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COMPLETE REDUCIBILITY IN GOOD CHARACTERISTIC

ALASTAIR J. LITTERICK AND ADAM R. THOMAS

Abstract. Let G be a simple algebraic group of exceptional type, over an
algebraically closed field of characteristic p ≥ 0. A closed subgroup H of G is
called G-completely reducible (G-cr) if whenever H is contained in a parabolic
subgroup P of G, it is contained in a Levi subgroup of P . In this paper we
determine the G-conjugacy classes of non-G-cr simple connected subgroups of
G when p is good for G. For each such subgroup X, we determine the action
of X on the adjoint module L(G) and the connected centraliser of X in G. As
a consequence we classify all non-G-cr connected reductive subgroups of G,
and determine their connected centralisers. We also classify the subgroups of
G which are maximal among connected reductive subgroups, but not maximal
among all connected subgroups.
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1. Introduction

Let G be a connected reductive algebraic group defined over an algebraically
closed field K. Following Serre [28], a closed subgroup X of G is said to be G-
completely reducible (G-cr) if whenever X is contained in a parabolic subgroup
P of G, it is contained in a Levi subgroup of P . If G = GL(V ), a subgroup
X is G-cr if and only if V is a completely reducible KX-module, and thus G-
complete reducibility is a generalisation of the standard notion in representation
theory. Similarly, X is called G-irreducible if X is not contained in any proper
parabolic subgroup of G, and G-indecomposable ifX lies in no proper Levi subgroup
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of G. The G-cr subgroups of G are precisely the L-irreducible subgroups of L, where
L ranges over the Levi subgroups of G [3, Corollary 3.5]; the case L = G yields the
G-irreducible subgroups.

By a theorem of Borel and Tits [6, Théorème 2.5], a G-cr subgroup is necessarily
reductive. The converse is true provided that the characteristic of K is zero or large
relative to the root system of G (cf. [15,18,24] and [30, Theorem 4.4]); thus non-G-
cr reductive subgroups are inherently a low positive characteristic phenomenon. In
this paper we consider a weak restriction on the characteristic. Recall that Char(K)
is called bad for G if it is prime and divides some coefficient when the highest root in
the root system of G is expressed as a sum of simple roots, and good for G otherwise.
A number of useful subgroup structure results hold precisely when p = Char(K) is
good for G. For instance, a result of Bate, Martin, and Röhrle (Lemma 3.2) states
that if p is good for G, then a closed subgroup of a subsystem subgroup H is G-cr
if and only if it is H-cr. Good characteristic is therefore a natural first scenario to
consider when studying non-G-cr subgroups.

Now let G be simple. When G has classical type, understanding reductive sub-
groups of G amounts to understanding the finite-dimensional representation theory
of reductive groups. In this paper we consider G of exceptional type, where much
more explicit results can be expected. The bad primes here are 2 and 3 for all
exceptional types, as well as 5 for E8. A result of Liebeck and Seitz [18, Theorem
1] states that if p > 7, then every closed connected reductive subgroup of G is G-cr.
In fact, if G is of type G2 or F4, then p > 3 suffices, and hence for these types all
connected reductive subgroups are G-completely reducible in good characteristic.
This fails for G of type E6, E7, or E8. Indeed, it is shown in [33, Corollary 2] that
if p is good for G, then there exists a non-G-cr simple subgroup X of G if and only
if either X is of type A1 with p = 5 or 7, or X is of type G2 with p = 7 and G = E7

or E8. In this paper we classify all non-G-cr simple subgroups in these cases. The
results are the following. The tables referenced in the statements can be found in
Section 10 on page 5332.

Theorem 1. Let G be a simple algebraic group of type E6 in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then p = 5, X is of type A1,
and X is Aut(G)-conjugate to exactly one subgroup listed in Table 11, all of which
are non-G-cr.

Theorem 2. Let G be a simple algebraic group of type E7 in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then either p = 5, X is of type
A1, and X is conjugate to exactly one subgroup listed in Table 12; or p = 7, X is
of type A1 or G2, and X is conjugate to exactly one subgroup listed in Table 13 or
14. The subgroups in these tables are all non-G-cr.

Theorem 3. Let G be a simple algebraic group of type E8 in good characteristic
p, and let X be a non-G-cr simple subgroup of G. Then p = 7, X is of type A1

or G2, and X is conjugate to exactly one subgroup listed in Table 15 or 16, all of
which are non-G-cr.

The tables in Section 10 contain additional information on the non-G-cr simple
subgroups in question. For each such subgroup X, we determine the X-module
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structure of the adjoint module L(G) and of a non-trivial module of least dimension
when G = E6 or E7. We also determine the connected centraliser of each non-G-cr
simple subgroup, which allows us to extend our results to a classification of all
non-G-cr connected reductive subgroups of G. In the subsequent corollaries, we
are therefore able to make a number of observations concerning general reductive
subgroups of G.

Theorem 4. Let G be an exceptional simple algebraic group in good characteristic,
and let X be a non-G-cr connected reductive subgroup of G. Then one of the
following holds:

(i) X is simple,
(ii) X is Aut(G)-conjugate to a semisimple subgroup in Table 17,
(iii) Z(X)◦ �= 1 and X is Aut(G)-conjugate to a subgroup in Table 18.
Each subgroup X in Tables 17 and 18 denotes a unique Aut(G)-conjugacy class

unless stated otherwise, and all such subgroups are non-G-cr.

The proof of Theorems 1–3 generalises the strategy developed in [35], which
classifies non-G-cr connected reductive subgroups when G has type F4 with p = 2
or 3. An outline is as follows. For each proper parabolic subgroup P of G, with
unipotent radical Q and Levi factor L, we find all L-irreducible simple subgroups of
typeA1 orG2. This uses standard representation theory when L has classical simple
factors, and results of the second author [36, 37] when L has exceptional simple
factors. For each such L-irreducible subgroup X, we then study the cohomology
set H1(X,Q), which parametrises the Q-conjugacy classes of complements to Q
in QX. This is the most technical part, and is discussed in detail in Section 3.
In each case, we either describe H1(X,Q) explicitly, or we determine sufficient
information to limit the number of conjugacy classes of subgroups of P which are
isomorphic toX and not conjugate to a subgroup of L. Finally we construct explicit
representatives of each class of subgroups, for instance through known embeddings
into a proper reductive subgroup as in Corollary 6 below.

We note that the techniques described in Section 3 relating to H1(X,Q) are
equally valid in bad characteristic. In addition, we still have explicit descriptions of
the simple L-irreducible subgroups of each Levi subgroup L in this case. However,
results along the lines of Lemma 3.2, which are intrinsic in our construction of
non-G-cr subgroups, can fail in bad characteristic. Thus extending Theorems 1–4
to bad characteristic presents considerable technical difficulties which do not arise
here; we intend to explore this in future work.

We now present a series of consequences of Theorems 1–4. We begin with an
observation on how simple subgroups of G act on certain G-modules of small di-
mension. Recall that a module for a reductive algebraic group is called tilting if
it has a filtration by Weyl modules and a filtration by dual Weyl modules. As de-
fined in Section 2, the notation V [e] denotes a twist of the module V by a pe-power
Frobenius morphism. Our first corollary extends Theorems 3 and 4 of [19], which
treat the case where X is G-cr.

Corollary 5. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a simple subgroup of G. Then L(G) ↓ X is a direct sum of modules

of the form V
[r1]
1 ⊗ · · · ⊗ V

[rk]
k , and exactly one of the following holds.
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(i) Each Vi is a Weyl module, a dual Weyl module, or a tilting module.
(ii) p = 7 and X = G2 is a maximal subgroup of G = F4.
(iii) p = 7 and X = G2 is a non-G-cr subgroup of G = E8 contained in a

maximal subgroup G2F4 (see Theorem 3).

The subgroups in (ii) and (iii) are genuine exceptions, unique up to conjugacy
in G, and both are listed in [19, Theorem 4], although the subgroup in (iii) was not
shown to be non-G-cr at that time.

Remark 1.1. In [19, Theorem 4], the tensor factors in the direct summands of
L(G) ↓ X arise from a factorisation X → X ×X × · · · ×X → G of the inclusion
of X into G. Inspecting the first and second columns of Tables 11–16 shows that
in good characteristic, the same holds for non-G-cr subgroups X; if L(G) ↓ X has

a summand which is a tensor product V
[r]
1 ⊗ V

[s]
2 , then X = A1 lies in a subgroup

A1A1 of G, such that Vi is a Weyl module, dual Weyl module, or tilting module
for the i-th factor of this subgroup.

Remark 1.2. Inspection of Tables 11–14 also shows that if G = E6 or E7 and X is
non-G-cr, then VG(λ1) ↓ X (resp., VG(λ7) ↓ X) also satisfies part (i) of the above
corollary.

Next, we consider overgroups of the non-G-cr subgroups arising. In the following,
a subsystem subgroup of G is a semisimple subgroup which is normalised by a
maximal torus of G.

Corollary 6. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a non-G-cr connected reductive subgroup of G. Then exactly one
of the following holds:

(i) The semisimple subgroup X ′ is properly contained in a proper subsystem
subgroup of G.

(ii) p = 7 and X = A1 lies in a maximal subgroup A1G2 of G = E7.
(iii) p = 7 and X = G2 is maximal among proper connected reductive subgroups

of G = E7.
(iv) p = 7 and X = G2 lies in a maximal subgroup G2F4 of G = E8.

Therefore a connected subgroup of G which is maximal among connected reductive
subgroups, is either a maximal connected subgroup of G, a Levi factor of a maximal
parabolic subgroup of G, or is conjugate to the group X in (iii).

The subgroups X in (ii), (iii), and (iv) are each unique up to conjugacy in G,
and their embeddings are described in Tables 13, 14, and 16, respectively.

Our next result describes certain chains X ≤ M < G where X and M are
reductive and X is G-indecomposable and M -irreducible but not G-irreducible.
This contrasts with Lemma 3.2, which tells us that M cannot be a subsystem
subgroup of G. The notation for embeddings in Table 1 is defined in Section 2.
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Corollary 7. Let G be an exceptional simple algebraic group in good characteristic
p. Let X ≤ M be connected subgroups of G such that M is maximal among proper
connected reductive subgroups of G, and X is M -irr and non-G-cr. Then G, p,
X, and M appear in Table 1, and all such chains X ≤ M < G satisfy the given
hypotheses.

Table 1. Chains X ≤ M < G where X is non-G-cr.

G p M X Embedding of X
in M

E6 5 A2 (2 classes) A1 ↪→ Ā1A5 via (1,W (5)) (resp.,
(1,W (5)∗))

via 2

E7 5 A1A1 A1 ↪→ A2A5 via (2,W (5)) via (1, 1)

5 A2 A1 < A7 via W (7) via 2

E7 7 non-G-cr G2 X = M = G2 –

7 A2; non-G-cr
G2

A1 < A7 via W (7) via 2; via 6

7 A1G2; G2C3 A1 ↪→ A1G2 via (1, 6) via (1, 6); via (6, 5)

E8 7 B2 A1 < A8 via W (8) via 4

7 G2F4 G2 ↪→ G2G2 max G2F4 via (10, 10) –

Recall from [19] that a simple subgroup X of an exceptional simple algebraic
group G is called restricted if either X = A1 and each high weight of a composition
factor of L(G) ↓ X is at most 2p − 2, or X �= A1 and whenever a high weight of
a composition factor of L(G) ↓ X is expressed as a sum of fundamental dominant
weights, each coefficient is at most p − 1. A semisimple subgroup is then called
restricted if each of its simple factors is restricted. Our next corollary complements
Theorem 1.1 of [27], which tells us that a restricted subgroup of type A1 (called a
“good A1” there) is G-completely reducible.

Corollary 8. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a restricted semisimple subgroup of G. Then either X is G-cr,
or p = 7 and X has type G2 or A1G2. In the latter cases, every such non-G-cr
subgroup X is restricted.

The connected centraliser of a G-cr subgroup is reductive [3, Lemma 3.12], and it
follows that a G-cr subgroup has trivial connected centraliser if and only if it is G-
irreducible. Theorems 1–4 allow us to classify those connected reductive subgroups
of G that have trivial connected centraliser but are not G-irreducible.

Corollary 9. Let G be an exceptional simple algebraic group in good characteristic
p, and let X be a semisimple subgroup of G. Then CG(X)◦ = 1 if and only if X is
either G-irreducible or conjugate to one of the non-G-cr subgroups in Table 2.
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Table 2. Non-G-cr semisimple X with CG(X)◦ = 1.

G p Non-G-cr subgroup

E6 5 A1 ↪→ Ā1A5 via (1[r],W (5)[s]) or (1[r], (W (5)∗)[s]) (rs = 0)

5 Ā1A1 < Ā1A5 where A1 < A5 via W (5) or W (5)∗

E7 5 A1 ↪→ A2A5 via (2[r],W (5)[s]) (rs = 0)

5 A1A1 < A2A5 where A1 < A2 via 2 and A1 < A5 via W (5)

5 A2A1 < A2A5 where A1 < A5 via W (5)

7 A1 ↪→ A1G2 via (1, 6)

E8 7 A1 < A8 via W (8)

7 A1 ↪→ Ā1A1G2 < Ā1E7 via (1[r], 1[s], 6[s]) (r �= s; rs = 0)

7 Ā1G2 < Ā1E7 where G2 < E7 is non-E7-cr (see Theorem 2)

7 G2 ↪→ G2G2 < G2F4 via (10, 10)

Remark 1.3. Theorems 1–4 in fact classify all non-G-cr connected subgroups in
good characteristic with reductive centraliser. In particular, in good characteristic
every connected reductive subgroup of G = E6 has a reductive centraliser, but this
is not true for G = E7 and E8.

Remark 1.4. For a reductive subgroup X of G, let S be a maximal torus of CG(X)
and let H = CG(S). Then H is minimal among Levi subgroups of G containing X
(possibly H = G). We observe that for each non-G-cr subgroup X appearing in
Theorems 1–4, the reductive subgroup CG(H

′) is a complement to the unipotent
radical of CG(X)◦. We are not aware of a general reason for this phenomenon.
Note that S is also a maximal torus of CG(H

′), hence CG(X)◦/Ru(CG(X)◦) and
CG(H

′) necessarily have the same rank.

Remark 1.5. In the corresponding scenario with G of classical type, we do not
expect to be able to classify non-G-cr subgroups X with CG(X)◦ = 1. For instance,
if V is a non-trivial irreducible X-module with H1(X,V ) �= 0, then X occurs as
a non-G-cr subgroup in a maximal parabolic subgroup of G = SL(V ⊕ K). The
corresponding unipotent radical is isomorphic to V as an algebraic X-group, hence
CG(X)◦ contains no unipotent elements, and is therefore a torus. Since X does not
lie in a proper Levi subgroup of G, it cannot centralise a non-trivial torus, and so
CG(X)◦ = 1.

Lastly, we make an observation on the number of G-conjugacy classes of semisim-
ple subgroups. In principle, if P is a parabolic subgroup of G with Levi decom-
position P = QL, and X ≤ L is an L-irreducible reductive subgroup, then the
conjugacy classes of complements to Q in QX can depend on the cardinality of the
underlying algebraically closed field K. For instance if dimH1(X,V ) = n ≥ 2 for
some irreducible X-module V , then X occurs as a subgroup of SL(V ⊕ K) with
image in a maximal parabolic subgroup P = QL, where L ∼= GL(V ) and Q ∼= V as
algebraic X-groups. The quotient of H1(X,Q) by the action of Z(L) is a projective
variety over K of dimension n− 1, parametrising conjugacy classes of complements
to Q in QX. We observe that this phenomenon does not occur for exceptional
groups in good characteristic.
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Corollary 10. Let G be an exceptional simple algebraic group in good characteristic
p, let P be a parabolic subgroup of G with Levi decomposition P = QL, and let
X ≤ L be an L-irreducible simple subgroup. Then complements to Q in QX fall
into finitely many G-conjugacy classes of subgroups.

As a consequence of [22, Theorem 3], every Levi subgroup L of G has either
finitely many L-irreducible simple subgroups of a given isomorphism type, up to L-
conjugacy, or a countably infinite number, depending on a choice of a finite number
of field twists. The following is thus immediate from Corollary 10.

Corollary 11. Let G be an exceptional simple algebraic group, over an algebraically
closed field K of characteristic p which is good for G. Then G has countably many
conjugacy classes of connected reductive subgroups.

In particular, the classes of non-G-cr simple subgroups occurring are as follows:
Countably infinitely many classes of subgroups A1 when (G, p) = (E6, 5), (E7, 5),
or (E8, 7); two classes of subgroups A1 and one class of subgroups G2 when (G, p) =
(E7, 7); and two classes of subgroups G2 when (G, p) = (E8, 7).

Note that the corresponding result does not hold for exceptional groups in bad
characteristic, for instance if K has characteristic 2 or 3, then by [35, Theorem
1(B)] the group F4(K) has a series of pairwise non-conjugate non-G-cr subgroups
of type A1, parametrised by closed points of a positive-dimensional variety over K.

2. Notation

Throughout, G denotes a simple algebraic group over an algebraically closed
field K of characteristic p > 0, where p is good for G. Subgroups of G are taken
to be closed, and homomorphisms are taken to be morphisms of varieties. For us,
“simple” and “semisimple” subgroups ofG will always refer to connected subgroups.
In addition, conjugation will always be a left action.

Let Φ be a set of roots of G, with respect to a fixed maximal torus T ≤ G.
Let Π = {α1, . . . , αl} be a base of simple roots corresponding to a choice of Borel
subgroup containing T , and let W (G) = NG(T )/T be the Weyl group of G. Let
{λ1, . . . , λl} be the set of fundamental dominant weight of G. We use the Bour-
baki ordering on nodes of the Dynkin diagram; cf. [8, Ch. VI, Planches I-IX]. We
sometimes use a1a2 . . . al to denote either a root a1α1 + a2α2 + ldots + alαl or a
dominant weight a1λ1 + a2λ2 + · · ·+ alλl; context will prevent ambiguity.

For a root α, we make the following definitions. The Weyl group W (G) acts
on the left on ZΦ ⊗ R, and we let sα denote the reflection in the hyperplane
perpendicular to α. We let Uα = {xα(t) : t ∈ K} denote the T -root subgroup of G
corresponding to α, and for t ∈ K∗ we let nα(t) = xα(t)x−α(−t−1)xα(t) ∈ NG(T ),
so that nα(t) maps to sα ∈ W (G) under NG(T ) → W (G) (cf. [9, §6.4]). We set
nα = nα(1). Furthermore we let hα(t) = nα(t)nα(−1) ∈ T . If α = αi is a simple
root, we set si = sαi

, and similarly ni = nαi
and hi(t) = hαi

(t).
For a dominant weight λ, we denote by VG(λ) (or just λ) the irreducible G-

module of highest weight λ. Similarly, the Weyl module of highest weight λ is
denoted W (λ) = WG(λ), and the tilting module of highest weight λ is denoted by
T (λ). The dual of a G-module V is V ∗ = HomK(V,K). If Y = Y1Y2 . . . Yk is a com-
muting product of simple algebraic groups, then (V1, . . . , Vk) denotes the Y -module
V1 ⊗ · · · ⊗ Vk where Vi is a Yi-module for each i. Let F : G → G be the Frobenius
endomorphism of G which acts by sending the root element xα(c) to xα(c

p), and
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let V be a G-module afforded by a representation ρ : G → GL(V ). Then V [r] de-

notes the module afforded by the representation ρ[r]
def
= ρ ◦ F r. Let M1, . . . ,Mk be

X-modules and m1, . . . ,mk be positive integers. Then Mm1
1 / . . . /Mmk

k denotes an
X-module having the same composition factors as Mm1

1 ⊕· · ·⊕Mmk

k . Furthermore,
V = M1| . . . |Mk denotes an X-module with a series V = V1 > V2 > . . . > Vk+1 = 0
of submodules such that soc(V/Vi+1) = Vi/Vi+1

∼= Mi for 1 ≤ i ≤ k. Finally,
we let L(G) denote the adjoint module for G, which is always irreducible for G of
exceptional type when p is good for G. For G of type E6 we set V27 = VG(λ1), and
for G of type E7 we set V56 = VG(λ7).

The notation Ā1 denotes a subgroup A1 of G which is generated by long root
subgroups; we use this to help keep track of simple factors in semisimple groups.
If the root system of G contains short roots, then Ã1 and Ã2 are used to denote
subgroups generated by short root subgroups.

Let J = {αj1 , αj2 , . . . , αjr} ⊆ Π and define ΦJ = Φ ∩ ZJ . Then the standard
parabolic subgroup corresponding to J is P = Pj1j2...jr = 〈T, Uα : α ∈ ΦJ ∪ Φ+〉.
The Levi decomposition of P is P = QL where Q = Qj1j2...jr = Ru(P ) =
〈Uα : α ∈ Φ+ \ ΦJ〉, and L = Lj1j2...jr = 〈T, Uα : α ∈ ΦJ 〉 is the standard Levi
complement. If the semisimple subgroup L′ has Lie type X, for brevity we refer
to P as an “X-parabolic subgroup of G”, so for instance the parabolic subgroup of
G = E6 corresponding to the roots {α2, α3, α4, α5} is a D4-parabolic subgroup.

For a standard Levi subgroup L, we use the following notation. If L0 is a
simple component of L, then the simple roots for L0 are a subset of Π, say Ψ =
{α′

1, . . . , α
′
m}. Order Π according to αi < αj if i < j. If L0 has Lie type Am, the

embedding is chosen such that α′
1 is the least simple root of G contained in Ψ. If L0

has type E6 or E7, then α′
i = αi for all i. If L0 has type D4, then (α′

1, α
′
2, α

′
3, α

′
4) =

(α2, α4, α3, α5). If L0 has type D5, then (α′
1, α

′
2, α

′
3, α

′
4, α

′
5) = (α1, α3, α4, α5, α2)

or (α6, α5, α4, α3, α2). If L0 has type D6, then

(α′
1, α

′
2, α

′
3, α

′
4, α

′
5, α

′
6) = (α7, α6, α5, α4, α3, α2).

Finally, if L has multiple components of the same type, then these components are
ordered according to the position of their least simple root “α′

1” as an element of
Π. For instance, if G = E7 and L = L12567 is a Levi subgroup of type A1A1A3,
then the first A1 factor corresponds to α1, and the second to α2.

For i ≥ 1 we define the subgroups

Q(i) =

〈
Uγ : γ =

∑
α∈Π

cαα,
∑

α∈Π\J
cα ≥ i

〉
.

The i-th level of Q is Vi
def
= Q(i)/Q(i + 1), which is central in Q/Q(i + 1). By

[2, Theorem 2] each level of Q has the structure of a completely reducible L-module.
The level of a root γ =

∑
α∈Π cαα is the sum

∑
α∈Π\J cα, and the height of γ is∑

α∈Π cα.
When G has type E7 or E8, we will need to distinguish between certain iso-

morphic subsystem subgroups of G. In E7 there are two conjugacy classes of Levi
subgroups of type A5, with representatives A5 = L24567 and A′

5 = L34567, where
our notation follows that of [18, Table 8.2]. These subgroups have connected cen-
tralisers CG(A5)

◦ = A2 and CG(A
′
5)

◦ = A1T1 where T1 is a 1-dimensional torus.
Furthermore A′

5 is contained in a subgroup E6 whereas A5 is not. In E8 there
are two conjugacy classes of subgroups A7, with representatives the Levi subgroup
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L1345678, which we denote by A7, and a subgroup A′
7 which is a subsystem subgroup

of a Levi subgroup E7. Then CG(A7)
◦ is a 1-dimensional torus, and CG(A

′
7)

◦ = A1.
Next, suppose that G is of classical type or of type G2, and that X has type

A1 or G2. Then the notation “X < G via M” denotes an embedding X → G
such that VG(λ1) ↓ X ∼= M . Since p �= 2 throughout, this determines the image
of X up to G-conjugacy, unless G has type Dn, in which case there are potentially
two G-conjugacy classes with this action and we use this notation to refer to both
simultaneously, specifying additional information when appropriate.

Now let Y = H1H2 . . . Hk be a commuting product of simple subgroups Hi

all having the same type, A1 or G2. Then the simply-connected cover of Y is
Ŷ ∼= H × H · · · × H (k terms), where H is simply-connected of type A1 or G2.

We have a natural isogeny Ŷ → Y , and a diagonal subgroup of Y is the image in
Y of a subgroup of the form {(φ1(h), . . . , φk(h)) : h ∈ H}, where each φi is an
endomorphism of H. By [31, Chapter 12], an endomorphism of H is a product of
an inner, graph and field morphism. Since A1 and G2 have no non-trivial graph
automorphisms, to specify a diagonal subgroup of Y up to Y -conjugacy it suffices
to specify non-negative integers r1, . . . , rk, and we then take φi = F ri for each i. A

diagonal subgroup X of Y is thus denoted by “X ↪→ Y via (λ
[r1]
1 , λ

[r2]
1 , . . . , λ

[rk]
1 )”.

Taking this further, let X have type A1 or G2, and let Y = H1H2 . . . Hk (k > 1)
be semisimple, where each simple factorHi is classical or of typeG2. Then “X ↪→ Y

via (M
[r1]
1 , . . . ,M

[rk]
k )” denotes a diagonal subgroup of X1 . . . Xk, with field twists

r1, . . . , rk, where each Xi has the same type as X, and Xi < Hi via Mi.
When discussing the centraliser of a subgroup X of G, we will use the notation Ui

to denote an i-dimensional unipotent group, and Tj to denote a j-dimensional torus.
For instance CG(X)◦ = U5T1 means that CG(X)◦ has a 5-dimensional unipotent
radical, with corresponding quotient a 1-dimensional torus.

3. Preliminary results

3.1. Exhibiting non-G-cr subgroups. In this section we present preliminary
results required for the proofs of Theorems 1–3 and their corollaries. The first of
these limits the isomorphism types of non-G-cr simple subgroups occurring.

