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MONODROMY OF RANK 2 TWISTED HITCHIN SYSTEMS

AND REAL CHARACTER VARIETIES

DAVID BARAGLIA AND LAURA P. SCHAPOSNIK

Abstract. We introduce a new approach for computing the monodromy of
the Hitchin map and use this to completely determine the monodromy for the
moduli spaces of L-twisted G-Higgs bundles for the groups G = GL(2,C),
SL(2,C), and PSL(2,C). We also determine the Tate-Shafarevich class of the
abelian torsor defined by the regular locus, which obstructs the existence of a
section of the moduli space of L-twisted Higgs bundles of rank 2 and degree
deg(L) + 1. By counting orbits of the monodromy action with Z2-coefficients,
we obtain in a unified manner the number of components of the character
varieties for the real groups G = GL(2,R), SL(2,R), PGL(2,R), PSL(2,R),
as well as the number of components of the Sp(4,R) and SO0(2, 3)-character
varieties with maximal Toledo invariant. We also use our results for GL(2,R)
to compute the monodromy of the SO(2, 2) Hitchin map and determine the
components of the SO(2, 2) character variety.

1. Introduction

In this paper, we introduce a new approach for computing the monodromy of
the Hitchin system. Our results apply to the Hitchin fibrations of the groups
SL(2,C), GL(2,C), and PSL(2,C) and for twisted Higgs bundles, i.e., pairs (E,Φ)
where the Higgs field Φ is valued in an arbitrary line bundle L instead of the
canonical bundle.1 The methods we develop here yield a number of new results
concerning the topology of the regular locus of the Hitchin fibration. We summarise
the main ideas of the paper below.

Let Σ be a compact Riemann surface of genus g > 1 and let L be a line bundle
on Σ such that either L is the canonical bundle or deg(L) > 2g − 2. We let
M(r, d, L) be the moduli space of L-twisted Higgs bundles of rank r and degree d
[30]. In §2, we recall the Hitchin fibration and the construction of spectral data
for twisted Higgs bundles. As with untwisted Higgs bundles, the Hitchin fibration
is a map h : M(r, d, L) → A(r, L) =

⊕r
i=1 H

0(Σ, Li) obtained by taking the
characteristic polynomial of the Higgs field. We let Areg(r, L) denote the regular
locus, the open subset of the base over which the fibres of the Hitchin fibration are
non-singular. As recalled in §2.2, the non-singular fibres are abelian varieties. We
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shall denote by Mreg(r, d, L) the points of M(r, d, L) lying over Areg(r, L), so that
Mreg(r, d, L) → Areg(r, L) is a non-singular torus bundle.

In §3 we study the regular locus Mreg(r, d, L) and show in Theorem 3.3 that
it has an affine structure, meaning that its transition functions are composed of
linear endomorphisms of the torus together with translations. As a consequence of
the affine structure, the topology of the regular locus is completely determined by
two invariants: the monodromy, describing the linear component of the transition
functions, and the Tate-Shafarevich class, describing the translational component.
These invariants are calculated in §4.

In addition to the moduli space M(r, d, L) of L-twisted GL(r,C)-Higgs bundles,
we also consider the SL(r,C) and PSL(r,C) counterparts, namely the moduli space
M̌(r,D, L) of L-twisted Higgs bundles of rank r and determinantD, and the moduli

space M̂(r, d, L) of L-twisted PSL(r,C)-Higgs bundles of rank r and degree d. We

study the associated Hitchin fibrations ȟ : M̌(r,D, L) → A0(r, L), ĥ : M̂(r, d, L) →
A0(r, L), where A0(r, L) =

⊕r
i=2 H

0(Σ, Li) and show that the regular loci of these
fibrations are again affine. Theorem 3.4 describes the precise relation between the
monodromy and Tate-Shafarevich classes of the GL(r,C), SL(r,C), and PSL(r,C)-
moduli spaces.

In §4, we compute the monodromy and Tate-Shafarevich classes of the GL(2,C),
SL(2,C), and PSL(2,C)-moduli spaces. Henceforth, we restrict our attention to
the r = 2 case and omit r from our notation. Further, the trace of the Higgs field
plays no part in the monodromy and Tate-Shafarevich class, so we may restrict to
trace-free Higgs fields without loss of generality. We let M0(d, L) denote the moduli
space of trace-free GL(2,C)-Higgs bundles. Thus we have three moduli spaces,

M0(d, L), M̌(D,L), and M̂(d, L), all of which fibre over A0(L) = H0(Σ, L2). Fix a
basepoint a0 ∈ A0

reg(L) and let π : S → Σ be the associated spectral curve (see §2.2).
The monodromy of the GL(2,C)-Hitchin system h : M0

reg(d, L) → A0
reg(L) is the

Gauss-Manin local system R1h∗Z, describing the cohomology of the non-singular
fibres. This is equivalent to a representation ρ : π1(Areg(r, L), a0) → Aut(ΛS),
where ΛS := H1(S,Z). We also have monodromy representations ρ̌, ρ̂ corresponding
to the SL(2,C) and PSL(2,C)-moduli spaces, but these can be deduced from the
GL(2,C) case, so we focus attention on ρ.

To describe the monodromy representation, we find generators for π1(A0
reg(L), a0)

in §4.1 and compute ρ on these generators in §4.2. The regular locus of A0(L) =
H0(Σ, L2) coincides with the sections of L2 having only simple zeros. Set l =

deg(L), let S̃2lΣ be the space of positive divisors of degree 2l having only sim-

ple zeros, and let α̃ : S̃2lΣ → Jac2l(Σ) be the Abel-Jacobi map. Then A0
reg is a

C∗-bundle over α̃−1(L2). This gives a sequence

π1(C
∗) �� π1(A0

reg(L), a0) �� Br2l(Σ, a0)
α̃∗ �� H1(Σ,Z) �� 1,

where Br2l(Σ, a0) = π1(S̃
2lΣ, a0) is the 2l-th braid group of Σ [8]. It follows from

Proposition 4.1 that this is an exact sequence of groups. Proposition 4.4 shows that
the monodromy action of the generator of π1(C

∗) = Z acts as σ∗ : ΛS → ΛS , where
σ : S → S is the sheet-swapping involution of the double cover S → Σ. Thus it
remains to find generators for ker(α̃∗) to lift these to π1(A0

reg(L), a0) and determine
their monodromy action.
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Let b1, . . . , b2l ∈ Σ be the zeros of a0. The spectral curve π : S → Σ associated
to a0 is a branched double cover, where b1, . . . , b2l are the branch points. Let
γ : [0, 1] → Σ be an embedded path from bi to bj , i �= j, such that γ does not meet
the other branch points. From γ, we obtain a braid sγ ∈ Br2l(Σ, a0) by exchanging
bi and bj around opposite sides of γ while keeping all other points fixed. We
call such a braid a swap. We show in Theorem 4.1 that ker(α̃∗) is generated by
swaps. In §4.1, we describe a lifting procedure which lifts a swap sγ to an element
s̃γ ∈ π1(A0

reg(L), a0). The central result of this paper, Theorem 4.3, is a simple
description of the monodromy action of ρ(s̃γ). Note that since γ is an embedded
path in Σ joining two branch points, we have that the pre-image lγ = π−1(γ) under
π is an embedded loop in S.

Theorem 1.1. The monodromy action of ρ(s̃γ) is the automorphism of ΛS =
H1(S,Z) induced by a Dehn twist of S around lγ . Let cγ ∈ H1(S,Z) be the Poincaré
dual of the homology class of lγ. Then ρ(s̃γ) acts on H1(S,Z) as a Picard-Lefschetz
transformation:

ρ(s̃γ)x = x+ 〈cγ , x〉cγ .

Remark 1.2. The fact that the monodromy group is generated by Picard-Lefschetz
transformations is a special case of classical Lefschetz theory (see, e.g., [29]). The
real content of Theorem 1.1 is that it gives a simple procedure for obtaining the
corresponding vanishing cycles cγ .

Theorem 1.1 gives us a complete description of the monodromy of rank 2 twisted
Hitchin systems. A system of generators for the monodromy group of the SL(2,C)-
Hitchin fibration, in the untwisted case, had previously been computed by Copeland
[14] for hyperelliptic Riemann surfaces and was applied in [32,33] to determine the
monodromy in the SL(2,R) case. Copeland’s method was combinatorial, relating
the problem to computations involving a certain associated graph. The results of
this paper are proved independently of [14] and [32, 33] by different techniques.
Moreover, our approach yields a different set of generators for the monodromy
group compared with [14], greatly facilitating the monodromy computations of sub-
sequent sections of the paper. It should also be emphasised that while the GL(2,C)-
monodromy completely determines the SL(2,C)-monodromy, the converse is not
true. Thus even in the case of untwisted Higgs bundles, our computations yield
new results.

In §4.3, we proceed to determine the Tate-Shafarevich class, again for r = 2.
Even for the case of untwisted Higgs bundles, these have never previously been
computed. From Theorem 3.3, the Tate-Shafarevich class of M0(d, L) depends
only on the value of d (mod 2). When d = deg(L) (mod 2), the Tate-Shafarevich
class is zero, which is most easily seen by noting that the Hitchin section maps
into the degree d = deg(L) component. Let c ∈ H2(A0

reg(L),ΛS) denote the Tate-

Shafarevich class ofM0(d, L), where d = deg(L)+1 (mod 2). Let ΛS [2] = ΛS⊗Z2 =
H1(S,Z2). We show that c is the coboundary of a class β ∈ H1(A0

reg(L),ΛS[2]).

Such a cohomology class is represented by a map β : π1(A0
reg(L), a0) → H1(S,Z2)

satisfying the cocycle condition β(gh) = β(g) + ρ(g)β(h). The second key result
of this paper, Theorem 4.5, is a description of this cocycle on the generators of
π1(A0

reg(L), a0).
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Theorem 1.3. Let τ be the loop in A0
reg(L) generated by the C∗-action. Then

β(τ ) = 0. Let s̃γ ∈ π1(A0
reg(L), a0) be a lift of a swap of bi, bj along the path γ.

Then

β(s̃γ) =

{
0 if 1 /∈ {i, j},
cγ if 1 ∈ {i, j}.

We are also able to compute corresponding classes β̌, β̂ for the SL(2,C) and
PSL(2,C)-moduli spaces. As the results are similar to the GL(2,C)-case, we leave
the details to §4.3.

In §§4.4, 4.5, and 4.6, we give explicit descriptions of the monodromy represen-
tation taken with Z2-coefficients. The reason for our interest in Z2-coefficients is
the fact that points of order 2 in the fibres of the GL(2,C)-Hitchin system cor-
respond to GL(2,R)-Higgs bundles. Similar statements hold in the SL(2,C) and
PSL(2,C) cases. The main result is Theorem 4.7, which fully describes the group
of monodromy transformations on ΛS [2] = H1(S,Z2). To describe this result, let
Z2B be the Z2-vector spaces with basis given by the set B = {b1, b2, . . . , b2l}. Let
(( , )) be the bilinear form on Z2B given by ((bi, bj)) = 1 if i = j and 0 otherwise.
Let bo = b1 + b2 + · · · + b2l and set W = (bo)

⊥/(bo). Note that (( , )) induces a
pairing on W which will also be denoted by (( , )). We will use ΛΣ[2] to denote
H1(Σ,Z2) and we use 〈 , 〉 to denote the Weil pairings on ΛS [2] and ΛΣ[2]. Then
according to Proposition 4.10, we have an identification

ΛS [2] = ΛΣ[2]⊕W ⊕ ΛΣ[2],

under which the Weil pairing on ΛS [2] is given by

〈(a, b, c), (a′, b′, c′)〉 = 〈a, c′〉+ ((b, b′)) + 〈c, a′〉.
When l = deg(L) is even, we introduce a quadratic refinement q : ΛS [2] → Z2 of
〈 , 〉 given by

q(a, b, c) = 〈a, c〉+ qW (b),

where qW : W → Z2 is the unique quadratic refinement of (( , )) on W for which
qW (bi + bj) = 1 for all 1 ≤ i < j ≤ 2l. From Lemma 5.2 and Proposition 5.2, we
have that the function q + l/2 is the mod 2 index on ΛS [2] = H1(S,Z) associated
to a naturally defined spin structure on S. We may now give the statement of
Theorem 4.7:

Theorem 1.4. Let G ⊆ GL(ΛS [2]) be the group generated by the monodromy action
of ρ on ΛS [2]. Then G is isomorphic to a semi-direct product G = S2l �H of the
symmetric group S2l and the group H described below. The symmetric group S2l

acts on W through permutations of the set B. Let K be the subgroup of elements
of GL(ΛS[2]) of the form ⎡⎣I2g A B

0 I At

0 0 I2g

⎤⎦ ,

where A : W → ΛΣ[2], B : ΛΣ[2] → ΛΣ[2], and At : ΛΣ[2] → W is the adjoint of
A, so 〈Ab, c〉 = ((b, Atc)). Then:

(1) If l is odd, then H is the subgroup of K preserving the intersection form
〈 , 〉 or, equivalently, the elements of K satisfying

〈Bc, c′〉+ 〈Bc′, c〉+ 〈Atc, Atc′〉 = 0.
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(2) If l is even, then H is the subgroup of K preserving the quadratic refinement
q of 〈 , 〉 or, equivalently, the elements of K satisfying

〈Bc, c〉+ qW (Atc) = 0.

Sections 4.5 and 4.6 consider the monodromy action on some closely related
representations, relevant to our study of real Higgs bundles in the later sections of
the paper.

In §5 we consider moduli spaces of L-twisted Higgs bundles corresponding to the
real groups GL(2,R), SL(2,R), PGL(2,R), and PSL(2,R) and study the mon-
odromy of the associated Hitchin fibrations. For these groups, the non-singular
fibres of the Hitchin fibration are affine spaces over certain Z2-vector spaces. The
regular loci of these real moduli spaces are thus certain covering spaces of A0

reg(L).
Using spectral data, we give in Proposition 5.1 a precise description of the fibres.
This allows us to describe the regular loci in terms of the monodromy representa-
tion of ρ with Z2-coefficients, as studied in §§4.4, 4.5, and 4.6. Associated to Higgs
bundles for a real group are certain topological invariants which can be used to
distinguish connected components of the moduli spaces. Proposition 5.3 gives a de-
scription of these invariants in terms of spectral data, hence in terms of monodromy
representations.

In §6, we use our monodromy calculations to compute the number of connected
components of the moduli space of L-twisted real Higgs bundles for the groups
GL(2,R), SL(2,R), PGL(2,R), and PSL(2,R). We introduce the notion of max-
imal components for L-twisted Higgs bundles, generalising the notion of maximal
representations to the L-twisted setting. We determine the number of maximal
components in Corollary 6.1. We show in Proposition 6.3 that every connected
component of these moduli spaces meets the regular locus. Hence the number of
orbits of the monodromy gives an upper bound for the number of connected com-
ponents of the moduli space. On the other hand we have a lower bound on the
number of components given by counting the number of maxmal components plus
the number of possible values for the topological invariants of non-maximal com-
ponents. We show in Theorem 6.3 that these numbers coincide and thus give the
number of connected components, which is:

Theorem 1.5. Suppose that L = K or l = deg(L) > 2g−2 and that l is even. The
number of connected components of the L-twisted real Higgs bundle moduli spaces
is as follows:

(1) 3.22g + (l − 4)/2 for GL(2,R),
(2) 2.22g + (l − 1) for SL(2,R),
(3) 22g + l/2 for PGL(2,R) of degree 0 and 22g + l/2 − 1 for PGL(2,R) of

degree 1,
(4) l + 1 for PSL(2,R) of degree 0 and l for PSL(2,R) of degree 1.

Let Rep(G) denote the character variety of reductive representations of π1(Σ) in
G (see §6.1). The non-abelian Hodge correspondence gives homeomorphisms be-
tween character varieties of reductive groups and certain moduli spaces of untwisted
Higgs bundles. Applying Theorem 6.3, we immediately have:

Corollary 1.1. For the following real character varieties, the number of connected
components is:

(1) 3.22g + g − 3 for Rep(GL(2,R)),
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(2) 2.22g + 2g − 3 for Rep(SL(2,R)),
(3) 22g + g − 1 for Rep0(PGL(2,R)) and 22g + g − 2 for Rep1(PGL(2,R)),
(4) 2g − 1 for Rep0(PSL(2,R)) and 2g − 2 for Rep1(PSL(2,R)).

The number of components for Rep(SL(2,R)) and Rep(PSL(2,R)) was obtained
by Goldman in [24] and the number of components of Rep(PGL(2,R)) by Xia in
[39, 40]. To the best of the authors’ knowledge, the number of components for
Rep(GL(2,R)) has not previously appeared in the literature.

In a similar manner, we have a correspondence between representations of
Sp(4,R) and SO0(2, 3) with maximal Toledo invariant and K2-twisted GL(2,R)
and PGL(2,R)-Higgs bundles. This immediately gives new proofs of the following:

Corollary 1.2. The number of components of Rep(Sp(4,R)) with maximal Toledo
invariant is 3.22g + 2g − 4. The number of components of Rep(SO0(2, 3)) with
maximal Toledo invariant is 2.22g + 4g − 5.

The number of maximal components of Rep(Sp(4,R)) is due to Gothen [25, The-
orem 5.8], and the number of maximal components of Rep(SO0(2, 3)) was deter-
mined in [10, §6.2]. Finally, in §7 we apply our results on the monodromy for
GL(2,R) Higgs bundles to determine the monodromy of the SO(2, 2)-Hitchin fi-
bration. In particular, this allows us to compute the number of components of the
character variety Rep(SO(2, 2)) by counting orbits of the monodromy:

Corollary 1.3. The number of components of Rep(SO(2, 2)) is 6.22g+4g2−6g−3.

2. Review of the Hitchin system

2.1. Twisted Higgs bundles. Let Σ be a compact Riemann surface of genus
g > 1 and let L be a line bundle on Σ. An L-twisted Higgs bundle is a pair
(E,Φ), where E is a holomorphic vector bundle and Φ is a holomorphic section
of End(E) ⊗ L, called the Higgs field. The case where L is the canonical bundle
K := T ∗Σ corresponds to the usual definition of Higgs bundles as defined by Hitchin
and Simpson [26, 27, 35, 36]. One can define notions of stability and S-equivalence
for twisted Higgs bundles in exactly the same way as for ordinary Higgs bundles.
We let M(r, d, L) denote the moduli space of S-equivalence classes of semi-stable L-
twisted Higgs bundles (E,Φ), where E has rank r and degree d. Nitsure constructed
M(r, d, L) as a quasi-projective complex algebraic variety [30].

