+ 1]) (rs = 0).
Then @ has three levels, and H'(X,Q(2)/Q(3)) = K, while the corresponding
group for the other levels vanishes. Applying Lemma [B.25] there is at most one
G-conjugacy class of non-G-cr subgroups in QX.

Now consider Y 2 A; < A; Ay via (117, W (7)[]), where A7 is a maximal con-
nected subgroup of an E7 Levi subgroup of G. Then Y is non-G-cr by Lemma
and Y is contained in an A; Eg-parabolic subgroup of A;F; and hence of G.
Therefore Y is a representative of the conjugacy class of non-G-cr complements to
Qin QX.

From Table [[5] dim(Cp ) (Y)) = 1. Since the image of Y in A7 is non-Er-cr,
by Table [I3] this image centralises a 1-dimensional unipotent subgroup of E;, and
it follows that Co(Y)° = Uy.
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7.3. L' = A3Ds5. Let P = Pia3s578 = QL be the unique standard A, Ds-parabolic
subgroup of G. Let X = A; «— AyDjy via (207 4l 4 1lr+1 @ 1] + 0) (rs = 0;
r+1# ). The action of X on the levels of @ is as follows:

Q/Q(2) | X =5 @1l 4 3l @ 1l 101 @ 1) 4 50 @ 10 4 30 @ 11
+ 1[T] ® 1[517
Q(2)/Q(3) L X =6l -4l 4 ol @ 1Ir+1l @ 1lsl (22
Q(3)/Q(4) | X =3 g1t 130 g 10s)]
Q4)/Q(5) L X =2l

We see that Vy o = K, the unique module with non-vanishing first cohomology
group occurring in level 1. Applying Lemma there is at most one non-G-cr
complement to @ in QX, for each r and s, up to G-conjugacy.

Let Y 2 A; — A1A1Gy < A1 E7 via (1[5], 1m,6[r]) (rs =0; r #s+1). From
Section [6.2] we know that the image of Y in E7 is non-Er-cr. By [3] Lemma 2.12],
it follows that Y is non-A; E7-cr, and since A;FE; is a subsystem subgroup of G,
by Lemma we conclude that Y is non-G-cr. The image of Y in FE7 lies in an
Ay Ay Az-parabolic subgroup of Fr, and so Y lies in a parabolic subgroup of G whose
Levi factor contains a subgroup of type A% A3As. The only such Levi subgroup is
Ay D5, hence Y is a representative of the class of non-G-cr subgroups above.

From Table I8 we have dim(Cr)(Y)) = 0 if r # s and dim(Cp)(Y)) = 1
if r = s. It follows that Cg(Y)° is trivial if » # s. If r = s = 0 there is a
module 1 ® 1 = 2 4+ 0 occurring in Q/Q(2). Identifying the root elements of X as
in previous calculations, we find that for ¢ € K*, the following element generates
a 1-dimensional subgroup of ) which commutes with X and with the roots giving
the module 5 ® 11 in Q/Q(2):

200011100 (€)Z00001110(2¢)Z00000111 (€) Z12232100 (6¢) T 11232110 (5C) T 11222111 (6C)
X T12233210(6¢%) T 12232211 (3¢%) 11233211 (3¢%) 11232021 (€%) 12233321 (4¢”)

X 93464321 (6¢%)Ta3465431 (2¢%)

and it follows that Cg(Y)° = U;.

74. L' = A3A,. Let P = Pjiasue7s = QL be the unique standard AszA,-parabolic
subgroup of G. We need to consider X = A; < AzA, via (1@ 1M1, 4). With similar
calculations to previous sections, we find that H'(X,Q(2)/Q(3)) = K, while the
corresponding cohomology groups for other levels vanishes. Applying Lemma [3.25]
there is at most one class of non-G-cr complements to @ in QX.

Let Y = A; < Ag via W(8). Then Y is non-Ag-cr and thus non-G-cr by
Lemma B2 and comparing the composition factors of Y on L(G) with those of
Levi subgroups of G in [I8, Table 8.1] shows that Y can only lie in a parabolic
subgroup of G with Levi factor A3A4. Thus a conjugate of Y is a representative of
the class of non-G-cr complements to @ in QX

From Table [I5] we have dim(C(g)(Y)) = 0 and hence Cg(Y)° = 1.

7.5. L' = FEg. Let P = Piy3456 = QL be the unique standard Fg-parabolic sub-
group of G. Let X &2 A — A1 A5 < Eg via (1[1]7 5). Then the actions of X on the
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levels of @ are as follows:

Q/Q(2) L X =518 +7(8) + 02,
Q(2)/Q3) L X =52 1M +7(8) +0,
Q(3)/Q) I X =501 4+T®)+0
Q4)/Q(5) L X =0,

Q(5)/Q(6) | X =0.

From Lemma B4 it follows that Vyx o = K3. As in previous sections, it is
straightforward to determine root subgroups of X in terms of root subgroups of
Ay As, which are root subgroups of GG. The trivial modules in levels 1 to 5 each lift
to elements of Q¥ as follows:

Level Elements
1 Tag(a)z11221110(b)T11122110(5b)T01122210(3D)
2 T11221111 (@) 11122111 (5@) T01122211(30)
3 722343221 (@) 12343321 (20) T12244321 (30)
4 T23465431 ()
5 T23465432 ()

If a # 0, the root element z,,(a) induces a non-trivial homomorphism Q/Q(2) —
Q(2)/Q(3) of L-modules, and centralises each root group for a root of level 2.
Similarly, each element of the form z11221110(@)Z11122111(5@)Z01122210(3a) induces a
non-trivial X-module homomorphism Q(2)/Q(3) — Q(3)/Q(4), and centralises the
root groups in Q(1) besides U,,,. Finally, a lift of a non-trivial element of Q(2)/Q(3)
gives rise to a non-trivial X-module homomorphism Q/Q(2) — Q(3)/Q(4). Apply-
ing Proposition B2 if complements to ) in QX are parametrised by (k1, ko, k3) €
Vx,q, we may assume kiko = koks = kiks = 0. Next, the element ng € Ng(T)
normalises each root subgroup in L and swaps the root subgroups occurring in level
1, other than ag, with those of level 2. In addition, the element

N7rNeN5MN4MN2MN3MN1INAMNINENAN2NeN5T4N3 N1 VT NE N 5TL4A 234N 5 Mg T Y

stabilises the root subgroups in L and exchanges the root subgroups in levels 2 and
3. Together with Lemma and the subsequent discussion, we conclude that
there is at most one G-conjugacy class of non-G-cr complements to @ in QX.

Recall that A, denotes a subgroup A7 of G which lies in a Levi subgroup Ex.
Let A= Ay < A% via W(7). Then from Section we know that A is non-FE7-cr
and contained in an FEjg-parabolic subgroup of FE7, with irreducible image in the
Levi factor. Hence A is non-G-cr by Lemma and A is a representative of the
class of non-G-cr complements to @ in QX.