Lemma 3.1. Let G be an exceptional algebraic group in good characteristic p, and
suppose G has a non-G-cr simple subgroup of type X. Then (G,X, p) is one of
(E6, A1, 5), (E7, A1, 5 or 7), (E7, G2, 7), or (E8, A1 or G2, 7).

Proof. This follows immediately from [18, Theorem 1] and [33, Theorem 1], the
latter result ruling out the possibility (E7, A2, 5). �

Recall that our basic strategy for finding non-G-cr subgroups of G is to iterate
through the parabolic subgroups P = QL of G, letting X be an L-irreducible
subgroup A1 or G2 of L, and then studying complements to Q in the semidirect
product QX. We derive an upper bound for the number of such complements
(up to G-conjugacy), and it then remains to exhibit an explicit representative of
each conjugacy class of subgroups. The next result allows us to quickly find such
representatives.

Recall that a simple group H of classical type is related by isogenies to a
special linear, orthogonal, or symplectic group, say Cl(V ). For p �= 2, a sub-
group X of Cl(V ) is Cl(V )-cr if and only if V is a completely reducible X-module
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(cf. Lemma 3.4 below). Since complete reducibility is well behaved with respect to
isogenies [3, Lemma 2.12], a subgroup of a simple algebraic group H of classical
type is H-completely reducible if and only if the corresponding subgroup of Cl(V )
acts completely reducibly on V . We now appeal to the following.

Lemma 3.2 ([3, Theorem 3.26]). Let G be a simple algebraic group in good char-
acteristic and let M be a subsystem subgroup of G. Then a subgroup H of M is
G-cr if and only if it is M -cr.

Thus a non-completely reducible X-module V gives rise to an embedding of X
into a classical group H with non-H-cr image. If H is a subsystem subgroup of G
this then gives rise to a non-G-cr subgroup of G.

In employing Lemma 3.2, we will often refer to maximal connected subgroups of
G, that is, subgroups which are maximal among connected subgroups of G. The
following result determines all reductive such subgroups up to G-conjugacy.

Lemma 3.3 ([20, Corollary 2]). Let G be a simple exceptional algebraic group in
characteristic p = 5 or 7. Let M be a reductive, maximal connected subgroup of G.
Then M is G-conjugate to a subgroup in Table 3, where each isomorphism type X
denotes a unique G-conjugacy class of subgroups.

Table 3.

G X

G2 A2, A1Ã1, A1 (p = 7)

F4 B4, A1C3, A1G2, A2Ã2, G2 (p = 7)

E6 A1A5, A
3
2, F4, C4, A2G2, G2 (p = 5, two classes), A2 (two classes)

E7 A1D6, A7, A2A5, G2C3, A1F4, A1G2, A1A1, A2

E8 D8, A8, A1E7, A2E6, A
2
4, G2F4, B2, A1A2

For L a Levi subgroup of an exceptional algebraic group, the following results
yield all L-irreducible subgroups of type A1 or G2.

Lemma 3.4 ([22, Lemma 2.2]). Let G = Cl(V ) be a classical simple algebraic
group in characteristic p �= 2, and let X be a G-irreducible semisimple subgroup of
G. Then one of the following holds:

(i) G = An and X is irreducible on V .
(ii) G = Bn, Cn or Dn and V ↓ X = V1 ⊥ . . . ⊥ Vk with the Vi all non-

degenerate, irreducible, and inequivalent as X-modules.

Lemma 3.5. Let p > 2 and let X be simple of type A1. Let V = VX(n) be a
restricted irreducible X-module (so n < p). Then X preserves a non-degenerate
symplectic form on V if n is odd, and X preserves a non-degenerate orthogonal
form on V if n is even.

Proposition 3.6. Let L0 be a simple factor of a proper Levi subgroup of G = E6 or
E7 with p = 5, or of G = E7 or E8 with p = 7. Table 4 lists all simple L0-irreducible
subgroups X of type A1, up to L0-conjugacy.
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Table 4. L0-irreducible subgroups of type A1.

L0 p Embedding of X of type A1

A1 5, 7 X = L0

A2 5, 7 VA2(λ1) ↓ X = 2

A3 5, 7 VA3(λ1) ↓ X = 3

5, 7 VA3(λ1) ↓ X = 1⊗ 1[r] (r > 0)

A4 5, 7 VA4(λ1) ↓ X = 4

A5 7 VA5(λ1) ↓ X = 5

5, 7 VA5(λ1) ↓ X = 2[r] ⊗ 1[s] (r �= s; rs = 0)

A6 7 VA6(λ1) ↓ X = 6

D4 7 VD4(λ1) ↓ X = 6 + 0

5, 7 VD4(λ1) ↓ X = 4[r] + 2[s] (rs = 0)

5, 7 VD4(λ1) ↓ X = 3[r] ⊗ 1[s] (r �= s; rs = 0) (two classes)

5, 7 VD4(λ1) ↓ X = 2[r] + 1[s] ⊗ 1[t] + 0 (s < t; rst = 0)

5, 7 VD4(λ1) ↓ X = 1⊗ 1[r] + 1[s] ⊗ 1[t] (r �= 0; s �= t; {s, t} �= {0, r})
D5 7 VD5(λ1) ↓ X = 6[r] + 2[s] (rs = 0)

5, 7 VD5(λ1) ↓ X = 4 + 4[r] (r > 0)

5, 7 VD5(λ1) ↓ X = 4[r] + 1[s] ⊗ 1[t] + 0 (s < t; rs = 0)

5, 7 VD5(λ1) ↓ X = 2[r] + 2[s] + 1[t] ⊗ 1[u] (r < s; t �= u; rtu = 0)

5, 7 VD5(λ1) ↓ X = 2 + 2[r] + 2[s] + 0 (0 < r < s)

D6 7 VD6(λ1) ↓ X = 5[r] ⊗ 1[s] (r �= s; rs = 0) (two classes)

7 VD6(λ1) ↓ X = 6[r] + 4[s] (rs = 0)

7 VD6(λ1) ↓ X = 6[r] + 1[s] ⊗ 1[t] + 0 (s < t; rs = 0)

5, 7 VD6(λ1) ↓ X = 2[r] ⊗ 1[s] ⊗ 1[t] (r, s, t distinct; s < t; rst = 0) (two classes)

5, 7 VD6(λ1) ↓ X = 2[r] ⊗ 2[s] + 2[t] (r < s; rt = 0)

5, 7 VD6(λ1) ↓ X = 4[r] + 2[s] + 1[t] ⊗ 1[u] (t < u; rst = 0)

5, 7 VD6(λ1) ↓ X = 3[r] ⊗ 1[s] + 1[t] ⊗ 1[u] (r �= s; t �= u; rstu = 0)

5, 7 VD6(λ1) ↓ X = 4[r] + 2[s] + 2[t] + 0 (s < t; rs = 0)

5, 7 VD6(λ1) ↓ X = 3[r] ⊗ 1[s] + 2[t] + 0 (r �= s; rst = 0)

5, 7 VD6(λ1) ↓ X = 2 + 2[r] + 2[s] + 2[t] (0 < r < s < t)

5, 7 VD6(λ1) ↓ X = 2[r] + 1[s] ⊗ 1[t] + 1[u] ⊗ 1[v] + 0

(s < t;u < v; s ≤ u; if s = u, then t < v; rs = 0)

5, 7 VD6(λ1) ↓ X = 1⊗ 1[r] + 1[s] ⊗ 1[t] + 1[u] ⊗ 1[v]

(r �= 0; s �= t, u �= v; s ≤ min{t, u, v}; {0, r}, {s, t}, {u, v} pairwise
distinct.)

D7 7 VD7(λ1) ↓ X = 6 + 6[r] (r > 0)

7 VD7(λ1) ↓ X = 6[r] + 2[s] + 2[t] + 0 (s < t; rs = 0)

7 VD7(λ1) ↓ X = 6[r] + 2[s] + 1[t] ⊗ 1[u] (t < u; rst = 0)

7 VD7(λ1) ↓ X = 4[r] + 4[s] + 1[t] ⊗ 1[u] (r < s; t < u; rt = 0)

7 VD7(λ1) ↓ X = 4[r] + 4[s] + 2[t] + 0 (r < s; rt = 0)

7 VD7(λ1) ↓ X = 4[r] + 3[s] ⊗ 1[t] + 0 (s �= t; rst = 0)

7 VD7(λ1) ↓ X = 4[r] + 2[s] + 2[t] + 2[u] (s < t < u; rs = 0)

7 VD7(λ1) ↓ X = 3[r] ⊗ 1[s] + 2[t] + 2[u] (r �= s; t < u; rst = 0)



5290 ALASTAIR J. LITTERICK AND ADAM R. THOMAS

7 VD7(λ1) ↓ X = 4[r] + 1[s] ⊗ 1[t] + 1[u] ⊗ 1[v] + 0

(s < t; u < v; s ≤ u; if s = u, then t < v; rsu = 0)

7 VD7(λ1) ↓ X = 2[r] + 2[s] + 2[t] + 1[u] ⊗ 1[v] + 0 (r < s < t; u < v; ru = 0)

7 VD7(λ1) ↓ X = 2[r] + 2[s] + 1[t] ⊗ 1[u] + 1[v] ⊗ 1[w]

(r < s; t < u; v < w; t ≤ v; if t = v, then u < w; rtv = 0)

E6 7 X ↪→ Ā1A5 via (1[r], 5[s]) (rs = 0)

7 X ↪→ A2G2 via (2[r], 6[s]) (r �= s; rs = 0)

5, 7 X ↪→ Ā1A5 via (1[r], 2[s] ⊗ 1[t]) (s �= t; rst = 0)

5, 7 X ↪→ A3
2 via (2, 2[r], 2[s]) (0 < r < s)

E7 7 X < Ā1D6 see [37, Theorem 4] for explicit classes

7 X < A1A1 via (1[r], 1[s]) (r �= s; rs = 0)

7 X < A1G2 via (1[r], 6[s]) (r �= s; rs = 0)

7 X < G2C3 via (6[r], 5[s]) (r �= s; rs = 0)

7 X < G2C3 via (6[r], 2[s] ⊗ 1[t]) (s /∈ {r, t}; rst = 0)

Proof. For L0 = E6 and E7, this follows from [37, Theorems 3 and 4]. For L0

of type An, this follows from Lemmas 3.4 and 3.5. For L0 of type Dn, Lemmas
3.4 and 3.5 imply that the given subgroups of type A1 are distinct and unique up
to conjugacy as a subgroup of GO2n(K) = SO2n(K)〈τ 〉, where τ induces a graph
automorphism on SO2n(K). It remains to determine whether such a conjugacy class
of subgroups splits into two classes of subgroups of SO2n(K). This is equivalent to
determining whether NGO2n(K)(X) ≤ SO2n(K). Since X = A1 has no non-trivial
outer algebraic automorphisms, there are precisely two possibilities: Either X lies
in the centraliser of some element of GO2n(K) \ SO2n(K), which by [14, Table
4.3.1] is the stabiliser BkBn−k−1 (n/2 ≤ k ≤ n− 1) of a direct-sum decomposition
of the natural orthogonal module; or X is irreducible on the natural module, and
is not normalised by any element in GO2n(K) \ SO2n(K), and so gives rise to two
classes of subgroups in SO2n(K) by the orbit-stabiliser theorem. �

Proposition 3.7. Let L0 be a simple factor of a proper Levi subgroup of G = E7

or E8 with p = 7. Table 5 lists all simple L0-irreducible subgroups X of type G2,
up to L0-conjugacy.

Table 5. L0-irreducible subgroups of type G2.

L0 Embedding of X of type G2

A6 X < A6 via 10

D4 X < D4 via 10 + 00

D7 X < D7 via 01 (two classes)

E6 V27 ↓ X = 20 + 00, X maximal in F4

Proof. For L0 exceptional, the result follows from [36, Theorems 2 and 3]. For L0

classical, this is similar to the previous proposition, using Lemma 3.4 and [23], and
easier since G2 has far fewer modules of low dimension. �

3.2. Complements and non-abelian cohomology. In this section, we describe
a method for classifying complements in parabolic subgroups by approximating
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certain non-abelian cohomology sets. The technique was pioneered by D. Stewart
in his Ph.D. thesis, and our definitions and strategy are taken from [35, Section
3.2].

Recall that if X and Q are algebraic groups over K, with a morphism X×Q → Q
giving an action of X on Q, then complements to Q in the semidirect product
QX correspond bijectively with rational 1-cocycles, which are variety morphisms
φ : X → Q such that φ(xy) = φ(x)(x.φ(y)) for all x, y ∈ X. Here, a complement
X ′ to Q is a closed subgroup of QX satisfying (i) QX ′ = QX, (ii) Q ∩ X ′ = 1,
and (iii) L(Q) ∩ L(X ′) = {0} (cf. [25, 4.3.1]). By [34, Lemma 3.6.1], a subgroup
satisfying (i) and (ii) automatically satisfies (iii) when X is connected reductive, Q
is unipotent, and p �= 2.

Two cocycles φ, ψ are cohomologous if there exists q ∈ Q such that φ(x) =
q−1ψ(x)(x.q) for all x ∈ X. This defines an equivalence relation on the set Z1(X,Q)
of 1-cocycles, and the corresponding quotient is called the cohomology set H1(X,Q),
which parametrises complements up to Q-conjugacy. The set H1(X,Q) has a dis-
tinguished element, denoted [0], which is the class of the map sending every element
of X to the identity of Q. In general, H1(X,Q) is only a pointed set, but if Q is a
KX-module, then H1(X,Q) is a K-vector space in a natural way.

In our calculations X will always be simple, and Q will always be connected and
unipotent, with a filtration by X-stable connected subgroups Q = Q(1) � Q(2) �
. . . � Q(r + 1) = 1 such that each section Vi

def
= Q(i)/Q(i + 1) is a rational KX-

module which is central in Q/Q(i+ 1). This allows us to study H1(X,Q) in terms
of the vector-space direct-sum

V = VX,Q
def
=

r⊕
i=1

H1(X,Vi)

and then appeal to the representation theory of the simple group X.
We first recall some results from non-abelian cohomology, using [29, §I.5] as a

standard reference. If R is an X-stable central subgroup of Q, then the short exact
sequence

0 → R → Q → Q/R → 0

gives rise to a long exact sequence of pointed sets:

0→RX →QX →(Q/R)X →H1(X,R)→H1(X,Q)→H1(X,Q/R)→H2(X,R)

where −X denotes a fixed-point subgroup, and where H2(X,R) is the usual second
abelian cohomology group, defined for example in [16, §II.4.2]. Since R is central
in Q, the group H1(X,R) acts on H1(X,Q) on the left; for [φ] ∈ H1(X,R) and

[ψ] ∈ H1(X,Q) we have [φ].[ψ] = [φ · ψ], where φ · ψ(x) def
= φ(x)ψ(x) for all x ∈ X.

Since we shall use this in Lemma 3.10 below, we note that the condition for a group
action becomes [φ].([φ′].[ψ]) = [φ+ φ′].[ψ] if H1(X,R) is written additively.

Lemma 3.8 ([29, §I.5.7, Proposition 42]). With X, Q and R as above, two elements
of H1(X,Q) have the same image in H1(X,Q/R) if and only if they lie in the same
H1(X,R)-orbit.

Definition 3.9 (cf. [35, Definition 3.2.5]). For i = 1, . . . , r we define a partial map
ρi : V → H1(X,Q/Q(i+ 1)) as follows. For i = 1, set ρ1([γ1], . . . , [γr]) = [γ1]. For
i > 1, if ρi−1([γ1], . . . , [γr]) is defined and lifts to some element [Γ] under the natural
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map H1(X,Q/Q(i + 1)) → H1(X,Q/Q(i)), then set ρi([γ1], . . . , [γr]) = [γi].[Γ],
otherwise declare ρi undefined at ([γ1], . . . , [γr]).

We set ρ = ρr. Note that ρi([γ1], . . . , [γr]) depends only on the first i coordinates
of its argument, but does depend on the choice of lifts made. We pick lifts to be
consistent with the convention that ρi([0], [0], . . . , [0]) = [0] for all i.

Lemma 3.10 (cf. [35, Proposition 3.2.6]). Each partial map ρi is surjective.

Proof. Proceed by induction on i. The result is trivial for i = 1. If i > 1, then
a class [φ] ∈ H1(X,Q/Q(i + 1)) gives a class [φ′] ∈ H1(X,Q/Q(i)) under the
natural map. By induction, there exists v = ([γ1], [γ2], . . . , [γr]) ∈ V such that
ρi−1(v) = [φ′]. Since [φ′] has a lift in H1(X,Q/Q(i + 1)), namely [φ], the class
ρi(v) is defined. Now, ρi(v) and [φ] have the same image in H1(X,Q/Q(i)), hence
by Lemma 3.8 there exists [δ] ∈ H1(X,Vi) such that [φ] = [δ].ρi(v). But by
definition of ρi, the right-hand side is equal to [δ].([γi].[Γ]) = [δ + γi].[Γ], where [Γ]
is the chosen fixed lift of [φ′] to H1(X,Q/Q(i + 1)). Then we have [δ + γi].[Γ] =
ρi([γ1], [γ2], . . . , [γi−1], [δ+ γi], [γi+1], . . . , [γr]), hence [φ] lies in the image of ρi. �

As an immediate consequence, we obtain the following.

Corollary 3.11. If H1(X,Vi) = 0 for each i, then H1(X,Q) = 0. In this case,
every complement to Q in QX is Q-conjugate to X.

Since the map ρ is a surjection from a subset of V toH1(X,Q), choosing a basis of
V allows us to parametrise conjugacy classes of complements to Q in QX by certain
ordered m-tuples (k1, . . . , km) of elements of K, for some m ≥ 0. We denote by
X[k1,k2,...,km] a fixed complement to Q in QX corresponding to (k1, k2, . . . , km) ∈ V,
when ρ is defined at this point.

We now consider the question of when ρ(v) = ρ(w) for v, w ∈ V. If Q =
Ru(P ) for a parabolic subgroup P of G, the Chevalley commutator relations give
us precise information about the X-group structure of Q, which in turn lets us
derive information about the set H1(X,Q).

For each i and j, we have the containment [Q(i), Q(j)] ⊆ Q(i+j), where Q(i) = 1
for all i > r. Thus for each v ∈ Vj , we get a map Q(i) → Q(i + j), sending
q ∈ Q(i) to [v̂, q], where v̂ is a fixed lift of v to Q(j). Composition with the quotient
Q(i + j) → Vi+j gives a map cv = cv,i : Q(i) → Vi+j which is independent of the
choice of lift v̂. From standard properties of commutators,

cv(uw) = [v̂, uw]Q(i+ j + 1)

= [v̂, u] (u[v̂, w])Q(i+ j + 1)

and since Vi+j is central in Q/Q(i+ j + 1), the above is equal to cv(u)cv(w), so cv
is a group homomorphism. In addition, if v ∈ Vj is fixed by X, then we claim cv is
X-equivariant. Indeed, if u ∈ Q(i), then for all x ∈ X we have

cv(
xu) = [v̂, xu]Q(i+ j + 1)

= [(xv̂)v′, xu]Q(i+ j + 1)

for some v′ ∈ Q(j+1). Since v′ commutes with Q(i) modulo Q(i+j+1), the above
equals x[v̂, u]Q(i + j + 1) = xcv(u). Moreover, since Q(i + 1) lies in the kernel of
cv,i, this descends to a homomorphism Vi → Vi+j of X-modules.

Our next proposition is rather technical, so we take a moment to discuss its use
in proving our main theorems. Informally, it states that if U and W are summands
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occurring in levels of Q, with H1(X,U) ∼= H1(X,W ) ∼= K, and if x ∈ QX induces
an isomorphism U → W , then the partial maps ρi are surjective on the subset of
V which gives a cocycle on at least one of U or W . If elements of V = H1(X,U)⊕
H1(X,W )⊕ . . . are given by tuples (k1, k2, . . .), then this allows us to assume that
k1k2 = 0.

Proposition 3.12. With X and Q as above, suppose that v ∈ V X
j for some j < r,

and let n be minimal such that cv,n : Vn → Vn+j is non-zero. Suppose that the
subspace 〈v〉 lifts to a 1-dimensional subgroup of (Q/Q(n + j + 1))X . Let U and
W be direct summands of Vn and Vn+j, respectively, such that cv,n : Vn → Vn+j

restricts to an isomorphism U → W . Suppose also that H1(X,U) ∼= K.
Pick a basis {el : l = 1, . . . ,m} of V, where each vector el lies in the image of

some inclusion H1(X,Vi) → V, and where e1 and e2, respectively, lie in the images
of H1(X,U) and H1(X,W ). Finally, define

V0 =

{
m∑
l=1

tlel : tl ∈ K, t1t2 = 0

}
.

Then for each i ≥ n + j, the restricted partial map ρi : V0 → H1(X,Q/Q(i + 1))
is surjective.

Proof. Note first that by our choice of basis, if i �= n, n + j, then the image of
H1(X,Vi) is spanned by some vectors el with l /∈ {1, 2}. In particular, if w ∈ V0

and if w′ lies in the image of H1(X,Vi) with i �= n, n + j, then w + w′ ∈ V0. We
will make use of this shortly.

By Lemma 3.10, if 1 < i ≤ r, then every element of H1(X,Q/Q(i + 1)) is of
the form ρi(v) = [φ].ρ′i−1(v) for some [φ] ∈ H1(X,Vi) and some v ∈ V, where

ρ′i−1(v) ∈ H1(X,Q/Q(i+ 1)) is the fixed lift of ρi−1(v) ∈ H1(X,Q/Q(i)).
For an induction on i, suppose that r > i − 1 ≥ n + j, and suppose that the

restriction ρi−1 : V0 → H1(X,Q/Q(i)) is surjective. Let

ρi(v) ∈ H1(X,Q/Q(i+ 1)),

and write ρi−1(v) = ρi−1(w) for some w ∈ V0. Then ρ′i−1(v) = ρ′i−1(w) since
the choice of lift is fixed, and thus ρi(v) = [φ].ρ′i−1(v) = [φ].ρ′i−1(w) for some

[φ] ∈ H1(X,Vi). Moreover, by definition of ρi we have [φ].ρ′i−1(w) = ρi([φ] +w),
where on the right-hand side we have identified [φ] with its image under the natural
inclusion H1(X,Vi) → V. By the observation in the first paragraph above, we have
[φ] +w ∈ V0, and the restriction of ρi to V0 is surjective, as required.

It remains to prove that ρn+j : V0 → H1(X,Q/Q(n+ j + 1)) is surjective. For
ease of notation we may replace Q with Q/Q(n+ j + 1) without loss of generality,
so that ρ = ρr = ρn+j .

Suppose that ρ(v) is defined, where v =
∑m

l=1 tlel and t1t2 �= 0. By minimality
of n, conjugation by a lift v̂ ∈ QX of v ∈ V X

j sends a complement corresponding to

[φ] ∈ H1(X,Q) to a complement corresponding to [cv,n ◦ φ].[φ], where [cv,n ◦ φ] ∈
H1(X,Q(n + j)). Therefore these cohomology classes correspond to the same Q-
conjugacy class of complements to Q in QX, and hence are equal. Since W is an
X-module direct summand of Q(n+j), there is a natural projection Q(n+j) → W ,
and the image of [cv,n ◦φ] under the induced map H1(X,Q(n+ j)) → H1(X,W ) is
a multiple of e2. Moreover this multiple must be non-zero, since by hypothesis the
map cv,n induces an isomorphism U → W and therefore induces an isomorphism
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H1(X,U) → H1(X,V ). Scaling e2 if necessary, we can assume that this image is
−t2e2. So if [φ] = ρ(v), then [φ] = [cv,n ◦ φ].[φ] = [−t2e2].ρ(v) = ρ(v − t2e2), and
the vector v − t2e2 lies in V0, which proves the desired result. �

As a special case, we obtain the following.

Corollary 3.13. With X and Q as above, suppose that V = H1(X,U)⊕H1(X,W ),
where U and W are direct summands in levels of Q with H1(X,U) ∼= H1(X,W ) ∼=
K. Fix a basis of V consisting of non-zero elements from H1(X,U) and H1(X,W ).

Suppose that QX contains a 1-dimensional subgroup inducing isomorphisms U →
W . Then the restriction ρ : {(k1, k2) ∈ V : k1k2 = 0} → H1(X,Q) is surjective.

3.3. Representations and abelian cohomology. In light of the preceding sec-
tion, we now wish to describe H1(X,V ) for various X-modules V , when X is simple
of type A1 or G2. It will also be useful to understand H2(X,V ) in some cases, since
if X lies in a parabolic subgroup P = QL and H2(X,Vi) = 0 for some level Vi,
then it follows from the long exact sequence that every element of H1(X,Q/Q(i))
lifts to an element of H1(X,Q/Q(i+ 1)).

Lemma 3.14 ([1, Corollary 3.9]). Let X be simple of type A1 and let M be an
irreducible X-module. Then H1(X,M) �= 0 if and only if M is a Frobenius twist
of (p− 2)⊗ 1[1]; in this case H1(X,M) ∼= K.

Lemma 3.15 ([32, Theorem 1]). Let X be simple of type A1 and let M be an
irreducible X-module. Then H2(X,M) �= 0 if and only if M is a Frobenius twist
of VX(r) where r is 2p, 2p2 − 2p − 2 or 2p − 2 + (2p − 2)pe (e > 1); in this case
H2(X,M) ∼= K.

The next result is a special case of results due to Cline, Parshall, Scott, and van
der Kallen [11, Corollaries 3.9, 3.10]. Recall that WX(λ) denotes the Weyl module
for X of highest weight λ, and additionally let M(λ) denote the unique maximal
submodule of WX(λ).

Lemma 3.16. Let X be a simple algebraic group. Then for any dominant weight
λ there are isomorphisms H2(X,VX(λ)) ∼= H1(X,M(λ)∗) and H1(X,VX(λ)) ∼=
H0(X,M(λ)∗).