Let l = deg(L) be the degree of L. Throughout we will assume that either
L = K or l > 2g − 2. Under these conditions, the dimension of M(r, d, L) is
r2l+1+dim(H1(Σ, L)) [30, Proposition 7.1]. We let M0(r, d, L) be the subvariety
of M(r, d, L) consisting of pairs (E,Φ) with trace-free Higgs field. Any Φ can be
written in the form Φ = Φ0+

μ
r Id, where Φ0 is trace-free and μ = tr(Φ) ∈ H0(Σ, L).

Thus we have an identification M(r, d, L) � M0(r, d, L)×H0(Σ, L). It follows by
Riemann-Roch that the dimension of M0(r, d, L) is (r2 − 1)l + g.

For a line bundle D of degree d, we let M̌(r,D, L) ⊆ M0(r, d, L) be the sub-
variety of pairs (E,Φ) where Φ is trace-free and det(E) = D. The dimension of
M̌(r,D, L) is (r2 − 1)l. For any line bundle M , the tensor product (E,Φ) �→
(E ⊗ M,Φ ⊗ Id) defines an isomorphism ⊗M : M̌(r,D, L) → M̌(r,D ⊗ Mr, L).
This shows that as an algebraic variety M̌(r,D, L) depends on D only through the
value of d = deg(D) modulo r.

We say that two trace-free L-twisted Higgs bundles (E,Φ), (E′,Φ′) are projec-
tively equivalent if (E,Φ) is isomorphic to (E′⊗A,Φ′⊗ Id) for some line bundle A.
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In this paper we define an L-twisted PGL(r,C)-Higgs bundle to be the projective
equivalence class of a trace-free L-twisted Higgs bundle. Note that such an equiva-
lence class [(E,Φ)] has a well-defined degree d = deg(E) modulo r. Let D be a fixed
line bundle of degree d. Then every L-twisted PGL(r,C)-Higgs bundle of degree
d has a representative (E,Φ) for which det(E) = D. This representative is unique
up to the tensor product action of ΛΣ[r] := Jac(Σ)[r], the group of line bundles on

Σ of order r. We let M̂(r, d, L) denote the moduli space of S-equivalence classes of
L-twisted PGL(r,C)-Higgs bundles of degree d. This may either be viewed as the
quotient of M0(r, d, L) by the action of Jac(Σ) or as the quotient of M̌(r,D, L) by

the finite group ΛΣ[r]. Clearly M̂(r, d, L) has dimension (r2 − 1)l.

2.2. Spectral curves and the Hitchin fibration. Consider the space A(r, L) =
H0(Σ, L) ⊕H0(Σ, L2) ⊕ · · · ⊕H0(Σ, Lr). As with ordinary Higgs bundles, taking
coefficients of the characteristic polynomial of Φ gives a map h : M(r, d, L) →
A(r, L) called the Hitchin map or Hitchin fibration [27]. More precisely if (E,Φ) ∈
M(r, d, L), then we set h(E,Φ) = (a1, a2, . . . , ar), where the characteristic polyno-
mial of Φ is

det(λ− Φ) = λr + a1λ
r−1 + · · ·+ ar.

Thus aj ∈ H0(Σ, Lj) is given by aj = (−1)jTr(∧jΦ : ∧jE → ∧jE ⊗ Lj). Note that
since a1 = −Tr(Φ), we find that h sends M0(r, d, L) to the subspace A0(r, L) =
H0(Σ, L2) ⊕ H0(Σ, L3) ⊕ · · · ⊕ H0(Σ, Lr). Similarly we have Hitchin maps ȟ :

M̌(r,D, L) → A0(r, L) and ĥ : M̂(r, d, L) → A0(r, L).
There is an action θ : H0(Σ, L) × M(r, d, L) → M(r, d, L) of H0(Σ, L) on

M(r, d, L) given by θ(μ, (E,Φ)) = (E,Φ−(μ/r)Id) and a corresponding action θA :
H0(Σ, L) × A(r, L) → A(r, L) of the form θ(μ, (a1, a2, . . . , ar)) = (a′1, a

′
2, . . . , a

′
r),

for (a′1, . . . , a
′
r) determined by

(λ+ μ/r)r + a1(λ+ μ/r)r−1 + · · ·+ ar = λr + a′1λ
r−1 + · · ·+ a′r,

in particular, a′1 = a1 + μ. The Hitchin map intertwines the two actions. It is
clear that the map f : H0(Σ, L) ⊕ A0(r, L) → A(r, L) given by f(μ, a) = θA(μ, a)
is an isomorphism of complex algebraic varieties. Define p : A(r, L) → A0(r, L) by
p(a) = p2(f

−1(a)), where p2 : H0(Σ, L)⊕A0(r, L) → A0(r, L) is the projection to
the second factor. Then M(r, d, L) → A(r, L) may be identified with the pullback
of M0(r, d, L) → A0(r, L) under the map p. This will allow us to mostly consider
M0(r, d, L) instead of the larger space M(r, d, L).

Under our assumptions on L, the generic fibre of the Hitchin fibration is an
abelian variety. To see this, we recall the contruction of spectral curves from [6,27].
Let a = (a1, a2, a3, . . . , ar) ∈ A(r, L). We let π : L → Σ denote the projection from
the total space of L to Σ and let λ denote the tautological section of π∗(L). Define
sa ∈ H0(K,π∗(Lr)) by

(2.1) sa = λr + π∗(a1)λ
r−1 + · · ·+ π∗(ar).

The zero set Sa ⊂ L of sa is called the spectral curve associated to a. Our assump-
tions on L together with Bertini’s theorem implies that Sa is smooth for generic
points in A(r, L). Let Areg(r, L) denote the Zariski open subset of points of A(r, L)
for which the corresponding spectral curve is smooth and let Mreg(r, d, L) denote
the points of M(r, d, L) lying over Areg(r, L). Similarly define A0

reg(r, L) ⊂ A0(r, L)

and corresponding open subsets M0
reg(r, d, L), M̌reg(r,D, L),M̂reg(r, d, L). To sim-

plify notation we will write S for the spectral curve whenever the point a ∈ A(r, L)
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is understood. We then denote the restriction of π to S simply as π. For any
a ∈ Areg(r, L), we have thus constructed a degree r branched cover π : S → Σ.

The fibres of the Hitchin system may be described in terms of certain line bundles
on S as follows. Given a line bundle M on S, consider the rank r vector bundle
E = π∗(M). The tautological section λ defines a map λ : M → M ⊗ π∗L, which
pushes down to a map Φ : E → E ⊗ L, giving an L-twisted Higgs bundle pair
(E,Φ). As in [6], one finds that the characteristic polynomial is sa, so that (E,Φ)
lies in the fibre of the Hitchin map over a. Conversely any L-twisted Higgs bundle
(E,Φ) with characteristic polynomial a corresponds to some line bundle M on S
[6].

Let KS denote the canonical bundle of S. By the adjunction formula one has
KS

∼= π∗(K ⊗ Lr−1). It follows that for any line bundle M on S we have

det(π∗(M)) = Nm(M)⊗ L−r(r−1)/2,

where Nm : Pic(S) → Pic(Σ) is the norm map. Let d̃ := d + lr(r − 1)/2 and

let Jacd̃(S) be the degree d̃ line bundles on S. For M ∈ Jacd̃(S) it follows that
E = π∗(M) has degree d. By the discussion above, the correspondence M �→ (E,Φ)
identifies the fibre of M(r, d, L) over a ∈ Areg(r, L) with Jacd̃(S), which is a torsor

over Jac(S). In a similar manner, the fibre of M̌(r,D, L) over a may be identified
with {M ∈ Jacd̃(S) | Nm(M) = D ⊗ Lr(r−1)/2}. This is a torsor over the Prym
variety

Prym(S,Σ) := {M ∈ Jac(S) | Nm(M) = O}.
The fibre of M̂(r, d, L) over a may be identified with the quotient of Jacd̃(S)

under the tensor product action of π∗(Jac(Σ)). This is a torsor over the abelian
variety

ˆPrym(S,Σ) := Jac(S)/π∗(Jac(Σ)) � Prym(S,Σ)/ΛΣ[r],

which is the dual abelian variety of Prym(S,Σ).
In this paper we are mainly concerned with the case r = 2. In this case the

spectral curve π : S → Σ is a branched double cover, so there is a naturally
defined involution σ : S → S which exchanges the two sheets of the cover. Let
σ∗ : Pic(S) → Pic(S) be the pullback. By considering the action of σ on divisors,
it is clear that for any M ∈ Pic(S), one has

(2.2) σ∗(M)⊗M = π∗(Nm(M)).

In particular, we have Prym(S,Σ) = {M ∈ Pic(S) | σ∗(M) = M∗}.

3. Affine structure of the regular locus

3.1. Affine torus bundles. Let Λ be a rank n lattice, let t := Λ ⊗Z R, and let
T := t/Λ. Let Aut(T ) be the automorphism group of the Lie group T . We define
Aff(T ), the group of affine transformations of T to be the semi-direct product
Aff(T ) = Aut(T )� T which acts on T by affine transformations:

(g, s)t = g(t)s,

where (g, s) ∈ Aut(T ) � T , t ∈ T . An affine torus bundle over a topological
space B is a locally trivial torus bundle f : X → B with structure group Aff(T ).
Equivalently, X is the bundle X = P ×Aff(T ) T associated to a principal Aff(T )-
bundle P → B.
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If P → B is a principal Aff(T )-bundle, then the quotient P/T of P by the
subgroup T ⊂ Aff(T ) is a principal Aff(T )/T = Aut(T )-bundle. Since Aut(T ) is
discrete, such bundles correspond to representations ρ : π1(B, bo) → Aut(T ). Given
such a representation ρ, we let Λρ be the local system associated to ρ through the
action of Aut(T ) on the lattice Λ = H1(T,Z). Lifts of the principal Aut(T )-bundle
associated to ρ to a principal Aff(T )-bundle are classified by H2(B,Λρ). In this
way, we obtain the following classification (see [4, 5]):

Proposition 3.1. Affine torus bundles on a locally contractible, paracompact space
B are in bijection with equivalence classes of pairs (ρ, c), where:

(1) ρ is a representation ρ : π1(B, bo) → Aut(T ), called the monodromy.
(2) c is a class in H2(B,Λρ), called the Tate-Shafarevich class.

Two pairs (ρ1, c1), (ρ2, c2) are equivalent if there is an isomorphism φ : Λρ1
→ Λρ2

of local systems for which φ(c1) = c2.

Remark 3.1. Let f : X → B be the affine torus bundle associated to (ρ, c).

(1) The local system Λρ can be more intrinsically defined as the dual of the
Gauss-Manin local system R1f∗Z, i.e., Λρ = Hom(R1f∗Z,Z).

(2) The Tate-Shafarevich class is the obstruction to the existence of a section
s : B → X.

3.2. Affine structure of the Hitchin system. Fix an integer r ≥ 2 and a degree
l line bundle L with l > 2g − 2 or L = K. Further, fix a basepoint a0 ∈ Areg(r, L)
with spectral curve π : S → Σ. Let ΛS := H1(S,Z) � H1(Jac(S),Z) and let
ΛΣ := H1(Σ,Z) � H1(Jac(Σ),Z). We let 〈 , 〉 denote the intersection forms on ΛS

and ΛΣ. The pullback and norm maps π∗ : Jac(Σ) → Jac(S) and Nm : Jac(S) →
Jac(Σ) induce pullback and pushforward maps in cohomology π∗ : ΛΣ → ΛS and
π∗ : ΛS → ΛΣ with π∗π

∗(x) = rx. Set ΛP := H1(Prym(S,Σ),Z).

Proposition 3.2. We have ΛP = ker(π∗ : ΛS → ΛΣ).

Proof. Applying the homotopy long exact sequence to the short exact sequence of
abelian varieties

1 �� Prym(S,Σ) �� Jac(S)
Nm �� Jac(Σ) �� 1

shows that H1(Prym(S,Σ),Z) = ker(π∗ : H1(S,Z) → H1(Σ,Z)). The proposition
follows by applying Poincaré duality. �

We will identify ΛS with the local system on Areg(r, L) given by ΛS = R1h∗Z.
By restriction we will also regard ΛS as a local system on A0

reg(r, L). In a similar

manner we identify ΛP with the local system on A0
reg(r, L) given by ΛP = R1ȟ∗Z

and we view ΛΣ as a trivial local system. Note that the intersection forms on
ΛS ,ΛΣ and the pullback and pushforward maps π∗, π∗ are all defined at the level
of local systems.

Remark 3.2. Since ΛP =ker(π∗), the dual local system is given by Λ∗
P =ΛS/π

∗(ΛΣ).

But this is precisely R1ĥ∗Z. So the local systems R1ȟ∗Z and R1ĥ∗Z are dual to
each other.

Theorem 3.3. For any integer d, we have:

(1) The Hitchin fibrations Mreg(r, d, L) → Areg(r, L) and M0
reg(r, d, L) →

A0
reg(r, L) are affine torus bundles.
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(2) The monodromy representation ρ : π1(A0
reg(r, L), a0) → Aut(Jac(S)) of the

moduli space M0
reg(r, d, L) is the same for each value of d ∈ Z.

(3) Let c ∈ H2(A0
reg(r, L),ΛS) be the Tate-Shafarevich class of

M0
reg(r, 1− lr(r − 1)/2, L).

Then M0
reg(r, d, L) has Tate-Shafarevich class d̃c, where

d̃ = d+ lr(r − 1)/2.

(4) c is r-torsion, i.e., rc = 0.

Proof. We will give the proofs for M0
reg(r, d, L), the case of Mreg(r, d, L) being

essentially the same. Consider the union

M0
reg(r, L) =

⋃
d∈Z

M0
reg(r, d, L).

Then M0
reg(r, L) is a bundle of groups with fibre Pic(S) � Jac(S) × Z. Let N

be a line bundle on S of degree 1. This gives an explicit isomorphism Jac(S) ×
Z → Pic(S) sending (A,m) to A ⊗ Nm. As in §2.2, we set d̃ = d + lr(r − 1)/2.
Then the component M0

reg(r, d, L) of M0
reg(r, L) corresponds to the component

Jacd̃(S) = Jac(S) × {d̃} of the fibre. Let n = 2gS and let Tn be a rank n torus.
Then M0

reg(r, L) is a bundle of groups with fibres isomorphic to Tn × Z. Let
Aut(Tn × Z) be the automorphism group of Tn × Z and let p2 : Tn × Z → Z be
the projection to the second factor. We let Aut+(Tn ×Z) be those automorphisms
φ : Tn × Z → Tn × Z preserving p2, i.e., p2 ◦ φ = p2. Then clearly the transition
functions for M0

reg(r, L) are valued in Aut+(Tn × Z) since we have a well-defined
degree d.

Next we observe that there is an isomorphism Aff(Tn) � Aut+(Tn × Z) given
as follows: let (g, s) ∈ Aut(Tn) � T = Aff(Tn). Then we let (g, s) act as an
automorphism of Tn × Z by (g, s)(t,m) = (g(t)sm,m), where (t,m) ∈ Tn × Z.
Note that this is an automorphism of Tn × Z preserving p2 and that every such
automorphism is of this form. Note also that (g, s) acts on the component Tn ×
{1} by the affine action (g, s)(t, 1) = (g(t)s, 1). This shows that each component
M0

reg(r, d, L) is an affine torus bundle and that the monodromy is independent of
d.

Let c ∈ H2(A0
reg(r, L),ΛS) be the Tate-Shafarevich class of

M0
reg(r, 1− lr(r − 1)/2, L).

Then c is the Tate-Shafarevich class of the affine torus bundle associated to the
component Tn × {1} ⊂ Tn × Z. Since (g, s) acts on the component Tn × {d̃} by

(g, s)(t, d̃) = (g(t)sd̃, d̃), we see that the Tate-Shafarevich class of the affine torus

bundle M0
reg(r, d, L) is d̃c.

Finally, let A be a line bundle on Σ of degree 1. Tensoring by A gives an
isomorphism of affine torus bundle M0

reg(r, d, L) � M0
reg(r, d+ r, L) for any d ∈ Z.

Comparing Tate-Shafarevich classes, we see that rc = 0. �
We have similar results for the SL(r,C) and PSL(r,C) moduli spaces:

Theorem 3.4. Let D be a line bundle of degree d.

(1) The Hitchin fibrations M̌reg(r,D, L) → A0
reg(r, L), M̂reg(r, d, L) →

A0
reg(r, L) are affine torus bundles.
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(2) The monodromy representations ρ̌ : π1(A0
reg(r, L), a0) → Aut(Prym(S,Σ))

and ρ̂ : π1(A0
reg(r, L), a0) → Aut( ˆPrym(S,Σ)) of M̌reg(r,D, L) and

M̂reg(r, d, L) are independent of d ∈ Z.
(3) The representations ρ̌, ρ̂ are duals.
(4) ΛP ⊂ ΛS is preserved by ρ, and the restriction of ρ to ΛP is ρ̌.
(5) ΛΣ ⊂ ΛS is preserved by ρ, and ρ̂ is the induced representation on ΛS/ΛΣ �

Λ∗
P .

(6) Let č ∈ H2(A0
reg(r, L),ΛP ) be the Tate-Shafarevich class of M̌reg(r,N, L),

where N has degree 1 − lr(r − 1)/2. Then č is independent of N and for
any line bundle M of degree d, M̌reg(r,M,L) has Tate-Shafarevich class

d̃č.
(7) č is r-torsion, i.e., rč = 0.
(8) č maps to c under the natural map H2(A0

reg(r, L),ΛP )→H2(A0
reg(r, L),ΛS).

(9) Let ĉ ∈ H2(A0
reg(r, L),Λ

∗
P ) be the Tate-Shafarevich class of

M̂reg(r, 1− lr(r − 1)/2, L).