Now let Y = G5 be an Fg-irreducible subgroup (see Proposition [31]). Then the
actions of Y on the levels of () are as follows:

Q/Q(2) 1 Y =20+ 002,
Q(2)/Q(3) L Y =20+ 00,
Q(3)/Q(4) L' Y =20+ 00,
Q4)/Q(5) 1Y = 00,
Q(5)/Q(6) 1 Y = 00.
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By Lemma 317 we have H!(G2,20) = K, hence complements are parametrised
by (k1, k2, k3) € Vy,g. An entirely similar argument to the above shows that there
is at most one G-conjugacy class of non-G-cr complements to @ in QY. Moreover,
a representative subgroup may be taken to lie in Q(3)Y

Let B be the non-E7-cr subgroup G4 of E; given by Theorem 2l Then B is non-
G-cr by Lemma and is contained in an FEg-parabolic subgroup E; and hence
of G. Hence B is a representative of the conjugacy class of non-G-cr subgroups
contained in QY.

From Table [I5] we have dim(Crg)(4)) = dim(Crg)(B)) = 8. We claim that
Ca(B)° = UsA;. Since A is conjugate to a subgroup of B, as proved in Section
611 it follows from the claim that Cg(A)° = UsA;. To prove the claim we start
by noting that the elements of Q¥ in the above table are all centralised by Y and
so QY is a 6-dimensional unipotent subgroup of Cg(Y). We let R be the subgroup
of Q generated by QY and Q(3). We know that B is conjugate to a non-G-cr
subgroup of RY, call it Z. It now follows that Cry(Z) contains QY. Moreover,
since A; = Cg(E;) < Cg(B), it follows that C(Z) contains a subgroup of type
A; generated by root subgroups of G. The intersection of this subgroup A; with
QY < @ can be at most 1-dimensional. Therefore, we have found a subgroup
UsA; < Cg(Z). Since dim(Cg(Z)) < 8 we have proved that C(Z)° = UsA; and
the claim immediately follows.

7.6. L' = Dg. Let P = Py34567 = QL be the unique standard Dg-parabolic sub-
group of G. Let X and Y be representatives of the two conjugacy classes of A;
subgroups in Dg Which act as 5 ® 11 on Vp, (A1), with Vp,(Xs) I X = Vp,(Xe) 4
Y =T(9)+5® 2N and Vp,(Xs) | X =2 Vp,(Xs) L Y = T(8) ® 1M + 31, Then the
actions of X and Y on the levels of @) are as follows:

Q/Q(2) L X =52 1M + 7(8) © 111 4 311,
Q(2)/Q(B3) L X =T(9) +5® 21 +0,
Q(3)/QM) L X =521,
Q4)/Q(5) L X =0,

Q/Q2) LY =511 +T(9) + 522,
Q(2 )/Q(3)¢Y T(8 )®1H+3[1]—|—0,
Q(3)/QM) LY =501,
(VQU¢Y=0

By Lemma B4 we have Vx g = Vyo = K2 For both X and Y, the root
groups Uy, and Uszazaserr give rise to the modules 5 ® 100 in levels 1 and 3, and a
non-trivial element of Usg34301¢ is fixed by L’ and induces a non-trivial L’-module
homomorphism Q/Q(2) — Q(3)/Q(4). Thus if complements to @ in QX or QY
are parametrised by (ki,k2) € Vx g or Vy,g respectively, by Corollary B.I3 we
may assume that k1ko = 0. In addition, the element n99343210 € N (T') normalises
the root subgroups in L', and swaps U,, and Usassze11. Thus, applying Lemma
B23 up to G-conjugacy there exists at most one non-G-cr complement to @ in
@X and at most one non-G-cr complement to @@ in QY. Finally, the element
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ngnyNgnsNinangninsngnyng induces a graph automorphism on L', swapping the
class of X and Y, while centralising the root group Usssqzo11- Thus a non-G-cr
complement to @) in QX is conjugate to a subgroup of QY.

Let Z =2 Ay < Dy viaT(12). Then Z is non-G-cr by Lemma 32 and is contained
in a Dg-parabolic subgroup of the Levi subgroup D7. Hence Z lies in a D7-parabolic
subgroup of G, and is thus conjugate to a non-G-cr complement to @ in QX.

From Table I3, dim(Cr)(Z)) = 3, and Cg(Z) > Cq(D7) = T1. Now, the
two root groups Uszasasorp and Usssgsaze centralise L and Q(2), thus a non-G-cr
complement to @ in QX corresponding to (0,1) € Vx g, which lies in Q(2)X,
also centralises this 2-dimensional unipotent subgroup generated by positive root
elements. It follows that C(Z2)° = UsTy.

7.7. L' = A1 As. The three standard A; As-parabolic subgroups of G are Pja4567,
P1456783 and P134568- Let X & Al — A1A5 via (1[1],5) First consider P124567.
Then the actions of X on the levels of () = Q124567 are as follows:

Q/Q2)LX=T08)® 1M+ 5410,
Q(2)/QB3) 1 X =T(8) + 5 1M 1o,
Q(3)/Q(4) L X =T(9) +5+ 111,
QM4)/Q(B) L X =501
Q(5)/Q(6) I X =5,

Q(6)/Q(7) L X =

By Lemma [B.14] we have Vx g = K2. The modules of high weight 5 ® 1M are
generated by Upgi11111 and Upoesqaso11, and the element

11234321071 N3 NAN2N5NAN3NeN5NaN2N7NeNsNaN3 € N (T')

stabilises the set of root subgroups in L’ while swapping Uyg111111 and Uq2343211-
Now, X lies in a subgroup A;Cj5 of L’. This subgroup acts on Q(2)/Q(3) as (1, A1)+
(0, A’ A\1). Since A? Ay is self-dual it follows that A? Ay = Ao +0. This trivial direct
summand is the trivial X-module summand in Q(2)/Q(3). Using Lemma [BI8] the
other A;Cs-summands occurring in the filtration of @ are tilting, and therefore
have zero first cohomology group. Thus the trivial summand in Q(2)/Q(3) lifts
to a l-dimensional subgroup of Q41 < QX, and therefore gives rise to a non-
trivial X-module homomorphism Q(2)/Q(3) — Q(4)/Q(5). By Corollary B13 if
complements to @ in QX are parametrised by (k1, k2) € Vx g, then we may assume
ki1ks = 0. Applying Lemma and the above Weyl group elements, there is at
most one G-conjugacy class of non-G-cr complements to @ in QX.

Entirely similar arguments hold for Pj34568 and Pi4s67s. In the filtration of
Q134568, one of the two modules 5 ® 111 is generated as an X-module by the im-
age of U,,, and in Q145678 one such module is generated by U,,. The element
T13354321M223432107101111111214N3N5NaN2NeNsNan3ng € N (T') sends the root sub-
groups in L124567 to those in L134568 and sends U00111111 to an while the element
nangnsnegnyng sends the root subgroups in Lisg567 to those of Liss67s and sends
Uoo111111 to Uy,. It follows that up to G-conjugacy there is at most one non-G-cr
subgroup contained in an A; As-parabolic with irreducible image in the Levi factor.
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Let Y 2 Ay < A7 via W(7). Then Y is non-G-cr by Lemma and contained
in an A;As-parabolic subgroup of the Levi subgroup A7 and hence in an A;As-
parabolic subgroup of G. Hence Y is a representative of the class of non-G-cr
subgroups above.