It follows that H2(X,VX(λi)) = 0 for any simple algebraic group X and ev-
ery fundamental dominant weight λi. We now give a description of certain Weyl
modules and tilting modules for X of type G2, to which we will refer later on.

Lemma 3.17. Let X be simple of type G2 in characteristic 7, and let λ be one of
10, 20, 11, 01, 30. Then the Weyl modules W (λ) and tilting modules T (λ) have the
following structure:

(i) W (10) = T (10) = 10,
(ii) W (01) = T (01) = 01,
(iii) W (20) = 20|00, T (20) = 00|20|00,
(iv) W (11) = 11|20, T (11) = 20|(11 + 00)|20,
(v) W (30) = T (30) = 30.

Proof. The composition factors of the Weyl modules are well known; see for instance
[23]. The submodule structure of these, as well as the composition factors and sub-
module structure of each T (λ), follows easily from the fact that W (λ)/soc(W (λ)) ∼=
VX(λ) for each λ, and that T (λ) admits both a filtration by Weyl modules and a
filtration by duals of Weyl modules. �
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In Sections 4–7 we will make implicit use of the following results on tilting
modules.

Lemma 3.18. Let X be an algebraic group and let λ be a dominant weight for X.
Then:

(i) A direct summand of a tilting module is tilting.
(ii) The tensor product of two tilting modules is tilting.
(iii) If p > r, then the r-th symmetric and alternating powers of a tilting module

are tilting.
(iv) H1(X,T (λ)) = 0.

Proof. Parts (i), (ii) and (iv) are well known; see for instance [16, §E.1, E.2, E.7].
For part (iii), if p > r, then the symmetric power Sr(V ) and alternating power∧r

(V ) can each be realised as the image of a projection operator V ⊗r → V ⊗r (see
for instance [13, §11.5, Proposition 40]), and therefore as a direct summand of V ⊗r.
Now apply parts (i) and (ii). �

Lemma 3.19. Let X be a simple algebraic group of type A1, and let V = T (n) be a
tilting module for X, where n > 0. Then V supports a non-degenerate X-invariant
bilinear form, which is symmetric if n is even, and skew-symmetric otherwise.

Proof. The result holds for n = 1 since T (1) is the natural 2-dimensional module
for X = SL2(K) = Sp2(K). Now let n > 1, and for an induction, assume that the
result holds for all integers 1 ≤ m < n. If n is even, then let W = T (n/2)⊗T (n/2),
otherwise let W = T (n−1

2 )⊗ T (n+1
2 ). Then W supports the non-degenerate tensor

product form, which is symmetric in the first case and skew-symmetric in the sec-
ond. Moreover, T (n) occurs as a direct summand of W , and is the unique indecom-
posable summand containing a vector of weight n. Hence the natural isomorphism
W/T (n)⊥ → T (n)∗, and the fact that T (n) ∼= T (n)∗, shows that T (n)⊥∩T (n) = 0.
Thus T (n) is a non-degenerate subspace of W , and the result follows. �

Lemma 3.20. Let X be a simple algebraic group of type A1 or G2 with an in-
decomposable orthogonal module V of dimension 2n. Then there are precisely two
conjugacy classes of subgroups of D2n isomorphic to X acting on VD2n

(λ1) via V .

Proof. Since neither A1 nor G2 have any non-trivial outer algebraic automorphisms,
the result follows from the discussion in the proof of Proposition 3.6. �

3.4. Explicit cohomology calculations for A1. When X has type A1, we some-
times adopt a computational approach to studying H1(X,Q). Lemma 3.21 below
lets us verify that a given subset of QX indeed generates a subgroup of type A1.
Lemma 3.22 gives us an explicit formula for a cocycle X → V = 1[1]⊗ (p− 2) when
p > 2, which restricts the possibilities for a cocycle X → Q/[Q,Q].

Lemma 3.21 ([9, 12.1.1 and Remark p. 198]). Let K be any field and let X be a
group generated by {x+(t), x−(t) : t ∈ K}, with relations

(i) x±(t1)x±(t2) = x±(t1 + t2),
(ii) h(t)h(u) = h(tu),
(iii) n(t)x+(t1)n(t)

−1 = x−(−t−2t1)
for all t1, t2 ∈ K and all t, u ∈ K∗, where n(t) = x+(t)x−(−t−1)x+(t) and
h(t) = n(t)n(−1).

Then X is abstractly isomorphic to SL2(K) or PSL2(K).
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Now let X be as in Lemma 3.21, where K has characteristic p > 2. Let T =
{h(t) : t ∈ K∗} be a maximal torus of X, with corresponding root subgroups
U± = {x±(t) : t ∈ K}. Let K[v1, v2] be a polynomial algebra in two variables with
X acting as algebra automorphisms induced via:

x+(t).v1 = v1, x+(t).v2 = v2 + tv1,

x−(t).v1 = v1 + tv2, x−(t).v2 = v2.

View (p− 2) as the KX-submodule of all homogeneous polynomials of degree p− 2

in v1 and v2, and view 1[1] as the submodule spanned by f1
def
= vp1 and f−1

def
= vp2 .

Then the basis {
vr−1
1 vp−r−1

2 ⊗ f±1 : 0 < r ≤ p− 1
}

of V = (p − 2) ⊗ 1[1] consists of weight vectors. For each 0 < r ≤ p − 1 let e2r
denote the vector vr−1

1 vp−r−1
2 ⊗ f1 and let e−2r denote vp−r−1

1 vr−1
2 ⊗ f−1. Clearly

each e±2r has weight ±2r, and the elements x±(t) act as follows:

x+(t).(v
a
1v

p−2−a
2 ) = va1 (tv1 + v2)

p−2−a =

p−2−a∑
j=0

(
p− 2− a

j

)
tp−2−a−jvp−2−j

1 vj2,

x−(t).(v
a
1v

p−2−a
2 ) = (v1 + tv2)

avp−2−a
2 =

a∑
j=0

(
a

j

)
ta−jvj1v

p−j−2
2 ,

and from this for any r > 1 it follows that

x+(t).e2r =

⎛
⎝p−r−1∑

j=0

(
p− r − 1

j

)
tp−r−1−jvp−2−j

1 vj2

⎞
⎠⊗ f1

=

p−1∑
m=r

(
p− r − 1

m− r

)
tm−re2m.

Similarly, we find that

x+(t).e−2r =

⎛
⎝r−1∑

j=0

(
r − 1

j

)
tr−1−jvp−j−2

1 vj2

⎞
⎠⊗ (f−1 + tpf1)

=

(
r∑

s=1

(
r − 1

s− 1

)
tr−se−2s

)
+

(
p−1∑

s=p−r

(
r − 1

s+ r − p

)
tr+se2s

)

with similar expressions for x−(t).e±2r. As expected, it also follows that

n(t).e±2r = (−t∓2)re∓2r,

h(t).e±2r = t±2re±2r.

Lemma 3.22. Let X be simple of type A1 and V = (p−2)⊗1[1]. With the notation
above, for each k ∈ K define γk : U+ → V by

γk(x+(t)) = k

p−1∑
r=1

(
p− 1

r

)
tre2r.
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Then each γk extends to a rational cocycle X → V , with

γk(x−(t)) = k

p−1∑
r=1

(
p− 1

r

)
tre−2r

for all t ∈ K. Furthermore, two such cocycles γk and γl are cohomologous if and
only if k = l, and every cocycle X → V is cohomologous to some γk.

Proof. It is clear that k �→ γk is a linear map between K and the vector space
Z1(U+, V ) of 1-cocycles U+ → V . Therefore, once we have shown that each γk
extends to a cocycle X → V , and that γk and γl are cohomologous if and only if
k = l, it follows that this map induces an isomorphism K → H1(X,V ), so that
every cocycle X → V is cohomologous to exactly one such γk.

Clearly, γk is a rational map on U+. To prove that γk extends to a cocycle on X,
we check first that the cocycle condition holds on U+, and that γk is a coboundary
if and only if k = 0, so that γk and γl are cohomologous if and only if k = l. We
then check that h(u).γk(x+(t)) = γk(

h(u)x+(t)) for all t ∈ K and u ∈ K∗, so that
[γk] ∈ H1(U+, V )T . By [11, Lemma 1.1 and Theorem 2.1], we have vector-space
isomorphisms H1(U+, V )T → H1(U+T, V ) ← H1(X,V ), and we deduce that each
γk extends to a cocycle X → V , again with [γk] = [γl] if and only if k = l. Finally,
since x−(−t) = n(−1)x+(t) and n(−1) sends each vector e2r to (−1)re−2r, it follows
immediately that γk has the stated form on U−.

So consider γk(x+(t1)) + x+(t1).γk(x+(t2)). Substituting the expression above
for x+(t1).e2s, this becomes

k

((
p−1∑
r=1

(
p− 1

r

)
tr1e2r

)
+

(
p−1∑
s=1

(
p− 1

s

) p−1∑
r=s

(
p− s− 1

r − s

)
tr−s
1 ts2e2r

))

= k

((
p−1∑
r=1

(
p− 1

r

)
tr1e2r

)
+

(
p−1∑
r=1

r∑
s=1

(
p− 1

s

)(
p− s− 1

r − s

)
tr−s
1 ts2e2r

))

= k

((
p−1∑
r=1

(
p− 1

r

)
tr1e2r

)
+

(
p−1∑
r=1

r∑
s=1

(
p− 1

r

)(
r

s

)
tr−s
1 ts2e2r

))

= k

(
p−1∑
r=1

((
p− 1

r

)
(t1 + t2)

r

)
e2r

)

= γk(x+(t1 + t2))

and so γk : U+ → V is a cocycle. Here we have used the following identity, which
holds for all 1 ≤ s ≤ r ≤ p− 1:(

p− 1

s

)(
p− s− 1

r − s

)
=

(
p− 1

r

)(
r

s

)
.

Next, fix 0 �= k ∈ K and suppose that γk is a coboundary on U+, so γk(x+(t)) =

(x+(t).v) − v for some v ∈ V . Express v =
∑p−1

r=1 (cre2r + dre−2r). It is easily
shown that if dr �= 0 for some r > 1, then e−2(r−1) has non-zero coefficient in
(x+(t).v) − v, contradicting the definition of γk. So dr = 0 for r > 1. It then
follows that the coefficient of e2 in (x+(t).v)− v is identically zero for all t and k,
while by definition the coefficient of e2 in γk(x+(t)) is kt(p − 1), a contradiction.
Thus γk is a coboundary if and only if k = 0.
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It remains to show that h(u).γk(x+(t)) = γk(
h(u)x+(t)). This is straightforward:

h(u).γk(x+(t)) = k

p−1∑
r=1

(
p− 1

r

)
trh(u).e2r

= k

p−1∑
r=1

(
p− 1

r

)
(u2t)re2r

= γk(x+(u
2t))

= γk(
h(u)x+(t))

as required. �

An entirely similar proof to the above yields the following.

Corollary 3.23. If X is simple of type A1, with root elements x±(t) and if V [s]

denotes the Frobenius twist of V = (p− 2)⊗ 1[1], then V [s] has a basis

{e2−2p, e4−2p, . . . , e−2, e2, e4, . . . , e2p−2},
where e2i has weight 2i(ps) for each i, such that every cocycle X → V [s] is coho-
mologous to exactly one cocycle γk, where

γk(x+(t)) = k

p−1∑
r=1

(
p− 1

r

)
trp

s

e2r,

γk(x−(t)) = k

p−1∑
r=1

(
p− 1

r

)
trp

s

e−2r.

Remark 3.24. We will apply the above results in the context of a simple group
X of type A1 acting on a group U , where X and U are generated by products of
root elements in a simple algebraic group G. We therefore perform a number of
intricate calculations involving products and commutators of root elements of the
simple algebraic group G. These calculations can in principle be carried out by
hand, however we have made use of the computational algebra package Magma [7]
for both speed and accuracy. We have therefore taken our structure constants for
computing commutators in G to be consistent with those found in Magma.

3.5. From Q-conjugacy to G-conjugacy. If P = QL is a parabolic subgroup
of G and X is a connected subgroup of the Levi factor L, then we now have the
necessary tools to studyH1(X,Q), but it remains to consider how the corresponding
conjugacy classes of subgroups fuse in G, and also to consider conjugacy between
subgroups in non-conjugate parabolic subgroups of G.

Consider first the non-trivial torus Z(L). This centralises X and normalises
each root subgroup of G. Moreover, the action of Z(L) on each such root subgroup
in Q is non-trivial since CG(Z(L)) = L. This fuses together various classes of
complements to Q in QX.

Lemma 3.25. Let G be a simple algebraic group over an algebraically closed field
K and let P be a parabolic subgroup of G with Levi decomposition P = QL. Let
V =

⊕r
i=1 Vi be the sum of the levels of Q, let X be a subgroup of L, and suppose

that V = (
⊕m

i=1 Mi) ⊕ (
⊕n

i=1 Wi) as X-modules, where each Mi and each Wi is
indecomposable, and H1(X,Mi) ∼= K, H1(X,Wi) = 0.
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If for each i, the action of CZ(L)

(⊕
j 	=iMj

)
on Mi is non-trivial, then comple-

ments to Q in QX fall into at most 2m classes of subgroups in G.

Proof. Recall that V = VX,Q =
∑r

i=1 H
1(X,Vi), and fix a basis of V consisting of a

non-zero element from each of the m spaces H1(X,Mi) (i = 1, . . . ,m). Recall also
the surjective map ρ : V → H1(X,Q) from Definition 3.9. If ρ(k1, k2, . . . , km) ∈
H1(X,Q), then the hypotheses imply that whenever ki �= 0 for some i, we may
assume that ki = 1 by replacing the corresponding complement with a Z(L)-
conjugate, without changing the other kj . Hence we may take each kj to be either
0 or 1. �

Next, let w be an element of the Weyl group W (G) and let ẇ be a fixed preimage
of w in NG(T ). Let I and J be subsets of the simple roots Π of G, and let
PI = QILI and PJ = QJLJ be standard parabolic subgroups of G, where LI and
LJ are standard Levi subgroups. Let X be a subgroup of LI and suppose that:

(i) w(I) = J ,
(ii) For some subgroup RI ofQI generated by root subgroups ofG, the inclusion

RI → QI induces a bijection H1(X,RI) → H1(X,QI),
(iii) For each root subgroup Uα ≤ RI we have Uw(α) ≤ QJ .

Then from (i) it follows that ẇX is a subgroup of LJ . By (ii), every complement to
QI in QIX is QI -conjugate to a subgroup of RIX, and by (iii) these are therefore
G-conjugate to a subgroup of QJ (

ẇX) ≤ PJ .
Conjugation by elements of W (G) can also fuse different subgroup classes within

a single parabolic. Suppose that ẇ ∈ NG(T ) normalises X, and suppose also that w
stabilises a certain set of roots, such that the corresponding root subgroups generate
an X-stable normal subgroup R of Q. Then if φ is a cocycle X → R and Xφ is
the corresponding complement to R in RX, then conjugation by ẇ sends Xφ to
another complement to R in RX.

Rephrasing this in terms of V, if elements are represented bym-tuples (k1, . . . , km)
with respect to an appropriate basis, then conjugation by ẇ induces a permutation
on the indices. We will encounter our first instance of this, and the first non-trivial
application of Lemma 3.25, in Section 4.2.

Two parabolic subgroups of G are called associated if their Levi subgroups are
G-conjugate to one another. The following lemma shows that up to association,
there is a unique minimal parabolic subgroup of G containing a given non-G-cr
subgroup X. This prevents double-counting of subgroups during our classification
in Sections 4–7.

Lemma 3.26. Let X be a closed subgroup of G, and let P1 and P2 be minimal
among parabolic subgroups of G containing X. Then P1 and P2 are associated.

Proof. Let I and J be subsets of the simple roots of G such that the standard
parabolic subgroups PI and PJ are respectively conjugate to P1 and P2. It is a
standard result [10, Propositions 2.8.2, 2.8.3] that P1∩P2 is contained in a conjugate
of the standard parabolic subgroup PI∩w(J) for some element w of the Weyl group.
From the minimality of P1 it follows that I ∩ w(J) = I, hence w(J) ⊇ I. By
symmetry, there exists an element w′ of the Weyl group such that w′(I) ⊇ J .
Hence I and J have the same size, so w(J) = I, and if ẇ ∈ NG(T ) is a lift of w to
an element of NG(T ), then

ẇLJ = LI . �
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4. Proof of Theorem 1: G = E6, p = 5

In this section, we show that when p = 5, each non-G-cr subgroup of G is
conjugate to a subgroup listed in Table 11. Since every subgroup in Table 11 is
indeed non-G-cr by Lemma 3.2, this proves Theorem 1.

Let P = QL be a parabolic subgroup of G, such that P contains a non-G-cr
subgroup X necessarily of type A1, and further assume that P is minimal among
parabolic subgroups of G containing X. Then the image of X in L is an L′-
irreducible subgroup of L′. Moreover, by Corollary 3.11, there is some level M
of Q such that H1(X,M ↓ X) �= 0. The following lemma classifies the possible
occurrences of this scenario.

Lemma 4.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type A1. If there exists a parabolic subgroup P of G with Levi factor L and
unipotent radical Q, such that H1(X,M ↓ X) �= 0 for some level M of Q, then X
and the type of L′ appear in Table 6.

Table 6. L′-irreducible X with H1(X,M ↓ X) �= 0.

L′ Embedding of X

D5 X < D5 via 4[r] + 1[r+1] ⊗ 1[s] + 0 (rs = 0; r + 1 �= s)

D4 X < D4 via 4 + 2[1],

X < D4 via 3⊗ 1[1] (two L′-classes)

A1A3 X ↪→ A1A3 via (1[1], 3)

A2
1A2 X ↪→ A2

1A2 via (1, 1[1], 2) or (1[1], 1, 2)

Proof. Let P = QL be a parabolic subgroup of G. The action of L′ on the levels of
Q is straightforward to determine, as described in [2]. Now Proposition 3.6 gives
all L′-irreducible subgroups of type A1, and it is straightforward to determine the
action of each such subgroup X on the levels of Q, for instance using the tables
of Section 11. Checking each level M against Lemma 3.14 tells us whether or
not H1(X,M ↓ X) = 0. Whenever we find a module M such that H1(X,M ↓
X) �= 0, the full description of the action of X on the levels of Q is given in the
relevant section below. So let us illustrate the process with an example where
H1(X,M ↓ X) = 0 for all levels M of Q.

Let L be the unique standard Levi subgroup of G such that L′ = A5. Since
p = 5, the only L′-irreducible subgroup X of type A1 acts on the natural module
as 2[r] ⊗ 1[s] where rs = 0 and r �= s. In Q, there are two levels. As an L′-module,
Q/Q(2) is irreducible with high weight λ3, and is generated by the image of the
root subgroup Uα2

, and Q(2) is irreducible with high weight 0, and is generated

by U122321. Using Table 19 and the fact that VA5
(λ3) =

∧3
(VA5

(λ1)), it follows
that VA5

(λ3) ↓ X = (4[r] ⊗ 1[s]) + (2[r] ⊗ 1[s]) + 3[s]. Lemma 3.14 shows that no
indecomposable summand of such a module has a non-vanishing first cohomology
group. �

The remainder of this section is as follows. There is a subsection for each Lie
type of L′ in Table 6. For each type, we enumerate the standard parabolics with
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Levi factor of that type and let X vary over the L′-irreducible subgroups in Ta-
ble 6. Using the tools from Section 3, we bound the number of possible classes of
complements to Q in QX, as Q varies over unipotent radicals of these parabolics,
and we thus determine a global bound on the number of non-G-cr subgroups arising
from such a parabolic. Finally, we exhibit representatives of each possible conju-
gacy class and calculate their connected centralisers. Lemma 3.26 shows that two
such subgroups lying in non-associated parabolics cannot be G-conjugate. Table
11 contains precisely these representatives.

4.1. L′ = D5. The two standard D5-parabolic subgroups of G are P12345 and
P23456. By Lemma 4.1, the only embeddings of A1 into D5 that we need to consider
are X = A1 < D5 via 4[r] + 1[r+1] ⊗ 1[s] + 0, where rs = 0 and r + 1 �= s.

Consider first P = P12345 = QL. Then Q has a single level, and is a 16-
dimensional irreducible module for L′ of high weight λ4. From the action of X
on the natural D5-module, we see that X lies in a subgroup A2

1B2 of L′, via
(1[s], 1[r+1], 4[r]). In turn, this subgroup lies in a subgroup A2

1A3 of L′. Now,
the restriction of a spin module for Dn (n ≥ 4) to a subgroup Bn−1, or from Bn

or Dn to a proper Levi subgroup of the same type, is itself a sum of spin mod-
ules [18, Prop. 2.7]. It follows that VD5

(λ4) ↓ A2
1A3 = (1, 0, λ1) + (0, 1, λ3), hence

VD5
(λ4) ↓ A2

1B2 = VD5
(λ5) ↓ A2

1B2 = (1, 0, λ2) + (0, 1, λ2), and so VD5
(λ4) ↓

X = VD5
(λ5) ↓ X = (3[r] ⊗ 1[r+1]) + (3[r] ⊗ 1[s]). By Lemma 3.14, V ∼= K, since

r+1 �= s. The 1-dimensional torus Z(L) acts non-trivially on each summand of Q,
hence by Lemma 3.25 there is at most one G-conjugacy class of non-G-cr comple-
ments to Q in QX. An entirely similar argument applies to the parabolic subgroup
P23456, yielding at most one G-conjugacy class of non-G-cr complements to Q23456

in Q23456X.
Let Y and Z be subgroups of the subsystem subgroup A1A5 of G, respectively

embedding via (1[s],W (5)[r]) and (1[s], (W (5)[r])∗) (rs = 0; r + 1 �= s). Note that
Y and Z are Aut(G)-conjugate, since a graph automorphism of E6 induces a graph
automorphism of A1A5. Both Y and Z are non-A1A5-cr, hence by Lemma 3.2 they
are non-G-cr. We claim that Y and Z each lie in a D5-parabolic subgroup of G,
with irreducible image in a Levi factor. Their actions on the natural A1A5-modules
imply that Y and Z are each contained in an A2

1A3-parabolic subgroup of A1A5,
and it follows that Y and Z each lie in a parabolic subgroup of G whose Levi factor
contains a subgroup of type A2

1A3. The only such subgroups are D5-parabolic
subgroups, hence Y and Z each lie in a D5-parabolic.

The action of Y on V27 is given in Table 11, and this determines the action of Z
since the outer automorphism of G swaps the G-modules V27 and V ∗

27, and swaps
the subgroup classes of Y and Z. Now, if Y and Z were G-conjugate, then the
submodule lattices of V27 ↓ Y and V27 ↓ Z would be identical. But this is not the
case, since Y has an 8-dimensional submodule 1[r] ⊗ 3[s] ⊂ 1[r] ⊗W (5)[s], while Z
does not. Finally, the G-conjugacy class of a reductive subgroup determines its high
weights on each G-module, up to multiplying by a power of p. Therefore if r′, s′ are
non-negative integers with r′s′ = 0 and (r′, s′) �= (r, s), then the corresponding non-
G-cr subgroups arising are not conjugate to Y or to Z. Thus for each (r, s), there
are precisely two classes of non-G-cr subgroups A1 contained in a D5-parabolic with
irreducible image in a Levi factor, with representatives Y and Z.

Inspecting Table 11, we see that CL(G)(Y ) = CL(G)(Z) = {0}, and thus CG(Y )◦

= CG(Z)◦ = 1.
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Remark 4.2. The condition r + 1 �= s is only necessary to ensure that X is D5-
irreducible. If instead (r, s) = (0, 1), the subgroups Y and Z described above are
still non-G-cr and non-conjugate. The images of these subgroups in D5 now lie in a
Levi subgroup D4, and hence these provide two non-conjugate, non-G-cr subgroups
lying in a D4-parabolic subgroup of G.

4.2. L′ = D4. Let P = P2345 = QL be the unique standard D4-parabolic subgroup
of G. Let X, Y , Z be representatives of the three L′-conjugacy classes of L′-
irreducible subgroups, with VD4

(λ1) ↓ X ∼= VD4
(λ3) ↓ Y = VD4

(λ4) ↓ Z ∼= 4 + 2[1],
so that the remaining 8-dimensional modules VD4

(λi) restrict as 3 ⊗ 1[1]. Now, Q
has two levels: Q/Q(2) ∼= VD4

(λ3) + VD4
(λ4), the factors respectively generated as

a D4-module by the images of the root groups Uα1
and Uα6

, and Q(2) ∼= VD4
(λ1),

generated by U101111.
The action of X on Q is as follows:

Q/Q(2) ↓ X = (3⊗ 1[1]) + (3⊗ 1[1]),

Q(2) ↓ X = 4 + 2[1].

And thus VX,Q
∼= K2 by Lemma 3.14. In the second level, H2(X, 2[1]) ∼= K by

Lemma 3.15. This means that not all pairs (k, l) ∈ VX,Q necessarily give rise to an
element of H1(X,Q). We will show that the condition kl = 0 is necessary.

For this, we now describe X explicitly in terms of the root groups of G, which
allows us to identify the weight vectors of X in its action on each level of Q, and
hence apply Lemma 3.22 to give an explicit description of cocycles X → Q. Using
the module decomposition VL′(λ1) ↓ X = 4 + 2[1], we can identify root elements
x±(t) of X:

x+(t) = xα3
(3t)x001100(2t

2)x001110(t
3)xα4

(2t)x000110(4t
2)xα5

(t)

× x010110(2t
5)x011100(t

5),

x−(t) = x−α3
(t)x−001100(t

2)x−001110(t
3)x−α4

(2t)x−000110(3t
2)x−α5

(3t)

× x−010110(3t
5)x−011100(t

5).