Then M̂reg(r, d, L) has Tate-Shafarevich class d̃ĉ.
(10) ĉ is the image of c under the map H2(A0

reg(r, L),ΛS) → H2(A0
reg(r, L),Λ

∗
P )

induced by ΛS → ΛS/ΛΣ � Λ∗
P .

Proof. Items (1), (2), (6), (7), and (9) are proved as in Theorem 3.3. Item (3)

follows since Prym(S,Σ) and ˆPrym(S,Σ) are dual abelian varieties. Items (4) and
(8) follow from the natural inclusion Prym(S,Σ) ⊂ Jac(S). Lastly, items (5) and
(10) follow from the natural inclusion π∗ : Jac(Σ) → Jac(S) and the identification

ˆPrym(S,Σ) � Jac(S)/π∗(Jac(Σ)). �

Remark 3.5. The fact that the regular locus of the Hitchin fibration is a torsor over
an abelian fibration (and therefore is affine) is known from the work of Faltings
[20] and independently from Donagi and Gaitsgory [18]. Furthermore Donagi and
Gaitsgory give a description of the Tate-Shafarevich class in terms of Galois coho-
mology of cameral covers. However, we give an explicit topological formula for this
class in §4.3.

4. Monodromy of twisted Hitchin systems

4.1. Fundamental group calculations. Henceforth we will consider exclusively
the case of L-twisted rank 2 Higgs bundles. To simplify notation we omit the
r and L labels on the moduli spaces and Hitchin base. In particular, we have
A0 = H0(Σ, L2). For a line bundle N , we let H0(Σ, N)simp be the space of sections
of N having only simple zeros. A point a2 ∈ H0(Σ, L2) defines a smooth spectral
curve if and only if a2 has only simple zeros, thus A0

reg = H0(Σ, L2)simp. If N is such

that H0(Σ, N) �= {0}, we let P(H0(Σ, N)simp) denote the image of H0(Σ, N)simp

under the quotient mapH0(Σ, N)\{0} → P(H0(Σ, N)). Similarly, we write P(A0
reg)

for P(H0(Σ, L2)simp).
Let SnΣ be the space of unordered n-tuples of points in Σ and let α : SnΣ →

Jacn(Σ) be the Abel-Jacobi map sending a divisor bo to the corresponding line

bundle [bo]. We let S̃nΣ ⊆ SnΣ be those divisors consisting of distinct points

and let α̃ : S̃nΣ → Jacn(Σ) be the restriction of α to S̃nΣ. The fibre of α̃ over

N ∈ Jacn(Σ) is then P(H0(Σ, N)simp). The fundamental group π1(S̃
nΣ, bo) is
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called the n-th braid group of Σ and will be denoted as Brn(Σ, bo) [8]. The Abel-

Jacobi map α̃ : S̃nΣ → Jacn(Σ) induces a homomorphism α̃∗ : Brn(Σ, bo) →
H1(Σ,Z) � π1(Jack(Σ), [bo]). We then have:

Proposition 4.1 ([16]). Let N be a line bundle of degree n > 2g − 2, let a0 ∈
H0(Σ, N)simp, and let bo be the divisor of a0. We have that α̃ : S̃nΣ → Jacn(Σ) is
a Serre fibration. In particular, we have an isomorphism

π1(P(H
0(Σ, N)simp), bo) � ker(α̃∗ : Brn(Σ, bo) → H1(Σ,Z)).

Write the divisor bo ∈ S̃nΣ as bo = b1 + b2 + · · · + bn, where the bi are distinct
points in Σ. Suppose that γ : [0, 1] → Σ is an embedded path joining bi = γ(0) to
bj = γ(1), where i �= j and such that γ meets no other point of bo. When necessary,
we shall write γ with subscripts γij to indicate the endpoints. Let D2 be the unit
disc in R2. Choose an orientation preserving embedding e : D2 → Σ such that
γ(t) = e(t − 1/2, 0) and such that e(D2) contains no other points of the divisor
bo. Next we define modified curves γ+, γ− by setting γ+(t) := e(t − 1/2, sin(πt))

and γ−(t) := e(1/2 − t,− sin(πt)). This defines a loop pγ(t) in S̃nΣ based at bo
by setting pγ(t) = b1(t) + b2(t) + · · · + b2l(t), where bi(t) = γ+(t), bj(t) = γ−(t),
and bk(t) = bk for k �= i, j; see Figure 1. The homotopy class sγ := [pγ ] of pγ(t)
in Brn(Σ, bo) clearly depends only on the choice of path γ. We call sγ the swap
associated to γ. An element of Brn(Σ, bo) of this form will be called a swap of bi
and bj , or simply a swap. Note that the swaps associated to γ and γ−1 are the
same element of Brn(Σ, bo).

Figure 1. A swap of bi and bj along the path γij .

Theorem 4.1. Suppose that n ≥ 4g− 2 or n ≥ 4g− 4 and g > 2. Then the kernel
of α̃∗ : Brn(Σ, bo) → H1(Σ,Z) is the subgroup of Br(Σ, bo) generated by swaps.

Proof. Clearly any swap lies in the kernel of α̃∗, so we only need to show that
the kernel of α̃∗ may be generated by swaps. This follows easily from a result of
Copeland [13] and Walker [38, Corollary 4.7]. �

Fix a point p ∈ Σ and let Ln → Σ×Jacn(Σ) be the Poincaré bundle of degree k
normalised with respect to p [7, Proposition 11.3.2]. This is the unique line bundle
Ln on Σ× Jacn(Σ) satisfying:

(1) Ln|Σ×{N} � N , for all N ∈ Jacn(Σ),
(2) Ln|{p}×Jacn(Σ) is trivial.

For n > 2g − 2, we obtain a vector bundle q : Vn → Jacn(Σ) by letting the fibre
of Vn over N ∈ Jacn(Σ) be H0(Σ× {N},Ln|Σ×{N}) � H0(Σ, N). Taking divisors
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gives an isomorphism P(Vn) � SnΣ, under which the Abel-Jacobi map is simply
the projection P(Vn) → Jacn(Σ). This shows that α : SnΣ → Jacn(Σ) is a locally

trivial projective bundle, which moreover lifts to a vector bundle. Let Ṽn be the

points in Vn lying over S̃nΣ. This is a principal C∗-bundle q̃ : Ṽn → S̃nΣ. The

fibre of Ṽn over N ∈ Jacn(Σ) is precisely H0(Σ, N)simp.

Proposition 4.2. Let a0 ∈ H0(Σ, N)simp, where N ∈ Jacn(Σ) and n > 2g − 2.
Then we have an exact sequence

π1(H
0(Σ, N)simp, a0)

i∗ �� π1(Ṽn, a0)
α̃∗◦q̃∗ �� π1(Jacn(Σ), N) �� 1,

where i : H0(Σ, N)simp → Ṽn is the inclusion map.

Proof. The commutative diagram

C∗

��

C∗

��
H0(Σ, N)simp i ��

��

Ṽn

q̃

��

α̃◦q̃ �� Jacn(Σ)

P(H0(Σ, N)simp)
i �� S̃nΣ

α̃ �� Jacn(Σ)

gives rise to a commutative diagram of fundamental groups with exact columns:

Z

��

Z

��
π1(H

0(Σ, N)simp, a0)
i∗ ��

��

π1(Ṽn, a0)

q̃

��

α̃∗◦q̃∗ �� π1(Jacn(Σ), N) �� 1

π1(P(H
0(Σ, N)simp), bo)

��

i∗ �� π1(S̃
nΣ, bo)

��

α̃∗ �� π1(Jacn(Σ), N) �� 1

1 1

By Proposition 4.1, the third row of this diagram is exact. From this, exactness of
the second row follows. �

By Proposition 4.1, a swap gives an element in π1(P(H
0(Σ, N)simp), bo). We

now give a canonical procedure for lifting this to a loop in Ṽn. Consider the swap
associated to a path γ from bi to bj as in Figure 1. Let e : D2 → Σ be an
oriented embedding such that γ(t) = e(t − 1/2, 0) and such that e(D2) contains
no other points of the divisor bo. Let S2(D2) be the symmetric product of D2.
There is an induced map i : S2(D2) → SnΣ sending a pair u, v ∈ D2 to the divisor
e(u)+e(v)+

∑
k �=i,j bk. In particular, pγ(t) = i((t−1/2, sin(πt)), (1/2−t,− sin(πt))).

Let V ′
n be Vn with the zero section removed. The projection q : V ′

n → SnΣ is a
principal C∗-bundle. The pullback i∗(V ′

n) is then a principal C∗-bundle over the
contractible space S2(D2) and thus admits a section, i.e., a map s : S2(D2) → V ′

n

such that q ◦s = i. We can also choose s such that s((−1/2, 0), (1/2, 0)) = a0. Now
let p̃γ(t) := s((t − 1/2, sin(πt)), (1/2 − t,− sin(πt))). This is a lift of pγ to a loop
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in Ṽn based at a0. It is clear that the homotopy class of the lift [p̃γ ] ∈ π1(Ṽn, a0)
is independent of the embedding e and section s. From Proposition 4.2, the class

s̃γ := [p̃γ ] lies in the image of i∗ : π1(H
0(Σ, N)simp, a0) → π1(Ṽn, a0). While

this does not uniquely determine a lift of [pγ ] to a class in π1(H
0(Σ, N)simp, a0),

it is sufficient for monodromy computations, as we will see that the monodromy
representation of the Hitchin system factors through i∗.

We now consider the case where n = 2l and N = L2, so that a0 ∈ H0(Σ, L2)simp

= A0
reg. The projection A0

reg → P(A0
reg) is a principal C∗-bundle, so gives an exact

sequence

(4.1) π1(C
∗, a0) → π1(A0

reg, a0) → π1(P(A0
reg), bo) → 1.

We then have:

Proposition 4.3. The group π1(A0
reg, a0) is generated by the loop given by the

C
∗-action on A0

reg together with lifts of swaps.

Proof. By Proposition 4.2 and the exact sequence (4.1), it is enough to show that
π1(P(A0

reg), bo) is generated by swaps. Suppose that deg(L) > deg(K) or that
L = K and g > 3. Then we have 2l ≥ 4g − 2 or 2l = 4g − 4 and g > 3 and the
result follows by Theorem 4.1.

It remains only to show that π1(P(A0
reg), bo) is generated by swaps when L = K

and g = 2. In this case, Σ is a hyperelliptic curve, so there is a map f : Σ → P1 such
that f is a branched double cover with 6 branch points. We may identify P

1 with
C ∪ {∞} and take ∞ to be one of the branch points, so there are 5 other branch
points x1, . . . , x5 ∈ C. Let ι : Σ → Σ be the hyperelliptic involution. Then as g = 2,
all elements of H0(Σ,K2) are fixed by ι. Thus any a ∈ H0(Σ,K2) has zero set
given as the pre-image under f of two distinct points u, v ∈ C \ {x1, . . . , x5}. Let
C5 = C \ {x1, . . . , x5} denote the plane with the 5 points x1, . . . , x5 removed. Then

P(A0
reg) is naturally identified with S̃2C5. Thus π1(P(A0

reg), bo) � Br2(C5) is the
second braid group of the plane with 5 points removed (see also [14, Theorem 5.1]).
It remains to show that Br2(C5) may be generated by elements corresponding to
swaps.

Let u, v ∈ C5 be the two points in C corresponding to the zeros of a0. We have
that Br2(C5) is generated by σ1, l1, . . . , l5, where σ1 is the braid given by a swap
of u, v within an embedded disc containing u, v but not the points x1, . . . , x5 and
li is the braid in which u moves around a loop encircling xi while v is held fixed.
Clearly σ1 corresponds to a product of two swaps in π1(P(A0

reg), bo) (the swaps of
the pre-images of u and v). Consider the braid li. Let μi be an embedded loop
based at u going around xi but not around xj for j �= i. Then li is the braid which
moves u along μi while v is fixed. Now observe that since xi is a branch point of
Σ → P1, we have that the pre-image f−1(μi) is an embedded path in Σ joining the
two points in f−1(u), and one easily finds that li corresponds to a swap of these
points along f−1(μi). �

4.2. The monodromy representation.

Definition 4.2. We let τ : [0, 1] → A0
reg be the loop in A0

reg generated by the

C∗-action, namely τ (t) = e2πita0.
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Proposition 4.4. The monodromy action of ρ(τ ) ∈ Aut(Jac(S)) is given by the
pullback σ∗ : Jac(S) → Jac(S), where σ is the sheet swapping involution of the
double cover π : S → Σ.

Proof. Let St be the spectral curve associated to τ (t) = e2πita0, given by St =
{λ ∈ L | λ2 + e2πita0 = 0}. Now if λ0 ∈ L is such that λ2

0 + a0 = 0, then setting
λt = eπitλ0, we have λ2

t + e2πita0 = 0. When t = 1, we get λ1 = −λ0, and so
the monodromy around τ acts on S = S0 by λ �→ −λ. This is exactly the sheet
swapping involution σ. �

It remains to determine the monodromy for lifts of swaps. For this it is convenient
to map A0

reg into a larger family of branched double covers of Σ.

Let sq : Jacl(Σ) → Jac2l(Σ) be the squaring map sq(L) = L2. We define spaces
Yl, Zl by the following pullback diagrams:

Yl
α′

��

p

��

Jacl(Σ)

sq

��

Zl
q′ ��

p′

��

Yl

p

��
S2lΣ

α �� Jac2l(Σ) V ′
2l

q �� S2lΣ

where V ′
2l is V2l with the zero section removed. Let Z̃l = (p′)−1(Ṽ2l) and Ỹl =

p−1(S̃2lΣ), giving a similar pair of commutative squares:

Z̃l
q̃′ ��

p̃′

��

Ỹl
α̃′

��

p̃

��

Jacl(Σ)

sq

��
Ṽ2l

q̃ �� S̃2lΣ
α̃ �� Jac2l(Σ)

A point z∈ Z̃l is given by a degree l line bundleM and an element s∈H0(Σ,M2)simp.

We therefore have a natural inclusion ι : A0
reg ↪→ Z̃l. To any z ∈ Z̃l we associate

a branched double cover Sz := {y ∈ M | y2 + s = 0}. Letting z vary we obtain a

family S̃l of branched double covers with a commutative diagram

S̃l

v

����
��
��
��

w

��
Σ× Z̃l

p2 �� Z̃l

such that for each z ∈ Z̃l, the fibre of w over z is the branched double cover Sz and
v|Sz

is the covering map Sz → Σ. Using the natural identification Aut(H1(S,Z)) =

Aut(Jac(S)), we obtain a representation ρ
˜Zl

: π1(Z̃l, z0) → Aut(Jac(S)). Noting

that the family of spectral curves over A0
reg is the pullback of w : S̃l → Z̃l under ι,

we obtain:

Proposition 4.5. We have an equality ρ = ρ
˜Zl
◦ ι∗.
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Since p̃′ : Z̃l → Ṽ2l is a covering space, we get an injection p̃′∗ : π1(Z̃l, z0) →
π1(Ṽ2l, a0). Combined with Proposition 4.5, we have a commutative diagram:

Aut(Jac(S))

π1(A0
reg, a0)

ρ
��������������

ι∗ ��

i∗

����
���

���
���

π1(Z̃l, z0)

ρ
˜Zl

��

p̃′
∗

��
π1(Ṽ2l, a0)

Recall from §4.1 that to a path γ joining bi to bj we obtain a swap sγ ∈
Br2l(Σ, bo) and that we have a canonical lift s̃γ ∈ π1(Ṽ2l, a0) lying in the image of

p̃′∗. Injectivity of p̃′∗ : π1(Z̃l, z0) → π1(Ṽ2l, a0) implies that there is a well-defined
monodromy action ρ

˜Zl
(s̃γ) ∈ Aut(Jac(S)). Moreover, if s′γ ∈ π1(A0

reg, a0) is any

lift of s̃γ to a class in π1(A0
reg, a0), then ρ(s′γ) = ρ

˜Zl
(s̃γ). Therefore it remains only

to determine the element ρ
˜Zl
(s̃γ) ∈ Aut(Jac(S)) associated to γ.

Theorem 4.3. Let lγ be the embedded loop in S given by the pre-image π−1(γ) of γ.
The monodromy action ρ

˜Zl
(s̃γ) ∈ Aut(H1(S,Z)) is the automorphism of H1(S,Z)

induced by a Dehn twist of S around lγ .

Notation 4.4. We use lγ to denote the loop in S associated to γ. Note that the
homology class [lγ ] ∈ H1(S,Z) satisfies π∗[lγ ] = 0. Let cγ ∈ H1(S,Z) = ΛS denote
the Poincaré dual class. Then cγ ∈ ΛP . A Dehn twist of S around lγ acts on
H1(S,Z) as a Picard-Lefschetz transformation. Thus the monodromy action of the
loop associated to γ is

(4.2) γ · x := ρ
˜Zl
(s̃γ)x = x+ 〈cγ , x〉cγ .

Such a transformation is also referred to as a symplectic transvection. Note that
the isotopy class of a Dehn twist around γ depends only on the isotopy class of the
embedded loop lγ and does not depend on a choice of orientation of lγ . Recall from
Definition 4.2 that τ is the loop in A0

reg generated by the C∗-action. We will write
τ · x for the monodromy action of ρ(τ ) on x. Proposition 4.4 and equation (2.2)
give

(4.3) τ · x = σ∗(x) = −x+ π∗(π∗(x)).

Note that since σ(lγ) = lγ , the action of τ commutes with the action of γ. This
can also be checked directly from (4.2)-(4.3) using π∗(cγ) = 0.

Proof of Theorem 4.3. Let γ be an embedded path in Σ joining branch points bi, bj
and avoiding all other branch points. As in Figure 1, choose an embedding e :
D2 → Σ of the unit disc D2 into Σ containing all branch points b1, . . . , b2l as well
as the path γ. The swap associated to γ defines a loop b(t) based at bo in the
space of degree 2l divisors with simple zeros contained in e(D2). Let πt : St → Σ
for t ∈ [0, 1] be the resulting family of branched double covers of Σ. Clearly no
change is made to the double cover outside the image e(D2), so the problem reduces
to understanding the family St|π−1

t (e(D2)) of branched covers of the disc D2. It is

well-known from Picard-Lefschetz theory [1] (see also [12]) that the monodromy is
described by a Dehn twist of S|π−1(e(D2)) around the cycle lγ . This acts trivially
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on the boundary of S|π−1(e(D2)) and so extends to give a Dehn twist of S around
lγ . �
4.3. Tate-Shafarevich class. Let ΛS [2] = ΛS ⊗Z Z2 and similarly define ΛΣ[2],
ΛP [2]. The local systems ΛS [2],ΛP [2] can be thought of as bundles of groups over
A0

reg, with fibres the points of order 2 in Jac(S) and Prym(S,Σ) respectively. More
generally, for k ∈ Z, let A be a fixed degree k line bundle on Σ and define

Λk
S [2] = {M ∈ Jack(S) | M2 = π∗(A) },

Λk
P [2] = {M ∈ Jack(S) | σ(M) = M, M2 = π∗(A) }.