From Table I8 dim(Cpg)(Y)) = 3, and Ce(Y)® > Cg(Ar) = Ti. More-
over, a non-G-cr subgroup of QX corresponding to (0,1) € Vx ¢ lies in Q(4)X,
and thus centralises both Z(Q) = Q(6) and the 1-dimensional subgroup of fixed
points giving rise to the trivial X-module in Q(2)/Q(3). Thus Cg(Y) contains a
2-dimensional unipotent subgroup containing only positive root elements, and it
follows that Cq(Y)° = UsTh.

7.8. L' = AyDy4. Let P = Py3y4578 = QL be the unique standard A, Dy-parabolic
subgroup of G. Let X, Y and Z be representatives of the three L’-conjugacy classes
of L'-irreducible subgroups, with the natural As-module A; restricting to X, Y and
Z with high weight 2, and Vp,(A\3) } X = Vp, (M) L Y =2 Vp, (M) | Z = 4+ 201,
so that the other two of these 8-dimensional Ds-modules restricts as 3 ® 1. The
actions of L’ on the levels of Q are as follows:

Q/Q(2) L L' = (00, As)
(2)/QE3) L L' = (10, A1)
(3)/Q(4) L L' = (01, A3),
(4)/Q(5) L L = (00, A1) + (01,0),
(5)/Q(6) L L' = (00, \4),
Q(6)/Q(7) | L' = (10,0).

It follows that Vx g =2 Vy o =2 Vzqo = K?2. The two L’-modules occurring in the
filtration of @ with non-vanishing first cohomology group for X (resp., Y and Z)
are generated as L’-modules by the images of the root groups Uy, and Uio111100
(resp., Uro111100 and Uir1222105 and Uy, and Upi122210)-

Whenever the partial map p : Vy o — H'(X,Q) is defined, let Xa,p denote
a complement to @ in QX corresponding to (a,b) € Vx ¢, and similarly for Y,
and Z[a,b]-

Note that Q(5)/Q(6) contains a Y-module direct summand 21, and Q(4)/Q(5)
contains a Z-module summand 2. By Lemma these modules have non-
vanishing second cohomology group, and so the map p is not necessarily defined
everywhere. If the basis of Vy, g is chosen to consist of a non-zero element from each
group H'(Y,Q(2)/Q(3)) and H'(Y,Q(3)/Q(4)), and similarly for Z, with similar
calculations to those of Section we find that the condition ab = 0 is necessary
for the complements Y[, j; or Z|, p to exist.

The typical element of Z(L):

(107 )‘4)7
(01,0),

IS
+ +

O

h(u, t) d:ef hl (t2u76)h2 (t)hg(t2uig)h4(f,2)h5 (tug)hﬁ (uﬁ)h7(u4)h8 (u2)

acts as the scalar u°t~! on the module generated by the image of U,,, and as
tu~* on the module generated by the image of U1g111100, hence Lemma [3.25] applies
and complements to ) in QX are G-conjugate to one of Xo 0, X[o,1), X[1,0, OF
X1,1), while complements to @ in QY are conjugate to Yoo}, Y[1,0), or ¥]o,1}, and
complements to @ in QZ are conjugate to Z o), Z[0,1], OF Z[1,0]-
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The element ningninansningn, € Ng(T') induces a non-trivial graph automor-
phism of the D, factor of L’. This fixes the L’-conjugacy class of X whilst swapping
Y and Z, and also fixes the root group Ui1122210 Whilst swapping U,, and Uip111100-
Therefore, X|o 1) and X[ o) are conjugate in G; as are Y]; ) and Z[; o); and Y[g ;) and
Z[0,1]~ SlIIlll&I‘ly7 the element 101122210M8MN 7NN 5T4T2T3TN4 N5 e SWAPS U10111100 and
U11122210, and also stabilises Y and swaps X and Z. Therefore X[OJ] is G-conjugate
to Zjo,1), and Y] o) is G-conjugate to Y|g 1). Finally, the element

122343210712346543218 1716 N5 T04TV2TV3TATLS TV TVT TS

normalises Y, swaps X and Z, and stabilises U,,. Hence X|; o and Z|; g are
conjugate in G. It follows that there are at most two G-conjugacy classes of non-G-
cr subgroups A; with irreducible image in a Levi factor of type A Dy, represented
by X[l,l] and X[O,l]'

Consider A = A; < D7 via T(lO) and B & A} — A1A1Gy; < A1E7 via
(1,1M0,61). Then A lies in an Ay Dy-parabolic subgroup of the Levi subgroup
D7, and hence in an AsD4-parabolic subgroup of G. Also, by Lemma [3:2] B is
non-G-cr if and only if it is non-A; E7-cr. By [3] Lemma 2.12], this is the case
if and only if the image of B in E7 is non-Er-cr, which we know is true from
Theorem 2l Furthermore, we know that the image of B in F; lies in an A; A;As-
parabolic subgroup of E7 (cf. Section [6:2), and so B lies in a parabolic subgroup
of G whose Levi factor contains a subgroup A% A;As. The only possibility for this
is A2 Ds; then by consideration of composition factors of B on L(G) we must have
Vp.(M) 4 B=4+1M@ 1M 40 =44 200 4+ 02, In particular the image of B in
Ds lies in a subgroup Dy, so B is contained in an As D4-parabolic subgroup of G,
with irreducible image in the Levi factor.

Thus A and B are non-G-cr subgroups of GG, each contained in an As D4-parabolic
subgroup with irreducible image in the Levi factor. Since dim(Cp ) (B)) = 0 we
have Cg(B)° = 1, and since dim(Cp,(g)(A4)) = 1 we have Cg(A)° = Cq(D7)° = T1.
This also shows that A and B are not G-conjugate.

7.9. L' = A2A,. The four standard A?Ay-parabolic subgroups of G' are Ph3s67s,
P125678a P124568, and P123468~ Let X,Y = A1 < A%A4 via (]., 1[1],4) and (1[1], 1,4),
respectively. If P = QL is one of these four parabolics and X < L, then in the
filtration of @ there is a unique L-module direct summand (1,1,4), generated as
an L-module by the image of U, as in the table below. This gives rise to a unique
indecomposable summand in the filtration of @ for X (resp., Y) with non-vanishing
first cohomology group. Then the element of Ng(T') given in the table below sends
the root subgroups of L to those of Lasse7s and sends U, to U,,. By Lemma [3:28]
there is at most one G-conjugacy class of non-G-cr complements to @ in QX and at
most one G-conjugacy class of non-G-cr complements to @ in QY for each choice of
parabolic, and such complements arising for different choices of parabolic subgroup
are all conjugate in G.