Furthermore, a maximal torus of X is given by TX = {h(t) : t ∈ K∗} with h(t)
as defined in Lemma 3.21. Multiplying out the above elements gives the following
formula for h(t):

h(t) = h2(t
10)h3(t

8)h4(t
14)h5(t

8).

It can now be checked directly that each non-trivial element of the form
x111100(t)x010111(u) has weight 2 under the action of TX . Next, when p = 5 the
formula for x+(t).e2 on page 5296 becomes

x+(t).e2 = e2 + 3te4 + 3t2e6 + t3e8.

In Q/Q(2) we can therefore let e2 = x111100(1)Q(2) (resp., x010111(1)Q(2)) and
calculate the conjugate x+(t)e2, and then equate coefficients with the equation above
to find that e4 = x111110(3), e6 = x111210(3), e8 = x112210(4) (resp., x011111(1),
x011211(1), x011221(1)). Hence by Lemma 3.22, a general cocycle X → Q/Q(2) is
cohomologous to exactly one map γk,l as follows:

γk,l :

{
x+(c) �→ x111100(kc)x11110(2kc

2)x111210(3kc
3)x112210(kc

4)

× x010111(lc)x011111(4lc
2)x011211(lc

3)x011221(4lc
4)Q(2).
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Now if φ ∈ Z1(X,Q) has image γk,l under composition with Q � Q/Q(2), then it
follows that for each x ∈ X we have φ(x) = γk,l(x)q for some q ∈ Q(2) = Z(Q)
depending on x. From the identity xq = xqx−1x = (xq)x, for all q ∈ Z(Q), x ∈ X,
we then have

(φ(x+(c))x+(c))
5 = (γk,l(x+(c))qx+(c))

5

= q(x+(c)q)(x+(c)2q)(x+(c)3q)(x+(c)4q)(γk,l(x+(c))x+(c))
5.

Since x+(c) induces a linear transformation of order 5 on the vector space Q(2), call
it T , in additive notation the first five terms in the above product are (1+T +T 2+
T 3+T 4)(q), which is identically zero. So the above is equal to (γk,l(x+(c))x+(c))

5.
Substituting, and using Magma to simplify calculations, we find that this is equal
to x122321(−klc5). But since φ is a cocycle, the element φ(x+(c))x+(c) is a positive
root element in a complement to Q in QX, and in particular its order divides 5.
Thus x122321(−klc5) = 1 for all c ∈ K, hence kl = 0 as claimed.

The 2-dimensional torus Z(L) consists of elements of the form

h(t, u)
def
= h1(t

−2u2)h2(t)h3(u)h4(t
2)h5(t

3u−1)h6(t
4u−2)

for t, u ∈ K∗. Now h(t,u)xα1
(c) = xα1

(t4u−3c) and h(t,u)xα6
(c) = xα6

(t−5u3c).
Thus the action of Z(L) on Q satisfies Lemma 3.25, and each complement to X in
QX is G-conjugate to one of the complements X = X[0,0], X[1,0] or X[0,1] (recall the
notation from Section 3.2). So in particular, there exist at most two G-conjugacy
classes of non-G-cr complements to Q in QX.

Next consider the action of Y on Q:

Q/Q(2) ↓ Y = 4 + 2[1] + (3⊗ 1[1]),

Q(2) ↓ Y = 3⊗ 1[1],

and thus VY,Q
∼= K2 by Lemma 3.14. Again, by Lemma 3.25 each complement to

Q in QY is G-conjugate to one of Y = Y[0,0], Y[1,0], Y[0,1] or Y[1,1]. By an identical
argument, each complement to Q in QZ is G-conjugate to one of Z = Z[0,0], Z[1,0],
Z[0,1] or Z[1,1]. We now exhibit G-conjugacies between these various subgroup
classes, and then construct a representative of each possible distinct class that
remains.

We claim that Y[1,0], Y[0,1] and X[0,1] are G-conjugate to one another, and that
Z[1,0], Z[0,1], and X[1,0] are G-conjugate to one another. Indeed, recalling nota-
tion from Section 2, the element w1 = n1n3n4n2n5n4n3n1 ∈ NG(T ) acts as an
outer involution in D4.S3, preserving Y whilst swapping X and Z. Furthermore,
w1 swaps the root subgroups Uα6

and U101111, hence swaps the two Y -modules
generated by these elements, and also swaps the X-invariant and Z-invariant sub-
groups generated by these. It follows that Y[1,0] is G-conjugate to Y[0,1], and X[1,0]

is G-conjugate to Z[0,1]. Similarly, the element n6n5n4n2n3n4n5n6 stabilises Z and
swaps X and Y , and also swaps the root subgroups Uα1

and U101111, and therefore
Z[1,0] is G-conjugate to Z[0,1] and X[0,1] is G-conjugate to Y[0,1]. This proves the
claim, and we now have at most four G-conjugacy classes of non-G-cr subgroups
A1 of P , namely X[1,0], X[0,1], Y[1,1] and Z[1,1].

Consider the following four A1 subgroups of G: Two subgroups A1 ↪→ A1A5

via (1[1],W (5)) and via (1[1],W (5)∗), respectively; and two classes of subgroups
A1 < D5 via T (8) (these exist by Lemma 3.20). Each of these four subgroups is
non-G-cr by Lemma 3.2. The two subgroups of A1A5 are interchanged by a graph
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automorphism of A1A5, hence by a graph automorphism of E6, and similarly the
two subgroups of D5 are exchanged by a graph automorphism of E6. The third and
fourth lines of Table 11 give the actions of one subgroup of A1A5 and one subgroup
of D5 on the modules V27 and L(G), which also determines the actions of the other
two subgroups. In particular, we see that no two of these four subgroups have the
same lattice of submodules on V27, and hence all four are pairwise non-conjugate
in G.

The subgroups in A1A5 each lie in an A2
1A3-parabolic subgroup of A1A5, which

is contained in a D5-parabolic subgroup of G. The images of these subgroups in
the Levi factor D5 then act on VD5

(λ1) as 4 + 1[1] ⊗ 1[1] + 0 = 4+ 2[1] + 02, and so
these images are D4-irreducible subgroups of a Levi subgroup D4.

Similarly, from the module structure of T (8) = 0|(3 ⊗ 1[1])|0 it follows that the
two subgroups in D5 each lie in a D4-parabolic subgroup of D5, and hence of G.
Thus all four of these subgroups lie in a D4-parabolic subgroup of G.

The connected centraliser of the non-G-cr subgroups contained in A1A5 is triv-
ial, as their fixed-point space on L(G) is zero. The connected centraliser of each
subgroup X = A1 < D5 via T (8) is T1. Indeed dim(CG(X)◦) ≤ 1 by Table 11, and
T1 = CG(D5)

◦ ≤ CG(X)◦.

4.3. L′ = A1A3. The four standard A1A3-parabolic subgroups of G are P1346,
P2346, P1456, and P1245. For each, let X = A1 ↪→ A1A3 via (1[1], 3).

First, consider P1346. Then Q = Q1346 has four levels and X acts as follows:

Q/Q(2) ↓ X = (3⊗ 1[1]) + 3,

Q(2)/Q(3) ↓ X = (4⊗ 1[1]) + 1[1],

Q(3)/Q(4) ↓ X = 3,

Q(4) ↓ X = 0,

where the module of highest weight 3 ⊗ 1[1] is generated by Uα5
Q(2). By Lemma

3.14, VX,Q1346
∼= K. Applying Lemma 3.25, we have at most one class of non-G-cr

complements to Q1346 in Q1346X. The same argument applied to P2346 allows us
to conclude that there is at most one class of non-G-cr complements to Q2346 in
Q2346X, with the module of highest weight 3 ⊗ 1[1] in the action of X on Q2346

generated by U101110Q2346(3). Conjugation by the element n1n3n4n2 ∈ NG(T )
sends L1346 to L2346, and also sends Uα5

to U101110. It follows that any non-G-cr
A1 subgroup of P1346 with irreducible image in L1346 is G-conjugate to a subgroup
of P2346.

Similarly, considering the parabolic subgroups P1456 and P1245 leads to at most
one G-conjugacy class of non-G-cr subgroups, where now conjugation by the ele-
ment n6n5n4n2 ∈ NG(T ) sends L1456 to L1245 and sends Uα3

to U001111.
Consider the subgroups Y , Z = A1 < A5 via W (5) and W (5)∗, respectively.

Each of these is non-G-cr by Lemma 3.2, and they are contained in an A1A3-
parabolic subgroup of G since they are contained in an A1A3-parabolic subgroup
of A5. They are exchanged by an outer automorphism of A5, and are therefore
Aut(G)-conjugate. Thus the first line of Table 11 determines the action of each on
V27 and L(G), and in particular we see that the subgroups have different submodule
lattices on V27, and are therefore not G-conjugate. Hence these are representatives
of the above conjugacy classes of non-G-cr subgroups in A1A3-parabolic subgroups
of G.
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From Table 11 we see that CG(Y ) and CG(Z) are each at most 3-dimensional,
and so CG(Y )◦ = CG(Z)◦ = CG(A5)

◦ = A1.

4.4. L′ = A2
1A2. The five standard A2

1A2-parabolic subgroups of G are P1235, P1236,
P1256, P2356, and P1246. For each, we need to consider subgroups X and Y , respec-
tively embedded in A2

1A2 via (1[1], 1, 2) and (1, 1[1], 2).
First, consider P1235. Then Q = Q1235 has four levels, and

Q/Q(2) ↓ L1235 = (1, 1, 01) + (0, 1, 00),

Q(2)/Q(3) ↓ L1235 = (1, 0, 01) + (0, 0, 10),

Q(3)/Q(4) ↓ L1235 = (0, 1, 10),

Q(4) ↓ L1235 = (1, 0, 00).

Applying Lemma 3.14, it follows that VX,Q
∼= VY,Q

∼= K. Applying Lemma 3.25
yields at most one class of non-G-cr complements to Q in QX and at most one
class of non-G-cr complements to Q in QY .

With entirely similar calculations, we find that there are at most twoG-conjugacy
classes of non-G-cr simple subgroups of type A1 in each of the other four stan-
dard parabolic subgroups having irreducible image in the corresponding Levi fac-
tor. Moreover, for each such parabolic P , we find an element of NG(T ), given in
the table below, whose image in the Weyl group sends the roots of the standard
Levi factor to those of L1235 and sends α to α4, where the image of Uα generates
the X-module of high weight 3⊗ 1[1] in the appropriate level. This element there-
fore conjugates each non-G-cr subgroup A1 of P , with irreducible image in L, to a
subgroup of P1235.

P Root α Element of NG(T )

P1236 000110 n6n5

P1256 001100 n6n5n4n2n3n1n4n3n5n4n2n6n5n4

P2356 α4 n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1

P1246 001110 n6n5n4n2n3n1n4n3

Note that the element above sending L2356 to L1235 sends Uα2
to Uα5

and Uα3
to

Uα2
, hence sends the subgroup embedded in L2356 via (1[1], 1, 2) to the subgroup of

L1235 embedded via (1, 1[1], 2), and vice versa.
Therefore there are at most two G-conjugacy classes of non-G-cr subgroups aris-

ing in this case. By Lemma 3.20, there are two conjugacy classes of subgroups
embedded in D5 via T (6). Let Z1 and Z2 be representatives of these. As D5 is a
Levi subgroup of G, both Z1 and Z2 are non-G-cr by Lemma 3.2. They are each
contained in an A2

1A2-parabolic subgroup of D5, hence in such a parabolic of G, and
they are exchanged by an outer automorphism of D5, hence are Aut(G)-conjugate.
Therefore the second line of Table 11 determines their actions on V27, and we see
that they are not G-conjugate.

Since dim(CG(Z1)) and dim(CG(Z2)) ≤ 1, we find that CG(Z1)
◦ = CG(Z2)

◦ =
CG(D5)

◦ = T1.

5. Proof of Theorem 2: G = E7, p = 5

In this section we prove Theorem 2 in the case p = 5. Again, our starting point
is to determine those parabolics P = QL of G and L-irreducible subgroups X of L,
such that H1(X,Q) may be non-zero.



5306 ALASTAIR J. LITTERICK AND ADAM R. THOMAS

Lemma 5.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type A1. If there exists a parabolic subgroup P of G with Levi factor L and
unipotent radical Q, such that H1(X,M ↓ X) �= 0 for some level M of Q, then X
and the type of L′ appear in Table 7.

Table 7. L′-irreducible X with H1(X,M ↓ X) �= 0.

L′ Embedding of X

E6 X ↪→ A1A5 < E6 via (1, 2⊗ 1[1])

A1D5 X ↪→ A1D5 via (1[r], 2[r] + 2[r+1] + 1[r] ⊗ 1[s]) (rs = 0; r �= s)

A1A2A3 X ↪→ A1A2A3 via (1[r+1], 2[s], 3[r]) (rs = 0)

D5 X < D5 via 4[r] + 1[r+1] ⊗ 1[s] + 0 (rs = 0; r + 1 �= s)

A1D4 X ↪→ A1D4 via (1[r], 3[s] ⊗ 1[s+1]) (rs = 0) (two L′-classes)

A2A3 X ↪→ A2A3 via (2, 1⊗ 1[1])

A2
1A3 X ↪→ A2

1A3 via (1[r], 1[s+1], 3[s]) or (1[s+1], 1[r], 3[s]) (rs = 0),

X ↪→ A2
1A3 via (1, 1, 1⊗ 1[1])

A3
1A2 X ↪→ A3

1A2 via (1[r], 1[s], 1[t], 2[u])
(rstu = 0; u = i = j − 1 where i, j ∈ {r, s, t})

D4 X < D4 via 4 + 2[1],

X < D4 via 3⊗ 1[1] (two L′-classes)

A1A3 X ↪→ A1A3 via (1[1], 3)

A2
1A2 X ↪→ A2

1A2 via (1, 1[1], 2) or (1[1], 1, 2)

Proof. As in the proof of Lemma 4.1, this is straightforward. For each parabolic
P = QL and each L-irreducible subgroup X of type A1, we systematically check
the action of X on each level of Q using Proposition 3.6. �

5.1. L′ = E6. Let P = P123456 = QL be the unique standard E6-parabolic sub-
group of G. Let X ∼= A1 ↪→ A1A5 < E6 via (1, 2 ⊗ 1[1]). Then Q is abelian, and
carries the structure of a rational KL-module, with Q ↓ X = 3 ⊗ 1[1] + 1 ⊗ 1[1] +
2⊗ 2[1] + 4 + 0. By Lemma 3.14, V = H1(X,Q) ∼= K. By Lemma 3.25, there is at
most one class of non-G-cr complements to Q in QX.

Let Y ∼= A1 < A7 via W (7). Then Y is non-A7-cr, lying in an A1A5-parabolic
subgroup of A7. By Lemma 3.2, Y is non-G-cr. The projection of Y to A1A5

embeds via (1, 2⊗ 1[1]). The only subgroups A1A5 of G which lie in a subgroup A7

are those in the conjugacy class of A1A
′
5 < E6. Moreover, the only Levi subgroup

of G that contains A1A
′
5 is E6. Therefore, the A1A5-parabolic subgroup of A7 must

lie in an E6-parabolic subgroup of G. Hence Y lies in an E6-parabolic subgroup of
G and the projection of Y to E6 is E6-irreducible by Proposition 3.6. Hence Y is
a representative of the G-conjugacy class above.

From Table 12, we see that dim(CG(Y )◦) ≤ 1. Since Q is abelian and X cen-
tralises a 1-dimensional subgroup U1 of Q, we deduce that U1 ≤ CG(QX)◦ ≤
CG(Y )◦, and so CG(Y )◦ = U1.
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5.2. L′ = A1D5. Let P = P123457 = QL be the unique standard A1D5-parabolic
subgroup of G. Let X ∼= A1 ↪→ A1D5 via (1[r], 1[r]⊗ 1[s]+2[r]+2[r+1]) (rs = 0, r �=
s). Then the projection of X to D5 is contained in a subgroup Ā2

1A
2
1 ≤ Ā2

1A3. The
two A1 factors of this latter group are generated by the root subgroups U±α2

and
U±α5

, respectively, and the A3 factor is generated by U±α1
, U±α3

and U±1122100.
This allows us to pick the following root elements of X:

x+(t) = xα7
(t5

r

)xα2
(t5

r

)xα5
(t5

s

)x−1122100(t
5r)xα1

(t5
r

)x−1112100(t
5r+1

)

× x1010000(t
5r+1

),

x−(t) = x−α7
(t5

r

)x−α2
(t5

r

)x−α5
(t5

s

)x1122100(t
5r)x−α1

(t5
r

)x1112100(t
5r+1

)

× x−1010000(t
5r+1

),

and the actions of X on the levels of Q are:

Q/Q(2) ↓ X = 3[r] ⊗ 1[r+1] + 1[r] ⊗ 1[r+1] + 2[r] ⊗ 1[r+1] ⊗ 1[s],

Q(2) ↓ X = 2[r] + 2[r+1] + 1[r] ⊗ 1[s],

where the summand 3[r] ⊗ 1[r+1] of Q/Q(2) is generated as an X-module by the
image of the root subgroup U1111111. Using Corollary 3.23, we find that a complete
set of representatives of H1(X,Q/Q(2)) is given by

γk : x+(t) �→ x1111111(kt
4(5r))x0111111(3kt

3(5r))x1011111(3kt
3(5r))

× x1111110(2kt
3(5r))x0011111(2kt

2(5r))x1011110(3kt
2(5r))

× x0111110(3kt
2(5r))x0011110(kt

5r )Q(2).

Now, suppose that γk lifts to a cocycle φ : X → Q. Then φ(x+(t)) is a prod-
uct of the above root elements with an element qk,t ∈ Q(2). If we let xk(t) =
φ(x+(t))x+(t), we find that

xk(t)
5 = x1122221(2k

2t5
r+1

).

On the other hand, xk(t) is a root element in a group of type A1, hence has order
dividing 5; it follows that k = 0. Thus the map H1(X,Q) → H1(X,Q/Q(2))
is zero, so H1(X,Q) = H1(X,Q(2)) = 0 and all complements to Q in QX are
conjugate to X, hence are G-cr.

5.3. L′ = A1A2A3. Let P = P123567 = QL be the unique standard A1A2A3-
parabolic subgroup of G. Let X ∼= A1 ↪→ A1A2A3 via (1[r+1], 2[s], 3[r]) (rs = 0).
This determines root elements of X as in Section 5.2, and the actions of X on the
levels of Q are as follows:

Q/Q(2) ↓ X = 3[r] ⊗ 2[s] ⊗ 1[r+1],

Q(2)/Q(3) ↓ X = 4[r] ⊗ 2[s] + 2[s],

Q(3)/Q(4) ↓ X = 3[r] ⊗ 1[r+1],

Q(4)/Q(5) ↓ X = 2[s].

Thus H1(X,Q(3)/Q(4)) ∼= K for all r, s, while H1(X,Q/Q(2)) ∼= K if (r, s) =
(0, 1), and H1(X,Q/Q(2)) = 0 otherwise. Moreover, by Lemma 3.15 if s > 0,
then there are direct summands in levels 2 and 4 with non-vanishing second coho-
mology group. With similar calculations to Section 5.2, we find that every cocycle
X → Q(3)/Q(4) lifts to a cocycle X → Q(3), while if (r, s) = (0, 1), a cocycle
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X → Q/Q(2) lifts to a cocycle X → Q/Q(3) if and only if it is a coboundary. This
shows that V ∼= H1(X,Q(3)/Q(4)) ∼= K, for any choice of r and s.

Therefore, for each r and s, elements of H1(X,Q) are parametrised by elements
of K. Applying Lemma 3.25, for each possible (r, s) we have at most one conjugacy
class of non-G-cr complements to Q in QX.

Let Y ∼= A1 ↪→ A2A5 via (2[s],W (5)[r]) where rs = 0. By Lemma 3.2, Y is
non-G-cr. Moreover, Y is contained in an A1A2A3-parabolic subgroup of A2A5,
and hence in such a parabolic subgroup of G. Thus there is exactly one conjugacy
class of non-G-cr complements to Q in QX for each pair (r, s) with rs = 0.

From Table 12, we find that dim(CL(G)(Y )) = 0 and hence CG(Y )◦ = 1.

5.4. L′ = D5. The two standard D5-parabolic subgroups of G are P12345 and
P23456. Let X ∼= A1 < D5 via 4[r] + 1[r+1] ⊗ 1[s] + 0 (rs = 0; r + 1 �= s). Let
P = P12345 = QL. The action of X each level of Q is as follows:

Q/Q(2) ↓ X = 3[r] ⊗ 1[r+1] + 3[r] ⊗ 1[s] + 0,

Q(2)/Q(3) ↓ X = 3[r] ⊗ 1[r+1] + 3[r] ⊗ 1[s],

Q(3) ↓ X = 4[r] + 1[r+1] ⊗ 1[s] + 0.

Let U and V be the respective summands of Q/Q(2) and Q(2)/Q(3) which are
isomorphic to 3[r] ⊗ 1[r+1]. By Lemma 3.14, VX,Q = H1(X,U) ⊕ H1(X,V ) ∼=
K2. The modules U and V are respectively generated by the images of the root
subgroups Uα6

and Uα6+α7
. The root group Uα7

commutes with L′, hence gives a 1-
dimensional subgroup of QX , and does not commute with Uα6

. Hence, as described

in Section 3.2, conjugation by v
def
= xα7

(1) induces a non-trivial homomorphism of
L′-modules cv,1 : Q/Q(2) → Q(2)/Q(3), which restricts to an isomorphism U → V .

We now apply Corollary 3.13. This tells us that, with respect to a basis of V
consisting of a non-zero element from each of H1(X,U) and H1(X,V ), elements of
H1(X,Q) are parametrised by pairs (k1, k2) ∈ V with k1k2 = 0.

Next, the element n7 of NG(T ) normalises each root subgroup in L′, and swaps
Uα6

with Uα6+α7
. It follows that two complements to Q in QX corresponding to

(k1, k2) and (k2, k1) are conjugate in G. Together with the previous paragraph, this
means we can assume that (k1, k2) = (k1, 0). By considering the non-trivial action
of Z(L) on each summand in Q, we therefore deduce that there is at most one class
of non-G-cr complements to Q in QX.

Now consider P23456. We claim that a non-G-cr subgroup A1 with irreducible
image in L23456 must be G-conjugate to a subgroup of P12345. It suffices to exhibit
an element of NG(T ) which sends the root subgroups in L′

23456 to those of L′
12345,

and also sends Uα1
to Uα6

, since the image of Uα1
generates the L23456-module of

high weight λ4 in Q23456/Q23456(2). The following element fits the bill:

n7n6n5n4n3n2n4n5n6n7n1n3n4n5n6n2n4n5n3n4n1n3n2n4n5n6n7

and hence up to G-conjugacy there is at most one non-G-cr subgroup A1 in a
D5-parabolic subgroup of G, with irreducible image in the Levi factor.

Recall that A1A
′
5 denotes a subgroup of this type lying in a Levi E6 subgroup

of G, and let Y ∼= A1 ↪→ A1A
′
5 via (1[s],W (5)[r]), where s �= r + 1. From Section

4.1 we know that Y is non-E6-cr, lying in a D5-parabolic subgroup of E6, with
irreducible image in the Levi factor. Hence by Lemma 3.2, Y is non-G-cr, and thus
Y is a representative of the unique class of non-G-cr subgroups of QX.
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From Table 12, we find that dim(CL(G)(Y )) = 3, and since Y < E6 we know
that CG(Y ) contains a 1-dimensional torus. We now construct a 2-dimensional
unipotent subgroup of Q centralising a conjugate of Y ; it then follows that CG(Y )◦

has the form U2T1.
First note that Z(Q) contains a trivial X-submodule, which therefore centralises

QX, and in particular centralises every complement to Q in QX. Moreover, the
root subgroup Uα7

commutes with Q(2), since there is no root α of level 2 such that
α+α7 is also a root. Therefore, if we can show that some non-G-cr complement Z
to Q in QX is contained in Q(2)X, it follows that Uα7

also lies in CG(Z)◦.
The natural map H0(X,Q) → H0(X,Q/Q(2)) is surjective since H0(X,Q) =

Uα7
has trivial intersection with Q(2). From the long exact sequence of cohomology,

it follows that we have an exact sequence 0 → H1(X,Q(2)) → H1(X,Q) of pointed
sets, so a non-zero element of H1(X,Q(2)) gives rise to a non-zero element of
H1(X,Q). Thus there exists a non-G-cr complement Z to Q(2) in Q(2)X, and as
described in the previous paragraph we have CG(Z)◦ = U2T1.

5.5. L′ = A1D4. Let P = P23457 = QL be the unique standard A1D4-parabolic
subgroup of G. Let X,Y ∼= A1 ↪→ A1D4 via (1[r], 3[s] ⊗ 1[s+1]) (rs = 0) where
VD4

(λ4) ↓ X = VD4
(λ3) ↓ Y = 4[s] + 2[s+1]. The levels of Q are as follows:

Q/Q(2) ↓ X = (3[s] ⊗ 1[s+1]) + (1[r] ⊗ 4[s]) + (1[r] ⊗ 2[s+1]),

Q(2)/Q(3) ↓ X = (1[r] ⊗ 3[s] ⊗ 1[s+1]) + 0,

Q(3)/Q(4) ↓ X = 3[s] ⊗ 1[s+1],

Q(4) ↓ X = 0.

By Lemma 3.14, for any r and s we have VX,Q
∼= K2. The trivial module in

Q(2)/Q(3) is generated by the image of the root subgroup U0112221, which commutes
with X, hence induces a homomorphism Q/Q(2) → Q(3)/Q(4) of X-modules,
which is non-trivial since x0112221(1) does not commute with all of Q/Q(2), for
instance it does not commute with xα1

(1). This must therefore induce an isomor-
phism from the summand 3[s] ⊗ 1[s+1] to Q(3)/Q(4).

