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HILBERT SCHEME OF TWISTED CUBICS

AS A SIMPLE WALL-CROSSING

BINGYU XIA

Abstract. We study the Hilbert scheme of twisted cubics in three-dimensional
projective space by using Bridgeland stability conditions. We use wall-crossing
techniques to describe its geometric structure and singularities, which reproves
the classical result of Piene and Schlessinger.

1. Introduction

In this paper, we study the birational transformations induced by simple wall-
crossings in the space Stab(P3) of Bridgeland stability conditions on P3 and show
how they naturally lead to a new proof of the main result of [PS85,EPS87]. The
notion of stability condition was introduced by Bridgeland in [Bri07]. It provides
a new viewpoint on the study of moduli spaces of sheaves and complexes. Simple
wall-crossings are the most well-behaved wall-crossings in the space of stability
conditions. They are controlled by the extensions of a family of pairs of stable
destabilizing objects: they contract a locus of extensions in the moduli of one side
of the wall, and then produce a new locus of reverse extensions in the moduli of
the other side of the wall. The precise definition of a simple wall-crossing is given
in Definition 2.7. In some examples, the expectation is that a simple wall-crossing
will blow up the old moduli space and add a new component that intersects the
blow-up transversely along the exceptional locus. In this paper, we will prove this
is indeed the case for the Hilbert scheme of twisted cubics. The main theorem is
the following.

Main Theorem (See also Theorem 3.2, Theorem 4.1 and Theorem 5.1). There is
a path γ in Stab(P3) that crosses three walls and four chambers for a fixed Chern
character v = ch(IC), where IC is the ideal sheaf of a twisted cubic C. If we list
the moduli space of semistable objects in each chamber with respect to the path γ,
we have:

(1) The empty space ∅.
(2) A smooth projective integral variety M1 of dimension 12.
(3) A projective variety M2 with two irreducible components B and P, where P

is a P9-bundle over P3 × (P3)∗ and B is the blow-up of M1 along a 5-dimensional
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smooth center. The two components of M2 intersect transversely along the excep-
tional divisor of B;

(4) The Hilbert scheme of twisted cubics M3. M3 is a blow-up of M2 along a
5-dimensional smooth center contained in P \B.

Among the above three wall-crossings, the second one and the third one are
simple. We are going to study them in great detail in Sections 4 and 5. In particular,
we will use a purely cohomological method, namely computing the second order
Kuranishi map for complexes, to prove that the two components in (3) intersect
transversely.

In [SchB15], Schmidt also studied certain wall-crossings on P3. We followed his
construction of the path γ in the Main Theorem. We will also follow his construction
of moduli space M1 by using quiver representations in Section 3. For the second
wall-crossing and the third wall-crossing, Schmidt reinterpreted the main result of
[PS85,EPS87] in the new setting of Bridgeland stability. The method of Piene and
Schlessinger to study the geometric structure of the Hilbert scheme of twisted cubics
is based on the deformation theory of ideals. They first used a comparison theorem
to show that the Hilbert scheme of twisted cubics is isomorphic to the moduli
space of ideals of twisted cubics, and then they used the PGL(4)-action to reduce
tangent space computations to some special ideals. Finally, they exhibited a basis
of deformations of these special ideals and computed the miniversal deformation
space.

We will use a different method to directly study the second wall-crossing and
the third wall-crossing without referring to [PS85, EPS87]. In Section 4, we first
identify the locus H in M1 that is going to be modified after the second wall-
crossing. This is Proposition 4.5(1). Then we construct two embeddings of the
irreducible components into M2: one is from the projective bundle parametrizing
reverse extensions of the family of pairs of destabilizing objects, and the other is
from the blow-up of M1 along H. This is the content of Proposition 4.5(2) and
Proposition 4.15 (2). By definition of a simple wall-crossing, the union of the
images of the two embeddings is M2, so M2 only has two irreducible components.
With the help of some Ext computations, we show that the intersection of the
two images is the exceptional divisor of the blow-up, and the two embeddings are
isomorphisms outside it. This is Remark 4.13, Remark 4.16(1) and Proposition
4.15(1). Finally we study the deformation theory of complexes on the intersection
and prove that the two irreducible components of M2 intersect transversely. This
is Proposition 4.21. In Section 5, again we first identify the locus H ′ that is going
to be modified after the third wall-crossing and find that it is solely contained in
one irreducible component of M2. Then we construct an isomorphism between
the blow-up of M2 along H ′ and M3, where the latter is the Hilbert scheme of
twisted cubics. This is Theorem 5.5. As a consequence, this reproves the main
result of [PS85,EPS87] on the geometric structures of the Hilbert scheme of twisted
cubics by using stability and wall-crossing techniques. The advantage of this is
that we can eliminate using the equations of special ideals. It will sometimes be
easier to generalize our approach, especially when the equations are complicated or
unavailable.