P Root « Element of Ng(T)
Pa35678 oy 1
Prasers | a3+ ay ning
P124568 00111110 N1N3NaN2MN5NANENENTNEN]TLY
Pra3468 | 01122110 | 122343210710111111711110000M2705 M43 N6 N5 AT G TS
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Furthermore, the element n29343210M23465432M8N7NEN5N4NaN3NgN5NgNTNg Stabilises
the set of root subgroups in Lasse7s, swapping the two A, factors, while fixing U,,.
Hence a non-G-cr complement to @ in QY is G-conjugate to a subgroup of QX so
up to G-conjugacy there exists at most one non-G-cr subgroup A; with irreducible
image in a Levi factor of type A2A,.

Let Z = Ay < D7 via T'(8). Then Z is non-G-cr by Lemma[3.2] and is contained
in a A?A,-parabolic subgroup of the Levi subgroup D7, and hence in an A?A,-
parabolic subgroup of G. Therefore, Z is a representative for the class of non-G-cr
subgroups above.

From Table I8 dim(Cr(g)(Z)) =1 and so Cq(2)° = Cg(D7)° = T1.

7.10. L' = A;A5A3. The four standard A; A As-parabolic subgroups of G are
P123567, P1236783 P1246783 and P124578. We need to consider X = A1 — A1A2A3
via (111,2,3). If P = QL is one of these four parabolics, in the filtration of Q
there is a unique L-module direct summand on which each simple factor of L acts
non-trivially. This gives rise to a unique indecomposable X-module direct sum-
mand with non-vanishing first cohomology group, generated as an X-module by
the image of U, as in the table below. Then the corresponding element of Ng(T)
sends the root subgroups of L to those of Li23567 and sends U, to U,,. By Lemma
325 there is at most one G-conjugacy class of non-G-cr complements to @ in QX
for each choice of parabolic, and such non-G-cr complements arising for different
choices of parabolic subgroup are all conjugate in G.

P Root a Element of Ng(T')
Pr23s67 ay 1
Pia3678 | 00011000 ngnNgns
Pio4678 | 00111000 ngNTNgN5N4NoNIN1 4T3
Piogs7s | 00111100 | ngnrngnsnganangningnagnsniNongnsNaniNgNsngNNg

Let Y 2 Ay — A1G2 < E7 via (1,6). Then Y is non-E7-cr by Theorem [2]
hence is non-G-cr by Lemma In addition, from Section we know that Y
is contained in an A A As-parabolic subgroup of E7, hence Y lies in an A; As As-
parabolic subgroup of G, and is therefore a representative of the unique class of

non-G-cr subgroups arising above.
From Table [I5] dim(Cp(g)(Y)) =3 and so Cq(Y)® = Cq(Er)° = A

8. PROOF OF THEOREM [4 AND COROLLARIES BHIT]

Having now proved Theorems [[H3] in this section we prove Theorem [ and all
the corollaries stated in the introduction. Throughout, G denotes an exceptional
simple algebraic group, over an algebraically closed field of characteristic p = 5
or 7.

Proof of Theorem M Let X be a non-G-cr connected reductive subgroup of G. If
X is not simple, then since p is good for G it follows from [4, Theorem 1.3] that
some simple factor of the derived subgroup X’ is non-G-cr. Conversely if some such
simple factor of X’ is non-G-cr, then as this factor is normal in X it follows from
[3, Theorem 3.10] that X is non-G-cr.

Thus it suffices to enumerate reductive subgroups of X Cz(X)° containing X, for
each non-G-cr simple subgroup X in Tables[I[THIG The results are precisely Tables
[ and I8 Where we have written “co-many classes”, the distinct classes arise since
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a group of type AT} contains infinitely many pairwise non-conjugate 1-dimensional
tori. For instance, GL2(K) contains the 1-dimensional tori {(6 tQL) 1 te K*} for
n > 1. It remains to prove that no two subgroups given in Tables [I7] and I8
are Aut(G)-conjugate. First, notice that each reductive subgroup X contains a
unique non-G-cr normal simple subgroup, so if X; and X, are non-G-cr reductive
subgroups, then we may assume X, Xy < YCq(Y)° for some non-G-cr simple
subgroup Y. Since X; and Xy are isomorphic, inspection now shows that this is
impossible unless either X; = X5, or Cg(Y) = 4171 and X3, X, are each equal to
the product of Y with a 1-dimensional torus of C(Y). Consideration of L(G) | X7,
L(G) | X5 then shows that X; and X5 can only be conjugate if the corresponding
tori are Ng(Y) = Y Cq(Y)-conjugate, which gives the result. O

Proof of Corollary Bl For G-cr subgroups of G, this follows from [I9] Theorems 3,
4]. For non-G-cr subgroups, by Theorems [[H3] it suffices to inspect L(G) | X for
each subgroup X in Tables [[THIAl O

Proof of Corollary @l Let X be a non-G-cr reductive subgroup of G, and suppose
that X’ is not contained in a proper subsystem subgroup of G. Then Z(X)° =1
and C(X)° is unipotent, otherwise X centralises a non-trivial torus and lies in the
corresponding Levi subgroup. Now, the first column of Tables [THI7 gives a proper
subsystem subgroup of G containing X, for each non-G-cr subgroup X, with the
exception of the simple groups given in (ii), (iii), and (iv) of this corollary. These
three subgroups cannot lie in a proper subsystem subgroup of the relevant group
G, since all non-G-cr subgroups of subsystem subgroups appear elsewhere in Tables
[[THI7 and therefore represent different conjugacy classes of subgroups. This proves
that exactly one of (i)—(iv) holds, and furthermore each of the subgroups in (ii),
(iii), and (iv) is uniquely determined up to conjugacy in the ambient group G.
Now let M be connected and maximal among reductive subgroups of G. If M
is G-reducible, then either M is G-cr and therefore maximal among proper Levi
subgroups of G, or M is non-G-cr, in which case G = E7, p = 7 and M is conjugate
to the non-G-cr subgroup G in part (iii) above. If instead M is G-irreducible,
then an application of the Borel-Tits theorem shows that M is in fact a maximal
connected subgroup of G, as required. (]

Proof of Corollary [ll Let M be maximal among proper reductive subgroups of G
and let X < M be M-irreducible and non-G-cr. If Z(M)° # 1, then M is a Levi
subgroup of G, and so all M-cr subgroups of M are G-cr by [30, Proposition 3.2].
Thus M is semisimple. Also X is semisimple as X cannot centralise a non-trivial
torus of M.

If M is G-cr, then either M is the derived subgroup of a maximal Levi subgroup,
or M is G-irreducible and therefore a maximal connected subgroup of G. In the
former case, M is a subsystem subgroup of G and so every M-irreducible subgroup
is G-cr. We will consider the case that M is a non-subsystem maximal connected
subgroup of G shortly.

If instead M is non-G-cr, then from Corollary [flwe know that G = E7, p = 7, and
M is conjugate to the unique non-G-cr subgroup Gs in part (iii). Thus either X =
M or X is an M-irreducible proper subgroup of M. The maximal M-irreducible
subgroups of M are of type Ay, A1 A1, and Ay; we have proved in Section that
the former of these is non-G-cr, while the latter two are centralisers (in M) of non-
central semisimple elements, of order 2 and 3, respectively, and therefore lie in a
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proper subsystem subgroup of G. By Theorem Bl the only non-G-cr subgroups of
G are conjugate either to M or its maximal subgroup Ai, or to a second class of
subgroups A;, which by Corollary [0l do not lie in a proper subsystem subgroup of
G, and hence do not lie in M. This justifies the entries in Table[ with M non-G-cr.