Applying Corollary 3.13, complements to Q in QX are parametrised by pairs
(k1, k2) of elements of K with k1k2 = 0. In addition, the element n0112221 of NG(T )
normalises each root subgroup in L′ and swaps Uα1

and U1112221. It follows that any
complements corresponding to (k, 0) and (0, k) are G-conjugate. Lastly, the non-
trivial action of Z(L) reduces us to the cases (k1, k2) = (1, 0) and (0, 0), by Lemma
3.25. Hence we have at most one G-conjugacy class of non-G-cr complements to Q
in QX.

With similar reasoning, there is at most one G-conjugacy class of non-G-cr com-
plements to Q in QY . Furthermore, the Weyl group element

n0112221n2234321n1n3n4n2n5n4n3n1 ∈ NG(T )

normalises Uα1
and induces an outer automorphism of L′. Hence a lift of this

element to NG(T ) conjugates each complement to Q in QY to a subgroup of QX,
and so up to conjugacy in G there is at most one non-G-cr subgroup A1 with
irreducible image in a Levi factor A1D4.
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Let Z ∼= A1 ↪→ A1D5 via (1[r], T (8)[s]). By Lemma 3.2, Z is non-G-cr. Since Z
is contained in an A1D4-parabolic subgroup of A1D5, it is contained in an A1D4-
parabolic subgroup of G. Hence Z is a representative for the unique G-conjugacy
class of non-G-cr subgroups A1 in P .

For each r and s, dim(CL(G)(Z)) = 1, and so CG(Z)◦ = CG(A1D5)
◦ = T1.

5.6. L′ = A2A3. The three standard A2A3-parabolic subgroups of G are P13567,
P13467, and P23467. LetX ∼= A1 ↪→ A2A3 via (2, 1⊗1[1]). First let P = P13567 = QL.
Then the actions of X on the levels of Q are as follows:

Q/Q(2) ↓ X = 3⊗ 1[1] + 1⊗ 1[1] + 0,

Q(2)/Q(3) ↓ X = 3⊗ 1[1] + 1⊗ 1[1],

Q(3)/Q(4) ↓ X = 4 + 2 + 2⊗ 2[1] + 0,

Q(4)/Q(5) ↓ X = 1⊗ 1[1],

Q(5)/Q(6) ↓ X = 1⊗ 1[1],

Q(6)/Q(7) ↓ X = 2.

By Lemma 3.14, we have V ∼= K2. The root group Uα2
gives rise to the trivial

L′-submodule in Q/Q(2), and does not commute with the root group Uα4
. A non-

trivial element of Uα2
therefore induces a non-trivial homomorphism of L′-modules

Q/Q(2) → Q(2)/Q(3), and hence by Corollary 3.13, parametrising complements
to Q in QX by pairs (k1, k2) of elements of K, we may assume that k1k2 = 0.
Further, using Lemma 3.25, the action of the torus Z(L) reduces us to the cases
(k1, k2) = (1, 0) or (0, 1). Lastly, the element n2 ∈ NG(T ) normalises the root
subgroups in L′ and swaps Uα4

and Uα2+α4
; hence we may assume (k1, k2) = (0, 1)

or (0, 0), and we have at most one conjugacy class of non-G-cr complements to Q
in QX.

Similar calculations hold for P13467 = Q13467L13467. We have V ∼= K2, the
modules with non-vanishing first cohomology group appearing in levels 1 and 3,
respectively generated by the images of Uα5

and U0112210. The subgroupX < L13467

commutes with elements of Q13467/Q13467(4) of the form

x1112100(t)x1111110(t)x0112110(t)x0111111(t)Q13467(4)

and these induce non-zero X-module homomorphisms

Q13467/Q13467(2) → Q13467(3)/Q13467(4).

An element of NG(T ) normalising L′ and fusing complements corresponding to
(k1, 0) and (0, k1) ∈ V is n1223221n1122100n0101100. Moreover, the element

n4n3n1n5n4n3n6n5n4n7n6n5

conjugates the root subgroups in L13467 to those in L13567, and also conjugates
U0112210 to a subgroup of Q13567. It follows that each complement to Q13467 in
Q13467X is G-conjugate to a subgroup of P13567.

In P23467 = Q23467L23467 we again have V ∼= K2, the modules with non-vanishing
first cohomology group appearing in levels 2 and 3, generated by the images of
U1011100 and U1112210. The element n1111000 ∈ NG(T ) conjugates the root sub-
groups in L23467 to those in L13467, and sends both U1011100 and U1112210 to sub-
groups of Q13467. Thus each non-G-cr subgroup of P23467 is G-conjugate to a
subgroup of P13467, hence is also conjugate to a subgroup of P13567.
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Up to G-conjugacy, there is therefore at most one non-G-cr subgroup A1 con-
tained in an A2A3-parabolic of G with irreducible image in the Levi factor. Let
Y ∼= A1 < A6 via W (6). Then Y is non-G-cr by Lemma 3.2 and is contained in an
A2A3-parabolic subgroup of A6 and hence of G. Therefore, Y is a representative
of this conjugacy class of subgroups.

Now, from Table 12, CL(G)(Y ) is 3-dimensional. Also, CG(Y )◦ contains the
1-dimensional torus CG(A6)

◦. Moreover, with similar considerations to those in
Section 5.4 we see that a complement X[0,1] ≤ Q(2)L13567 commutes with Uα2

as
well as with the 1-dimensional subgroup giving rise to the trivial submodule in
Q(3)/Q(4); hence CG(X[0,1])

◦ = U2T1.

5.7. L′ = A2
1A3. The three standard A2

1A3-parabolic subgroups of G are P12567,
P12457, and P23567. Let X,Y ↪→ A2

1A3 via (1[r], 1[s+1], 3[s]) and (1[s+1], 1[r], 3[s])
respectively (rs = 0 in both cases), and let Z ∼= A1 ↪→ A2

1A3 via (1, 1, 1 ⊗ 1[1]).
First consider P12567 = P = QL. Then L′ acts on the levels of Q as follows:

Q/Q(2) ↓ L′ = (1, 0, 000) + (0, 1, 100),

Q(2)/Q(3) ↓ L′ = (1, 1, 100),

Q(3)/Q(4) ↓ L′ = (1, 0, 010),

Q(4)/Q(5) ↓ L′ = (0, 0, 010),

Q(5)/Q(6) ↓ L′ = (0, 1, 001),

Q(6)/Q(7) ↓ L′ = (0, 0, 000),

Q(7) ↓ L′ = (1, 0, 000).

From Lemma 3.14 it follows that VX,Q
∼= K2, VY,Q = 0, and VZ,Q

∼= K. Both
X and Z have summands in some level with a non-vanishing second cohomology
group. We first analyse complements to Q in QX.

Note first that Q(4)/Q(5) ↓ X = 4[s] + 0. We can identify the following positive
and negative root elements of X:

x+(t) = xα1
(t5

r

)xα2
(t5

s+1

)xα5
(t5

s

)xα6
(t5

s

)xα7
(t5

s

)

× x0000110(2t
2(5s))x0000011(2t

2(5s))x0000111(3t
3(5s)),

x−(t) = x−α1
(t5

r

)x−α2
(t5

s+1

)x−α5
(3t5

s

)x−α6
(4t5

s

)x−α7
(3t5

s

)

× x−0000110(t
2(5s))x−0000011(t

2(5s))x−0000111(3t
3(5s)),

and these elements commute with every element of Q(4) of the form x1122210(u)
x1122111(u). If u �= 0, then this element does not commute with Uα7

and there-
fore induces a non-trivial homomorphism of X-modules Q/Q(2) → Q(5)/Q(6).
Therefore, applying Corollary 3.13 and Lemma 3.25, there are at most two con-
jugacy classes of non-G-cr complements to Q in QX, corresponding to (1, 0) and
(0, 1) ∈ VX,Q. Furthermore, the element n1122100n1122221n6n5n7n6 ∈ NG(T ) sta-
bilises the set of root subgroups in L′, inducing an outer automorphism on the A3

factor. This element also swaps the root subgroups Uα4
and U1123210. Since the

images of these root groups generate the two X-modules with non-vanishing first
cohomology group, a lift of this Weyl group element exchanges complements to Q
in QX corresponding to (1, 0) and (0, 1) ∈ V.

Since VY,Q = 0, all complements to Q in QY are Q-conjugate to Y . Also, with
similar calculations to those of Section 5.2, we find that a cocycle Z → Q(2)/Q(3)
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lifts to a cocycle Z → Q(2) only if it is a coboundary. Hence every complement to
Q in QZ is Q-conjugate to Z.

Now consider P12457. With identical arguments, we find that there are no non-
G-cr complements to Q12457 in Q12457Y or Q12457Z, and that there is exactly one
G-conjugacy class of non-G-cr complements toQ12457 in Q12457X. Moreover, the el-
ement n1234321n1n3n4n2n5n4n3n6n5n4n2n7n6n5n4n3 ∈ NG(T ) conjugates the root
subgroups of L12457 to those in L12567, and sends the subgroup X < L12457 to the
corresponding subgroup of L12567. This element also conjugates Uα6

, which gives
rise to the module in Q12457 with non-vanishing first cohomology group, to Uα4

,
and hence complements to Q in Q12457X are G-conjugate to subgroups of P12567.

An entirely similar argument shows that for P23567 there are no non-G-cr comple-
ments to Q23567 in Q23567X or Q23567Z, and there is exactly one G-conjugacy class
of non-G-cr complements to Q23567 in Q23567Y . Moreover, the element n3n1 ∈
NG(T ) conjugates L′

23567 to L′
12567, sending Y < L′

23567 to the subgroup X <
L′
12567. This also fixes U1123210, hence complements to Q23567 in Q23567Y are also

conjugate to a subgroup of P12567.
Therefore, for each r and s, there is at most one G-conjugacy class of non-

G-cr subgroups A1 with irreducible image in a Levi factor of type A2
1A3. Let

A ∼= A1 ↪→ A1A5 via (1[r],W (5)[s]). Then A is non-G-cr by Lemma 3.2 and is
contained in an A2

1A3-parabolic subgroup of the Levi A1A5 and hence in an A2
1A3-

parabolic subgroup of G. It is also clear from Table 12 that distinct choices of
(r, s) lead to non-conjugate subgroups of G, and thus each G-conjugacy class above
exists.

Finally, the complement X[0,1] to Q in QX < P12567 above commutes with
the 2-dimensional subgroup 〈U1224321, x1122210(t)x1122111(t) : t ∈ K〉. Since A lies
in a Levi subgroup A1A5, we see CG(A)◦ contains a 1-dimensional torus, hence
CG(A)◦ = U2T1.

5.8. L′ = A3
1A2. Let P = P12357 = QL be the unique standard A3

1A2-parabolic
subgroup of G. Let X ∼= A1 ↪→ A3

1A2 via (1[r], 1[s], 1[t], 2[u]). The action of L′ on
the levels of Q is as follows:

Q/Q(2) ↓ L′ = (1, 1, 0, 01) + (0, 1, 1, 00),

Q(2)/Q(3) ↓ L′ = (1, 0, 1, 01) + (0, 0, 0, 10),

Q(3)/Q(4) ↓ L′ = (0, 1, 1, 10),

Q(4)/Q(5) ↓ L′ = (0, 0, 0, 10) + (1, 0, 1, 00),

Q(5)/Q(6) ↓ L′ = (1, 1, 0, 00),

Q(6) ↓ L′ = (0, 0, 0, 01).

We may assume rstu = 0. If u = r = s−1 or u = s = r−1, then H1(X,Q/Q(2)) ∼=
K, and similarly if u = r = t − 1 or u = t = r − 1, then H1(X,Q(2)/Q(3)) ∼= K,
and if u = s = t− 1 or u = t = s− 1, then H1(X,Q(3)/Q(4)) ∼= K. Each of these
cohomology groups vanishes if neither of the two corresponding conditions holds,
and no other X-module occurring can have non-zero first cohomology group. Hence
V �= 0 if and only if (r, s, t) is a permutation of (u, u+1, a) for some a ∈ K. In this
case, V ∼= K unless a = u or a = u+ 1, in which case V ∼= K2 and u = 0.

If V ∼= K, then by Lemma 3.25 there is at most one G-conjugacy class of non-G-cr
complements to Q in QX.
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Now suppose V ∼= K2, so that u = 0 and (r, s, t) is a permutation of (1, 0, 0) or
(1, 1, 0). If s = t, or if s �= t but r = s = 0, then there is a trivial X-submodule in
level 1, inducing non-zero X-module homomorphisms Q/Q(2) → Q(2)/Q(3) and
Q(2)/Q(3) → Q(3)/Q(4). If s �= t and r = s = 1, then level 5 contains an X-
direct summand 2[1], which has non-vanishing second cohomology group. Finally,
if s �= t and r �= s, then either r = t = 1 and level 4 contains an X-direct summand
2[1], or r = t = 0 and level 2 contains a trivial submodule, inducing a non-zero
homomorphism of X-modules Q/Q(2) → Q(3)/Q(4).

With similar calculations to previous sections, using the above paragraph we find
that whenever V ∼= K2, so that complements are parametrised by (k1, k2) ∈ K2,
then either k1k2 = 0 is necessary for the partial map ρ : V → H1(X,Q) to be
defined, or Corollary 3.13 applies and a complement to Q in QX corresponding to
(k1, k2) is Q-conjugate to one corresponding to either (k1, 0) or (0, k2). Applying
Lemma 3.25 reduces us to (k1, k2) = (1, 0) or (0, 1) or (0, 0).

Next, the element n6n5n7n6 ∈ NG(T ) stabilises the set of root subgroups con-
tained in L, swapping those in the second and third A1 factors, and also swaps
Uα4

and U0001110, which give rise to the modules in levels 1 and 2 with non-
vanishing first cohomology group. Similarly, the element n0112100n1n3n4n2n5n4

swaps the root subgroups in the first two A1 factors and swaps U0001110 and U0112110

which give rise to the relevant modules in levels 2 and 3, and finally the element
n0112221n1011110n1111111n1n2n3n7 swaps the root subgroups in the first and third
A1 factors, and swaps the appropriate root subgroups in levels 1 and 3. It follows
that for each (r, s, t, u) there is at most one non-G-cr complement to Q in QX, up
to conjugacy in G, and furthermore, the six potential non-G-cr subgroups corre-
sponding to permutations of (r, s, t) are all conjugate in G. Hence there exists at
most one non-G-cr subgroup A1 of P with irreducible image in the Levi factor, for
each set of twists (u, u+ 1, a, u) with ua = 0.

Let Y ∼= A1 ↪→ A1D5 via (1[a], T (6)[u]), where ua = 0. By Lemma 3.2, Y is
non-G-cr. Moreover, Y is contained in an A3

1A2-parabolic subgroup of A1D5 and
hence of G. Therefore, Y is a representative of the conjugacy class found in the
above analysis.

From Table 12 we see that CL(G)(Y )) has dimension 1 if a �= u, u + 1; 2 if
a = u+ 1; and 3 if a = u. In each case, CG(Y )◦ ≥ CG(A1D5)

◦ = T1.
If X above corresponds to twists (0, 1, 1, 0), then we check that X centralises

the abelian group {x0000110(c)x0000011(c) : c ∈ K}, which also commutes with the
root groups giving rise to the module in level 2 with non-vanishing first cohomology
group. If instead X corresponds to twists (0, 1, 0, 0) we check that X centralises
the 2-dimensional unipotent group{

x1011110(c)x0111110(−c)x0101111(3c)x0011111(c)x1112221(c
2)

× x1223210(d)x1123211(d)
: c, d ∈ K

}

which also commutes with the root subgroups giving rise to the X-module in level
3 with non-zero first cohomology group.

It follows that CG(Y )◦ = T1 if a �= u, u + 1; CG(Y )◦ = U1T1 if a = u + 1; and
CG(Y )◦ = U2T1 if a = u.

5.9. L′ = D4. Let P = P2345 = QL be the unique standard D4-parabolic subgroup
of G. Let X, Y , Z be representatives of the three L′-conjugacy classes of L′-
irreducible subgroups, with X (resp., Y , Z) acting on VD4

(λ1) (resp., VD4
(λ3),
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VD4
(λ4)) as 4 + 2[1] (in this case, the remaining 8-dimensional modules VD4

(λi)
restrict as 3⊗ 1[1]). The action of D4 on the levels of Q is as follows:

Q/Q(2) ↓ L′ = λ3 + λ4 + 0,

Q(2)/Q(3) ↓ L′ = λ1 + λ4,

Q(3)/Q(4) ↓ L′ = λ1 + 0,

Q(4)/Q(5) ↓ L′ = λ3,

Q(5)/Q(6) ↓ L′ = 0.

Reading left-to-right and down the levels, the non-trivial L′-modules are generated
by the images of the root groups Uα1

, Uα6
, U1011110, U0000011, U1011111, and U1112221.

The element w
def
= n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1 ∈ NG(T ) induces a tri-

ality automorphism on L′ and sends U0000011 → U1112221 → U1011111 → U0000011.
This element will shortly be used to show that all non-G-cr subgroups A1 of QL
are conjugate to a subgroup of QX.

Now, VX,Q
∼= VY,Q

∼= VZ,Q
∼= K4. The trivial summands in levels 1 and 3 are

respectively generated by the root groups Uα7
and U0112221, inducing isomorphisms

between the L′-modules of high weight λ4 in levels 1 and 2 and between the modules
of high weight λ1 in levels 2 and 3, and between the modules of high weight λ3 in
levels 1 and 4.

First consider X. Then H1(X,Q/Q(2)) ∼= K2, and H1(X,Q(2)/Q(3)) ∼=
H1(X,Q(4)/Q(5)) ∼= K, and also H2(X,Q(2)/Q(3)) ∼= H2(X,Q(3)/Q(4)) ∼= K.
With similar calculations to Section 4.2, we find that a cocycle corresponding to
(k1, k2) ∈ H1(X,Q/Q(2)) lifts to a cocycle X → Q/Q(3) only if k1k2 = 0, and
also a cocycle X → Q/Q(3) corresponding to (k1, k2, k3) lifts to Q/Q(4) only if
k1k3 = 0. Moreover, using the isomorphisms of L′-modules coming from Uα7

and
U0112221, if cocycles X → Q are parametrised by (k1, k2, k3, k4) ∈ V, then we may
assume that k2k3 = k1k4 = 0.

Next, the element n7 ∈ NG(T ) normalises the root subgroups in L′ and the
positive root groups giving rise to L-modules of high weight λ3 in the filtration
of Q, while exchanging the root groups giving rise to the two L-modules of high
weight λ4. Hence a complement to Q in QX corresponding to (k1, k2, k3, k4) ∈ V is
G-conjugate to one corresponding to (k1, k3, k2, k4). Similarly, the element n0112221

normalises the root subgroups in L′ and swaps the positive root groups which give
rise to the two X-modules of high weight λ3, and so a complement corresponding to
(0, 0, 0, k4) is G-conjugate to one corresponding to (k4, 0, 0, 0). Finally, the element
n1122210n1112110 normalises L′ and U1011111, and sends U0000011 to U1122221 (level
4) and sends U1112221 to U0000111 (level 2). It follows that complements to X in
QX corresponding to (0, 0, k3, k4) and (0, 0, k4, k3) are G-conjugate.

Putting this together and applying Lemma 3.25, it follows that there are at
most two non-G-cr complements to Q in QX up to G-conjugacy, corresponding
to (k1, k2, k3, k4) = (0, 0, 0, 1) and (0, 0, 1, 1). Similar reasoning gives the same
conclusion for QY and QZ, hence each of these contains at most two non-G-cr
complements to Q up to conjugacy in G. Moreover, these complements each cor-
respond to 4-tuples (k1, k2, k3, k4) of elements of K with at most two non-zero
entries, thus these complements lie in the subgroup 〈Uα, Uβ , L〉 for two appropriate
positive roots α, β ∈ {α1, α6, 1011110, 0000011, 1011111, 1112221}. The element w
above now conjugates X → Z → Y and also permutes the positive root groups
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appropriately, and hence each complement to Q in QY or QZ is G-conjugate to
a subgroup of QX. Thus there are at most two G-conjugacy classes of non-G-cr
subgroups A1 in a D4-parabolic subgroup with irreducible image in the Levi factor.

Let A ∼= A1 < D5 via T (8) and B ∼= A1 ↪→ A1A
′
5 via (1[1],W (5)) (recall that

A1A
′
5 is the conjugacy class of A1A5 subgroups contained in E6). Then A and B

are non-G-cr by Lemma 3.2. Moreover, A is contained in a D4-parabolic subgroup
of D5 and hence in a D4-parabolic subgroup of G, and B is contained in a D4-
parabolic subgroup of E6 by Theorem 1 and hence in a D4-parabolic subgroup of
G. From Table 12, we find that A and B are not GL56-conjugate and hence are
not G-conjugate. Therefore, A and B are representatives of the two G-conjugacy
classes of non-G-cr subgroups in D4-parabolic subgroups.

From Table 12, dim(CL(G)(A)) = 6 and dim(CL(G)(B)) = 4. Also CG(A)◦ ≥
CG(D5)

◦ = A1T1, and CG(B)◦ ≥ CG(A1A
′
5) = T1. Now, in the above analysis

we have shown that a complement to Q in QX is G-conjugate to a subgroup of
〈U0000011, U1011111, X〉. But each of these three groups commutes with each of
the positive root groups Uα7

, U0112221, and U2234321, so each complement to X in
QX must centralise a 3-dimensional unipotent group generated by positive root
elements. It follows that CG(A)◦ = U2A1T1 and CG(B)◦ = U3T1.

5.10. L′ = A1A3. There are 11 standard A1A3-parabolic subgroups of G. The
corresponding Levi factors fall into two conjugacy classes; nine standard parabolic
subgroups have Levi factor conjugate to L1567, and two have Levi factor conjugate
to L2567. For each standard parabolic P = QL, we need to consider X ↪→ L via
(1[1], 3).

Let P = QL be a standard parabolic subgroup whose Levi factor is G-conjugate
to L1567. Then for each of the nine choices of P , we get V ∼= K2. In each case, one
of two scenarios occurs:

Case 1). There exists a root element in Q, centralised by L′, inducing a non-zero
isomorphism between the two modules 3⊗ 1[1] in the filtration of Q, and there also
exists an element of NG(T ) which fixes the root subgroups in L′ and swaps the root
subgroups giving rise to these two X-modules. By Corollary 3.13 and Lemma 3.25,
in this case, up to G-conjugacy there exists at most one non-G-cr complement to
Q in QX, corresponding to (0, 1) ∈ V.

Case 2). There exists an L′-module (0, λ2) in some level Vj = Q(j)/Q(j + 1) of

Q, which restricts to X as
∧2

(3) = 4 + 0. In this case, the 1-dimensional trivial
submodule lifts to an X-invariant subgroup {xα(c)xβ(kc) : c ∈ K} ⊆ QX for some
pair of roots α, β and some fixed k ∈ K; again we get a non-zero homomorphism
of X-modules between the two modules 3 ⊗ 1[1] occurring in the filtration of Q.
Furthermore there exists an element of NG(T ) stabilising the root subgroups in L
and swapping the appropriate root subgroups in Q, and so by Corollary 3.13 and
Lemma 3.25, up to G-conjugacy there exists at most one non-G-cr complement to
Q in QX, corresponding to (0, 1) ∈ V.

Finally, for each of these nine parabolics, there exists an element of NG(T )
sending root subgroups of the standard Levi factor to those of L1567, and also
sending the root subgroups generating one of the modules 3⊗1[1] to the appropriate
root subgroups in Q1567. It follows that all non-G-cr subgroups A1 of these nine
A1A3-parabolic subgroups of G, with irreducible image in the Levi factor, are G-
conjugate.
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Next consider the two remaining standard parabolics, P2567 and P2457, whose
Levi factors are G-conjugate. Then for each, we get V ∼= K4. In P2567, we find that
the subgroup X < L given by the root elements

x+(t) = xα2
(t5)xα5

(t)xα6
(2t)xα7

(3t)x0000110(4t
2)x0000011(2t

2)x0000111(3t
3),

x−(t) = x−α2
(t5)x−α5

(3t)x−α6
(2t)x−α7

(t)x−0000110(3t
2)x−0000011(t

2)x−0000111(3t
3)

commutes with the 9-dimensional unipotent subgroup of Q given by{
x0112210(a)x0112111(3a)x1112210(b)x1112111(3b)

× x1122210(c)x1122111(3c)
: a, b, c ∈ K

}

× Uα1
Uα2

Uα3
U1224321U1234321U2234321,

and this group induces non-zero X-module homomorphisms between each pair of
modules in Q with non-vanishing first cohomology group. By Proposition 3.12 and
Lemma 3.25, every complement to Q in QX is G-conjugate to one corresponding
to the vector (k1, k2, k3, k4) ∈ V where at most one coordinate is non-zero. Further-
more, for each pair of modules 3⊗ 1[1] occurring in the filtration of Q, there exists
an element of NG(T ) sending the root subgroups giving rise to one module to those
giving rise to the other. It follows that up to G-conjugacy there is at most one
non-G-cr subgroup A1 in P2567 with irreducible image in the Levi factor. Entirely
similar calculations hold for the parabolic subgroup P2457, and furthermore the el-
ement n3n4n2n5n4n3n6n5n4n2n7n6n5n4n3 ∈ NG(T ) sends the root subgroups in
L2457 to those in L2567, and also sends Uα6

to Uα4
. Since these each give rise to

an X-module 3 ⊗ 1[1] in the filtration of the corresponding unipotent radical, it
follows that the classes of non-G-cr subgroups A1 arising in each of these parabolic
subgroups are G-conjugate.

Let Y ∼= A1 < A′
5 via W (5), and let Z ∼= A1 < A5 via W (5). Then Y and

Z are non-G-cr by Lemma 3.2, and considering their composition factors on L(G)
and V56 tells us that that Y and Z are not conjugate in G, and also that Y lies
in a parabolic subgroup whose Levi factor is G-conjugate to L1567, and Z lies in a
parabolic subgroup whose Levi factor is G-conjugate to L2567. Hence each of the
two possible classes of non-G-cr subgroups above exists.