Then Λk
S [2] may be thought of as a bundle of ΛS [2]-torsors over A0

reg and similarly

Λk
P [2] as a bundle of ΛP [2]-torsors. Note also that Λk

S [2],Λ
k
P [2] are up to isomor-

phism independent of the choice of degree k line bundle A. The ΛP [2]-torsor Λ
1
P [2]

is classified by a class β̌ ∈ H1(A0
reg,ΛP [2]). Similarly Λ1

S [2] is classified by a class

β ∈ H1(A0
reg,ΛS [2]). The inclusion Λ1

P [2] → Λ1
S [2] shows that β̌ maps to β under

the natural map H1(A0
reg,ΛP [2]) → H1(A0

reg,ΛS [2]).

Proposition 4.6. Let A be a degree 1 line bundle and let č ∈ H2(A0
reg,ΛP ) be

the Tate-Shafarevich class of M̌reg(AL∗), as in Theorem 3.4. Then č is the image

of β̌ under the coboundary map δ : H1(A0
reg,ΛP [2]) → H2(A0

reg,ΛP ) associated to

ΛP
2−→ ΛP −→ ΛP [2].

Proof. This follows by simply observing that there is a natural inclusion Λ1
P [S] ⊂

M̌reg(AL∗) compatible with the inclusion ΛP [2] ⊂ M̌reg(L
∗). �

Next, we proceed to give a description of the class β̌. Let a0 ∈ A0
reg be the

basepoint with spectral curve π : S → Σ, and let bo = b1 + b2 + · · · + b2l be the
divisor of a0. Let uk ∈ S be the ramification point lying over bk ∈ Σ. As shown in
Theorem 3.4, the Tate-Shafarevich class č of M̌(AL∗) is independent of the choice
of A ∈ Jac1(Σ). A convenient choice will be to take A = O(p), where p is a branch
point. Without loss of generality, we may take p = b1. Then Θ := O(u1) ∈ Jac1(S)
satisfies Nm(Θ) = O(b1) = A and Θ2 = π∗(A), hence Θ ∈ Λ1

P [2].

A representative for β̌ is a map β̌ : π1(A0
reg, a0) → ΛP [2] satisfying the cocycle

condition β̌(gh) = β̌(g) + g · β̌(h). Our choice of origin Θ gives us a particular
representative by setting β̌(g) = g·Θ−Θ. Clearly β̌(g) satisfies the cocycle condition
and is valued in ΛP [2] because the monodromy action preserves π∗ and Nm. Next
we determine the value of β̌ on the generators of π1(A0

reg, a0) given in Proposition
4.3:

Theorem 4.5. Let τ be the loop in A0
reg given as in Definition 4.2; then β̌(τ ) = 0.

Let s̃γ ∈ π1(A0
reg, a0) be a lift of a swap of bi, bj along the path γ. Then

β̌(s̃γ) =

{
0 if 1 /∈ {i, j},
cγ if 1 ∈ {i, j},

where cγ is defined as in Notation 4.4.

Proof. Consider first the loop τ ∈ π1(A0
reg, a0). By Proposition 4.4 the action of τ

on Jac(S) was the map induced by the involution σ : S → S. More generally, this
applies with Jacd(S) in place of Jac(S) and so we have

β̌(τ ) = σ∗(Θ)−Θ = σ∗(O(u1))−O(u1) = O(σ(u1)− u1) = 0,
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since u1, being a ramification point, satisfies σ(u1) = u1.
Now consider the lift s̃γ ∈ π1(A0

reg, a0) of a swap along the path γ. We will

denote β̌(s̃γ) more simply as β̌(γ). We will approach the computation of β̌(γ) by
interpreting it in terms of monodromy of the covering space Λ1

P [2] → A0
reg. Consider

s̃γ as a loop in A0
reg based at a0. Let q : [0, 1] → Λ1

P [2] be the unique lift of s̃γ to a

path in Λ1
P [2] with q(0) = Θ. Then q(1) = β̌(γ)q(0). Suppose that γ is a path from

bi to bj . There are three cases to consider: (i) 1 /∈ {i, j}, (ii) i = 1, and (iii) j = 1.
Case (i): Here b1 is a zero of s̃γ(t) for all t. Let u1(t) be the corresponding

ramification point. Then q(t) = O(u1(t)) and q(1) = q(0), since u1(1) = u1(0). So
β̌(γ) = 0 in this case.

Case (ii): In this case γ starts at b1 = bi. As t varies, the zeros of s̃γ move
continuously and in particular b1 moves along γ. Let u1(t) be the corresponding
ramification point. Then since u1(t) is the ramification point over γ(t), we have
u1(0) = u1, u1(1) = uj . Let Γ : [0, 1] → Jac(Σ) be the unique path in Jac(Σ)
satisfying Γ(0) = O and Γ(t)2 = O(γ(t) − x1). Then q(t) = O(u1(t))⊗ π∗(Γ(t)∗).
Therefore

β̌(γ) = q(1)⊗ q(0)∗ = O(uj − u1)⊗ π∗(Γ(1)∗).

In order to determine β̌ as an element of ΛP [2] � H1(S,Z2), we will evaluate β̌
on an arbitrary element ω ∈ H1(S,Z2). We can view ω as the mod 2 reduction
of a class in H1(S,Z), a closed 1-form on S with integral periods. We view β̌(γ)
as an element of 1

2H1(S,Z)/H1(S,Z) so that the pairing 〈β̌(γ), ω〉 is an element of

Z2 � 1
2Z/Z ⊂ R/Z. Let γ1, γ2 be the two paths in S from u1 to uj lying over γ.

Then

〈β̌(γ), ω〉 =
∫
γ1

ω − 〈Γ(1), π∗ω〉 (mod Z)

=

∫
γ1

ω − 1

2

∫
γ

π∗ω (mod Z)

=

∫
γ1

ω − 1

2

∫
γ1

ω − 1

2

∫
γ2

ω (mod Z)

=
1

2

(∫
γ1

ω −
∫
γ2

ω

)
(mod Z)

=
1

2

∫
lγ

ω (mod Z).

In other words, we have shown that β̌(γ) = cγ .
Case (iii): This case is similar to the previous case, except that we should replace

γ(t) with γ(1− t). We again obtain β̌(γ) = cγ , which is to be expected as we have
already established that the monodromy does not depend on the orientation of
γ. �

4.4. Monodromy action on ΛP [2] and ΛS [2]. Let B = {b1, b2, . . . , b2l} be the
set of branch points and let Z2B be the Z2-vector space with basis b1, . . . , b2l. Let
s : Z2B → Z2 be the linear map with s(bi) = 1 for all i. Let (Z2B)ev denote
the kernel of s. By abuse of notation we will let bo denote the element bo =
b1 + b2 + · · ·+ b2l ∈ (Z2B)ev.

Recall that ΛP [2] = ΛP ⊗Z Z2, which can be naturally identified with the points
of order 2 in Prym(S,Σ). Thus an element of ΛP [2] is a line bundle M ∈ Jac(S)



MONODROMY OF RANK 2 HITCHIN SYSTEMS 5509

such thatM2 = O and σ∗(M) � M . Alternatively, we may think ofM as a Z2-local
system together with an isomorphism σ̃ : M → M of Z2-local systems, which covers
σ. Note that for such an M , the isomorphism σ̃ is only unique up to an overall
sign change σ̃ �→ −σ̃. If ui is the ramification point over bi, then σ̃ sends Mui

to
itself, acting either as 1 or −1. Let εi ∈ Z2 be defined such that σ̃ acts on Mui

by
(−1)εi . The pair (M, σ̃) determines an element ε(M, σ̃) = ε1b1+ · · ·+ ε2lb2l ∈ Z2B.
In fact, ε(M, σ̃) is valued in (Z2B)ev. To see this we note that the restriction of M
to S \{u1, . . . , u2l} descends to a local system M ′ on Σ\{b1, . . . , b2l}. Let ∂i be the
class in H1(Σ \ {b1, . . . , b2l},Z2) given by a cycle around bi. The holonomy of M ′

around ∂i is εi, but ∂1 + · · ·+ ∂2l = 0 and hence ε1 + · · ·+ ε2l = 0. It is clear that
ε(M,−σ̃) = ε(M, σ̃) + bo, and hence the image of ε(M, σ̃) in (Z2B)ev/(bo) depends
only on M and not on the choice of isomorphism σ̃. This gives a well-defined map
ε : ΛP [2] → (Z2B)ev/(bo).

Proposition 4.7. We have a short exact sequence

(4.4) 0 �� ΛΣ[2]
π∗

�� ΛP [2]
ε �� (Z2B)ev/(bo) �� 0.

Proof. As in the discussion above, we may view ΛP [2] as the group of flat Z2-
local systems on Σ \ {b1, . . . , b2l}, modulo the unique non-trivial Z2-local system
corresponding to the double cover S \ {u1, . . . , u2l} → Σ \ {b1, . . . , b2l}. From this
description the result easily follows. �
Proposition 4.8. Let γ be a path joining distinct branch points bi, bj and let cγ ∈
ΛP [2] be the corresponding cycle in S. Then

ε(cγ) = bi + bj .

Conversely if c is any element of ΛP [2] with ε(c) = bi + bj, then there exists an
embedded path γ from bi to bj for which c = cγ .

Proof. Recall that cγ is the Poincaré dual of the cycle lγ ∈ H1(S,Z2) which is
obtained as the pre-image of γ under π : S → Σ. Thus if we view cγ as a certain
Z2-local system on S, then the holonomy of cγ around a cycle l in S coincides with
the intersection pairing of l with lγ . Let γkm be a path in Σ joining two branch
points bk, bm and let lγkm

be the pre-image of γkm in S. We will assume that
γkm has been chosen so that it is an embedded path in Σ from bk to bm which
avoids all other branch points. Then the intersection of lγ with lγkm

is the number
of elements common to the sets {i, j} and {k,m}, taken modulo 2. On the other
hand, we know that there is a lift of σ to an involution σ̃ of the local system cγ .
Then ε(cγ) = ε1b1 + · · · + ε2lb2l, where σ̃ acts on the fibre over ui as (−1)εi . The
pre-image of γkm in S consists of two paths γ1, γ2 from uk to um. Using σ̃ to
compare parallel translation along these paths, we see that the holonomy around
lγkm

is (−1)εk+εm . This proves that ε(cγ) = bi + bj .
To prove the converse it is sufficient to show that any class a ∈ H1(Σ,Z2) may

be represented by an embedded loop. Clearly we can restrict to the case a �= 0.
Now we observe that the mapping class group of Σ acts on H1(Σ,Z2) as the group
Sp(2g,Z2) and this group acts transitively on H1(Σ,Z2) \ {0}. Thus it is enough
to find a single class a ∈ H1(Σ,Z2) \ {0} which can be represented as an embedded
loop, which is certainly possible. �

Define a non-degenerate symmetric bilinear form (( , )) : Z2B ⊗ Z2B → Z2 by
setting ((bi, bj)) = 0 if i �= j and ((bi, bi)) = 1. Note that (Z2B)ev = (bo)

⊥ is the
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orthogonal complement of bo, so that the restriction of (( , )) to (Z2B)ev/(bo) =
(bo)

⊥/(bo) is non-degenerate. Note also that bo is a characteristic for (( , )), i.e.,
((x, x)) = ((x, bo)) for any x ∈ Z2B. The induced form on (Z2B)ev/(bo) is thus
even, i.e., ((x, x)) = 0 for any x ∈ (Z2B)ev/(bo). The subspace ΛΣ[2] ⊂ ΛP [2] is
completely null with respect to the restriction of the intersection form 〈 , 〉 to ΛP [2].
Moreover, we have:

Proposition 4.9. The restriction of 〈 , 〉 to ΛP [2] is given by the pullback of (( , ))
under the map ε : ΛP [2] → (Z2B)ev/(bo). That is,

〈(x1, y1), (x2, y2)〉 = ((y1, y2)),

for all (x1, y1), (x2, y2) ∈ ΛP [2] � ΛΣ[2]⊕ (Z2B)ev/(bo).

Proof. By Proposition 4.8 and (4.4), we see that ΛP [2] is spanned by the image of
ΛΣ[2] together with elements of the form cγ , where γ is an embedded path joining
two branch points. Since ΛΣ[2] is completely null with respect to the restriction of
〈 , 〉 to ΛP [2], we just need to verify the proposition for a pair cγ , cγ′ . However this
has already been done in the proof of Proposition 4.8, where it was shown that if γ
joins bi to bj and γ′ joins bk to bl, then 〈cγ , cγ′〉 is the number of elements common
to {i, j} and {k, l}, taken modulo 2. This is the same as ((bi + bj , bk + bl)) =
((ε(cγ), ε(cγ′))). �

From Proposition 3.2 we have a short exact sequence:

(4.5) 0 �� ΛP [2] �� ΛS [2]
π∗ �� ΛΣ[2] �� 0.

Proposition 4.10. Choose a splitting ΛP [2] = ΛΣ[2]⊕(Z2B)ev/(bo) of (4.4). Then
there exists a splitting of (4.5) such that under the resulting identifications

ΛS [2] � ΛP [2]⊕ ΛΣ[2] � ΛΣ[2]⊕ (Z2B)ev/(bo)⊕ ΛΣ[2]

given by these splittings, the intersection form on ΛS [2] is given by

(4.6) 〈(a, b, c), (a′, b′, c′)〉 = 〈a, c′〉+ ((b, b′)) + 〈c, a′〉

for all a, a′, c, c′ ∈ ΛΣ[2], b, b
′ ∈ (Z2B)ev/(bo).

Proof. For notational convenience, set W = (Z2B)ev/(bo). Choose a splitting of
(4.4), so ΛP [2] = ΛΣ[2] ⊕ W and we may regard W as a subspace of ΛS [2]. The
restriction of the intersection form to W is the bilinear form (( , )), which is non-
degenerate. Thus we have an orthogonal splitting ΛS [2] = W⊕W⊥. The restriction
π∗|W⊥ : W⊥ → ΛΣ[2] is surjective because W ⊂ ΛP [2] = ker(π∗). The kernel of
π∗|W⊥ is ker(π∗) ∩ W⊥ = ΛP [2] ∩ W⊥ = π∗(ΛΣ[2]). So we have a short exact
sequence:

(4.7) 0 �� ΛΣ[2]
π∗

�� W⊥ π∗|W⊥ �� ΛΣ[2] �� 0.

Let ι : ΛΣ[2] → W⊥ be a splitting of (4.7). We say that ι is an isotropic splitting
if the image of ι is isotropic in W⊥. We claim that an isotropic splitting exists.
Indeed, let ι be any choice of splitting and let β : ΛΣ[2] ⊗ ΛΣ[2] → Z2 be given
by β(a, b) = 〈ιa, ιb〉. This is an even symmetric bilinear form on ΛΣ[2]. Let F be
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an endomorphism of ΛΣ[2]. We obtain a new splitting ι′ : ΛΣ[2] → W⊥ by setting
ι′(a) = ι(a) + π∗(Fa). We then find

〈ι′(a), ι′(b)〉 = 〈ι(a) + π∗(Fa), ι(b) + π∗(Fb)〉
= β(a, b) + 〈ι(a), π∗(Fb)〉+ 〈π∗(Fa), ι(b)〉
= β(a, b) + 〈π∗ι(a), F b〉+ 〈Fa, π∗ι(b)〉
= β(a, b) + 〈a, Fb〉+ 〈Fa, b〉.

Now, since β is even and symmetric we can find an F such that 〈ι′(a), ι′(b)〉 vanishes
for all a, b ∈ ΛΣ[2]; i.e., ι

′ is an isotropic splitting.
Given an isotropic splitting ι : ΛΣ[2] → W⊥, we obtain a splitting of (4.5) by

composing with the inclusion W⊥ → ΛS [2]. Under this splitting, equation (4.6)
follows easily. The only term that needs checking is 〈(a, 0, 0), (0, 0, c′)〉, but this is
〈π∗(a), ι(c′)〉 = 〈a, π∗ι(c

′)〉 = 〈a, c′〉. �

For the rest of this section we will assume that splittings have been chosen as in
Proposition 4.10, so that ΛS [2] = ΛΣ[2]⊕(Z2B)ev/(bo)⊕ΛΣ[2] with π∗(a) = (a, 0, 0),
π∗(a, b, c) = c, and with intersection pairing given as in equation (4.6). We again let
W = (Z2B)ev/(bo). For 1 ≤ i < j ≤ 2l we let bij = bi+bj . Then b12, b23, . . . , b2l−1,2l

span W and are subject to one relation b12 + b34 + b56 + · · ·+ b2l−1,2l = 0. We now
proceed to work out the monodromy action on ΛP [2] and ΛS [2].