We may now assume that M is G-irreducible, and therefore a maximal connected
subgroup of G. Thus M is one of the subgroups given by Lemma B3 and by
hypothesis M is not a subsystem subgroup. Furthermore if G = Eg and M = Fy
or Cy, then M is the centraliser of an involutary automorphism of G, and since
p # 2 it follows from [3, Corollary 3.21] that every M-irreducible subgroup of M
is G-cr. Since (G,p) = (FEs,5), (E7,5), (E7,7), or (Fg,7), the possibilities for M
are therefore as follows: M = A3G5 or As (two classes) when G = Eg; M = G2Cs,
A1F4, AlGQ, A1A1 or AQ when G = E7; and M = G2F4, BQ or A1A2 when G = Eg.

If G = Eg, then by Theorems [l and ] X has type A; or AjA;. If M = A3Go,
then the image of X in the Go factor lies in a maximal subgroup A;A; or Ay of
this factor. Now L(G) | AsG2 = L(As2) + L(G2) + (11,10) by [26] p. 193]. Since
L(As) restricted to a maximal subgroup A; has shape 4 + 2, and L(G2) | A1A; =
(2,0)4(0,2)4(1,3) and L(G2) | A2 = L(A2)+01410, it follows that L(G) | X has
at least three 3-dimensional direct summands and two 4-dimensional summands,
with pairwise zero intersections. No possible X in Table [[] or [ satisfies this.

On the other hand, if M is a maximal subgroup of type As and X is a maximal
subgroup A; of M, then using the restrictions Vg(Ar) | M = 22|11 or 11|22 and
L(G) | M =41 + 14 4 11 given in [20, Tables 10.1,10.2], it follows that V(A1) |
X =T(8)+W(6)+42 or T(8)+W (6)*+42, and L(G) | X = T(10)>+T(6)>+43+2.
In particular X fixes a 1-space on V(A1) and lies in a subgroup of dimension at
least 78 —dim (Vg (A1)) = 51. By Lemma B3] the only such subgroups are contained
in parabolic subgroups, hence X is G-reducible. Since X is fixed-point-free on
L(G), X cannot centralise a non-trivial torus of G, and hence is non-G-cr. Finally,
using Theorem [[]and comparing the composition factors of X on L(G) and V(A1)
with Table [l we see that X is Aut(G)-conjugate to a subgroup A; < A;Aj via
(1, W(5)) as in Table [

For G = E; or Eg we proceed similarly, considering each possible subgroup M
and its action on L(G) and V(A7) when G = E7; these are given by [20, Tables
10.1, 10.2]. In each case, we find that no simple subgroup of M of the appropriate
isomorphism type can act on L(G) or V(A7) in the manner given in Tables [[2HI6]
except for the subgroups of M given in the final column of Table[Il In these cases,
the restriction is compatible with the non-G-cr subgroups X given in the fourth
column there. Thus if we show that these subgroups of M are non-G-cr, then as
their conjugacy class is determined by their action on L(G), it will follow that they
are indeed conjugate to the non-G-cr subgroups X in column 4. Furthermore since
none of the subgroups listed in column 4 centralise a non-trivial reductive subgroup
of G, it follows that no semisimple, non-simple, non-G-cr subgroup of G lies in any
such M.

It remains to prove that each subgroup X of M given in the final column of Table
[Mis in fact non-G-cr. First, using the fact that the action of X on L(G) agrees with
the appropriate non-G-cr subgroup in the fourth column of Table Il we see that
L(G) | X has no trivial direct summands. If X centralises a non-trivial torus S of
G, then L(Cq(S)) = L(S) ® L(Cg(S)') is a direct summand of L(G) | Cg(S); a
complement is given by the sum of those root spaces of L(G) not centralised by the
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action of S (see also [0, Lemma 3.9]). Since X < C¢(S5), this implies that L(S) is a
trivial direct summand of L(G) | X, a contradiction. Hence each possible subgroup
X is G-indecomposable.

We now show that every subgroup X of each subgroup M lies in a parabolic
subgroup of G. For G = F7 it suffices to note that X has a non-zero fixed point on
Vi (A7); the corresponding stabiliser has dimension at least 133—56 = 77, and every
subgroup of G of such a dimension lies in a parabolic subgroup by Lemmal3.3 Thus
X is indeed G-reducible. For G = Ej it is shown in [20, Section 3.3] that a subgroup
of type A; with the same composition factors on L(G) as the subgroup A; < Ag via
W (8) must in fact be conjugate to a subgroup of Ag; it follows that X is conjugate
to this non-G-cr subgroup. Finally the subgroup Go — G2Go < G F}y via (10, 10)
is shown to be G-reducible in [36, Lemma 7.13], completing the proof. g

Proof of Corollary Bl This is a matter of inspecting Tables [IHIT] noting that only
the non-G-cr subgroups of type Go and A;G> are restricted; the A; factor of the
non-G-cr subgroup A1Gs of G = Ejy is restricted because it is the centraliser of a
subsystem subgroup E7, and L(G) | A1 E7 = L(A1)+ L(E7)+ (1, A7) (see [26, 1.8]),
so the high weights of L(G) | A; are at most 2. O

Proof of Corollary @ If X is a reductive subgroup of G with Cg(X)° = 1 then
Z(X)° = 1 and X lies in no proper Levi subgroup of G, since then X would
centralise a non-trivial torus. Thus either X is G-irreducible or X is non-G-cr.
Inspecting Tables [[THI7 we see that each non-G-cr subgroup X with Cq(X)° =1
appears in Table [ as required. O

Proof of Corollaries [0l and Il Theorems [[H4] show that for each exceptional sim-
ple algebraic group G, there are only a finite number of non-G-cr reductive sub-
groups of G having a specified set of composition factors on L(G), which immedi-
ately implies each of these corollaries. (I

9. RESTRICTIONS OF (G-MODULES TO NON-(G-CR SUBGROUPS

Let V be either L(G), or Va7 or Vs when G is of type Eg or E7, respectively,
and let X be one of the non-G-cr simple subgroups of G listed in Tables [THIGl
Here, we justify the restrictions V' | X given in those tables, which have been used
in proving aspects of Theorems [TH3l

With the exception of the groups of type G5 in Table [I4] which we will consider
at the end of this section, each subgroup X listed is properly contained in a proper
semisimple subgroup H of G, which is given in the tables. For example, in the
first line of Table [[Il X is contained in a Levi subgroup H of type As in G =
Fg. Now, each subgroup H occurring is either a subsystem subgroup of G, or is
contained in one of a small number of known maximal connected subgroups (cf.
Lemma [B3]). In the latter case, the action of the maximal connected subgroup on
the low-dimensional G-modules is given explicitly in [20, Table 10.1], and the action
of H is straightforward to determine from this.