From Table 12, dim(CL(G)(Y )) = 6 and so dim(CG(Y )◦) ≤ 6. Also, CG(Y )◦ ≥
CG(A

′
5)

◦ = A1T1. Moreover in P1567, the root subgroups giving rise to anX-module
3 ⊗ 1[1] in Q(3)/Q(4) each commute with the elements xα2

(c), x1224321(c) and
x1122210(c)x1122111(3c), for all c ∈ K, which generate the 3-dimensional unipotent
subgroup QX . Since A1 < CG(A

′
5) does not contain a 2-dimensional unipotent

subgroup, it follows that CG(Y )◦ = U2A1T1.
Similarly, from Table 12, dim(CL(G)(Z)) = 14 and so dim(CG(Z)◦) ≤ 14. Also

CG(Z)◦ ≥ CG(A5)
◦ = A2. Above, we have found a 9-dimensional subgroup of

Q2567 centralised by X < L2567. On the other hand, let l be maximal such that
Q2567(l) contains a module 3 ⊗ 1[1] (in fact l = 6 here). Then any complement to
Q2567(l) in Q2567(l)X must commute with all of QX

2567, since each element of this
induces a homomorphism Q2567(l) → Q2567(l + j) for some j, which must be the
zero map by maximality of l. Hence a non-G-cr complement to Q2567 in Q2567X,
which we have shown is conjugate to a subgroup of Q2567(l)X by an element of
NG(T ), centralises a 9-dimensional unipotent subgroup generated by positive root
elements. Since A2 does not contain a 4-dimensional unipotent subgroup, it follows
that CG(Z)◦ = U6A2.
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5.11. L′ = A2
1A2. There are 12 standard A2

1A2-parabolic subgroups of G. Let
X,Y ∼= A1 ↪→ A2

1A2 via (1, 1
[1], 2) and (1[1], 1, 2) respectively. In each such standard

parabolic subgroup P = QL, there is precisely one level of Q containing an A2
1A2-

module of the form (1, 1, 10) or (1, 1, 01), and it follows that V ∼= K in each case.
In the standard parabolic subgroup P1235 = Q1235L1235, the module (1, 1, 01) is
generated as an X-module by the image of the root group Uα4

. Then the element
n0112221n2234321n1n3n4n2n5n4n3n1 ∈ NG(T ) fixes Uα4

and swaps the A1 factors of
L1235, hence each complement to Q1235 in Q1235X is G-conjugate to a subgroup of
Q1235Y .

For P equal to each of the other 11 standard parabolic subgroups, the following
element of the Weyl group sends the roots of the standard Levi subgroup of P to
the roots in L1235 and also sends a positive root α, whose root group generates
the X-module (1, 1, 01) or (1, 1, 10), to α4. Thus a lift of this element conjugates
non-G-cr subgroups of these standard parabolics to subgroups of P1235. See Table 8.

Table 8.

P Root α Element of NG(T )

P1457 0111110 n6n5n4n2n3n1n4n3n7n6n5n4n2

P2367 0001100 n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5

P1357 0112110 n0112221n1011111n1111110n1n2n3

P1256 0011000 n6n5n4n2n3n1n4n3n5n4n2n6n5n4

P1236 0001100 n6n5

P1467 0111100 n0112221n1011110n0101110n2n3n4n5

P2356 α4 n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1

P1267 0011100 n6n5n4n2n3n1n4n3n5n4n2n6n5n4n7n6n5

P1237 0001110 n6n5n7n6

P1247 0011110 n6n5n4n2n3n1n4n3n7n6

P1246 0011100 n6n5n4n2n3n1n4n3

And therefore there is at most one G-conjugacy class of non-G-cr subgroups A1

in an A2
1A2-parabolic subgroup with irreducible image in a Levi factor.

Let Z ∼= A1 < D5 via T (6). Then Z lies in an A2
1A2-parabolic subgroup of the

Levi subgroup D5 and is non-D5-cr. Hence Z lies in an A2
1A2-parabolic subgroup

of G, and by Lemma 3.2 it is non-G-cr. From Table 12, dim(CL(G)(Z)) = 4, and
so CG(Z)◦ = CG(D5)

◦ = A1T1.

6. Proof of Theorem 2: G = E7, p = 7

In this section we prove Theorem 2 in the case p = 7, in which case both A1 and
G2 subgroups occur. The starting point is the following lemma.

Lemma 6.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type A1 or G2. If there exists a parabolic subgroup P of G with Levi factor L
and unipotent radical Q, such that H1(X,M ↓ X) �= 0 for some level M of Q, then
X and the type of L′ appear in Table 9.
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Table 9. L′-irreducible X with H1(X,M ↓ X) �= 0.

L′ Embedding of X

E6 X ∼= G2, see Proposition 3.7

X ∼= A1 ↪→ A1A5 via (1[1], 5)

A1A2A3 X ∼= A1 ↪→ A1A2A3 via (1[1], 2, 3)

Proof. This follows in the same manner as Lemma 4.1, where the classes of sub-
groups X ∼= G2 follow from Proposition 3.7. We note that X ∼= G2 < A6 via
10 has a composition factor 20 on VA6

(λ3). This module occurs in the filtra-
tion of the unipotent radical of an A6-parabolic and has non-vanishing first co-
homology group by Lemma 3.17(iii). However, VA6

(λ3) =
∧3(VA6

(λ1)), hence

VA6
(λ3) ↓ X =

∧3
(VG2

(10)) is tilting, by Lemma 3.18(iii). By Lemma 3.18(iv), it
follows that H1(X,VA6

(λ3) ↓ X) = 0. �

6.1. L′ = E6. The unique standard E6-parabolic subgroup of G is P = P123456 =
QL. In this case Q is an irreducible L′-module of high weight λ1. First, let X ∼=
A1 ↪→ A1A

′
5 via (1[1], 5). Since VE6

(λ1) ↓ A1A
′
5 = (1, λ1) + (0, λ4), it follows that

VE6
(λ1) ↓ X = (1[1]⊗ 5)+T (8)+0. Therefore, H1(X,Q) ∼= K and by Lemma 3.25

we find that there is exactly one G-conjugacy class of non-G-cr complements to Q
in QX. Let A ∼= A1 < A7 via W (7). Then A is non-G-cr by Lemma 3.2 and is
contained in an A1A5-parabolic subgroup of A7, and therefore in an E6-parabolic
subgroup of G. Thus Y is a representative of this class of non-G-cr subgroups of
P .

Still with P = QL as above, we now let Y be the L′-irreducible subgroup of
L′ of type G2. Then Y is contained in a subgroup F4 of L′, and hence VE6

(λ1) ↓
Y = 20 + 00. By Lemma 3.17, H1(Y,Q) ∼= K and thus by Lemma 3.25 we have
exactly one G-conjugacy class of non-G-cr complements to Q in QY . We let B
be a representative of such a non-G-cr complement and now prove that B is not
properly contained in any proper connected reductive subgroup of G. Suppose that
H is maximal among proper reductive subgroups of G containing B. Using Lemma
3.3, the restriction V56 ↓ B = T (20)2 as given in Table 14, and the restrictions in
[18, Tables 8.2, 8.6], we see that H must be simple of type A7. But this implies
that B stabilises a 1-space on VA7

(λ1), since the only non-trivial irreducible G2-
modules of dimension at most 8 are Frobenius twists of the 7-dimensional module
10. Thus B lies in an A6-parabolic subgroup of H; but V56 ↓ A6 = λ1/λ2/λ5/λ6

by [18, Table 8.6], which implies that V56 ↓ B has a 7-dimensional section as a
B-module; a contradiction. Thus B does not lie in any proper reductive subgroup
of G.

Now dim(CL(G)(A)) = dim(CL(G)(B)) = 1; since Q is abelian and contains a
1-dimensional trivial L′-submodule, this submodule is a 1-dimensional unipotent
group centralised by A and by B. Thus CG(A)◦ = CG(B)◦ = U1.

For use later in Section 9 when computing the restriction of G-modules V56

and L(G) to B, we now show that a conjugate of A is in fact a subgroup of B.
We let Z be a maximal subgroup A1 of Y , so that VG2

(10) ↓ Z = 6. Since
VG2

(10) is tilting and p > 2, by considering weight multiplicities it follows that the
symmetric square S2(VG2

(10)) = T (20). Since the Z-module 6 is tilting, it follows
that S2(6) = T (12) + T (8), and therefore Q ↓ Z = 12 + T (8) + 0. This shows two
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things: First, Z is L′-irreducible, since its composition factors on Q = VE6
(λ1) are

incompatible with the actions of every proper Levi subgroup of L′ (see [18, Table
8.7]), and furthermore H1(Z,Q) ∼= K. Thus Z is L′-conjugate to the subgroup X
above, so without loss of generality we assume Z = X. Second, there exists a non-
trivial extension of Y -modules V = 00|20 such that V ↓ Z = (0|12)+T (8) does not
contain a trivial submodule. Since H1(Y, 20) and H1(Z, 12) are each 1-dimensional,
the restriction map H1(Y, 20) → H1(Z, 12) is an isomorphism of vector spaces. In
particular each non-G-cr complement to X in QX lies in a non-G-cr complement
to Z in QZ and it follows that a conjugate of A is contained in B.

6.2. L′ = A1A2A3. Let P = P123567 = QL by the unique standard A1A2A3-
parabolic subgroup of G. Let X ∼= A1 ↪→ A1A2A3 via (1[1], 2, 3). Using Lemma
3.14 as in previous calculations, we find that H1(X,Q/Q(2)) ∼= K, while the cor-
responding cohomology group for the other levels of Q vanishes. By Lemma 3.25,
there is at most one conjugacy class of non-G-cr subgroups in QX.

Let Y ∼= A1 ↪→ A1G2 via (1, 6) and Z ∼= A1 ↪→ G2C3 via (6, 5). Using the
restrictions of L(G) and VG(λ7) to A1G2 and G2C3 as given in [20, Table 10.1,
10.2], we find that the action of Y and Z on these modules is as given in Table
13. In particular, Y and Z each fix a non-zero element of VG(λ7), and therefore
lie in a proper subgroup of dimension at least 133 − 56 = 77; all such subgroups
are contained in parabolics. Furthermore dim(CL(G)(Y )) = 0, and so Y and Z
cannot centralise a non-trivial torus of G, and thus do not lie in a proper Levi
subgroup. Hence Y and Z are non-G-cr. Since the action of Y and Z on L(G)
does not agree with a non-G-cr subgroup A1 in a parabolic subgroup of type E6,
we deduce that Y and Z lie in a parabolic subgroup of type A1A2A3 and hence
both are representatives of the unique class above.

Since dim(CL(G)(Y )) = 0 we deduce that CG(Y )◦ = 1.

7. Proof of Theorem 3: G = E8, p = 7

In this section we prove Theorem 3. As in the previous sections, the starting point
is the following lemma, which determines parabolics P = QL of G and L-irreducible
subgroups X such that H1(X,Q) may be non-zero. The proof is identical to that
of Lemma 6.1.

Lemma 7.1. Let L be a Levi subgroup of G containing an L-irreducible subgroup
X of type A1 or G2. If there exists a parabolic subgroup P of G with Levi factor L
and unipotent radical Q, such that H1(X,M ↓ X) �= 0 for some level M of Q, then
X and the type of L′ appear in Table 10.

Table 10. L′-irreducible X with H1(X,M ↓ X) �= 0.

L′ Embedding of X

D7 X ∼= G2 < D7 via 01 (two L′-conjugacy classes)

A1E6 X ∼= A1 ↪→ A1A1A5 < A1E6 via (1[r], 1[s+1], 1[s]) (rs = 0)

A2D5 X ∼= A1 ↪→ A2D5 via (2[r], 4[r] + 1[r+1] ⊗ 1[s]) (rs = 0; r + 1 �= s)

A3A4 X ∼= A1 ↪→ A3A4 via (1⊗ 1[1], 4)

E6 X ∼= A1 ↪→ A1A5 via (1[1], 5)

X ∼= G2, see Proposition 3.7
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D6 X ∼= A1 < D6 via 1[1] ⊗ 5 (two L′-conjugacy classes)

A1A5 X ∼= A1 ↪→ A1A5 via (1[1], 5)

A2D4 X ∼= A1 ↪→ A2D4 via (2, 4 + 2[1])

X ∼= A1 ↪→ A2D4 via (2, 3⊗ 1[1]) (two L′-conjugacy classes)

A2
1A4 X ∼= A1 ↪→ A2

1A4 via (1, 1[1], 4)

X ∼= A1 ↪→ A2
1A4 via (1[1], 1, 4)

A1A2A3 X ∼= A1 ↪→ A1A2A3 via (1[1], 2, 3)

7.1. L′ = D7. Let P = P2345678 = QL be the unique standard D7-parabolic sub-
group of G. Let X ∼= G2 < L′ with VD7

(λ1) ↓ X = 01. Then there are two
L-conjugacy classes of such subgroups in D7, which are distinguished by their ac-
tion on VD7

(λ7). Indeed, as outlined in Section 9, if X and Y are representatives of
these subgroup classes, then we can verify computationally that VD7

(λ7) ↓ X and
VD7

(λ7) ↓ Y are uniserial with two composition factors, of dimension 26 and 38,
and we can therefore pick VD7

(λ7) ↓ X = 11|20 and VD7
(λ7) ↓ Y = 20|11.

Now Q has two levels, and as L′-modules we have Q/Q(2) = λ7 and Q(2) = λ1.
By Lemma 3.17(i) and Lemma 3.18(iv) we have H1(X,Q(2)) = H1(Y,Q(2)) = 0.
By Lemma 3.17(iii) and (iv) we have W (20) = 20|00 and W (11) = 11|20. This
implies that H1(G2, 20) ∼= K and H1(G2, 11) = H0(G2, 11) = 0. From the long
exact sequence of cohomology induced from 20 ↪→ 11|20 � 11, we deduce that
H1(G2, 11|20) ∼= H1(G2, 20) ∼= K. Now assume that H1(G2, 20|11) �= 0. If V is
a corresponding indecomposable extension of 20|11 by the trivial module, then V ∗

has shape 11|(20/00). Since all high weights here are less than 11, this module
is an image of W (11), which is absurd. Therefore H1(G2, 20|11) = 0. We have
just shown that H1(X,Q/Q(2)) ∼= K and H1(Y,Q/Q(2)) = 0. Hence VX,Q

∼= K
and VY,Q = 0, and by Lemma 3.25 there exists at most one G-conjugacy class of
non-G-cr complements to Q in QX, and none in QY .

Consider Z = G2 ↪→ G2G2 < G2F4 via (10, 10), where the second factor G2 is
maximal in F4. By [36, Lemma 7.13], Z is contained in a D7-parabolic subgroup
of G. Furthermore, from Table 15 we see that L(G) ↓ Z has no non-zero trivial
submodules and hence Z is not contained in any Levi subgroup of G. Therefore,
Z is a representative of the conjugacy class of non-G-cr subgroups in QX. Since
dim(CL(G)(Z)) = 0, it follows that CG(Z)◦ = 1.

7.2. L′ = A1E6. Let P = P1234568 = QL be the unique standard A1E6-parabolic
subgroup of G. Let X ∼= A1 ↪→ A1A1A5 < A1E6 via (1[r], 1[s+1], 1[s]) (rs = 0).
Then Q has three levels, and H1(X,Q(2)/Q(3)) ∼= K, while the corresponding
group for the other levels vanishes. Applying Lemma 3.25, there is at most one
G-conjugacy class of non-G-cr subgroups in QX.

Now consider Y ∼= A1 ↪→ A1A7 via (1[r],W (7)[s]), where A7 is a maximal con-
nected subgroup of an E7 Levi subgroup of G. Then Y is non-G-cr by Lemma
3.2 and Y is contained in an A1E6-parabolic subgroup of A1E7 and hence of G.
Therefore Y is a representative of the conjugacy class of non-G-cr complements to
Q in QX.

From Table 15, dim(CL(G)(Y )) = 1. Since the image of Y in A7 is non-E7-cr,
by Table 13 this image centralises a 1-dimensional unipotent subgroup of E7, and
it follows that CG(Y )◦ = U1.
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7.3. L′ = A2D5. Let P = P1234578 = QL be the unique standard A2D5-parabolic
subgroup of G. Let X ∼= A1 ↪→ A2D5 via (2[r], 4[r] + 1[r+1] ⊗ 1[s] + 0) (rs = 0;
r + 1 �= s). The action of X on the levels of Q is as follows:

Q/Q(2) ↓ X = 5[r] ⊗ 1[r+1] + 3[r] ⊗ 1[r+1] + 1[r] ⊗ 1[r+1] + 5[r] ⊗ 1[s] + 3[r] ⊗ 1[s]

+ 1[r] ⊗ 1[s],

Q(2)/Q(3) ↓ X = 6[r] + 4[r] + 2[r] ⊗ 1[r+1] ⊗ 1[s] + (2[r])2,

Q(3)/Q(4) ↓ X = 3[r] ⊗ 1[r+1] + 3[r] ⊗ 1[s],

Q(4)/Q(5) ↓ X = 2[r].

We see that VX,Q
∼= K, the unique module with non-vanishing first cohomology

group occurring in level 1. Applying Lemma 3.25 there is at most one non-G-cr
complement to Q in QX, for each r and s, up to G-conjugacy.

Let Y ∼= A1 ↪→ A1A1G2 < A1E7 via (1[s], 1[r], 6[r]) (rs = 0; r �= s + 1). From
Section 6.2 we know that the image of Y in E7 is non-E7-cr. By [3, Lemma 2.12],
it follows that Y is non-A1E7-cr, and since A1E7 is a subsystem subgroup of G,
by Lemma 3.2 we conclude that Y is non-G-cr. The image of Y in E7 lies in an
A1A2A3-parabolic subgroup of E7, and so Y lies in a parabolic subgroup of G whose
Levi factor contains a subgroup of type A2

1A2A3. The only such Levi subgroup is
A2D5, hence Y is a representative of the class of non-G-cr subgroups above.

From Table 15, we have dim(CL(G)(Y )) = 0 if r �= s and dim(CL(G)(Y )) = 1
if r = s. It follows that CG(Y )◦ is trivial if r �= s. If r = s = 0 there is a
module 1 ⊗ 1 = 2 + 0 occurring in Q/Q(2). Identifying the root elements of X as
in previous calculations, we find that for c ∈ K∗, the following element generates
a 1-dimensional subgroup of Q which commutes with X and with the roots giving
the module 5⊗ 1[1] in Q/Q(2):

x00011100(c)x00001110(2c)x00000111(c)x12232100(6c)x11232110(5c)x11222111(6c)

× x12233210(6c
2)x12232211(3c

2)x11233211(3c
2)x11232221(c

2)x12233321(4c
3)

× x23464321(6c
3)x23465431(2c

4)

and it follows that CG(Y )◦ = U1.

7.4. L′ = A3A4. Let P = P1234678 = QL be the unique standard A3A4-parabolic
subgroup of G. We need to consider X ∼= A1 ↪→ A3A4 via (1⊗1[1], 4). With similar
calculations to previous sections, we find that H1(X,Q(2)/Q(3)) ∼= K, while the
corresponding cohomology groups for other levels vanishes. Applying Lemma 3.25,
there is at most one class of non-G-cr complements to Q in QX.

Let Y = A1 < A8 via W (8). Then Y is non-A8-cr and thus non-G-cr by
Lemma 3.2, and comparing the composition factors of Y on L(G) with those of
Levi subgroups of G in [18, Table 8.1] shows that Y can only lie in a parabolic
subgroup of G with Levi factor A3A4. Thus a conjugate of Y is a representative of
the class of non-G-cr complements to Q in QX

From Table 15, we have dim(CL(G)(Y )) = 0 and hence CG(Y )◦ = 1.

7.5. L′ = E6. Let P = P123456 = QL be the unique standard E6-parabolic sub-
group of G. Let X ∼= A1 ↪→ A1A5 < E6 via (1[1], 5). Then the actions of X on the
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levels of Q are as follows:

Q/Q(2) ↓ X = 5⊗ 1[1] + T (8) + 02,

Q(2)/Q(3) ↓ X = 5⊗ 1[1] + T (8) + 0,

Q(3)/Q(4) ↓ X = 5⊗ 1[1] + T (8) + 0,

Q(4)/Q(5) ↓ X = 0,

Q(5)/Q(6) ↓ X = 0.

From Lemma 3.14 it follows that VX,Q
∼= K3. As in previous sections, it is

straightforward to determine root subgroups of X in terms of root subgroups of
A1A5, which are root subgroups of G. The trivial modules in levels 1 to 5 each lift
to elements of QX as follows:

Level Elements

1 xα8
(a)x11221110(b)x11122110(5b)x01122210(3b)

2 x11221111(a)x11122111(5a)x01122211(3a)

3 x22343221(a)x12343321(2a)x12244321(3a)

4 x23465431(a)

5 x23465432(a)

If a �= 0, the root element xα8
(a) induces a non-trivial homomorphism Q/Q(2) →

Q(2)/Q(3) of L-modules, and centralises each root group for a root of level 2.
Similarly, each element of the form x11221110(a)x11122111(5a)x01122210(3a) induces a
non-trivial X-module homomorphism Q(2)/Q(3) → Q(3)/Q(4), and centralises the
root groups in Q(1) besides Uα8

. Finally, a lift of a non-trivial element of Q(2)/Q(3)
gives rise to a non-trivial X-module homomorphism Q/Q(2) → Q(3)/Q(4). Apply-
ing Proposition 3.12, if complements to Q in QX are parametrised by (k1, k2, k3) ∈
VX,Q, we may assume k1k2 = k2k3 = k1k3 = 0. Next, the element n8 ∈ NG(T )
normalises each root subgroup in L and swaps the root subgroups occurring in level
1, other than α8, with those of level 2. In addition, the element

n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7

stabilises the root subgroups in L and exchanges the root subgroups in levels 2 and
3. Together with Lemma 3.25 and the subsequent discussion, we conclude that
there is at most one G-conjugacy class of non-G-cr complements to Q in QX.

Recall that A′
7 denotes a subgroup A7 of G which lies in a Levi subgroup E7.

Let A ∼= A1 < A′
7 via W (7). Then from Section 6.1 we know that A is non-E7-cr

and contained in an E6-parabolic subgroup of E7, with irreducible image in the
Levi factor. Hence A is non-G-cr by Lemma 3.2 and A is a representative of the
class of non-G-cr complements to Q in QX.

Now let Y ∼= G2 be an E6-irreducible subgroup (see Proposition 3.7). Then the
actions of Y on the levels of Q are as follows:

Q/Q(2) ↓ Y = 20 + 002,

Q(2)/Q(3) ↓ Y = 20 + 00,

Q(3)/Q(4) ↓ Y = 20 + 00,

Q(4)/Q(5) ↓ Y = 00,

Q(5)/Q(6) ↓ Y = 00.
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By Lemma 3.17, we have H1(G2, 20) ∼= K, hence complements are parametrised
by (k1, k2, k3) ∈ VY,Q. An entirely similar argument to the above shows that there
is at most one G-conjugacy class of non-G-cr complements to Q in QY . Moreover,
a representative subgroup may be taken to lie in Q(3)Y .

Let B be the non-E7-cr subgroup G2 of E7 given by Theorem 2. Then B is non-
G-cr by Lemma 3.2 and is contained in an E6-parabolic subgroup E7 and hence
of G. Hence B is a representative of the conjugacy class of non-G-cr subgroups
contained in QY .

From Table 15, we have dim(CL(G)(A)) = dim(CL(G)(B)) = 8. We claim that

CG(B)◦ = U5Ā1. Since A is conjugate to a subgroup of B, as proved in Section
6.1, it follows from the claim that CG(A)◦ = U5Ā1. To prove the claim we start
by noting that the elements of QX in the above table are all centralised by Y and
so QY is a 6-dimensional unipotent subgroup of CG(Y ). We let R be the subgroup
of Q generated by QY and Q(3). We know that B is conjugate to a non-G-cr
subgroup of RY , call it Z. It now follows that CRY (Z) contains QY . Moreover,
since Ā1 = CG(E7) < CG(B), it follows that CG(Z) contains a subgroup of type
A1 generated by root subgroups of G. The intersection of this subgroup A1 with
QY < Q can be at most 1-dimensional. Therefore, we have found a subgroup
U5Ā1 < CG(Z). Since dim(CG(Z)) ≤ 8 we have proved that CG(Z)◦ = U5Ā1 and
the claim immediately follows.

7.6. L′ = D6. Let P = P234567 = QL be the unique standard D6-parabolic sub-
group of G. Let X and Y be representatives of the two conjugacy classes of A1

subgroups in D6 which act as 5 ⊗ 1[1] on VD6
(λ1), with VD6

(λ5) ↓ X ∼= VD6
(λ6) ↓

Y = T (9) + 5⊗ 2[1] and VD6
(λ6) ↓ X ∼= VD6

(λ5) ↓ Y = T (8)⊗ 1[1] + 3[1]. Then the
actions of X and Y on the levels of Q are as follows:

Q/Q(2) ↓ X = 5⊗ 1[1] + T (8)⊗ 1[1] + 3[1],

Q(2)/Q(3) ↓ X = T (9) + 5⊗ 2[1] + 0,

Q(3)/Q(4) ↓ X = 5⊗ 1[1],

Q(4)/Q(5) ↓ X = 0,

Q/Q(2) ↓ Y = 5⊗ 1[1] + T (9) + 5⊗ 2[1],

Q(2)/Q(3) ↓ Y = T (8)⊗ 1[1] + 3[1] + 0,

Q(3)/Q(4) ↓ Y = 5⊗ 1[1],

Q(4)/Q(5) ↓ Y = 0.