Given an element c ∈ ΛS [2], we let sc denote the corresponding Picard-Lefschetz
transformation sc(x) = x+ 〈c, x〉c. By Propositions 4.3, 4.4, 4.8, and Theorem 4.3
we have that the monodromy action of ρ on ΛS [2] is generated by the involution σ
together with Picard-Lefschetz transformations sc, where c is any element of ΛP [2]
of the form c = (a, bij , 0), with a ∈ ΛΣ[2] and 1 ≤ i < j ≤ 2l. Consider first those
c of the form c = (0, bij , 0). To simplify notation, we also let sij denote s(0,bij ,0).
Given a permutation ω ∈ S2l, we let ω act on B = {b1, b2, . . . , b2l} by ω(bi) = bω(i)

and extend this action linearly to Z2B. The action preserves (Z2B)ev and descends
to W = (Z2B)ev/(bo). We now find that sij has the form

(4.8) sij =

⎡⎣I2g 0 0
0 σij 0
0 0 I2g

⎤⎦ ,

where σij ∈ S2l denotes the transposition of i and j. Next we define linear trans-
formations Ax

ij by Ax
ij = sbijsbij+x. Then

(4.9) Ax
ij =

⎡⎣I2g Lx
ij Sx

0 I (Lx
ij)

t

0 0 I2g

⎤⎦ ,

where Lx
ij : W → ΛΣ[2] is given by Lx

ij(b) = ((bij , b))x, (L
x
ij)

t : ΛΣ[2] → W is

the adjoint map, (Lx
ij)

ta = 〈x, a〉bij , and Sx : ΛΣ[2] → ΛΣ[2] is given by Sx(a) =
〈x, a〉x. The monodromy action on ΛS [2] is generated by σ, the sij , and the Ax

ij .
Suppose that l = deg(L) is even. In this case we define a quadratic refinement

qW of (( , )) on W , i.e., a function qW : W → Z2 satisfying qW (a+ b) = qW (a) +
qW (b)+((a, b)). The function qW is given by qW (b) = k where b = bi1+bi2+· · ·+bi2k
and i1, i2, . . . , i2k are distinct. We may then define a quadratic refinement q of 〈 , 〉
on ΛS [2] by setting q(a, b, c) = 〈a, c〉+ qW (b).
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Lemma 4.1. Suppose that l is even, so that q : ΛS [2] → Z2 is defined. In this
case, the monodromy action on ΛS [2] preserves q.

Proof. By (2.2), we have σ(x) = −x + π∗π∗(x) = x + π∗π∗(x), for all x ∈ ΛS [2].
Thus σ(a, b, c) = (a+c, b, c). We find q(σ(a, b, c)) = q(a+c, b, c) = 〈a+c, c〉+qW (b)
= 〈a, c〉+qW (b) = q(a, b, c), so q is σ invariant. It remains to show that q is invariant
under the Picard-Lefschetz transformations s(a,bij ,0). More generally, let c ∈ ΛS [2]
and consider the Picard-Lefschetz transformation sc(x) = x+ 〈x, c〉c. Then

q(sc(x)) = q(x+ 〈x, c〉c)
= q(x) + 〈x, c〉q(c) + 〈x, c〉2

= q(x) + 〈x, c〉(q(c) + 1).

Thus sc preserves q if and only if q(c) = 1. Now if c = (a, bij , 0), we have q(c) =
qW (bij) = 1, so q is preserved by these transformations. �

Lemma 4.2. Let B : ΛΣ[2] → ΛΣ[2] be symmetric, i.e., 〈Bx, y〉 = 〈x,By〉. If l is
even we further assume B is even, i.e., 〈Bx, x〉 = 0 for all x. Then the matrix

(4.10)

⎡⎣I2g 0 B
0 I 0
0 0 I2g

⎤⎦
is realised by products of the Ax

ij matrices.

Proof. Let S2(ΛΣ[2]) denote the space of symmetric bilinear endomorphisms of
ΛΣ[2] and let S2,ev(ΛΣ[2]) denote the space of symmetric, even endomorphisms.
For any x, y ∈ ΛΣ[2], define symmetric endomorphisms Bx,y and Bx by

Bx,y(a) = 〈x, a〉y + 〈y, a〉x, Bx(a) = 〈x, a〉x.

Note that S2,ev(ΛΣ[2]) is spanned by the Bx,y and S2(ΛΣ[2]) is spanned by the
Bx,y and Bx. Next, define endomorphisms Mx,y, Nx by

Mx,y =

⎡⎣I2g 0 Bx,y

0 I 0
0 0 I2g

⎤⎦ , Nx =

⎡⎣I2g 0 Bx

0 I 0
0 0 I2g

⎤⎦ .

By (4.9), we find that Mx,y = Ax
ijA

y
ijA

x+y
ij , for any i �= j. This proves the result

in the case that l is even. Now suppose that l is odd and for any x, consider
N̂x = Ax

12A
x
34 . . . A

x
2l−1,2l. Since b12 + b34 + · · ·+ b2l−1,2l = 0, it is not hard to see

that N̂x = Nx, and this proves the result in the case that l is odd. �

Remark 4.6. Note that in the case that l is even, we have N̂x = I.

Proposition 4.11. Let G ⊆ GL(ΛS [2]) be the group generated by the monodromy
action of ρ on ΛS [2]. Then G is isomorphic to a semi-direct product G = S2l �H
of the symmetric group S2l, generated by the elements {sij | i < j } given in (4.8),
and the group H generated by the transformations {Ax

ij | i < j, x ∈ ΛΣ[2] } given
in (4.9). The action of ω ∈ S2l on H is given by ω(Ax

ij) = Ax
ω(i)ω(j).

Proof. The monodromy action is generated by σ together with the Picard-Lefschetz
transformations of the form s(x,bij ,0). Thus G is generated by the sij , the Ax

ij , and
σ. Clearly the sij generate the symmetric group S2l. If σij ∈ S2l denotes the

transposition of i and j, then it is clear that sijA
x
kls

−1
ij = Ax

k′l′ , where k′ = σij(k),
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l′ = σij(l). The proposition will follow if we can show that the action of σ can be
expressed as a product of Ax

ij terms. Recall that σ(a, b, c) = (a+ c, b, c). The result
now follows from Lemma 4.2, since the identity I is symmetric and even. �

Theorem 4.7. Let K be the subgroup of elements of GL(ΛS [2]) of the form

(4.11)

⎡⎣I2g A B
0 I At

0 0 I2g

⎤⎦ ,

where A : W → ΛΣ[2], B : ΛΣ[2] → ΛΣ[2], and At : ΛΣ[2] → W is the adjoint of
A, so 〈Ab, c〉 = ((b, Atc)). Recall that H is the subgroup of GL(ΛS[2]) generated by
the Ax

ij. We have:

(1) If l is odd, then H is the subgroup of K preserving the intersection form
〈 , 〉 or, equivalently, the elements of K satisfying

〈Bc, c′〉+ 〈Bc′, c〉+ 〈Atc, Atc′〉 = 0.

(2) If l is even, then H is the subgroup of K preserving the quadratic refinement
q of 〈 , 〉 or, equivalently, the elements of K satisfying

〈Bc, c〉+ qW (Atc) = 0.

Proof. First, note thatH is clearly a subgroup ofK preserving the intersection form
〈 , 〉, as well as the quadratic refinement q if l is even. Thus it only remains to show
that every such element of K is in H. By Lemma 4.2 it is enough to show that for
any endomorphism A : W → ΛΣ[2], there is an endomorphism B : ΛΣ[2] → ΛΣ[2]
for which the corresponding element of K belongs to H. But it is easy to see that
any such A can be written as a sum of terms of the form Lx

ij , as in (4.9). Taking
the corresponding product of Ax

ij terms, we obtain the desired element of H. �

Remark 4.8. The structure of the group H generated by the Ax
ij may be described

as follows. As in Lemma 4.2, we have the relations

Ax
ijA

y
ijA

x+y
ij = Mx,y, Ax

12A
x
34 . . . A

x
2l−1,2l =

{
I if l is even,

Nx if l is odd.

In addition, we have commutation relations

[Ax
ij , A

y
kl] =

{
I if ((bij , bkl)) = 0,

Mx,y if ((bij , bkl)) = 1.

In particular, this shows that H is a central extension of (Hom(W,ΛΣ[2]),+) by
S2,ev(ΛΣ[2]) when l is even and by S2(ΛΣ[2]) when l is odd.

Corollary 4.1. Let GP ⊆ GL(ΛP [2]) be the group generated by the monodromy
action of ρ̌ on ΛP [2]. Then GP is the set of matrices of the form

(4.12) M =

[
I2g A
0 ω

]
,

where ω ∈ S2l is any permutation and A is any endomorphism A : W → ΛΣ[2].
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Corollary 4.1 was originally proven in [33]. We can likewise describe the mon-
odromy representation ρ̂ on the dual (ΛP [2])

∗ � ΛS [2]/π
∗(ΛΣ[2]) � W ⊕ ΛΣ[2] as

follows:

Corollary 4.2. Let GP ∗ ⊆ GL((ΛP [2])
∗) be the group generated by the monodromy

action of ρ̂ on (ΛP [2])
∗. Then GP ∗ is the set of matrices of the form

(4.13) M =

[
ω C
0 I2g

]
,

where ω ∈ S2l is any permutation and C is any endomorphism C : ΛΣ[2] → W .

4.5. Monodromy action on Λ̃P [2]. For later applications we need to consider

a certain Z2-extension of Λk
P [2] and the corresponding lift ˇ̃β of β̌. Let A be a

degree k line bundle on Σ. We define Λ̃k
P [2] to be the covering space of A0

reg whose
fibre over the spectral curve S is the set of pairs (M, σ̃), where M ∈ Jack(S)
satisfies M2 = π∗(A) and σ̃ : M → M is an involution covering σ, so in particular

M � σ(M). Then Λ̃P [2] is a bundle of groups which is a Z2-extension of ΛP [2] and

Λ̃k
P [2] is a bundle of Λ̃P [2]-torsors.

We now determine the monodromy action on Λ̃P [2]. Recall as in §4.4 that we

have a natural map ε : Λ̃P [2] → (Z2B)ev which sends an equivariant line bundle
(M, σ̃) to ε1b1+ · · ·+ ε2lb2l, where σ̃ acts on Mui

by (−1)εi . Similar to Proposition
4.7, we have a short exact sequence:

(4.14) 0 �� ΛΣ[2]
π∗

�� Λ̃P [2]
ε �� (Z2B)ev �� 0.

Choose a splitting of (4.14) which we may assume is compatible with our previously

chosen splitting of (4.4). Thus we have an identification Λ̃P [2] = ΛΣ[2]⊕ (Z2B)ev.

This allows us to identify ΛP [2] with the quotient Λ̃P [2]/(bo). The natural action
of S2l on the set of branch points B extends by linearity to Z2B. Then:

Proposition 4.12. The image of the monodromy group in GL(Λ̃P [2]) is the set of
matrices of the form

(4.15) M =

[
I2g A
0 ω

]
,

where ω ∈ S2l is any permutation and A is any endomorphism A : (Z2B)ev → ΛΣ[2]
for which A(bo) = 0.

Proof. This is a straightforward extension of Corollary 4.1. All that needs to be
checked is that the monodromy action arising from a swap of branch points bi, bj
acts on (Z2B)ev as the transposition of i and j. But this is clearly seen to be the

case by thinking of elements of Λ̃P [2] as σ-equivariant line bundles on S. �

4.6. Affine monodromy representations. Having determined the monodromy

actions on ΛP [2], ΛS [2], Λ̃P [2], we now turn to their affine counterparts. Let
(Z2B)odd be the complement Z2B − (ZB)

ev and for any k ∈ Z, let (Z2B)k equal
(Z2B)ev or (Z2B)odd according to whether k is even or odd. Elements of Λk

P [2]
are line bundles M which satisfy σ(M) � M . Then, as in §4.4, there is a map
ε : Λk

P [2] → (Z2B)/(bo) defined as follows: choose an involutive lift σ̃ : M → M of
σ and let ε(M) = ε1b1 + · · ·+ ε2lb2l, where σ̃ acts on Mui

by (−1)εi .
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Lemma 4.3. Let M = O(uj). Then σ(M) � M , since σ(uj) = uj. Let σ̃ : M →
M be the unique involutive isomorphism covering σ and such that σ̃ acts as on Muj

as −1. Then for any i �= j, we have that σ̃ acts on Mui
as the identity. Thus

ε((M, σ̃)) = bj.

Proof. Let s be a non-trivial holomorphic section of M . The space of holomorphic
sections of M is spanned by s, so σ̃(s) = ±s. Since s vanishes to first order at uj

it is easy to see that in fact we must have σ̃(s) = s. For any i �= j, we have that
s is non-vanishing at ui, but σ̃(s(ui)) = s(ui). Thus σ̃ must act as the identity on
Mui

. �

Remark 4.9. Lemma 4.3 implies that the map ε : Λk
P [2] → (Z2B)/(bo) actually

takes values in (Z2B)k/(bo).

Let W 1 = (Z2B)odd/(bo), which is an affine space modelled on (Z2B)ev/(bo).
Now choose splittings as in Proposition 4.10, so that we have identifications ΛP [2] =
ΛΣ[2]⊕W and ΛS [2] = ΛΣ[2]⊕W ⊕ΛΣ[2]. By Lemma 4.3, we have ε(Θ) = b1. We
will identify Θ with the point (0, b1, 0) in ΛΣ[2]⊕W 1⊕ΛΣ[2] and if (a, b, c) ∈ ΛΣ[2]⊕
W ⊕ ΛΣ[2], then we identify (a, b, c) + Θ with (a, b+ b1, c) ∈ ΛΣ[2] ⊕W 1 ⊕ ΛΣ[2].
In this way, we have obtained identifications

Λ1
P [2] = ΛΣ[2]⊕W 1,

Λ1
S [2] = ΛΣ[2]⊕W 1 ⊕ ΛΣ[2].

Let b ∈ (Z2B)ev and b′ ∈ (Z2B)odd/(bo) = W 1. Then the pairing ((b, b′)) is
well-defined because bo is orthogonal to (Z2B)ev. Similarly if (a, b, c) ∈ ΛΣ[2] ⊕
(Z2B)ev ⊕ ΛΣ[2] and (a′, b′, c′) ∈ ΛΣ[2]⊕W 1 ⊕ ΛΣ[2], we set

〈(a, b, c), (a′, b′, c′)〉 = 〈a, c′〉+ ((b, b′)) + 〈a, c′〉.

We now turn to the computation of the monodromy action on Λ1
S [2]. First recall

that Λ1
S [2] = {M ∈ Jac1(S) | M2 = π∗(A) }, where A is a degree 1 line bundle on

Σ. As before, we take A = O(b1) and set N = O(u1) ∈ Λ1
S [2]. Recall from §4.3 that

the cocycle β̌ is given by β̌(g) = g.Θ − Θ. Any x ∈ Λ1
S [2] can be written uniquely

as x = a+Θ, where a ∈ ΛS [2]. Then the monodromy action of g on x has the form

g.x = g.a+ g.Θ

= g.a+ β̌(g) + Θ.

This can be viewed as an affine action a �→ g.a+ β̌(g). We determine this action.

Proposition 4.13. The monodromy action of τ as in Definition 4.2 acts on Λ1
S [2]

by (a, b, c) �→ (a + c, b, c). Let γ be a path in Σ joining bi to bj . Then the mon-
odromy action of a lift of the swap along γ acts on Λ1

S [2] as a Picard-Lefschetz
transformation scγ , that is,

scγ (x) = x+ 〈cγ , x〉cγ .

Proof. Let τ be the loop generated by the C∗-action. The first statement of the
proposition holds because β̌(τ ) = 0. Using Theorems 4.3 and 4.5, the monodromy
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action associated by a path γ is given by

γ(a+Θ) = γ(a) + β̌(γ) + Θ =

{
a+ 〈cγ , a〉cγ +Θ if ((bij , b1)) = 0,

a+ 〈cγ , a〉cγ + cγ +Θ if ((bij , b1)) = 1

= a+ 〈a+Θ, cγ〉cγ +Θ

= scγ (a+Θ).

This shows that the affine monodromy action can be expressed as a Picard-Lefschetz
transformation as claimed. �

Recall that we have defined the bundle of groups Λ̃P [2] and the Λ̃P [2]-torsor

Λ̃1
P [2]. We now determine the affine monodromy action on this space. Let

ˇ̃
β ∈

H1(A0
reg, Λ̃P [2]) be the class corresponding to the torsor Λ̃1

P [2]. Let γ be a path in

Σ between branch points bi, bj , and cγ , the corresponding class in H1(S,Z2). From

Proposition 4.8, it follows that we can uniquely lift cγ to an element of Λ̃P [2] by
requiring that ε(cγ) = bi + bj ∈ (Z2B)ev.

Proposition 4.14. Let τ be the loop in A0
reg generated by the C

∗-action. Then
ˇ̃β(τ ) = 0. Let s̃γ ∈ π1(A0

reg, a0) be a lift of a swap of bi, bj along the path γ:

ˇ̃β(s̃γ) =

{
0 if 1 /∈ {i, j},
cγ if 1 ∈ {i, j}.

Proof. This is a straightforward refinement of Theorem 4.5. Recall that we have

taken Θ = O(u1) as an origin in Λ1
P [2]. We lift this to an origin Θ̃ = (Θ, σ̃) ∈ Λ̃1

P [2]
by letting σ̃ be the lift of σ acting as −1 on Θu1

. Then by Lemma 4.3, we find

that ε(Θ̃) = b1. We then have ˇ̃β(τ ) = 0, because σ̃ is an involution covering σ, so
σ∗(Θ, σ̃) � (Θ, σ̃).

Let s̃γ ∈ π1(A0
reg, a0) be the lift of a swap along the path γ. Consider s̃γ as

a loop in A0
reg based at a0. Recall that we had defined q : [0, 1] → Λ1

P [2] as the

unique lift of s̃γ to a path in Λ1
P [2] with q(0) = Θ, so q(1) = β̌(γ)q(0). Similarly let

q̃(t) be the unique lift of q(t) to a path in Λ̃1
P [2] starting at Θ̃. Suppose that γ is a

path from bi to bj and recall that there were three cases: (i) 1 /∈ {i, j}, (ii) i = 1,
and (iii) j = 1.

In case (i), we had q(t) = q(0); hence we also have q̃(t) = q̃(0) and ˇ̃β(γ) = 0. In
case (ii) we had

β̌(γ) = q(1)⊗ q(0)∗ = O(uj)⊗O(u1)
∗ ⊗ π∗(Γ(1)∗).