If H is a subsystem subgroup occurring, and if either H has maximal rank or
G = Eg and H is a subgroup of type Ds, then V' | H is given in |21, Lemmas 11.2,
11.8, 11.10]. Moreover, if G = E7 and H = Eg, then V' | H is given in [I8, Tables
8.2, 8.6]. From these it is straightforward to determine V' | H for all other type of
subgroup H occurring.
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If a factor Hy of H is classical or of type G2, then the given embedding determines
the action of X on Vg, (A1) (considered as an H-module in the obvious way). From
this it is straightforward to determine the high weights of related modules, such
as symmetric and alternating powers, and tensor products. Moreover as discussed
in the proof of Lemma B.I8 since p > 3 each of the modules S%(V), /\Q(V)7 and
A’ (V) occurs as a direct summand in a tensor power of V. It then follows from
[12, Corollary 1.3] that if V' has a filtration by Weyl modules (respectively, dual
Weyl modules), so too do these symmetric and alternating powers. This is sufficient
information to determine V' | X, unless some factor Hy has type D,, and V' | Hy
involves a spin module; we will address this problem shortly.

As an example, consider the final line of Table [[1l, where G = Eg, p = 5, and
where X < H = A; A5 via (1", W (5)F]) with rs = 0. From [I8, Propositions 2.1,
2.3] it follows that

L(G) | H = L(A1) + L(A5) + (1, A3),
Vor L H = (0, \q) + (1, A1)

where the direct-sum decompositions follow as no factors here can extend another
indecomposably. Now, the As-module Ay = A*(A1)* restricts to the image of X as
A (W (5)lEh*. Since (W (5)11)* has high weights 557! and 3(5%), it follows easily
that A4 | X has high weights 8(5°), 4(5%), 0 and 0. Since A*(W (5))* has a filtration
by duals of Weyl modules, and since Wx(4) and Wx(0) are irreducible, while
W (8) = Vx(8)|0, it follows that A*(W (5)[5))* = 4l & T(8)[*]. The other H-direct
summands of L(G) and Va7 are also constructed as tensor products and alternating
powers of (0,;) and (1,0), and we proceed in an entirely similar manner. The
restriction in Table [T follows.

Now consider spin modules for D,,. Given a sub-torus of a simply-connected
group of type D,,, the weights of this torus on the spin modules Vp, (A,—1) and
Vb, (An) are straightforward to determine from the weights of this torus on the
natural 2n-dimensional module; an example of such a calculation is given in [I7, pp.
195-197]. For the exact module structure, we make use of MAGMA’s functionality
to work within groups of Lie type. In particular, MAGMA allows us to explicitly
construct a finite quasi-simple subgroup X (¢) < X, as an irreducible matrix group
of degree 2n over a field of size g, preserving an explicit quadratic form. We can
then take a pre-image of X(¢) under the natural 2n-dimensional representation of
a group of Lie type D,,, and then take the image of this under a representation of
high weight A,_1 or A,.

As an example, let G be simple of type Ejg, let L’ be a simple subgroup of type
D7 as in Section [T and let X be a simple subgroup of type Ga, with Vp. (A1) |
X = 01. Using MAGMA as above, we find that the spin modules Vp.(Ag) and
Vp., (A7) testrict to a finite subgroup X (72) as uniserial modules with composition
factor dimensions 38 and 26. Since the composition factors of X on L(G) must
agree with those of the image of X in D7, which are given in [I8, Table 8.1], we
deduce that Vp,(Xg) J X = 11|20 and Vp,(Xg) 4 X = 20|11, or vice versa.

Finally, we need to consider the case where X is of type G2 and contained in
no reductive overgroup of G = E7, as in Table [[4L The only possible parabolic
subgroups of E; containing X have Levi factor of type Eg, and the image of X
under projection to the Levi factor lies in a proper subgroup Fjy. Using [I8| Tables
8.4, 8.6] and [20, Tables 10.1, 10.2], we deduce that the restriction of V to X has
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the composition factors as given in Table [[4l To determine the exact structure of
the restriction of V to X, we consider the maximal subgroup A; of X, call it Y.
From Section we know that Y is conjugate to a subgroup A; < A via W(7)
and therefore V' | Y is given in Table[I3l We claim that this is enough to determine
V' | X. To prove the claim we first take V' = V5. We know that the X-composition
factors of V are 202/00%. Since V is self-dual and H'(G2,20) = K, the possibilities
for V | X are thus 7(20)2, T(20) + 20 4 00%, W (20) + W (20)* + 002 or 202 + 00%.
Moreover, we know that V | Y = T(12)% + T(8)? = (0/12]0)? + (4|8|4)2. Thus the
fixed-point space of X on V is at most 2-dimensional, and therefore V' | X = T(20)?
as claimed in Table [I4]

Now suppose V' = L(G). As given in Table [[3] the fixed-point space of Y on
V is 1-dimensional. The X-composition factors of V are 11/203/01/003. Suppose
M, N are two such composition factors. Then Ext} (M, N) # 0 precisely when
{M,N} = {11,20} or {20,00}, in which case Ext (M, N) = K. This leaves a
number of possibilities for V' | X but only one, namely T'(11) + T'(20) + 01, has
fixed-point space of dimension at most 1. This concludes the justification of the
restrictions of V' to X given in Table [[4

10. TABLES FOR THEOREMS [IH4l

In this section, we give the tables referred to in Theorems[IHAl Each line of a table
corresponding to the exceptional Lie type G, characteristic p, and subgroup type
A; or G gives a representative of an Aut(G)-conjugacy class of non-G-cr subgroups
of that type. For each simple non-G-cr subgroup X we also give the action of X
on the adjoint module L(G), and on the module V27 = Vi (A1) when G has type
Eg, and on Vs = V(A7) when G has type Er. Finally, we also give the connected
centraliser C(X)° for each X. The notation for modules and embeddings, e.g.,
‘X < As via W(5)’ is explained in Section

In Table [[1] each given Aut(G)-class of subgroups splits into two G-conjugacy
classes, interchanged by the graph automorphism of G.

TABLE 11. Non-G-cr subgroups of type A; in G = Eg, p = 5.

Non-G-cr Vor L X LGl X Ca(X)°
subgroup X = A,

X <AsviaW(s) T@®)+W(5)?2+4 T(10)+92+T(6)+T(5)%+4+0% A,

X < Dy viaT(6) T(7)+T(6) + T(10) 4 T(7)> + T(6)? + T
W(5)+0 W)+ W(EB)*+4+0

X < DsviaT(8) W(10)+T(8)+ 14+ T(10) + W(10) + T
440 W (10)* + T(6) + 42 + 0

X < A} A5 via Mewe)sl+ 1l gl 41 @ T(5)ls + 1

(17w (5) s T(8)ls] 4 4151 2l 4 7(10)[] + T(6)1s] 4 414!