By Lemma 3.14 we have VX,Q
∼= VY,Q

∼= K2. For both X and Y , the root

groups Uα8
and U22343211 give rise to the modules 5⊗ 1[1] in levels 1 and 3, and a

non-trivial element of U22343210 is fixed by L′ and induces a non-trivial L′-module
homomorphism Q/Q(2) → Q(3)/Q(4). Thus if complements to Q in QX or QY
are parametrised by (k1, k2) ∈ VX,Q or VY,Q respectively, by Corollary 3.13 we
may assume that k1k2 = 0. In addition, the element n22343210 ∈ NG(T ) normalises
the root subgroups in L′, and swaps Uα8

and U22343211. Thus, applying Lemma
3.25, up to G-conjugacy there exists at most one non-G-cr complement to Q in
QX and at most one non-G-cr complement to Q in QY . Finally, the element
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n8n7n6n5n4n2n3n4n5n6n7n8 induces a graph automorphism on L′, swapping the
class of X and Y , while centralising the root group U22343211. Thus a non-G-cr
complement to Q in QX is conjugate to a subgroup of QY .

Let Z ∼= A1 < D7 via T (12). Then Z is non-G-cr by Lemma 3.2 and is contained
in aD6-parabolic subgroup of the Levi subgroup D7. Hence Z lies in aD7-parabolic
subgroup of G, and is thus conjugate to a non-G-cr complement to Q in QX.

From Table 15, dim(CL(G)(Z)) = 3, and CG(Z) ≥ CG(D7) = T1. Now, the
two root groups U22343210 and U23465432 centralise L and Q(2), thus a non-G-cr
complement to Q in QX corresponding to (0, 1) ∈ VX,Q, which lies in Q(2)X,
also centralises this 2-dimensional unipotent subgroup generated by positive root
elements. It follows that CG(Z)◦ = U2T1.

7.7. L′ = A1A5. The three standard A1A5-parabolic subgroups of G are P124567,
P145678, and P134568. Let X ∼= A1 ↪→ A1A5 via (1[1], 5). First consider P124567.
Then the actions of X on the levels of Q = Q124567 are as follows:

Q/Q(2) ↓ X = T (8)⊗ 1[1] + 5 + 1[1],

Q(2)/Q(3) ↓ X = T (8) + 5⊗ 1[1] + 0,

Q(3)/Q(4) ↓ X = T (9) + 5 + 1[1],

Q(4)/Q(5) ↓ X = 5⊗ 1[1],

Q(5)/Q(6) ↓ X = 5,

Q(6)/Q(7) ↓ X = 0.

By Lemma 3.14 we have VX,Q
∼= K2. The modules of high weight 5 ⊗ 1[1] are

generated by U00111111 and U12343211, and the element

n12343210n1n3n4n2n5n4n3n6n5n4n2n7n6n5n4n3 ∈ NG(T )

stabilises the set of root subgroups in L′ while swapping U00111111 and U12343211.
Now, X lies in a subgroup A1C3 of L

′. This subgroup acts on Q(2)/Q(3) as (1, λ1)+

(0,
∧2 λ1). Since

∧2 λ1 is self-dual it follows that
∧2 λ1 = λ2+0. This trivial direct

summand is the trivial X-module summand in Q(2)/Q(3). Using Lemma 3.18, the
other A1C3-summands occurring in the filtration of Q are tilting, and therefore
have zero first cohomology group. Thus the trivial summand in Q(2)/Q(3) lifts
to a 1-dimensional subgroup of QA1C3 ≤ QX , and therefore gives rise to a non-
trivial X-module homomorphism Q(2)/Q(3) → Q(4)/Q(5). By Corollary 3.13, if
complements to Q in QX are parametrised by (k1, k2) ∈ VX,Q, then we may assume
k1k2 = 0. Applying Lemma 3.25 and the above Weyl group elements, there is at
most one G-conjugacy class of non-G-cr complements to Q in QX.

Entirely similar arguments hold for P134568 and P145678. In the filtration of
Q134568, one of the two modules 5 ⊗ 1[1] is generated as an X-module by the im-
age of Uα7

, and in Q145678 one such module is generated by Uα3
. The element

n13354321n22343210n10111111n2n4n3n5n4n2n6n5n4n3n8 ∈ NG(T ) sends the root sub-
groups in L124567 to those in L134568 and sends U00111111 to Uα7

, while the element
n2n4n5n6n7n8 sends the root subgroups in L124567 to those of L145678 and sends
U00111111 to Uα3

. It follows that up to G-conjugacy there is at most one non-G-cr
subgroup contained in an A1A5-parabolic with irreducible image in the Levi factor.



COMPLETE REDUCIBILITY IN GOOD CHARACTERISTIC 5325

Let Y ∼= A1 < A7 via W (7). Then Y is non-G-cr by Lemma 3.2 and contained
in an A1A5-parabolic subgroup of the Levi subgroup A7 and hence in an A1A5-
parabolic subgroup of G. Hence Y is a representative of the class of non-G-cr
subgroups above.

From Table 15, dim(CL(G)(Y )) = 3, and CG(Y )◦ ≥ CG(A7) = T1. More-
over, a non-G-cr subgroup of QX corresponding to (0, 1) ∈ VX,Q lies in Q(4)X,
and thus centralises both Z(Q) = Q(6) and the 1-dimensional subgroup of fixed
points giving rise to the trivial X-module in Q(2)/Q(3). Thus CG(Y ) contains a
2-dimensional unipotent subgroup containing only positive root elements, and it
follows that CG(Y )◦ = U2T1.

7.8. L′ = A2D4. Let P = P234578 = QL be the unique standard A2D4-parabolic
subgroup of G. Let X, Y and Z be representatives of the three L′-conjugacy classes
of L′-irreducible subgroups, with the natural A2-module λ1 restricting to X, Y and
Z with high weight 2, and VD4

(λ3) ↓ X ∼= VD4
(λ4) ↓ Y ∼= VD4

(λ1) ↓ Z ∼= 4 + 2[1],
so that the other two of these 8-dimensional D4-modules restricts as 3⊗ 1[1]. The
actions of L′ on the levels of Q are as follows:

Q/Q(2) ↓ L′ = (00, λ3) + (10, λ4),

Q(2)/Q(3) ↓ L′ = (10, λ1) + (01, 0),

Q(3)/Q(4) ↓ L′ = (01, λ3),

Q(4)/Q(5) ↓ L′ = (00, λ1) + (01, 0),

Q(5)/Q(6) ↓ L′ = (00, λ4),

Q(6)/Q(7) ↓ L′ = (10, 0).

It follows that VX,Q
∼= VY,Q

∼= VZ,Q
∼= K2. The two L′-modules occurring in the

filtration of Q with non-vanishing first cohomology group for X (resp., Y and Z)
are generated as L′-modules by the images of the root groups Uα6

and U10111100

(resp., U10111100 and U11122210; and Uα6
and U11122210).

Whenever the partial map ρ : VX,Q → H1(X,Q) is defined, let X[a,b] denote
a complement to Q in QX corresponding to (a, b) ∈ VX,Q, and similarly for Y[a,b]

and Z[a,b].

Note that Q(5)/Q(6) contains a Y -module direct summand 2[1], and Q(4)/Q(5)
contains a Z-module summand 2[1]. By Lemma 3.15 these modules have non-
vanishing second cohomology group, and so the map ρ is not necessarily defined
everywhere. If the basis of VY,Q is chosen to consist of a non-zero element from each
group H1(Y,Q(2)/Q(3)) and H1(Y,Q(3)/Q(4)), and similarly for Z, with similar
calculations to those of Section 4.2 we find that the condition ab = 0 is necessary
for the complements Y[a,b] or Z[a,b] to exist.

The typical element of Z(L):

h(u, t)
def
= h1(t

2u−6)h2(t)h3(t
2u−3)h4(t

2)h5(tu
3)h6(u

6)h7(u
4)h8(u

2)

acts as the scalar u5t−1 on the module generated by the image of Uα6
, and as

tu−4 on the module generated by the image of U10111100, hence Lemma 3.25 applies
and complements to Q in QX are G-conjugate to one of X[0,0], X[0,1], X[1,0], or
X[1,1], while complements to Q in QY are conjugate to Y[0,0], Y[1,0], or Y[0,1], and
complements to Q in QZ are conjugate to Z[0,0], Z[0,1], or Z[1,0].



5326 ALASTAIR J. LITTERICK AND ADAM R. THOMAS

The element n1n3n4n2n5n4n3n1 ∈ NG(T ) induces a non-trivial graph automor-
phism of the D4 factor of L′. This fixes the L′-conjugacy class of X whilst swapping
Y and Z, and also fixes the root group U11122210 whilst swapping Uα6

and U10111100.
Therefore, X[0,1] and X[1,0] are conjugate in G; as are Y[1,0] and Z[1,0]; and Y[0,1] and
Z[0,1]. Similarly, the element n01122210n8n7n6n5n4n2n3n4n5n6 swaps U10111100 and
U11122210, and also stabilises Y and swaps X and Z. Therefore X[0,1] is G-conjugate
to Z[0,1], and Y[1,0] is G-conjugate to Y[0,1]. Finally, the element

n22343210n23465432n8n7n6n5n4n2n3n4n5n6n7n8

normalises Y , swaps X and Z, and stabilises Uα6
. Hence X[1,0] and Z[1,0] are

conjugate in G. It follows that there are at most two G-conjugacy classes of non-G-
cr subgroups A1 with irreducible image in a Levi factor of type A2D4, represented
by X[1,1] and X[0,1].

Consider A ∼= A1 < D7 via T (10) and B ∼= A1 ↪→ A1A1G2 < A1E7 via
(1, 1[1], 6[1]). Then A lies in an A2D4-parabolic subgroup of the Levi subgroup
D7, and hence in an A2D4-parabolic subgroup of G. Also, by Lemma 3.2, B is
non-G-cr if and only if it is non-A1E7-cr. By [3, Lemma 2.12], this is the case
if and only if the image of B in E7 is non-E7-cr, which we know is true from
Theorem 2. Furthermore, we know that the image of B in E7 lies in an A1A2A3-
parabolic subgroup of E7 (cf. Section 6.2), and so B lies in a parabolic subgroup
of G whose Levi factor contains a subgroup A2

1A2A3. The only possibility for this
is A2D5; then by consideration of composition factors of B on L(G) we must have
VD5

(λ1) ↓ B = 4 + 1[1] ⊗ 1[1] + 0 = 4 + 2[1] + 02. In particular the image of B in
D5 lies in a subgroup D4, so B is contained in an A2D4-parabolic subgroup of G,
with irreducible image in the Levi factor.

Thus A and B are non-G-cr subgroups of G, each contained in an A2D4-parabolic
subgroup with irreducible image in the Levi factor. Since dim(CL(G)(B)) = 0 we
have CG(B)◦ = 1, and since dim(CL(G)(A)) = 1 we have CG(A)◦ = CG(D7)

◦ = T1.
This also shows that A and B are not G-conjugate.

7.9. L′ = A2
1A4. The four standard A2

1A4-parabolic subgroups of G are P235678,
P125678, P124568, and P123468. Let X,Y ∼= A1 < A2

1A4 via (1, 1[1], 4) and (1[1], 1, 4),
respectively. If P = QL is one of these four parabolics and X < L, then in the
filtration of Q there is a unique L-module direct summand (1, 1, 4), generated as
an L-module by the image of Uα as in the table below. This gives rise to a unique
indecomposable summand in the filtration of Q for X (resp., Y ) with non-vanishing
first cohomology group. Then the element of NG(T ) given in the table below sends
the root subgroups of L to those of L235678 and sends Uα to Uα4

. By Lemma 3.25,
there is at most one G-conjugacy class of non-G-cr complements to Q in QX and at
most one G-conjugacy class of non-G-cr complements to Q in QY for each choice of
parabolic, and such complements arising for different choices of parabolic subgroup
are all conjugate in G.

P Root α Element of NG(T )

P235678 α4 1

P125678 α3 + α4 n1n3

P124568 00111110 n1n3n4n2n5n4n6n5n7n6n8n7

P123468 01122110 n22343210n10111111n11110000n2n5n4n3n6n5n4n7n6n5
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Furthermore, the element n22343210n23465432n8n7n6n5n4n2n3n4n5n6n7n8 stabilises
the set of root subgroups in L235678, swapping the two A1 factors, while fixing Uα4

.
Hence a non-G-cr complement to Q in QY is G-conjugate to a subgroup of QX, so
up to G-conjugacy there exists at most one non-G-cr subgroup A1 with irreducible
image in a Levi factor of type A2

1A4.
Let Z ∼= A1 < D7 via T (8). Then Z is non-G-cr by Lemma 3.2 and is contained

in a A2
1A4-parabolic subgroup of the Levi subgroup D7, and hence in an A2

1A4-
parabolic subgroup of G. Therefore, Z is a representative for the class of non-G-cr
subgroups above.

From Table 15, dim(CL(G)(Z)) = 1 and so CG(Z)◦ = CG(D7)
◦ = T1.

7.10. L′ = A1A2A3. The four standard A1A2A3-parabolic subgroups of G are
P123567, P123678, P124678, and P124578. We need to consider X ∼= A1 ↪→ A1A2A3

via (1[1], 2, 3). If P = QL is one of these four parabolics, in the filtration of Q
there is a unique L-module direct summand on which each simple factor of L acts
non-trivially. This gives rise to a unique indecomposable X-module direct sum-
mand with non-vanishing first cohomology group, generated as an X-module by
the image of Uα as in the table below. Then the corresponding element of NG(T )
sends the root subgroups of L to those of L123567 and sends Uα to Uα4

. By Lemma
3.25, there is at most one G-conjugacy class of non-G-cr complements to Q in QX
for each choice of parabolic, and such non-G-cr complements arising for different
choices of parabolic subgroup are all conjugate in G.

P Root α Element of NG(T )

P123567 α4 1

P123678 00011000 n8n7n6n5

P124678 00111000 n8n7n6n5n4n2n3n1n4n3

P124578 00111100 n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n7n6n5n8n7n6

Let Y ∼= A1 ↪→ A1G2 < E7 via (1, 6). Then Y is non-E7-cr by Theorem 2,
hence is non-G-cr by Lemma 3.2. In addition, from Section 6.2 we know that Y
is contained in an A1A2A3-parabolic subgroup of E7, hence Y lies in an A1A2A3-
parabolic subgroup of G, and is therefore a representative of the unique class of
non-G-cr subgroups arising above.

From Table 15, dim(CL(G)(Y )) = 3 and so CG(Y )◦ = CG(E7)
◦ = A1.

8. Proof of Theorem 4 and Corollaries 5–11

Having now proved Theorems 1–3, in this section we prove Theorem 4 and all
the corollaries stated in the introduction. Throughout, G denotes an exceptional
simple algebraic group, over an algebraically closed field of characteristic p = 5
or 7.

Proof of Theorem 4. Let X be a non-G-cr connected reductive subgroup of G. If
X is not simple, then since p is good for G it follows from [4, Theorem 1.3] that
some simple factor of the derived subgroup X ′ is non-G-cr. Conversely if some such
simple factor of X ′ is non-G-cr, then as this factor is normal in X it follows from
[3, Theorem 3.10] that X is non-G-cr.

Thus it suffices to enumerate reductive subgroups of XCG(X)◦ containing X, for
each non-G-cr simple subgroup X in Tables 11–16. The results are precisely Tables
17 and 18. Where we have written “∞-many classes”, the distinct classes arise since
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a group of type A1T1 contains infinitely many pairwise non-conjugate 1-dimensional
tori. For instance, GL2(K) contains the 1-dimensional tori

{(
t 0
0 tn

)
: t ∈ K∗} for

n ≥ 1. It remains to prove that no two subgroups given in Tables 17 and 18
are Aut(G)-conjugate. First, notice that each reductive subgroup X contains a
unique non-G-cr normal simple subgroup, so if X1 and X2 are non-G-cr reductive
subgroups, then we may assume X1, X2 ≤ Y CG(Y )◦ for some non-G-cr simple
subgroup Y . Since X1 and X2 are isomorphic, inspection now shows that this is
impossible unless either X1 = X2, or CG(Y ) = A1T1 and X1, X2 are each equal to
the product of Y with a 1-dimensional torus of CG(Y ). Consideration of L(G) ↓ X1,
L(G) ↓ X2 then shows that X1 and X2 can only be conjugate if the corresponding
tori are NG(Y ) = Y CG(Y )-conjugate, which gives the result. �

Proof of Corollary 5. For G-cr subgroups of G, this follows from [19, Theorems 3,
4]. For non-G-cr subgroups, by Theorems 1–3 it suffices to inspect L(G) ↓ X for
each subgroup X in Tables 11–16. �

Proof of Corollary 6. Let X be a non-G-cr reductive subgroup of G, and suppose
that X ′ is not contained in a proper subsystem subgroup of G. Then Z(X)◦ = 1
and CG(X)◦ is unipotent, otherwise X centralises a non-trivial torus and lies in the
corresponding Levi subgroup. Now, the first column of Tables 11–17 gives a proper
subsystem subgroup of G containing X, for each non-G-cr subgroup X, with the
exception of the simple groups given in (ii), (iii), and (iv) of this corollary. These
three subgroups cannot lie in a proper subsystem subgroup of the relevant group
G, since all non-G-cr subgroups of subsystem subgroups appear elsewhere in Tables
11–17 and therefore represent different conjugacy classes of subgroups. This proves
that exactly one of (i)–(iv) holds, and furthermore each of the subgroups in (ii),
(iii), and (iv) is uniquely determined up to conjugacy in the ambient group G.

Now let M be connected and maximal among reductive subgroups of G. If M
is G-reducible, then either M is G-cr and therefore maximal among proper Levi
subgroups of G, or M is non-G-cr, in which case G = E7, p = 7 and M is conjugate
to the non-G-cr subgroup G2 in part (iii) above. If instead M is G-irreducible,
then an application of the Borel-Tits theorem shows that M is in fact a maximal
connected subgroup of G, as required. �

Proof of Corollary 7. Let M be maximal among proper reductive subgroups of G
and let X ≤ M be M -irreducible and non-G-cr. If Z(M)◦ �= 1, then M is a Levi
subgroup of G, and so all M -cr subgroups of M are G-cr by [30, Proposition 3.2].
Thus M is semisimple. Also X is semisimple as X cannot centralise a non-trivial
torus of M .

If M is G-cr, then either M is the derived subgroup of a maximal Levi subgroup,
or M is G-irreducible and therefore a maximal connected subgroup of G. In the
former case, M is a subsystem subgroup of G and so every M -irreducible subgroup
is G-cr. We will consider the case that M is a non-subsystem maximal connected
subgroup of G shortly.

If insteadM is non-G-cr, then from Corollary 6 we know that G = E7, p = 7, and
M is conjugate to the unique non-G-cr subgroup G2 in part (iii). Thus either X =
M or X is an M -irreducible proper subgroup of M . The maximal M -irreducible
subgroups of M are of type A1, A1Ã1, and A2; we have proved in Section 6.1 that
the former of these is non-G-cr, while the latter two are centralisers (in M) of non-
central semisimple elements, of order 2 and 3, respectively, and therefore lie in a
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proper subsystem subgroup of G. By Theorem 2, the only non-G-cr subgroups of
G are conjugate either to M or its maximal subgroup A1, or to a second class of
subgroups A1, which by Corollary 6 do not lie in a proper subsystem subgroup of
G, and hence do not lie in M . This justifies the entries in Table 1 with M non-G-cr.

We may now assume thatM is G-irreducible, and therefore a maximal connected
subgroup of G. Thus M is one of the subgroups given by Lemma 3.3, and by
hypothesis M is not a subsystem subgroup. Furthermore if G = E6 and M = F4

or C4, then M is the centraliser of an involutary automorphism of G, and since
p �= 2 it follows from [3, Corollary 3.21] that every M -irreducible subgroup of M
is G-cr. Since (G, p) = (E6, 5), (E7, 5), (E7, 7), or (E8, 7), the possibilities for M
are therefore as follows: M = A2G2 or A2 (two classes) when G = E6; M = G2C3,
A1F4, A1G2, A1A1 or A2 when G = E7; and M = G2F4, B2 or A1A2 when G = E8.

If G = E6, then by Theorems 1 and 4, X has type A1 or A1A1. If M = A2G2,
then the image of X in the G2 factor lies in a maximal subgroup A1A1 or A2 of
this factor. Now L(G) ↓ A2G2 = L(A2) + L(G2) + (11, 10) by [26, p. 193]. Since
L(A2) restricted to a maximal subgroup A1 has shape 4 + 2, and L(G2) ↓ A1A1 =
(2, 0)+(0, 2)+(1, 3) and L(G2) ↓ A2 = L(A2)+01+10, it follows that L(G) ↓ X has
at least three 3-dimensional direct summands and two 4-dimensional summands,
with pairwise zero intersections. No possible X in Table 11 or 17 satisfies this.

On the other hand, if M is a maximal subgroup of type A2 and X is a maximal
subgroup A1 of M , then using the restrictions VG(λ1) ↓ M = 22|11 or 11|22 and
L(G) ↓ M = 41 + 14 + 11 given in [20, Tables 10.1,10.2], it follows that VG(λ1) ↓
X = T (8)+W (6)+42 or T (8)+W (6)∗+42, and L(G) ↓ X = T (10)2+T (6)2+43+2.
In particular X fixes a 1-space on VG(λ1) and lies in a subgroup of dimension at
least 78−dim(VG(λ1)) = 51. By Lemma 3.3 the only such subgroups are contained
in parabolic subgroups, hence X is G-reducible. Since X is fixed-point-free on
L(G), X cannot centralise a non-trivial torus of G, and hence is non-G-cr. Finally,
using Theorem 1 and comparing the composition factors of X on L(G) and VG(λ1)
with Table 11, we see that X is Aut(G)-conjugate to a subgroup A1 < A1A5 via
(1,W (5)) as in Table 1.

For G = E7 or E8 we proceed similarly, considering each possible subgroup M
and its action on L(G) and VG(λ7) when G = E7; these are given by [20, Tables
10.1, 10.2]. In each case, we find that no simple subgroup of M of the appropriate
isomorphism type can act on L(G) or VG(λ7) in the manner given in Tables 12–16,
except for the subgroups of M given in the final column of Table 1. In these cases,
the restriction is compatible with the non-G-cr subgroups X given in the fourth
column there. Thus if we show that these subgroups of M are non-G-cr, then as
their conjugacy class is determined by their action on L(G), it will follow that they
are indeed conjugate to the non-G-cr subgroups X in column 4. Furthermore since
none of the subgroups listed in column 4 centralise a non-trivial reductive subgroup
of G, it follows that no semisimple, non-simple, non-G-cr subgroup of G lies in any
such M .

It remains to prove that each subgroup X of M given in the final column of Table
1 is in fact non-G-cr. First, using the fact that the action of X on L(G) agrees with
the appropriate non-G-cr subgroup in the fourth column of Table 1, we see that
L(G) ↓ X has no trivial direct summands. If X centralises a non-trivial torus S of
G, then L(CG(S)) = L(S) ⊕ L(CG(S)

′) is a direct summand of L(G) ↓ CG(S); a
complement is given by the sum of those root spaces of L(G) not centralised by the
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action of S (see also [5, Lemma 3.9]). Since X < CG(S), this implies that L(S) is a
trivial direct summand of L(G) ↓ X, a contradiction. Hence each possible subgroup
X is G-indecomposable.

We now show that every subgroup X of each subgroup M lies in a parabolic
subgroup of G. For G = E7 it suffices to note that X has a non-zero fixed point on
VG(λ7); the corresponding stabiliser has dimension at least 133−56 = 77, and every
subgroup of G of such a dimension lies in a parabolic subgroup by Lemma 3.3. Thus
X is indeed G-reducible. For G = E8 it is shown in [20, Section 3.3] that a subgroup
of type A1 with the same composition factors on L(G) as the subgroup A1 < A8 via
W (8) must in fact be conjugate to a subgroup of A8; it follows that X is conjugate
to this non-G-cr subgroup. Finally the subgroup G2 ↪→ G2G2 < G2F4 via (10, 10)
is shown to be G-reducible in [36, Lemma 7.13], completing the proof. �

Proof of Corollary 8. This is a matter of inspecting Tables 11–17, noting that only
the non-G-cr subgroups of type G2 and A1G2 are restricted; the A1 factor of the
non-G-cr subgroup A1G2 of G = E8 is restricted because it is the centraliser of a
subsystem subgroup E7, and L(G) ↓ A1E7 = L(A1)+L(E7)+(1, λ7) (see [26, 1.8]),
so the high weights of L(G) ↓ A1 are at most 2. �

Proof of Corollary 9. If X is a reductive subgroup of G with CG(X)◦ = 1 then
Z(X)◦ = 1 and X lies in no proper Levi subgroup of G, since then X would
centralise a non-trivial torus. Thus either X is G-irreducible or X is non-G-cr.
Inspecting Tables 11–17, we see that each non-G-cr subgroup X with CG(X)◦ = 1
appears in Table 2, as required. �

Proof of Corollaries 10 and 11. Theorems 1–4 show that for each exceptional sim-
ple algebraic group G, there are only a finite number of non-G-cr reductive sub-
groups of G having a specified set of composition factors on L(G), which immedi-
ately implies each of these corollaries. �

9. Restrictions of G-modules to non-G-cr subgroups

Let V be either L(G), or V27 or V56 when G is of type E6 or E7, respectively,
and let X be one of the non-G-cr simple subgroups of G listed in Tables 11–16.
Here, we justify the restrictions V ↓ X given in those tables, which have been used
in proving aspects of Theorems 1–3.

With the exception of the groups of type G2 in Table 14, which we will consider
at the end of this section, each subgroup X listed is properly contained in a proper
semisimple subgroup H of G, which is given in the tables. For example, in the
first line of Table 11, X is contained in a Levi subgroup H of type A5 in G =
E6. Now, each subgroup H occurring is either a subsystem subgroup of G, or is
contained in one of a small number of known maximal connected subgroups (cf.
Lemma 3.3). In the latter case, the action of the maximal connected subgroup on
the low-dimensional G-modules is given explicitly in [20, Table 10.1], and the action
of H is straightforward to determine from this.