Correspondingly, we obtain

ˇ̃β(γ) = q̃(1)⊗ q̃(0)∗ = Õ(uj)⊗ Õ(u1)
∗ ⊗ π∗(Γ(1)∗),

where Õ(uj) denotes O(uj) together with the involutive lift of σ which acts as −1

over uj . Thus ε(Õ(uj)) = bj . Note also that the pullback of any line bundle on
Σ comes with a canonical involutive lift of σ (which acts trivially over the fixed

points). Hence ε( ˇ̃β(γ)) = b1+bj = ε(cγ), proving the proposition in this case. Case
(iii) is similar. �
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Proposition 4.15. The monodromy action of τ as in Definition 4.2 acts on Λ̃1
P [2]

trivially. Let γ be a path in Σ joining bi to bj. Then the monodromy action of a lift

of the swap along γ acts on Λ̃1
P [2] as a Picard-Lefschetz transformation scγ , that is,

scγ (x) = x+ 〈cγ , x〉cγ .

Proof. This is proved in exactly the same way as Proposition 4.13. �

5. Real twisted Higgs bundles and monodromy

5.1. Real twisted Higgs bundles. In §2.1, we defined twisted Higgs bundles
moduli spaces M(r, d, L), M̌(r,D, L), M̂(r, d, L) corresponding to the complex
groups GL(2,C), SL(2,C), and PGL(2,C) = PSL(2,C). We now consider real
analogues of these moduli spaces. In general, for any real reductive Lie group
G, one may define L-twisted G-Higgs bundles and construct a moduli space of
polystable G-Higgs bundles [21]. Here we recall the definitions in the cases G =
GL(2,R), SL(2,R), PGL(2,R), and PSL(2,R).

Definition 5.1. We have:

(1) An L-twisted GL(2,R)-Higgs bundle is a pair (E,Φ), where E is a rank 2
holomorphic vector bundle with orthogonal structure 〈 , 〉 : E ⊗ E → C

and Φ is a holomorphic section of L ⊗ End(E) which is symmetric, i.e.,
〈Φu, v〉 = 〈u,Φv〉.

(2) An L-twisted SL(2,R)-Higgs bundle is a triple (N, β, γ), where N is a holo-
morphic line bundle, β ∈ H0(Σ, N2L), and γ ∈ H0(Σ, N−2L).

(3) An L-twisted PGL(2,R)-Higgs bundle is an equivalence class of triple
(E,Φ, A), where E is a rank 2 holomorphic vector bundle equipped with
a symmetric, non-degenerate bilinear pairing 〈 , 〉 : E ⊗ E → A val-
ued in a line bundle A and Φ is a holomorphic section of L ⊗ End(E)
which is trace-free and symmetric, i.e., 〈Φu, v〉 = 〈u,Φv〉. Two triples
(E,Φ, A), (E′,Φ′, A′) are considered equivalent if there is a holomorphic
line bundle B such that (E′,Φ′, A′) = (E ⊗ B,Φ′ ⊗ Id,A ⊗ B2) with the
induced pairing (E ⊗B)⊗ (E ⊗B) → A⊗B2.

(4) An L-twisted PSL(2,R)-Higgs bundle is an equivalence class of quadruple
(N1, N2, β, γ), where N1, N2 are holomorphic line bundles, β ∈
H0(Σ, N1N

∗
2L), and γ ∈ H0(Σ, N2N

∗
1L). Two quadruples (N1, N2, β, γ)

and (N ′
1, N

′
2, β

′, γ′) are considered equivalent if there is a holomorphic line
bundle B such that (N ′

1, N
′
2, β

′, γ′) = (N1B,N2B, β, γ).

Remark 5.2. We have the following relations between Higgs bundles for various real
and complex groups:

(1) A GL(2,R)-Higgs bundle (E,Φ) is in a natural way a GL(2,C)-Higgs bun-
dle.

(2) An SL(2,R)-Higgs bundle (N, β, γ) determines a GL(2,R)-Higgs bundle
(E,Φ), where E = N ⊕ N∗ equipped with the natural pairing of N and

N∗, and Φ =

[
0 β
γ 0

]
. Note that (E,Φ) constructed in this manner is trace-

free of trivial determinant so can also be thought of as an SL(2,C)-Higgs
bundle.

(3) Note that (N, β, γ) and (N∗, γ, β) define the same underlying GL(2,R)-
Higgs bundle, but are generally distinct as SL(2,R)-Higgs bundles.
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(4) A PGL(2,R)-Higgs bundle (E,Φ, A) can be considered as a PGL(2,C)-
Higgs bundle (E,Φ).

(5) A PSL(2,R)-Higgs bundle (N1, N2, β, γ) determines a PGL(2,R)-Higgs
bundle (E,Φ, A), where A = N1N2, E = N1 ⊕ N2 equipped with the

natural A-valued pairing of N1 and N2, and Φ =

[
0 β
γ 0

]
.

(6) Note that (N1, N2, β, γ) and (N2, N1, γ, β) define the same underlying
PGL(2,R)-Higgs bundle.

As in [22], one may introduce notions of stability, semistability, and polystability
and construct moduli spaces of polystable L-twisted Higgs bundles for real reductive
groups. We recall these definitions for the relevant groups.

Definition 5.3. We have the following definitions:

(1) An L-twisted GL(2,R)-Higgs bundle (E,Φ) is stable (resp. semi-stable) if
for any Φ-invariant isotropic line subbundle N ⊂ E we have deg(N) < 0
(resp. deg(N) ≤ 0). We say (E,Φ) is polystable if either (i) (E,Φ) is stable
or (ii) Φ = α.Id, for some α ∈ H0(Σ,K) and E = N ⊕ N∗ for a degree 0
line bundle N , where the orthogonal structure on E is the dual pairing of
N and N∗.

(2) An L-twisted SL(2,R)-Higgs bundle (N, β, γ) is stable (resp. semi-stable,
polystable) if the associated GL(2,R)-Higgs bundle is stable (resp. semi-
stable, polystable).

(3) An L-twisted PGL(2,R)-Higgs bundle represented by (E,Φ, A) is stable
(resp. semi-stable) if for any Φ-invariant isotropic line subbundle N ⊂ E
we have deg(N) < deg(A)/2 (resp. deg(N) ≤ deg(A)/2). We say (E,Φ, A)
is polystable if either (i) (E,Φ, A) is stable or (ii) Φ = 0 and E = N1 ⊕N2,
where deg(N1) = deg(N2) = deg(A)/2, A = N1N2, and the orthogonal
structure on E is the A-valued pairing of N1 and N2.

(4) An L-twisted PSL(2,R)-Higgs bundle is stable (resp. semi-stable, polystable)
if the associated PGL(2,R)-Higgs bundle is stable (resp. semi-stable, poly-
stable).

According to these definitions, we can associate to any semi-stable Higgs bundle
an associated polystable Higgs bundle. This defines a notion of S-equivalence and
allows us to define moduli spaces of S-equivalence classes of semi-stable real Higgs
bundles. Equivalently, these may be defined as moduli spaces of polystable real
Higgs bundles:

Definition 5.4. We define the following moduli spaces:

(1) Let RM(L) denote the moduli space of polystable L-twistedGL(2,R)-Higgs
bundles. We further let RM0(L) denote the moduli space of trace-free
polystable L-twisted GL(2,R)-Higgs bundles.

(2) Let RM̌(L) denote the moduli space of polystable L-twisted SL(2,R)-Higgs
bundles.

(3) Let RM̂(d, L) denote the moduli space of polystable L-twisted PGL(2,R)-
Higgs bundles with fixed value of d, where d ∈ Z2 is the mod 2 degree of
the associated PGL(2,C)-Higgs bundle.

(4) Let RM̃(d, L) denote the moduli space of polystable L-twisted PSL(2,R)-
Higgs bundles with fixed value of d, where d ∈ Z2 is the mod 2 degree of
the associated PGL(2,C)-Higgs bundle.
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Under the natural map taking a twisted Higgs bundle for a real group to the cor-
responding complex group, we see that the conditions of semistability and polysta-
bility are preserved. Therefore we have natural maps from the moduli spaces of
real Higgs bundles to the corresponding moduli spaces of complex Higgs bundles,
namely:

(1) RM(L) → M(0, L), corresponding to GL(2,R) → GL(2,C),
(2) RM0(L) → M0(0, L), corresponding to GL(2,R) → GL(2,C) for trace-free

Higgs bundles,
(3) RM̌(L) → M̌(O, L), corresponding to SL(2,R) → SL(2,C),

(4) RM̂(d, L) → M̂(d, L), corresponding to PGL(2,R) → PGL(2,C),

(5) RM̃(d, L) → M̂(d, L), corresponding to PSL(2,R) → PGL(2,C).

We then define the regular loci RMreg(L),
RM0

reg(L),
RM̌reg(L),

RM̂reg(d, L), and
RM̃reg(d, L) to be the open subsets in the real moduli spaces whose underlying
complex Higgs bundle maps to Areg under the Hitchin map.

5.2. Spectral data and monodromy for real Higgs bundles. In what follows
we will assume that l = deg(L) is even. We then fix a choice of a line bundle L1/2

on Σ whose square is L. Let a0 ∈ A0
reg(L) and let π : S → Σ be the corresponding

spectral curve. Given a line bundle M ∈ Jack(S), we write M = M0 ⊗ π∗(L1/2),
where M0 ∈ Jack−l(S). As usual the Higgs bundle (E,Φ) associated to M is given
by E = π∗(M) = π∗(M0⊗π∗(L1/2)) and Φ is obtained from the tautological section
λ : M → M ⊗ π∗(L).

Proposition 5.1. Under the spectral data construction sending M0 ∈ Pic(S) to
E = π∗(M ⊗ π∗(L1/2)), we have that real Higgs bundles lying over a0 correspond
to the following data:

(1) For GL(2,R), these are line bundles M0 ∈ Jac(S) such that M2
0 = O, i.e.,

the space ΛS [2].
(2) For SL(2,R), these are line bundles M0 ∈ Jac(S) such that M2

0 = O,
together with an involutive automorphism σ̃ : M0 → M0 covering σ, i.e.,

the space Λ̃P [2].
(3) For PGL(2,R), these are line bundles M0 ∈ Pic(S) such that M2

0 = π∗(A),
for some A ∈ Pic(Σ) modulo M0 �→ M0 ⊗ π∗(B), B ∈ Pic(Σ). This space
is isomorphic to

(
Λ0
S [2]⊕ Λ1

S [2]
)
/π∗ΛΣ[2].

(4) For PSL(2,R), these are line bundles M0 ∈ Pic(S), together with an invo-
lutive automorphism σ̃ : M0 → M0 covering σ, modulo M0 �→ M0 ⊗ π∗(B),

B ∈ Pic(Σ). This space is isomorphic to
(
Λ̃0
P [2]⊕ Λ̃1

P [2]
)
/π∗ΛΣ[2].

Proof. Let (E,Φ) be a GL(2,C)-Higgs bundle associated to the line bundle M0.
Thus E = π∗(M0 ⊗ π∗(L1/2)) and Φ is obtained from λ : M0 ⊗ π∗(L1/2) → M0 ⊗
π∗(L3/2). If M2

0 = O, then M0 has an orthogonal structure. As in [32], it follows
by relative duality that E has an orthogonal structure. Moreover, Φ is clearly
symmetric with this orthogonal structure, so we have obtained a GL(2,R)-Higgs
bundle. Conversely, if (E,Φ) is a GL(2,R)-Higgs bundle, then the orthogonal
structure on E gives an isomorphism (E,Φ) � (E∗,Φt). In turn this implies an
isomorphism M0 � M∗

0 of the associated line bundle, since M0 is the line bundle
associated to (E∗,Φt).
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Let (E,Φ) be an SL(2,C)-Higgs bundle associated to the line bundle M0. Thus
σ∗(M0) � M∗

0 . If M2
0 = O, then we have σ∗(M0) � M0. Let σ̃ : M0 → M0 be an

involution covering σ. Then σ̃ induces an involution σ̃ on E. Let E = L+ ⊕ L−
be the decomposition of E into +1 and −1 eigenspaces of σ̃. It is easy to see that
L+, L− are line bundles on Σ. Moreover, M2

0 = O, so as in the GL(2,R) case this
determines an orthogonal structure onE. Now Φ is symmetric but σ∗(λ) = −λ, so it
must be that σ̃ is skew-symmetric. Hence L+, L− are isotropic subbundles, and the
orthogonal structure on E gives a dual pairing. We set N = L+; then L− = N∗ and
E = N ⊕N∗. Further, since σ∗(λ) = −λ, it follows that σ̃ and Φ anti-commute so

that Φ has the form Φ =

[
0 β
γ 0

]
, for sections β, γ of N2L,N−2L. So the condition

M2
0 = O together with a choice of involutive lift σ̃ of σ determines an SL(2,R)-

Higgs bundle (N, β, γ). Conversely, given (N, β, γ) we construct the SL(2,C)-Higgs
bundle (E,Φ). Let M0 be the associated line bundle. The orthogonal structure on
E gives M2

0 = O. Let σ̃ be the involution on E = N ⊕ N∗ which acts as 1 on N
and −1 on N∗. Then σ̃ determines an involutive lift of σ̃ : M0 → M0 of σ and
hence a pair (M0, σ̃).

This completes the proof in the GL(2,R) and SL(2,R) cases. The PGL(2,R)
and PSL(2,R) cases are very similar so we omit the details. �

Remark 5.5. Choosing splittings of the local systems as in §§4.4, 4.5, and 4.6, we
can identify the regular fibres of the various moduli spaces of real Higgs bundles as
the following monodromy representations:

(1) For RM0(L), the representation is ΛS [2] = ΛΣ[2]⊕ (Z2B)ev/(bo)⊕ ΛΣ[2].

(2) For RM̌(L), the representation is Λ̃P [2] = ΛΣ[2]⊕ (Z2B)ev.

(3) For RM̂(d, L), the representation is Λd
S [2]/ΛΣ[2] = (Z2B)d/(bo)⊕ ΛΣ[2].

(4) For RM̃(d, L), the representation is Λ̃d
P [2]/ΛΣ[2] = (Z2B)d.

5.3. Topological invariants. In this section we continue to assume that the de-
gree of L is even.

Definition 5.6. We define the following topological invariants associated to real
Higgs bundles:

(1) For a GL(2,R)-Higgs bundle (E,Φ), the orthogonal structure gives E the
structure group O(2,C). Reducing to the maximal compact O(2) defines
a real rank 2 orthogonal vector bundle V such that E = V ⊗ C. The
Stiefel-Whitney classes of V define invariants w1 = w1(V ) ∈ H1(Σ,Z2)
and w2 = w2(V ) ∈ H2(Σ,Z2) � Z2.

(2) For an SL(2,R)-Higgs bundle (N, β, γ), one has an integer-valued invariant
δ = deg(N).

(3) For a PGL(2,R)-Higgs bundle represented by (E,Φ, A) we have two topo-
logical invariants ŵ1, ŵ2 defined as follows. First note that the line bundle
U =

∧2 E ⊗ A∗ is independent of the choice of representative (E,Φ, A)
and that the pairing E ⊗ E → A implies that U2 = O. Thus U is a well-
defined line bundle of order 2 and defines a class ŵ1 ∈ H1(Σ,Z2). We
define ŵ2 ∈ Z2 to be the mod 2 degree of E. This is also independent of
the choice of representative (E,Φ, A).



MONODROMY OF RANK 2 HITCHIN SYSTEMS 5521

(4) For a PSL(2,R)-Higgs bundle represented by (N1, N2, β, γ), we define an
integer invariant δ̌ = deg(N1) − deg(N2). Clearly δ̌ is independent of the
choice of representative (N1, N2, β, γ).

The characteristic classes w1, w2 in the GL(2,R) have a KO-theoretical interpre-
tation, as we recall from [28]. Suppose that E is a rankm holomorphic vector bundle
with orthogonal structure. Choosing a reduction to the maximal compact subgroup
O(m) ⊂ O(m,C) determines a real orthogonal bundle V such that E = V ⊗C. The
isomorphism class of V as a real vector bundle is independent of the choice of re-
duction, so gives a well-defined class [V ] ∈ KO(Σ), the real K-theory of Σ. We will
abuse notation and write [E] ∈ KO(Σ) for this class.

Recall that π : S → Σ is the spectral curve corresponding to a0 ∈ A0
reg(L). Let

KS be the canonical bundle of S. Suppose that U is a square root of KS ⊗ π∗(K∗)
on S. This can be thought of as a relative spin structure and hence a relative
KO-orientation for the map π. It is then possible to define the pushforward map
π! : KO(S) → KO(Σ). The map π! has a holomorphic interpretation which is
as follows: suppose that F is a holomorphic vector bundle on S with orthogonal
structure, so F defines a class [F ] ∈ KO(S). Set E = π∗(F ⊗ U). As explained
in [28], relative duality determines a natural orthogonal structure on E; hence we
obtain a class [E] ∈ KO(Σ) and we have [E] = π![F ].

Suppose M0 is a holomorphic line bundle S of order 2. Then M0 can be thought
of as a rank 1 holomorphic vector bundle with orthogonal structure. If (E,Φ) is
the associated GL(2,R)-Higgs bundle, then E = π∗(M0 ⊗ π∗(L1/2)). Recall from
§2.2 that KSπ

∗(K∗) = π∗(L) and hence π∗(L1/2) gives a relative KO-orientation.
By the discussion above, we have [E] = π![M0]. We now consider how the Stiefel-
Whitney classes of E are related to the line bundle M0. The case of w1(E) is
straightforward, since as elements of Jac(Σ)[2], we have

w1(E) = det(E) = Nm(M0).

For w2(E), we make use of the relation [E] = π![M0]. Choose a spin structure K1/2

on Σ. Then π∗(K1/2L1/2) is a spin structure on S, and our choices are compatible
with the relative spin structure π∗(L1/2). The spin structures on Σ and S define
index maps ϕΣ : KO(Σ) → KO−2(pt) = Z2 and ϕS : KO(S) → KO−2(pt) =
Z2. Since we have chosen our spin structures compatibly, we get a commutative
diagram:

KO(S)

ϕS

����
���

���
���

��

π!

��
KO(Σ)

ϕΣ �� Z2

We recall from [2] that the index maps ϕΣ, ϕS have the following holomorphic inter-
pretation. Let E be a holomorphic vector bundle on Σ with orthogonal structure.
Then ϕΣ([E]) is the mod 2 index

ϕΣ([E]) = dim
(
H0(Σ, E ⊗K1/2)

)
(mod 2)

and similarly for ϕS . As shown in [2], the restriction of ϕΣ to the space H1(Σ,Z2)
of holomorphic line bundles with orthogonal structure is a quadratic refinement of
the Weil pairing 〈 , 〉, that is,

ϕΣ(N1 ⊗N2) = ϕΣ(N1) + ϕΣ(N2) + 〈N1, N2〉+ ϕΣ(0).
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Similarly ϕS gives a quadratic refinement of the Weil pairing on H1(S,Z2).