(rs=0)
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TABLE 12. Non-G-cr subgroups of type A; in G = E7, p=5.
Non-G-cr Vs 4 X LG)|l X Co(X)°
subgroup
X~ 4
X < Aj via 9+T(B)+W B+  T(10)+T(8) +T(6) + Us A
W(5) (W(5)%)3 47 4+ 08
X < AL via T(8)2 +W(5)% + T(10) + 9% + T(8)? + Uy Ay Ty
W(5) (W (5)*)2 + 4%+ 02 T(6) +T(5)% + W(5)% +

(W(5)*)% + 43 4+ 04
X < Ag via W (10) + W(10)* + (12)3+T(10) +T(8)*+ U.Th
W(6) T(6)2+W(6)+W(6)* W(6)+W(6)*+4>+2+0
X < A;via  W(12)+W(12)* + (16) 4 14 + T(12) + U,
W(7) T(8)% + 42 T(10)2+T(8) +4% +2
X — A As 11 @ W (5)l] ol ¢ (1[ "o T(8)l])? UsTy
via e weE)H+ (e ) + ()2
(AW () gl 4 T(5)l + 7(10) i +(T(8)1)? +
(rs =0) WG+ (W)t T6)l] 4 (4l)? 10
X — A AL 1 @ W (5)k 4 "l 107 @ 9ls] 4- U,T,
via 1[’“1 ® (W(5)") + 1 @ T(5)k + (r+1#s),
WL WE)E) - (TE)H)2+ @) +02 1 e W) + UsTh
(rs=0) 1M e (W(5)* )[s]—l- (r+1=s)
T(10)8 4 (T(8)1)? +
T(6)l) + (41s1)3 + 0
X < AyAs 2l @ W (5)l) + 4l 4 2l @ 7 (8) )2 + 1
via 2l @ (W (5)*) [s] + (2 @ 4ls1)2 4 olr] 4
LW (B)E  glsl 4 ()l T(10) + T(6)ls] 4 411
(rs=0)
X < Dy via  T(7)? +T(6) + T(lO) +T(N*+T6)*+ AT
T(6) W(5) + W (5)* +0* W(5)%+ (W (5)*)% +4+0*
X < Dy via  W(10) + W(10)* + 14 + T(lO) + W(10)% + U A\ T,
T(8) T(8)* + 4% +0* (W(10)*)2 + T(8)% +
T(6) + 41 + 01
X < A Ds 1 & T(6)1 + ol Al (N2 + Ty (s #
via (AN 4 ()2 + 1 @ T(6)) + rr+1),
(M, 7)) W)+ (W <5>*)[ T e w ) + 0T
(rs=0) 17 @ (W (5)*)ls] + (s =r+1),
T(10)6) + (T(6)151)2 + U.Ty
4 10 (s=r)
X < A, Ds 1 e T(8)k + 2l 10 @ W (10! + T
via (12 W (10)l¥ 4- 17 @ (W (10)*)l) +
ALTE)) w0yl + @)1l e 7)) +
(rs=0) (117 @ 4lsh)2 4 140 4

1
(10)€1+T( )l +0
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TABLE 13. Non-G-cr subgroups of type A; in G = E7, p=1T1.

Non-G-cr subgroup Vg | X LG)|l X Cg(X)°
X >~ A,
X < A via W(7) T(12)>+T((8)* T16)+T(14)+T(12)+ U,
T(10)+T(8)>+6
X — A1Gy via (1,6)  T(1)+T(9)2+ T(14)+T(10)*+T(8)*+6% 1
T(7)

TABLE 14. Non-G-cr subgroups of type G, in G = E7, p=T.
Non-G-cr subgroup X = Go Vss 4 X LG)|I X Ca(X)°
X in no proper reductive T(20)? T(11) 4+ T(20) + 01 Uy
overgroup (see Section [6.1])

TABLE 15. Non-G-cr subgroups of type A; in G = Eg, p=1T1.
Non-G-cr subgroup LG)I X Cg(X)°
X >~ A,

X < A; via W(7) T(15)% + T(14) + T(12)* + T(10) + Uy Ty
T(9)>+T(8)* +T(7)*+ W(7)+
W(T)*+6+0

X < AL via W(7) T(16) + T(14) + T(12)° + T(10) + UsA,
T(8)" +6+ 03

X < Ag via W(8) T(18)? + T(16) + T(14)> + T(10)2 + 1
T(8) 4+ 6° +2

X — A AL via 2l + (1 @ T(12)11)2 + Uy

A w(nh (rs = 0) (17 @ T(8)11)2 + T(16)[s] + T(14)[s] +
T(12)ls + T(10)) + (T(8)[h)3 + 6l°]

X < D7 via T(8) T(14)+132+T(11)2+T(10)2+T(9)*+ 11
T(8)3 +T(7)2+W(7)+W(7)*+63+0

X < Dy via T(10) T(18) +T(16)? + T(14) + W (14) + T
W(14)* + T(10)* + T(8)> + 6> + 0

X < Dy via T(12) T(22) + W(21) + W(21)* + T(15)2 +  UyT}

T(14) +T(12)2 +T(10) +T(9)?> +6 +0

X < A1Gy < B via (1,6)  T(14) + T(11)? + T(10)* + T(9)* + Ay
T(8)?+T(7)% +63+03

X = AjA1Gy < Ay Er via 201410 @ (1) (1 @ T(9)EH2+ 1 (r £ 5),

(171,161 6ls]) (rs = 0) 1M oMbl + 74)l 4 (T(10)E) + Uy (r=5s)
(T(8)1)? + (6113
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TABLE 16. Non-G-cr subgroups of type G, in G = Fg, p =T.

Non-G-cr subgroup X 2 G LG X Ce(X)°
Gs < Er T(11) + T(20)° + 01 + 00 UsA,
Go < GaGy < GoFy via (10,10) 30+ T(11) + 11 + 013 1

TABLE 17. Non-simple, non-G-cr semisimple subgroups.

Non-G-cr semisimple subgroup

Es
Er

Eg

N 0 3 Ot ot ot ot oot a3

A1 Ay < A1 As where A; < As via W (5)

A2A1 < A2A5 where A1 < A5 via W(5)

A1A; < A3 As where A; < Ay via 2 and A < Aj via W (5)
A1 Ay < AjAs where A; < As via W (5)

A1 Ay < A1 AL where Ay < AL via W(5)

A1 Ay < Ay D5 where A; < D5 via T(6)

A1 Ay < Ay D5 where A; < D5 via T(8)

A1 Ay < Ay A7 where Ay < AL via W(7)

A1 Ay < A E; where Ay — A1Go < Ey via (1,6)

A,Gy < A1 E; where Gy < E7 is non-E7-cr

In Table[I8] recall from Section [ that “co-many classes” refers to the fact that a
group of type AT} contains infinitely many pairwise non-conjugate 1-dimensional
tori, and so a non-G-cr simple subgroup with such a centraliser gives rise to infinitely
many pairwise non-conjugate, non-G-cr reductive subgroups.

TABLE 18. Non-G-cr reductive subgroups X with Z(X)° # 1.