If H is a subsystem subgroup occurring, and if either H has maximal rank or
G = E6 and H is a subgroup of type D5, then V ↓ H is given in [21, Lemmas 11.2,
11.8, 11.10]. Moreover, if G = E7 and H = E6, then V ↓ H is given in [18, Tables
8.2, 8.6]. From these it is straightforward to determine V ↓ H for all other type of
subgroup H occurring.
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If a factorH0 ofH is classical or of typeG2, then the given embedding determines
the action of X on VH0

(λ1) (considered as an H-module in the obvious way). From
this it is straightforward to determine the high weights of related modules, such
as symmetric and alternating powers, and tensor products. Moreover as discussed
in the proof of Lemma 3.18, since p > 3 each of the modules S2(V ),

∧2(V ), and∧3
(V ) occurs as a direct summand in a tensor power of V . It then follows from

[12, Corollary 1.3] that if V has a filtration by Weyl modules (respectively, dual
Weyl modules), so too do these symmetric and alternating powers. This is sufficient
information to determine V ↓ X, unless some factor H0 has type Dn and V ↓ H0

involves a spin module; we will address this problem shortly.
As an example, consider the final line of Table 11, where G = E6, p = 5, and

where X ↪→ H = A1A5 via (1[r],W (5)[s]) with rs = 0. From [18, Propositions 2.1,
2.3] it follows that

L(G) ↓ H = L(A1) + L(A5) + (1, λ3),

V27 ↓ H = (0, λ4) + (1, λ1)

where the direct-sum decompositions follow as no factors here can extend another
indecomposably. Now, the A5-module λ4 =

∧2
(λ1)

∗ restricts to the image of X as∧2(W (5)[s])∗. Since (W (5)[s])∗ has high weights 5s+1 and 3(5s), it follows easily

that λ4 ↓ X has high weights 8(5s), 4(5s), 0 and 0. Since
∧2

(W (5))∗ has a filtration
by duals of Weyl modules, and since WX(4) and WX(0) are irreducible, while

WX(8) = VX(8)|0, it follows that
∧2

(W (5)[s])∗ = 4[s]⊕T (8)[s]. The other H-direct
summands of L(G) and V27 are also constructed as tensor products and alternating
powers of (0, λ1) and (1, 0), and we proceed in an entirely similar manner. The
restriction in Table 11 follows.

Now consider spin modules for Dn. Given a sub-torus of a simply-connected
group of type Dn, the weights of this torus on the spin modules VDn

(λn−1) and
VDn

(λn) are straightforward to determine from the weights of this torus on the
natural 2n-dimensional module; an example of such a calculation is given in [17, pp.
195–197]. For the exact module structure, we make use of Magma’s functionality
to work within groups of Lie type. In particular, Magma allows us to explicitly
construct a finite quasi-simple subgroup X(q) < X, as an irreducible matrix group
of degree 2n over a field of size q, preserving an explicit quadratic form. We can
then take a pre-image of X(q) under the natural 2n-dimensional representation of
a group of Lie type Dn, and then take the image of this under a representation of
high weight λn−1 or λn.

As an example, let G be simple of type E8, let L
′ be a simple subgroup of type

D7 as in Section 7.1, and let X be a simple subgroup of type G2, with VD7
(λ1) ↓

X = 01. Using Magma as above, we find that the spin modules VD7
(λ6) and

VD7
(λ7) restrict to a finite subgroup X(72) as uniserial modules with composition

factor dimensions 38 and 26. Since the composition factors of X on L(G) must
agree with those of the image of X in D7, which are given in [18, Table 8.1], we
deduce that VD7

(λ6) ↓ X = 11|20 and VD7
(λ6) ↓ X = 20|11, or vice versa.

Finally, we need to consider the case where X is of type G2 and contained in
no reductive overgroup of G = E7, as in Table 14. The only possible parabolic
subgroups of E7 containing X have Levi factor of type E6, and the image of X
under projection to the Levi factor lies in a proper subgroup F4. Using [18, Tables
8.4, 8.6] and [20, Tables 10.1, 10.2], we deduce that the restriction of V to X has
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the composition factors as given in Table 14. To determine the exact structure of
the restriction of V to X, we consider the maximal subgroup A1 of X, call it Y .
From Section 6.1 we know that Y is conjugate to a subgroup A1 < A7 via W (7)
and therefore V ↓ Y is given in Table 13. We claim that this is enough to determine
V ↓ X. To prove the claim we first take V = V56. We know that the X-composition
factors of V are 202/004. Since V is self-dual and H1(G2, 20) ∼= K, the possibilities
for V ↓ X are thus T (20)2, T (20) + 20 + 002, W (20) +W (20)∗ + 002 or 202 + 004.
Moreover, we know that V ↓ Y = T (12)2 + T (8)2 = (0|12|0)2 + (4|8|4)2. Thus the
fixed-point space ofX on V is at most 2-dimensional, and therefore V ↓ X = T (20)2

as claimed in Table 14.
Now suppose V = L(G). As given in Table 13, the fixed-point space of Y on

V is 1-dimensional. The X-composition factors of V are 11/203/01/003. Suppose
M,N are two such composition factors. Then Ext1X(M,N) �= 0 precisely when
{M,N} = {11, 20} or {20, 00}, in which case Ext1X(M,N) ∼= K. This leaves a
number of possibilities for V ↓ X but only one, namely T (11) + T (20) + 01, has
fixed-point space of dimension at most 1. This concludes the justification of the
restrictions of V to X given in Table 14.

10. Tables for Theorems 1–4

In this section, we give the tables referred to in Theorems 1–4. Each line of a table
corresponding to the exceptional Lie type G, characteristic p, and subgroup type
A1 or G2 gives a representative of an Aut(G)-conjugacy class of non-G-cr subgroups
of that type. For each simple non-G-cr subgroup X we also give the action of X
on the adjoint module L(G), and on the module V27 = VG(λ1) when G has type
E6, and on V56 = VG(λ7) when G has type E7. Finally, we also give the connected
centraliser CG(X)◦ for each X. The notation for modules and embeddings, e.g.,
‘X < A5 via W (5)’ is explained in Section 2.

In Table 11 each given Aut(G)-class of subgroups splits into two G-conjugacy
classes, interchanged by the graph automorphism of G.

Table 11. Non-G-cr subgroups of type A1 in G = E6, p = 5.

Non-G-cr
subgroup X ∼= A1

V27 ↓ X L(G) ↓ X CG(X)◦

X < A5 via W (5) T (8) +W (5)2 + 4 T (10)+92+T (6)+T (5)2+4+03 Ā1

X < D5 via T (6) T (7) + T (6) +
W (5) + 0

T (10) + T (7)2 + T (6)2 +
W (5) +W (5)∗ + 4 + 0

T1

X < D5 via T (8) W (10) + T (8) +
4 + 0

14 + T (10) +W (10) +
W (10)∗ + T (6) + 42 + 0

T1

X ↪→ Ā1A5 via
(1[r],W (5)[s])
(rs = 0)

1[r] ⊗W (5)[s] +
T (8)[s] + 4[s]

1[r] ⊗ 9[s] + 1[r] ⊗ T (5)[s] +
2[r] + T (10)[s] + T (6)[s] + 4[s]

1
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Table 12. Non-G-cr subgroups of type A1 in G = E7, p = 5.

Non-G-cr
subgroup
X ∼= A1

V56 ↓ X L(G) ↓ X CG(X)◦

X < A5 via
W (5)

9 + T (5) +W (5)3 +
(W (5)∗)3

T (10) + T (8)6 + T (6) +
47 + 08

U6A2

X < A′
5 via

W (5)
T (8)2 +W (5)2 +
(W (5)∗)2 + 42 + 02

T (10) + 92 + T (8)2 +
T (6) + T (5)2 +W (5)2 +
(W (5)∗)2 + 43 + 04

U2Ā1T1

X < A6 via
W (6)

W (10) +W (10)∗ +
T (6)2+W (6)+W (6)∗

T (12)3 + T (10) + T (8)2 +
W (6)+W (6)∗+43 +2+0

U2T1

X < A7 via
W (7)

W (12) +W (12)∗ +
T (8)2 + 42

T (16) + 14 + T (12) +
T (10)2 + T (8) + 43 + 2

U1

X ↪→ Ā1A5

via
(1[r],W (5)[s])
(rs = 0)

1[r] ⊗W (5)[s] +
1[r] ⊗ (W (5)∗)[s] +
9[s] + T (5)[s] +
W (5)[s] + (W (5)∗)[s]

2[r] + (1[r] ⊗ T (8)[s])2 +
(1[r] ⊗ 4[s])2 + (1[r])2 +
T (10)[s] + (T (8)[s])2 +
T (6)[s] + (4[s])3 + 0

U2T1

X ↪→ Ā1A
′
5

via
(1[r],W (5)[s])
(rs = 0)

1[r] ⊗W (5)[s] +
1[r] ⊗ (W (5)∗)[s] +
(T (8)[s])2+(4[s])2+02

2[r] + 1[r] ⊗ 9[s] +
1[r] ⊗ T (5)[s] +
1[r] ⊗W (5)[s] +
1[r] ⊗ (W (5)∗)[s] +
T (10)[s] + (T (8)[s])2 +
T (6)[s] + (4[s])3 + 0

U2T1

(r+1 �= s),
U3T1

(r+ 1 = s)

X ↪→ A2A5

via
(2[r],W (5)[s])
(rs = 0)

2[r] ⊗W (5)[s] +
2[r] ⊗ (W (5)∗)[s] +
9[s] + T (5)[s]

4[r] + (2[r] ⊗ T (8)[s])2 +
(2[r] ⊗ 4[s])2 + 2[r] +
T (10)[s] + T (6)[s] + 4[s]

1

X ↪→ D5 via
T (6)

T (7)2 + T (6)2 +
W (5) +W (5)∗ + 04

T (10) + T (7)4 + T (6)4 +
W (5)2+(W (5)∗)2+4+04

Ā1T1

X ↪→ D5 via
T (8)

W (10) +W (10)∗ +
T (8)2 + 42 + 04

14 + T (10) +W (10)2 +
(W (10)∗)2 + T (8)2 +
T (6) + 44 + 04

U2Ā1T1

X ↪→ Ā1D5

via
(1[r], T (6)[s])
(rs = 0)

1[r] ⊗ T (6)[s] +
(1[r])2 + (T (7)[s])2 +
W (5)[s] + (W (5)∗)[s]

2[r] + (1[r] ⊗ T (7)[s])2 +
1[r] ⊗ T (6)[s] +
1[r] ⊗W (5)[s] +
1[r] ⊗ (W (5)∗)[s] +
T (10)[s] + (T (6)[s])2 +
4[s] + 0

T1 (s �=
r, r + 1),
U1T1

(s = r+1),
U2T1

(s = r)

X ↪→ Ā1D5

via
(1[r], T (8)[s])
(rs = 0)

1[r] ⊗ T (8)[s] +
(1[r])2 +W (10)[s] +
(W (10)∗)[s] + (4[s])2

2[r] + 1[r] ⊗W (10)[s] +
1[r] ⊗ (W (10)∗)[s] +
1[r] ⊗ T (8)[s] +
(1[r] ⊗ 4[s])2 + 14[s] +
T (10)[s] + T (6)[s] + 0

T1
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Table 13. Non-G-cr subgroups of type A1 in G = E7, p = 7.

Non-G-cr subgroup
X ∼= A1

V56 ↓ X L(G) ↓ X CG(X)◦

X < A7 via W (7) T (12)2 + T (8)2 T (16) + T (14) + T (12) +
T (10) + T (8)3 + 6

U1

X ↪→ A1G2 via (1, 6) T (11) + T (9)2 +
T (7)

T (14)+T (10)4+T (8)2+63 1

Table 14. Non-G-cr subgroups of type G2 in G = E7, p = 7.

Non-G-cr subgroup X ∼= G2 V56 ↓ X L(G) ↓ X CG(X)◦

X in no proper reductive
overgroup (see Section 6.1)

T (20)2 T (11) + T (20) + 01 U1

Table 15. Non-G-cr subgroups of type A1 in G = E8, p = 7.

Non-G-cr subgroup
X ∼= A1

L(G) ↓ X CG(X)◦

X < A7 via W (7) T (15)2 + T (14) + T (12)2 + T (10) +
T (9)2 + T (8)3 + T (7)2 +W (7) +
W (7)∗ + 6 + 0

U2T1

X < A′
7 via W (7) T (16) + T (14) + T (12)5 + T (10) +

T (8)7 + 6 + 03
U5Ā1

X < A8 via W (8) T (18)2 + T (16) + T (14)3 + T (10)2 +
T (8) + 65 + 2

1

X ↪→ Ā1A
′
7 via

(1[r],W (7)[s]) (rs = 0)
2[r] + (1[r] ⊗ T (12)[s])2 +
(1[r] ⊗ T (8)[s])2 + T (16)[s] + T (14)[s] +
T (12)[s] + T (10)[s] + (T (8)[s])3 + 6[s]

U1

X < D7 via T (8) T (14)+132+T (11)2+T (10)2+T (9)2+
T (8)3+T (7)2+W (7)+W (7)∗+63+0

T1

X < D7 via T (10) T (18) + T (16)2 + T (14) +W (14) +
W (14)∗ + T (10)4 + T (8)2 + 63 + 0

T1

X < D7 via T (12) T (22) +W (21) +W (21)∗ + T (15)2 +
T (14)+ T (12)2 +T (10)+ T (9)2 +6+0

U2T1

X ↪→ A1G2 < E7 via (1, 6) T (14) + T (11)2 + T (10)4 + T (9)4 +
T (8)2 + T (7)2 + 63 + 03

Ā1

X ↪→ Ā1A1G2 < Ā1E7 via
(1[r], 1[s], 6[s]) (rs = 0)

2[r]+1[r] ⊗ T (11)[s]+(1[r] ⊗ T (9)[s])2+
1[r] ⊗ T (7)[s] + T (14)[s] + (T (10)[s])4 +
(T (8)[s])2 + (6[s])3

1 (r �= s),
U1 (r = s)
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Table 16. Non-G-cr subgroups of type G2 in G = E8, p = 7.

Non-G-cr subgroup X ∼= G2 L(G) ↓ X CG(X)◦

G2 < E7 T (11) + T (20)5 + 01 + 003 U5Ā1

G2 ↪→ G2G2 < G2F4 via (10, 10) 30 + T (11) + 11 + 013 1

Table 17. Non-simple, non-G-cr semisimple subgroups.

G p Non-G-cr semisimple subgroup

E6 5 Ā1A1 < Ā1A5 where A1 < A5 via W (5)

E7 5 A2A1 < A2A5 where A1 < A5 via W (5)

5 A1A1 < A2A5 where A1 < A2 via 2 and A1 < A5 via W (5)

5 Ā1A1 < Ā1A5 where A1 < A5 via W (5)

5 Ā1A1 < Ā1A
′
5 where A1 < A′

5 via W (5)

5 Ā1A1 < Ā1D5 where A1 < D5 via T (6)

5 Ā1A1 < Ā1D5 where A1 < D5 via T (8)

E8 7 Ā1A1 < Ā1A7 where A1 < A′
7 via W (7)

7 Ā1A1 < Ā1E7 where A1 ↪→ A1G2 < E7 via (1, 6)

7 Ā1G2 < Ā1E7 where G2 < E7 is non-E7-cr

In Table 18, recall from Section 8 that “∞-many classes” refers to the fact that a
group of type A1T1 contains infinitely many pairwise non-conjugate 1-dimensional
tori, and so a non-G-cr simple subgroup with such a centraliser gives rise to infinitely
many pairwise non-conjugate, non-G-cr reductive subgroups.

Table 18. Non-G-cr reductive subgroups X with Z(X)◦ �= 1.

G p Non-G-cr reductive subgroup X

E6 5 A1T1 where A1 < A5 via W (5)

A1T1 where A1 < D5 via T (6)

A1T1 where A1 < D5 via T (8)

E7 5 A1T2 where A1 < A5 via W (5)

A1Ā1T1 where A1 < A5 via W (5)

A1T1 where A1 < A5 via W (5)

A1T2 where A1 < A′
5 via W (5)

A1Ā1T1 where A1 < A′
5 via W (5)

A1T1 where A1 < A′
5 via W (5) (∞-many classes)

A1T1 where A1 < A6 via W (6)

A1T1 where A1 < Ā1A5 via (1[r],W (5)[s]) (rs = 0)

A1T1 where A1 < Ā1A
′
5 via (1[r],W (5)[s]) (rs = 0)

A1T2 where A1 < D5 via T (6)

A1Ā1T1 where A1 < D5 via T (6)
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A1T1 where A1 < D5 via T (6) (∞-many classes)

A1T2 where A1 < D5 via T (8)

A1Ā1T1 where A1 < D5 via T (8)

A1T1 where A1 < D5 via T (8) (∞-many classes)

A1T1 where A1 < Ā1D5 via (1[r], T (6)[s])

A1T1 where A1 < Ā1D5 via (1[r], T (8)[s])

E8 7 A1T1 where A1 < A7 via W (7)

A1T1 where A1 < A′
7 via W (7)

A1T1 where A1 < D7 via T (8)

A1T1 where A1 < D7 via T (10)

A1T1 where A1 < D7 via T (12)

A1T1 where A1 < A1G2 via (1, 6)

G2T1 where G2 < E7 is non-E7-cr

11. Further module decompositions

Tables 19–25 give the restrictions of certain H-modules to X for p = 5 or 7,
when X is of type A1 and H is a certain semisimple subgroup of G containing X.
These modules have been used implicitly in Sections 4–7 and in calculating the
given actions in Section 10. The given structure has been calculated, and can be
verified, in the manner described in Section 9.

Table 19. Alternating powers of certain A1-modules.

V
∧2(V )

∧3(V )

1⊗ 1[r] 2 + 2[r] 1⊗ 1[r]

2[r] ⊗ 1[s] 4[r] + 2[r] ⊗ 2[s] + 0 4[r] ⊗ 1[s] + 3[s] + 2[r] ⊗ 1[s]

Table 20. Spin modules for D4 restricted to irreducible subgroups of type A1.

VD4
(λ1) ↓ X VD4

(λ3) ↓ X VD4
(λ4) ↓ X

1[r] ⊗ 1[s] + 1[t] ⊗ 1[u] 1[r] ⊗ 1[u] + 1[s] ⊗ 1[t] 1[r] ⊗ 1[t] + 1[s] ⊗ 1[u] (or vice
versa)

3[r] ⊗ 1[s] 3[r] ⊗ 1[s] 4[r] + 2[s] (or vice versa)

4[r] + 2[s] 3[r] ⊗ 1[s] 3[r] ⊗ 1[s]

6 + 0 (p = 7) 6 + 0 6 + 0
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Table 21. Spin modules for D5 restricted to various subgroups of type A1.

VD5
(λ1) ↓ X VD5

(λ4) ↓ X

2 + 2[r] + 2[s] + 0 (1⊗ 1[r] ⊗ 1[s])2

2[r] + 2[s] + 1[t] ⊗ 1[u] 1[r] ⊗ 1[s] ⊗ 1[t] + 1[r] ⊗ 1[s] ⊗ 1[u]

4[r] + 1[s] ⊗ 1[t] + 0 3[r] ⊗ 1[s] + 3[r] ⊗ 1[t]

4 + 4[r] 3⊗ 3[r]

6[r] + 2[s] (p = 7) 6[r] ⊗ 1[s] + 1[s]

T (6) (p = 5) T (7) +W (5)

T (8) (p = 5) W (10) + 4

Table 22. Spin modules for D6 restricted to irreducible subgroups of type A1.

VD6
(λ1) ↓ X VD6

(λ5) ↓ X VD6
(λ6) ↓ X

1[r] ⊗ 1[s] + 1[t] ⊗
1[u] + 1[v] ⊗ 1[w]

1[r] ⊗ 1[t] ⊗ 1[v] + 1[r] ⊗
1[u] ⊗ 1[w] + 1[s] ⊗ 1[t] ⊗
1[w] + 1[s] ⊗ 1[u] ⊗ 1[v]

1[r] ⊗ 1[t] ⊗ 1[w] +
1[r] ⊗ 1[u] ⊗ 1[v] +
1[s] ⊗ 1[t] ⊗ 1[v] +
1[s] ⊗ 1[u] ⊗ 1[w]

2 + 2[r] + 2[s] + 2[t] (1⊗ 1[r] ⊗ 1[s] ⊗ 1[t])2 same

2[r] ⊗ 1[s] ⊗ 1[t] 4[r] ⊗ 1[s] + 3[s] + 2[r] ⊗
2[t] ⊗ 1[s]

4[r]⊗1[t]+3[t]+2[r]⊗2[s]⊗1[t]

(or vice versa)

2[r] ⊗ 2[s] + 2[t] 3[r] ⊗ 1[s] ⊗ 1[t] + 3[s] ⊗
1[r] ⊗ 1[t]

same

3[r]⊗ 1[s] +1[t] ⊗ 1[u] 3[r] ⊗ 1[s] ⊗ 1[t] + 4[r] ⊗
1[u] + 2[s] ⊗ 1[u]

3[r] ⊗ 1[s] ⊗ 1[u] +
4[r] ⊗ 1[t] + 2[s] ⊗ 1[t] (or
vice versa)

4[r]+2[s] +1[t] ⊗ 1[u] 3[r] ⊗ 1[s] ⊗ 1[t] + 3[r] ⊗
1[s] ⊗ 1[u]

same

5[r] ⊗ 1[s] (p = 7) T (8)[r] ⊗ 1[s] + 3[s] T (9)[r] + 5[r] ⊗ 2[s] (or vice
versa)

6[r] + 4[s] (p = 7) 6[r] ⊗ 3[s] + 3[s] same

6[r] + 1[s] ⊗ 1[t] + 0
(p = 7)

6[r] ⊗ 1[s] + 6[r] ⊗ 1[t] +
1[s] ⊗ 1[t]

same

Table 23. Spin modules for D7 restricted to various subgroups

of type A1 when p = 7.

VD7
(λ1) ↓ X VD7

(λ6) ↓ X

2[r] + 2[s] + 1[t] ⊗ 1[u] +
1[v] ⊗ 1[w]

1[r] ⊗ 1[s] ⊗ 1[t] ⊗ 1[v] + 1[r] ⊗ 1[s] ⊗ 1[u] ⊗ 1[w] +
1[r] ⊗ 1[s] ⊗ 1[t] ⊗ 1[v] + 1[r] ⊗ 1[s] ⊗ 1[u] ⊗ 1[v]

3[r] ⊗ 1[s] + 2[t] + 2[u] 3[r]⊗1[s]⊗1[t]⊗1[u]+4[r]⊗1[t]⊗1[u]+2[s]⊗1[t]⊗1[u]

4[r] + 1[s] ⊗ 1[t] + 1[u] ⊗
1[v] + 0

3[r] ⊗ 1[s] ⊗ 1[u] + 3[r] ⊗ 1[t] ⊗ 1[v] + 3[r] ⊗ 1[s] ⊗ 1[v] +
3[r] ⊗ 1[t] ⊗ 1[u]
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4[r] + 2[s] + 2[t] + 2[u] (3[r] ⊗ 1[s] ⊗ 1[t] ⊗ 1[u])2

4[r] + 4[s] + 2[t] + 0 (3[r] ⊗ 3[s] ⊗ 1[t])2

4[r] + 3[s] ⊗ 1[t] + 0 3[r] ⊗ 3[s] ⊗ 1[t] + 3[r] ⊗ 4[s] + 3[r] ⊗ 2[t]

4[r] + 4[s] + 1[t] ⊗ 1[u] 3[r] ⊗ 3[s] ⊗ 1[t] + 3[r] ⊗ 3[s] ⊗ 1[u]

6[r] + 2[s] + 1[t] ⊗ 1[u] 6[r]⊗1[s]⊗1[t]+6[r]⊗1[s]⊗1[u]+1[s]⊗1[t]+1[s]⊗1[u]

6 + 6[r] 6⊗ 6[r] + 6 + 6[r] + 0

T (8) (p = 7) 13 + T (11) + T (9) + T (7) +W (7)

T (10) (p = 7) T (16) +W (14) + T (8) + 6

T (12) (p = 7) W (21) + T (15) + T (9)

Table 24: V27 = VE6
(λ1) restricted to various subgroups of type A1 when p = 5, 7.

X V27 ↓ X

X < A1A5 via (1[r], 5[s])(p = 7) 1[r] ⊗ 5[s] + T (8)[s] + 0

X < A1A5 via (1[r], 2[s] ⊗ 1[t]) 1[r] ⊗ 2[s] ⊗ 1[t] + 4[s] + 2[s] ⊗ 2[t] + 0

X < A2G2 via (2[r], 6[s])(p = 7) 4[r] + 2[r] ⊗ 6[s] + 0

X < A3
2 via (2, 2[r], 2[s]) 2⊗ 2[r] + 2⊗ 2[s] + 2[r] ⊗ 2[s]

Table 25. V56 = VE7
(λ7) restricted to various subgroups of type A1 when p = 7.

X V56 ↓ X

X < A1D6 V56 ↓ A1D6 = (1, λ1) + (0, λ6)

X < A1A1 via (1[r], 1[s]) 6[r] ⊗ 3[s] + 4[r] ⊗ 1[s] + 2[r] ⊗ 5[s]

X < A1G2 via (1[r], 6[s]) 3[r] ⊗ 6[s] + 1[r] ⊗ T (10)[s]

X < G2C3 via (6[r], 5[s]) 6[r] ⊗ 5[s] + T (9)[s]

X < G2C3 via (6[r], 2[s] ⊗ 1[t]) 6[r] ⊗ 2[s] ⊗ 1[t] + 4[s] ⊗ 1[t] + 3[t]
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