Lemma 5.1 ([28]). Let E be a rank m vector bundle on Σ with orthogonal structure.
Then

(5.1) w2(E) = ϕΣ([E]) + ϕΣ([det(E)]) + (m− 1)ϕΣ(0).

Proof. For any such vector bundle E we wish to show that δ(E) = 0, where

δ(E) = w2(E) + ϕΣ([E]) + ϕΣ([det(E)]) + (m− 1)ϕΣ(0).

Using the fact that w2(E ⊕ F ) = w2(E) + w2(F ) + 〈det(E), det(F )〉 and the fact
that ϕΣ is a quadratic refinement of 〈 , 〉, we see that δ(E ⊕ F ) = δ(E) + δ(F ).
Thus δ descends to a homomorphism δ : KO(Σ) → Z2.

The additive group of KO(Σ) is generated by line bundles and bundles of the
form E = N +N∗, where N is a complex line bundle and the orthogonal structure
on E is the dual pairing. To prove equation (5.1), we just need to check that
δ(E) = 0 on these generators. If E is a line bundle, then it is trivial to see that
δ(E) = 0. Now suppose that E = N ⊕ N∗, where n = deg(N). Then w2(E) = n
and

ϕΣ([E]) = ϕΣ([N ]) + ϕΣ([N
∗])

= dim(H0(Σ, N ⊗K1/2)) + dim(H0(Σ, N∗ ⊗K1/2)) (mod 2)

= n,

where we have used Riemann-Roch in the last step. Lastly, since det(E) = N ⊗
N∗ = O, we see that δ(N ⊕N∗) = 0 as required. �

Lemma 5.2. We have ϕS(0) = l/2 (mod 2).

Proof. Since π∗OS = OΣ ⊕ L∗ [6], we have π!(OS) = L1/2 ⊕ L−1/2. Then

ϕS(0) = ϕΣ(π!OS)

= ϕΣ(L
1/2 ⊕ L−1/2)

=
l

2
(mod 2).

�

Proposition 5.2. Suppose that square roots K1/2 and L1/2 have been chosen.
There exists a splitting of (4.5) such that the statement of Proposition 4.10 holds
and in addition we have

ϕS(x) = q(x) + ϕS(0),

for all x ∈ ΛS [2] � H1(S,Z2), where q is the quadratic refinement on ΛS [2] intro-
duced in §4.4.

Proof. First suppose that c ∈ ΛΣ[2] and let C be the corresponding line bundle of
order 2. Then π!(π

∗(C)) = CL1/2 ⊕ CL−1/2. Hence

ϕS(c, 0, 0) = ϕΣ(CL1/2 ⊕ CL−1/2) = l/2 = ϕS(0, 0, 0).

Choose any splittings satisfying Proposition 4.10, so that ΛS [2] = ΛΣ[2]⊕W ⊕
ΛΣ[2] with the Weil pairing given by equation (4.6). Let ψ : ΛS [2] → Z2 be given
by ψ(x) = ϕS(x)+ϕS(0). Then ψ is also a quadratic refinement of the Weil pairing
and clearly satisfies ψ(0) = 0. The above calculation also shows that ψ vanishes on
π∗(ΛΣ[2]). Next, since 0⊕0⊕ΛΣ[2] is an isotropic subspace, we see that ψ((0, 0, c))
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is a linear function on ΛΣ[2]. We will eliminate this linear function using a change
of splitting.

Let ι : ΛΣ[2] → ΛS [2] be the given splitting of (4.5). Let F : ΛΣ[2] → ΛΣ[2]
be a symmetric endomorphism, i.e., 〈Fx, y〉 = 〈x, Fy〉. Then we consider a new
splitting c �→ ι(c) + π∗(Fc). Since F is symmetric we have that the Weil pairing
still has the form (4.6) in the new splitting. However,

ψ(ι(c) + π∗(Fc)) = ψ((0, 0, c) + (Fc, 0, 0))

= ψ(0, 0, c) + ψ(Fc, 0, 0) + 〈Fc, c〉
= ψ(0, 0, c) + 〈Fc, c〉.

One can easily show that given any linear function α : ΛΣ[2] → Z2, there is a
symmetric endomorphism F such that α(c) = 〈Fc, c〉. Applying this to α(c) =
φ(0, 0, c), we see that we can choose F and hence a splitting such that ψ vanishes
on the image of the splitting.

So far we have shown that ψ(a, 0, 0) = ψ(0, 0, c) = 0 for all a, c ∈ ΛΣ[2]. Then
since ψ is a quadratic refinement of the Weil pairing, we have

ψ(a, b, c) = 〈a, c〉+ ψ(0, b, 0).

To complete the proposition it remains to show that ψ(0, b, 0) = qW (b) for all b ∈ W .
However, we know that ϕS and hence ψ are monodromy invariant functions, because
the square roots L1/2, K1/2 are also monodromy invariant. In particular ψ(0, bij , 0)
takes the same value for all 1 ≤ i < j ≤ 2l. However,

ψ(b13) = ψ(b12 + b23)

= ψ(b12) + ψ(b23) + ((b12, b23))

= ψ(b12) + ψ(b23) + 1.

Therefore we must have ψ(bij) = 1 = qW (bij) for all i < j. Then using the quadratic
property we see that ψ(0, b, 0) = qW (b) for all b ∈ W . �

Proposition 5.3. Identify the regular fibres of the moduli spaces RM0(L), RM̌(L),
RM̂(d, L), and RM̃(d, L), with the monodromy representations ΛS [2], Λ̃P [2],

Λd
S [2]/ΛΣ[2], and Λ̃d

P [2]/ΛΣ[2] as in Remark 5.5. Then the topological invariants
given in Definition 5.6 are as follows:

(1) For GL(2,R), we suppose that we have chosen splittings satisfying Propo-
sition 5.2. Then we have

w1(a, b, c) = c,

w2(a, b, c) = ϕΣ(c) + ϕS(a, b, c) + ϕΣ(0) = ϕΣ(c) +
l

2
+ q(a, b, c) + ϕΣ(0).

(2) For SL(2,R), we have

δ(a, b) =
l −m

2
,

where b = bi1 + bi2 + · · ·+ bim , with i1, i2, . . . , im distinct.
(3) For PGL(2,R), we have

ŵ1(b, c) = c,

ŵ2(b, c) = ((b, bo)) = d.
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(4) For PSL(2,R), we have

δ̌(b) = (l −m),

where b = bi1 + bi2 + · · ·+ bim , with i1, i2, . . . , im distinct.

Proof. ForGL(2,R), let (E,Φ) correspond toM0 = (a, b, c) ∈ ΛS [2]. Then w1(E) =
Nm(M0) = π∗(a, b, c) = c. Next, using Lemma 5.1, Lemma 5.2, and Proposition
5.2, we have

w2(E) = ϕΣ([E]) + ϕΣ([det(E)]) + ϕΣ(0)

= ϕS([M0]) + ϕΣ(c) + ϕΣ(0)

= ϕS(a, b, c) + ϕΣ(c) + ϕΣ(0)

= q(a, b, c) +
l

2
+ ϕΣ(c) + ϕΣ(0).

For the group SL(2,R), let (M0, σ̃) be the line bundle and lift of σ, and let (a, b)

be the corresponding point in Λ̃P [2]. The underlying GL(2,R)-Higgs bundle is
(E,Φ) where E = π∗(M0 ⊗ π∗(L1/2)). Then σ̃ determines an involution on E, and
we obtain a decomposition E = L ⊕ L∗, where L is the +1-eigenspace and L∗ is
the −1-eigenspace. If b = bi1 + · · · + bim with i1, . . . , im distinct, then from the
discussion in §4.4, it follows that σ̃ acts as −1 over m ramification points and acts
as +1 over the remaining p = 2l−m points. As shown in [34], the Lefschetz index
theorem [3] gives 2δ(a, b) = (p−m)/2 = l −m, hence δ(a, b) = (l −m)/2.

For a PGL(2,R)-Higgs bundle represented by (E,Φ, A), we have defined d =
deg(E) (mod 2). We then clearly have ŵ2(b, c) = ((b, bo)) = d. For the invariant
ŵ1, we consider separately the cases d = 0 and d = 1. When d = 0 our PGL(2,R)-
Higgs bundle is represented by a GL(2,R) corresponding to (a, b, c) ∈ ΛS [2], and
in this case it is clear that ŵ1 = c. When d = 1 we can find a representative of
the form (E,Φ, A), where A = O(b1). Let M0 ∈ Jac1(S) be the corresponding line
bundle on S, so E = π∗(M0⊗π∗(L1/2)). Let N = O(u1), so that M0 can be written

in the form M0 = (a, b, c) + N , where (a, b, c) ∈ ΛS [2]. Then
∧2 E = det(E) =

Nm(a, b, c)+Nm(N) = c+O(b1); hence one has that
∧2

E⊗A∗ = c ∈ H1(Σ,Z2).
So again ŵ1 = c.

For PSL(2,R), we again use the Lefschetz index theorem as we did in the
SL(2,R) case to obtain δ̌ = deg(N1)− deg(N2) = (p−m)/2 = l −m. �

Remark 5.7. From Proposition 5.3, we have inequalities

− l

2
≤ δ ≤ l

2
, −l ≤ δ̌ ≤ l.

6. Components of real character varieties

6.1. Real character varieties. Let G be a real reductive Lie group. A represen-
tation θ : π1(Σ) → G is said to be reductive if the representation of π1(Σ) on the Lie
algebra of G obtained by composing θ with the adjoint representation decomposes
into a sum of irreducible representations. Let Homred(π1(Σ), G) be the space of
reductive representations given the compact-open topology. The group G acts on
Homred(π1(Σ), G) by conjugation, and it is known that quotient

Rep(G) = Homred(π1(Σ), G)/G
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is Hausdorff [31]. We call Rep(G) the character variety of reductive representations
of π1(Σ) in G. It can furthermore be shown that Rep(G) has the structure of a real
analytic variety which is algebraic if G is algebraic [23].

Let Σ̃ be the universal cover of Σ. Given a representation θ : π1(Σ) → G, we

obtain a principal G-bundle Pθ = Σ̃×θ G. In this way we can associate topological
invariants to θ by taking various topological invariants of the associated bundle Pθ.
When θ is a representation into PSL(2,C), we obtain a class d ∈ H2(Σ,Z2) � Z2

which is the obstruction to lifting Pθ to a principal SL(2,C)-bundle. We write
Repd(PSL(2,C)) for the subvariety of Rep(PSL(2,C)) consisting of those repre-
sentations with fixed value of the invariant d. Similarly, we obtain Repd(PGL(2,R))
(resp. Repd(PSL(2,R))) where d ∈ Z2 is the obstruction to lifting Pθ to GL(2,R)
(resp. SL(2,R)).

The non-abelian Hodge theory established by Hitchin [26], Simpson [35, 36],
Donaldson [19], and Corlette [15] gives a homeomorphism between the moduli space
of polystable G-Higgs bundles (where L = K is the canonical bundle) and the
character variety Rep(G), when G is a complex semi-simple Lie group. There is
a similar correspondence in the complex reductive case. The particular cases of
relevance to us are:

Proposition 6.1. There exist homeomorphisms:

(1) M(0,K) � Rep(GL(2,C)),
(2) M̌(O,K) � Rep(SL(2,C)),

(3) M̂(d,K) � Repd(PSL(2,C)).

The non-abelian Hodge correspondence has also been extended to real reductive
groups [9], [21]. In particular this gives the following:

Proposition 6.2. There exist homeomorphisms:

(1) RM(K) � Rep(GL(2,R)),
(2) RM̌(K) � Rep(SL(2,R)),

(3) RM̂(d,K) � Repd(PGL(2,R)),

(4) RM̃(d,K) � Repd(PSL(2,R)).

6.2. Connected components of real character varieties. We continue to as-
sume that L = K or deg(L) > 2g − 2. We will also assume that deg(L) = l is
even.

Proposition 6.3. Let G = GL(2,R), SL(2,R), PGL(2,R), or PSL(2,R). Then
every connected component of the corresponding moduli spaces RM(L), RM̌(L),
RM̂(d, L), and RM̃(d, L) meets the regular locus.

Proof. In the case of a polystable twisted SL(2,R)-Higgs bundle, the result is
a straightforward generalisation of [33, Proposition 10.2]. Next we consider a
polystable GL(2,R)-Higgs bundle (E,Φ). Note that it is sufficient to consider the
case that Φ is trace-free. We may assume that w1(E) �= 0, since otherwise (E,Φ)
comes from a polystable SL(2,R)-Higgs bundle and the previous argument applies.
Let p : Σ′ → Σ be the double cover associated to the class w1(E) ∈ H1(Σ,Z2) and
let ι : Σ′ → Σ′ be the involution swapping the two sheets of the covering Σ′ → Σ.
Note that Σ′ is connected as w1(E) �= 0. Then (p∗(E), p∗(Φ)) is an SL(2,R)-
Higgs bundle on Σ′ in the sense that there exists a line bundle N → Σ′ for which
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p∗(E) = N ⊕N∗ with orthogonal structure the dual pairing and p∗(Φ) =

[
0 β
γ 0

]
.

We also have f∗(N) = N∗ and f∗(β) = γ. Note that since f is orientation pre-
serving, the condition f∗(N) = N∗ implies that deg(N) = 0. We also have that
βγ = βf∗(β) = p∗(a) for some a ∈ H0(Σ, L2). Let a(t) be a path joining a = a(0)
to an element a(1) ∈ H0(Σ, L2)simp. It is easy to see that we can lift this to a path
β(t) ∈ H0(Σ′, N2π∗(L)) such that β = β(0) and β(t)f∗(β(t)) = p∗(a(t)). Setting
γ(t) = f∗(β(t)) we obtain a path (E,Φ(t)) joining (E,Φ) to a point in the regular
locus.

The PGL(2,R) and PSL(2,R) cases are proved in a manner similar to the
GL(2,R) and SL(2,R) cases. �

Remark 6.1. Proposition 6.3 implies that the inequalities of Remark 5.7 are valid

for all points of the corresponding moduli spaces RM̌(L) and RM̃(d, L) (for either
value of d). This generalises the Milnor-Wood inequality −(g− 1) ≤ δ ≤ (g− 1) for
Rep(SL(2,R)) � RM̌(K).

Next, we define a notion of maximal Higgs bundle which corresponds to repre-
sentation of maximal Toledo invariant:

Definition 6.2. We define maximal real Higgs bundles as follows:

(1) An SL(2,R)-Higgs bundle (N, β, γ) is said to be maximal if it is polystable
and δ = deg(N) = ±l/2.

(2) A PSL(2,R)-Higgs bundle (N1, N2, β, γ) is said to be maximal if it is
polystable and δ̌ = deg(N1)− deg(N2) = ±l.

(3) We say that a trace-free GL(2,R)-Higgs bundle is maximal if it is the
GL(2,R)-Higgs bundle associated to a maximal SL(2,R)-Higgs bundle.
More generally, we say that a GL(2,R)-Higgs bundle (E,Φ) is maximal

if the associated trace-free GL(2,R)-Higgs bundle (E,Φ− tr(Φ)
2 Id) is max-

imal.
(4) We say that a PGL(2,R)-Higgs bundle is maximal if it is the PGL(2,R)-

Higgs bundle associated to a maximal PSL(2,R)-Higgs bundle.

Proposition 6.4. We have the following classification of maximal Higgs bundles:

(1) Up to isomorphism, maximal SL(2,R)-Higgs bundles are of the form
(N, β, 1) or (N∗, 1, β), where N2 = L and β is a holomorphic section of
L2.

(2) Up to isomorphism, maximal GL(2,R)-Higgs bundles are of the form E =

N ⊕N∗, Φ =

[
α β
1 α

]
, where N2 = L, α is a holomorphic section of L and

β is a holomorphic section of L2.
(3) Up to isomorphism, maximal PSL(2,R)-Higgs bundles are of the form

(L, 1, β, 1) or (1, L, 1, β), where β is a holomorphic section of L2.
(4) Up to isomorphism, maximal PGL(2,R)-Higgs bundles are of the form E =

L⊕ 1, Φ =

[
0 β
1 0

]
, where β is a holomorphic section of L2.

Proof. We give the proof for the SL(2,R) case, the other cases being similar. If
(N, β, γ) is maximal, then deg(N) = ±l/2. If deg(N) = l/2, then γ is a section
of N−2L which has degree 0 and is non-vanishing by polystability. Thus N2 � L,
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and we can choose the isomorphism of N2 and L so that γ = 1. Similarly if
deg(N) = −l/2, then N2 = L−1, and we can take β = 1. �

Corollary 6.1. The number of maximal connected components is as follows:

(1) 22g for GL(2,R),
(2) 22g+1 for SL(2,R),
(3) 1 for PGL(2,R),
(4) 2 for PSL(2,R).

Theorem 6.3. The number of connected components of the L-twisted real Higgs
bundle moduli spaces is as follows:

(1) 3.22g + (l − 4)/2 for RM(L) (and RM0(L)),
(2) 2.22g + (l − 1) for RM̌(L),

(3) 22g + l/2 for RM̂(0, L) and 22g + l/2− 1 for RM̂(1, L),

(4) l + 1 for RM̃(0, L) and l for RM̃(1, L).

Proof. Our strategy for counting components is as follows: Proposition 6.3 ensures
that every component meets the regular locus and thus every component meets any
fixed choice of non-singular fibre. Next we determine the orbits of the monodromy
action on the fibre. We say that an orbit is maximal if the corresponding Higgs
bundles are maximal and we say an orbit is non-maximal otherwise. By inspection,
we will find that any two distinct non-maximal orbits will have different topological
invariants and thus correspond to distinct connected components of the moduli
space. It follows that the number of connected components is the number of non-
maximal orbits plus the number of maximal components (and this is just the total
number of orbits of the monodromy).