G p  Non-G-cr reductive subgroup X

Eg

Er

5 ATy where A; < Ay via W (5)
ATy where Ay < D5 via T(6)
ATy where Ay < D5 via T'(8)
5 AT, where A; < Ay via W (5)
A1 ATy where A; < As via W(5)
ATy where A; < A5 via W(5)
ATy where A; < AL via W (5)
A1 ATy where A < AL via W(5)
ATy where A; < Af via W(5) (co-many classes)
ATy where A; < Ag via W(6)
ALT) where A; < A A via (1U, W (5)E]) (rs = 0)
A Ty where A; < Ay AL via (17, W (5)6]) (rs = 0)
A1Ty where Ay < D5 via T'(6)
A1 ATy where A; < Ds via T(6)
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ATy where A; < D5 via T(6) (co-many classes)
ATy where Ay < D5 via T'(8)
A1 A Ty where Ay < Ds via T(8)
ATy where A; < Dj via T'(8) (co-many classes)
ATy where A; < Ay D5 via (107, T(6)#)
A Ty where A; < Ay Dy via (107, 7(8)[#)
Egs 7 ATy where A1 < A7 via W(7)
ATy where Ay < AL via W(7)
ATy where Ay < Dy via T(8)
ATy where Ay < D7 via T'(10)
ATy where Ay < D7 via T'(12)
ATy where 4; < A1G5 via (1,6)
G911 where G9 < E7 is non-E7-cr

11. FURTHER MODULE DECOMPOSITIONS

Tables give the restrictions of certain H-modules to X for p = 5 or 7,
when X is of type A; and H is a certain semisimple subgroup of G containing X.
These modules have been used implicitly in Sections @H7 and in calculating the
given actions in Section The given structure has been calculated, and can be
verified, in the manner described in Section [l

TABLE 19. Alternating powers of certain A;-modules.
v N) N(V)

1@ 10 2 + 2l"] 1® 1)
2lrl & 18] 4lrl L olrl g 2lsl 1 4lrl & 1051 4 3ls] 1 2lr] & 18]

TABLE 20. Spin modules for D4 restricted to irreducible subgroups of type A;.

Vp,(\) $ X Vp,(As) L X Vb, (A1) 1 X

1Me1E 1l g1 1M g1l 418 1l 10 @ 1M 4+ 1) @ 114 (or vice
versa)

3l @ 1ls] 3 @ 1l 4171 4-205] (or vice versa)

4lrl 4 ols] 30l 108 3lrl @ 1ls]

6+0(p="7) 6+0 6+0
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TABLE 21. Spin modules for Dy restricted to various subgroups of type A;.

VDs ()‘1) 1X

VDs (>‘4) 1X

24207 4 26) 40
olrl  olsl 4 1[t]  1[v]
4l 1l @1 40

(1® 11 @ 1051)2
1M 168 @ 1M + 17 @ 105] & 1[4
3l @ 1051 4 3l & 11

4 4 47 3® 3l

61 42 (p=7) 6l & 105 - 1l5]
T(6) (p=5) T(7) +W(5)
T(8) (p=05) W(10) + 4

TABLE 22. Spin modules for Dg restricted to irreducible subgroups of type Aj;.

Ve (A1) 1+ X Ve (As) 1 X Vs (Xe) + X
1M1kl 418 Meiflgitl+1Me 10 g1l @ 1) 4+
1] 4 10 & 10w 1 @ 1w 108 11 @ 1M @ 1M g 1l 4+

2 + 201 4 2ls] 4 2lt]
2l @ 105! & 1]

2lrl & olsl o oli]

3l 1051 4 10 11wl

4lrl yolsl 11t g 114
sl @1l (p=7)
601+ 461 (p=7)

6" + 18 @ 11 40
(p=7)

1] 41l @ 114 @ 1[0]

(1® 1 1] @ 10t)2
4l @ 1ls] 4 3081 4 2l &
2l & 1ls]

3N @1kl @1 4+ 36l ®
1l & 1]

3@ 1l @118 44 @
1lul 4 9ls] i 11ul

g1kl 1l 4+ 30 @
105 & 11

T(8)" @ 1l) 4 3ls]

6l @ 3ls] 1 3ls]
6"l @ 165 -6l @ 114 4
1l & 118

18 @1l @10 4

108 & 114 & 11w

same

4l 1 3l ol g2alsl w1 [
(or vice versa)

same

3@ 1l @ 1l 4
4l @ 11 4 2ls) @ 11 (or
vice versa)

same

T(9)l" 4 5" @ 201 (or vice
versa)
same

same

TABLE 23. Spin modules for D7 restricted to various subgroups

of type A; when p=17.

VD7 (/\1) ~lr X

VD7 (/\6) ~lr X

2l 4 2lsl 4 11 @ 1[4 4
10 @ 1]

3l & 1[5 4 2lt] 4 9lu]
4l 41l @ 118 411 @
140

1Me1ll g1l g1l 4101 g1l @ 104 g 10w 4
1M o1l g1l g1l £ 1M g1l g 1[4 ¢ 1

M1kl g1l 44 g

1 1 L2l @10 & 104

@1l @1 + 3 @110 @ 1 4 30 @ 1181 @ 10 +

3l @ 10 & 104
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Alr) 4 ols] 4 olt] 4 olul 31 @ 16 @ 11 @ 1[)2
4l 44l 4 218 40 (3l @ 38l @ 1011)2

4l 4 36 @ 111 40 3" @ 3l @ 118 4 3" © 4[5 43I 2l

Al 1 4ls) 4110 g 11wl 30 @ 35) @ 101 1 30 & 30s] @ 114

6l 1 2lsl 1 108 & 114] 6" @1l g 1l +6[’“] Q1 @1l 4108 @10 L1l 114
6 + 6l 6 @6 4+6+6+0

T@8) (p=7) B+TAL)+T9)+T(7)+W(7)

T(10) (p=7) T(16) + W(14) + T(8) + 6

T(12) (p=7) W(21) +T(15) + T(9)

TABLE 24: Va7 = Vg, (A1) restricted to various subgroups of type A; when p =5, 7.

X Var | X

X < A1 As via (115 )( =7) 107 @ 561+ 7(8)6 + 0

X < A1 A5 via (1“1 ® 1Mt 10 @ 208l @ 118 1 4ls] 4 9ls] @ 2t 4
X < AyGy via (217 6[81)( =1 alrl 4 olrl @ 6lsl + 0

X < A3 via (2,207, 2¢]) 2% 2l 42 2lsl 4 2l g 2ls]

TABLE 25. Vsg = Vg, (A7) restricted to various subgroups of type A; when p = 7.

X Vse 4 X

X < A1 Dg Vse L A1Dg = (1, A1) + (0, Ae)

X < A1 A via (1[’“1 160 61" @ 3l + 4l @ 1[s) 4 2" 5l

X < A1Gy via (11 [sl) 3 @ 6l 4 1M @ T(10) L

X < G4Cs via (6[T] 5 ) 6l @ 5151 - T(9)ll

X < GoC3 via (607218 @ 11t]) 61" @ 201 @ 11 4 4[] @ 1[t) 4 30
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