Case (1): GL(2,R). In this case the real points of a fibre are given by ΛS [2] =
ΛΣ[2] ⊕ (Z2B)ev/(bo) ⊕ ΛΣ[2]. The maximal orbits are those of the form (a, 0, 0),
a ∈ ΛΣ[2]. Let (a, b, c) ∈ ΛS [2]. If c �= 0, we can use the monodromy action
to eliminate b leaving (a, 0, c). We claim that for each fixed c �= 0 there are two
orbits corresponding to whether q(a, 0, c) = 〈a, c〉 is 0 or 1. Note that we have
a monodromy action (a, 0, c) �→ (a + Fc, 0, c), where F is any even symmetric
endomorphism of ΛΣ[2].

If 〈a, c〉 = 0, choose an element c′ ∈ ΛΣ[2] with 〈c, c′〉 = 1 and define F by
Fx = 〈a, x〉c′ + 〈c′, x〉a. Then Fc = a and (a+ Fc, 0, c) = (0, 0, c), and so there is
just one such orbit for each c �= 0.

If 〈a, c〉 = 〈a′, c〉 = 1, we will show that there is a symmetric even endomorphism
F such that Fc = a + a′. Then (a + Fc, 0, c) = (a′, 0, c), and so there is just one
orbit of this type. In fact, we can take F to be given by Fx = 〈a, x〉a′ + 〈a′, x〉a.

Now consider non-maximal orbits of the form (a, b, 0). Since b �= 0 we can use
monodromy to set a to zero, so we just need to consider elements (0, b, 0). Since
the monodromy acts on such elements by permutations of B, we find that there
are exactly l/2 such non-maximal orbits. In total we have found 2.(22g − 1) + l/2
non-maximal orbits, and by inspection they are seen to be distinguished by their
topological invariants. Together with the 22g maximal components this gives a total
of 3.22g + (l − 4)/2 components.

Case (2): SL(2,R). The real points of a fibre are given by Λ̃P [2] = ΛΣ[2]⊕(Z2B)ev.
The 2.22g maximal orbits are those of the form (a, 0) and (a, bo) for a ∈ ΛΣ[2]. The
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non-maximal orbits have representatives of the form (0, b), and we find there are
(l − 1) such orbits. Again, we see by inspection that the non-maximal orbits have
distinct topological invariants, so the total number of connected components is
2.22g + l − 1.

Case (3): PGL(2,R). The real points of a fibre are W ⊕ ΛΣ[2] for d = 0 and
W 1 ⊕ ΛΣ[2] for d = 1. There is a single maximal orbit (0, 0). Consider an element
of the form (b, c) with c �= 0. By the monodromy action we can replace b by b+ b′

for any b′ ∈ (Z2B)ev/(bo). Thus we can assume b = 0 (for d = 0) or b = b1 (for
d = 1). Thus for either value of d, there are 22g − 1 such orbits. The remaining
orbits have the form (b, 0) for b �= 0, bo. We find there are l/2 such orbits for each
value of d. Once again, the non-maximal orbits have distinct topological invariants,
and so the total number of components is 22g + l/2 for d = 0 and 22g + l/2− 1 for
d = 1.

Case (4): PSL(2,R). The real points of a fibre are (Z2B)ev for d = 0 and (Z2B)odd

for d = 1. There are two maximal orbits 0 and bo. There are a further l − 1 non-
maximal orbits when d = 0 and l non-maximal orbits when d = 1. Yet again, the
non-maximal orbits are distinguished by topological invariants, so the number of
connected components is l + 1 for d = 0 and l for d = 1. �

Corollary 6.2. Setting L = K, we have the number of connected components of
the following real character varieties:

(1) 3.22g + g − 3 for Rep(GL(2,R)),
(2) 2.22g + 2g − 3 for Rep(SL(2,R)),
(3) 22g + g − 1 for Rep0(PGL(2,R)) and 22g + g − 2 for Rep1(PGL(2,R)),
(4) 2g − 1 for Rep0(PSL(2,R)) and 2g − 2 for Rep1(PSL(2,R)).

Remark 6.4. The number of components 2.22g+2g−3 for Rep(SL(2,R)) and 4g−3
for Rep(PSL(2,R)) were shown by Goldman in [24]. Xia [39, 40] showed that the
number of components of the space of homomorphisms Hom(π1(Σ),PGL(2,R)) is
2.22g+4g−5. This number is different from the number 2.22g+2g−3 of components
of Rep(PGL(2,R)) because upon taking the quotient of the conjugation action of
PGL(2,R), certain pairs of components are identified.

6.3. Components of maximal Sp(4,R) and SO0(2, 3) representations. Let θ
be a representation of π1(Σ) into Sp(4,R). Since the maximal compact subgroup
of Sp(4,R) is U(2), we can associate to θ an integer invariant d called the Toledo
invariant, defined as the degree of the U(2)-bundle obtained by a reduction of
structure of the flat Sp(4,R)-bundle associated to θ. Turaev [37] showed that
the Toledo invariant satisfies an inequality, often referred to as a Milnor-Wood
inequality:

|d| ≤ (2g − 2).

We write Repd(Sp(4,R)) for the representations with fixed value of the Toledo
invariant. It can easily be shown that Repd(Sp(4,R)) and Rep−d(Sp(4,R)) are
homeomorphic, so it suffices to consider components with d ≥ 0. We say that a
representation θ of π1(Σ) into Sp(4,R) is maximal if it satisfies d = (2g−2) and we
let Repmax(Sp(4,R)) = Rep2g−2(Sp(4,R)) denote the subspace of Rep(Sp(4,R))
consisting of maximal representations. Using the Cayley correspondence of [22]
it can be shown that there is a homeomorphism between Repmax(Sp(4,R)) and
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RM(K2), the moduli space of K2-twisted GL(2,R)-Higgs bundles. From Theorem
6.3, we immediately obtain:

Corollary 6.3. The number of components of Repmax(Sp(4,R)) is 3.2
2g +2g− 4.

Corollary 6.3 was shown by Gothen in [25, Theorem 5.8].

Consider now representations into SO0(2, 3), the identity component of SO(2, 3).
We note that SO0(2, 3) � PSp(4,R). Since the maximal compact subgroup of
SO0(2, 3) is SO(2)×SO(3), we obtain an integer invariant d, defined as the degree
of the associated SO(2)-bundle. The invariant d is again called the Toledo invariant
and satisfies a Milnor-Wood inequality [10, 17]:

|d| ≤ 2g − 2.

As in the case of Sp(4,R), we let Repd(SO0(2, 3)) denote the space of reductive rep-
resentations with Toledo invariant d and letRepmax(SO0(2, 3))=Rep2g−2(SO0(2, 3))
denote the space of maximal representations. The Cayley correspondence of [10] al-
lows us to identifyRepmax(SO0(2, 3)) with the moduli space ofK2-twisted SO0(1, 1)
×SO(1, 2)-Higgs bundles. Then since SO0(1, 1)×SO(1, 2) � PGL(2,R), Theorem
6.3 gives:

Corollary 6.4. The number of components of Repmax(SO0(2, 3)) is 2.2
2g+4g−5.

Corollary 6.4 was shown in [10, §6.2].

7. Monodromy for SO(2, 2)-Higgs bundles

In this section we will use our results on the monodromy of rank 2 Higgs bundle
moduli spaces to determine the monodromy for SO(2, 2)-Higgs bundles. To begin,
we letMSO(4,C) denote the moduli space of semi-stable SO(4,C)-Higgs bundles and
h : MSO(4,C) → ASO(4,C) the Hitchin fibration, where ASO(4,C) := H0(Σ,K2) ⊕
H0(Σ,K2). The moduli space has two connected components MSO(4,C)(0),
MSO(4,C)(1) corresponding to the value of the second Stiefel-Whitney class w2 ∈
H2(Σ,Z2) � Z2 of the underlying SO(4,C)-bundle.

As we are mainly concerned with the monodromy of the regular locus, we will
omit discussion of semi-stability and pass directly to the spectral data description of
SO(4,C)-Higgs bundles, as detailed in [27]. Let (a2, p) ∈ ASO(4,C) = H0(Σ,K2)⊕
H0(Σ,K2) be a pair of quadratic differentials on Σ. Associated to the pair (a2, p)
is a characteristic equation of the form

(7.1) λ4 + a2λ
2 + p2 = 0.

The curve S ⊂ K defined by (7.1) is always singular, but for generic pairs (a2, p),
the singularities of S are ordinary double points lying over the zeros of p. Let
ν : Sν → S be the normalisation of S. The involution σ : S → S given by λ �→ −λ
lifts to a free involution σν : Sν → Sν . Let S be the quotient of Sν by the action
of σν and let πν : Sν → S be the projection. Then S can also be identified with
the quotient of S by σ. Let π : K2 → Σ be the projection from the total space of
K2 and let y be the tautological section of π∗K2. Then S ⊂ K2 is given by the
equation

(7.2) y2 + a2y + p2 = 0.
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In particular, S is smooth if and only if the discriminant Δ = a22 − 4p2 has only

simple zeros. The regular locus ASO(4,C)
reg of the base A is precisely the set of points

where S is smooth, and in this case the fibre of the Hitchin system lying over

(a2, p) ∈ ASO(4,C)
reg is given by the Prym variety of the cover πν : Sν → S. To be

more precise, let us define Prym(Sν, S) by

Prym(Sν , S) = {M ∈ Jac(Sν) | Nm(M) = O}.

Since the double covering Sν → S has no branch points, we have that Prym(Sν , S)
is a complex group having two connected components Prym0(S

ν , S) and
Prym1(S

ν , S). The identity component Prym0(S
ν , S) is an abelian variety and

Prym1(S
ν , S) has the structure of a Prym0(S

ν , S)-torsor. If (a2, p) ∈ ASO(4,C)
reg

with corresponding smooth curves πν : Sν → S, then the fibre of MSO(4,C)(a)
lying over (a2, p) can be identified with the component Pryma(S

ν , S) of the Prym
variety.

Given SO(2, 2)-the split real form of SO(4,C), we consider the moduli space
MSO(2,2) of SO(2, 2)-Higgs bundles. We have a naturally defined Hitchin map
MSO(2,2) → ASO(4,C) given by the composition of the map MSO(2,2) → MSO(4,C)

with the Hitchin map MSO(4,C) → ASO(4,C). Let MSO(2,2)
reg be the points of

MSO(2,2) lying over ASO(4,C)
reg . From [32, Theorem 4.12], in the case of SO(2, 2),

spectral data over a point (a2, p) ∈ ASO(4,C)
reg consists of a pair (M, σ̃ν), where M is

a line bundle of order 2 and σ̃ν is an involutive lift of σν . Now since σν acts freely,
we see that such pairs correspond simply to line bundles on S of order 2, i.e., the
space ΛS [2]. We have thus proven the following:

Theorem 7.1. The bundle of groups MSO(2,2)
reg → ASO(4,C)

reg is the pullback of

the map RM(K)reg → Areg(K) under the map j : ASO(4,C)
reg → Areg(K) given

by j(a2, p) = (a2, p
2). In particular, the monodromy ρSO(2,2) : π1(ASO(4,C)

reg ) →
Aut(ΛS[2]) of the SO(2, 2)-Hitchin system is determined by the following commu-
tative diagram:

Aut(ΛS[2])

π1(ASO(4,C)
reg , (a2, p))

j∗ ��

ρSO(2,2)
��������������������

π1(Areg(K), (a2, p
2))

ρ

��

Recall that the double cover π : S → Σ defined by the pair (a2, p) is smooth
if and only if the discriminant Δ = a22 − 4p2 has only simple zeros. Let us define
c1 := a2 − 2p, c2 := a2 + 2p, so that Δ = c1c2. Then a2 = (c1 + c2)/2 and
p = (c2 − c1)/4, so the pair (c1, c2) ∈ H0(Σ,K2)⊕H0(Σ,K2) uniquely determines
the pair (a2, p). Moreover, S is smooth if and only if c1 and c2 have simple zeros
and no zeros in common. Let B1 = {b1, . . . , b4g−4} be the set of zeros of c1 and
B2 = {b4g−3, . . . , b8g−8} the set of zeros of c2. Then B = B1 ∪ B2 is the set of

branch points of π : S → Σ.
We now look for loops in Areg(K) that can be realised as the image under j of

loops in ASO(4,C)
reg . Consider a swap of bi and bj along a path γ. Using the lifting

procedure as described in §4.1, this gives a loop Δ(t) within H0(Σ,K4)simp. In

order for this loop to come from a loop in ASO(4,C)
reg , we need to be able to find loops
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c1(t), c2(t) ∈ H0(Σ,K2)simp satisfying Δ(t) = c1(t)c2(t). To do this, it is clearly
necessary that bi, bj both belong to B1 or both belong to B2. Conversely, suppose
that bi, bj both belong to B1 (the case of B2 is similar). Then by considering B1

alone, γ defines a braid in Σ with 4g − 4 strands, the swap of bi, bj along γ. Using
our lifting procedure, we obtain a loop c1(t) ∈ H0(Σ,K2)simp. If we take c2(t) to be
the constant loop and set Δ(t) = c1(t)c2(t), then we have the desired factorisation.
In summary, if γ is an embedded path from bi to bj and bi, bj both belong to B1 or

B2, then the lifted swap s̃γ may be realised as a loop in π1(ASO(4,C)
reg , (a2, p)).

Let us say that an embedded path γ joining bi to bj is admissible if bi, bj both
belong to B1 or to B2. We now proceed to compute the monodromy action on
ΛS [2] exactly as in §4.4, except that we only allow for admissible loops. Thus we
can choose splittings so that

ΛS [2] = ΛΣ[2]⊕W ⊕ ΛΣ[2],

with W = (Z2B)ev/(bo), bo = b1+b2+ · · ·+b8g−8, and the monodromy is generated
by transformations sij and Ax

ij as in equations (4.8)-(4.9). The only difference
now is that we must restrict the indices i, j to satisfy 1 ≤ i < j ≤ 4g − 4 or
4g − 3 ≤ i < j ≤ 8g − 8.

Recall from §4.4 that ΛS [2] is equipped with the Weil pairing 〈 , 〉 : ΛS [2] ⊗
ΛS [2] → Z2 and quadratic refinement q : ΛS [2] → Z2. Then since K2 has even
degree, the monodromy action of the sij and Ax

ij must preserve q. We are now
ready to state the main theorem of this section:

Theorem 7.2. Let G ⊆ GL(ΛS [2]) be the group generated by the monodromy action

of ρSO(2,2) on ΛS [2]. Then:

(1) G is isomorphic to a semi-direct product G = (S4g−4 × S4g−4) �H of the
product of symmetric groups S4g−4 × S4g−4, generated by the elements

{sij | 1 ≤ i < j ≤ 4g − 4 or 4g − 3 ≤ i < j ≤ 8g − 8 }
given in (4.8), and the group H generated by the transformations

{Ax
ij | 1 ≤ i < j ≤ 4g − 4 or 4g − 3 ≤ i < j ≤ 8g − 8, x ∈ ΛΣ[2] }

given in (4.9).
(2) Let K be the subgroup of elements of GL(ΛS [2]) of the form

(7.3)

⎡⎣I2g A B
0 I At

0 0 I2g

⎤⎦ ,

where A : W → ΛΣ[2], B : ΛΣ[2] → ΛΣ[2], and At : ΛΣ[2] → W is the
adjoint of A, so 〈Ab, c〉 = ((b, Atc)). Then H is the subgroup of K such
that A(b1 + b2 + · · ·+ b4g−4) = 0 and such that the quadratic refinement q
is preserved, i.e.,

〈Bc, c〉+ qW (Atc) = 0.

Proof. Let H ′ be the subgroup of K satisfying A(b1 + b2 + · · · + b4g−4) = 0 and
preserving the quadratic refinement q. By an argument similar to the proof of
Theorem 4.7, we can easily show that H ′ = H. It remains to show that any
element of GL(ΛS [2]) obtained through monodromy belongs to the group G =
(S4g−4 × S4g−4)�H ′.



5532 DAVID BARAGLIA AND LAURA P. SCHAPOSNIK

Let T ∈ GL(ΛS [2]) be in the image of the monodromy representation. Then T
preserves π∗, π

∗, so must have the form

T =

⎡⎣I T12 T13

0 T22 T23

0 0 I

⎤⎦ .

From the discussion at the beginning of §4.4 relating points of order 2 in the Prym
variety with the space W = (Z2B)ev/(bo), we see that T22 must act on W through a
permutation of B. Moreover this permutation must preserve the zero sets of c1, c2,
so T22 belongs to S4g−4 ×S4g−4. After composing with a product of transpositions
sij , we may assume T22 is the identity. Moreover, T preserves the Weil pairing,
so T23 is the adjoint of T12. To complete the proof we just need to show that
T12(b1+· · ·+b4g−4) = 0 and that T preserves the quadratic refinement q. In fact, the
point (0, b1+· · ·+b4g−4, 0) can be shown to correspond to an SO(2, 2)-Higgs bundle
obtained as the tensor product V1⊗V2 of two maximal SL(2,R)-Higgs bundles and
thus must be preserved by monodromy. To show that T preserves q, one can show
that the function q is related to a characteristic class of the corresponding SO(2, 2)-
Higgs bundles. We omit the details, as they are very similar to the GL(2,R) case
of Proposition 5.3. Thus T must preserve q. �

Remark 7.3. The character variety Rep(SO(2, 2)) can also be studied through
low rank isogenies as done in [11, §4], where SO(2, 2)-Higgs bundles are obtained
through fibre product of spectral curves of two SL(2,R)-Higgs bundles. Hence,
the monodromy representation for the rank 4 Hitchin system can also be studied
through the monodromy for the two rank 2 Hitchin systems. In particular, one finds
from this point of view that every component of Rep(SO(2, 2)) meets the regular
locus.

Using an argument similar to the proof of Theorem 6.3, we can deduce the
number of components of the SO(2, 2)-character variety by counting the number of
orbits of the monodromy action on ΛS [2], giving:

Corollary 7.1. The character variety Rep(SO(2, 2)) has 6.22g + 4g2 − 6g − 3
components.
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[9] Steven B. Bradlow, Oscar Garćıa-Prada, and Ignasi Mundet i Riera, Relative Hitchin-

Kobayashi correspondences for principal pairs, Q. J. Math. 54 (2003), no. 2, 171–208, DOI
10.1093/qjmath/54.2.171. MR1989871
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