The Hilbert scheme of twisted cubics is a first nontrivial example where our
wall-crossing method applies, and we hope it could be applied in more general
cases. Some related works in which our method may apply are: [GHS16] about the
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moduli of elliptic quartics in P3, [LLMS16] about the moduli of twisted cubics in a
cubic fourfold, and [Tra16] about the moduli space of certain point-like objects on
a surface.

Notation.

Coh(P3) abelian category of coherent sheaves on P3,

Db(P3) bounded derived category of Coh(P3),

TX tangent bundle of a smooth projective variety X,

TX,x tangent space of X at a point x,

Tf,x tangent map TX,x −→ TZ,f(x) of a morphism f : X −→ Z,

NY/X normal bundle of a smooth subvariety Y in X,

NY/X,y normal space of Y in X at a point y,

E xt1f (F ,G) relative Ext1 sheaf of F and G with respect to a morphism f,

T or1(F ,G) Tor1 sheaf of F and G,
ch(E) Chern character of an object E ∈ Db(P3),

ci(E) ith Chern class of an object E ∈ Db(P3).

2. A brief review on Bridgeland stability conditions

In this section, we review how to construct Bridgeland stability conditions on P3

and define the notion of a simple wall-crossing.

Definition 2.1. A stability condition (Z,P) on Db(P3) consists of a group homo-
morphism Z : K(Db(P3)) −→ C called a central charge, and full additive subcate-
gories P(φ) ⊂ Db(P3) for each φ ∈ R, satisfying the following axioms:

(1) if E ∈ P(φ), then Z(E) = m(E)exp(iπφ) for some m(E) ∈ R>0,
(2) for all φ ∈ R, P(φ+ 1) = P(φ)[1],
(3) if φ1 > φ2 and Aj ∈ P(φj), then HomDb(P3)(A1, A2) = 0,

(4) for each nonzero object E ∈ Db(P3) there are a finite sequence of real numbers

φ1 > φ2 > · · · > φn

and a collection of triangles

0 = E0
�� E1

��

�� E2

��

�� · · · �� En−1
�� En = E

��
A1

��

A2

��

An

��

with Aj ∈ P(φj) for all j.

If we denote the set of all locally-finite stability conditions by Stab(P3), then
[Bri07, Theorem 1.2] tells us that there is a natural topology on Stab(P3) making
it a complex manifold.

By [Bri07, Proposition 5.], to give a stability condition on the bounded derived
category of P3 it is equivalent to giving a stability function on a heart of a bounded
t-structure satisfying the Harder–Narasimhan property. [Tod09, Lemma 2.7] shows
this is not possible for the standard heart Coh(P3). In [BMT14], stability conditions
are constructed on a so-called double tilt A α,β of the standard heart.
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We identify the cohomology H∗(P3,Q) with Q4 with respect to the obvious choice
of basis. Let (α, β) ∈ R>0×R. We define the twisted slope function for E ∈ Coh(P3)
to be

μβ (E) =
c1 (E)− βc0 (E)

c0 (E)

if c0(E) �= 0, and otherwise we let μβ = +∞. Then we set

Tβ = {E ∈ Coh(P3) : any quotient sheaf G of E satisfies μβ (G) > 0},
Fβ = {E ∈ Coh(P3) : any subsheaf F of E satisfies μβ (F ) � 0}.

(Fβ, Tβ) forms a torsion pair in the bounded derived category of P3, because
Harder–Narasimhan filtrations exist for the twisted slope μβ.

Definition 2.2. Let Cohβ(P3) ⊂ Db(P3) be the extension-closure 〈Tβ ,Fβ [1]〉. We

define the following two functions on Cohβ(P3):

Zα,β = −
(
ch2 − βch1 +

(
β2

2
− α2

2

)
ch0

)
+ i (ch1 − βch0) ,

να,β = −Re (Zα,β)

Im (Zα,β)

if Im(Zα,β) �= 0, and we let να,β = +∞ otherwise. An object E ∈ Cohβ(P3) is
called να,β-(semi)stable if for all nontrivial subobjects F of E, we have να,β(F ) <
(�)να,β(E/F ).

An important inequality introduced in [BMT14] and proved in [Mac14] for να,β-
semistable objects is the following.

Theorem 2.3 (Generalized Bogomolov–Gieseker inequality). For any να,β-semi-

stable object E ∈ Cohβ(P3) satisfying να,β(E) = 0, we have the following inequality:

ch3 (E)− βch2 (E) +
β2

2
ch1 (E)− β3

6
ch0 (E) � α2

6
(ch1 (E)− βch0 (E)) .

On the other hand, for the new slope function να,β , Harder–Narasimhan filtra-
tions also exist. If we repeat the above construction and define

T ′
α,β = {E ∈ Coh(P3) : any quotient object G of E satisfies να,β(G) > 0},

F ′
α,β = {E ∈ Coh(P3) : any subobject F of E satisfies να,β(F ) � 0},

then (F ′
α,β , T ′

α,β) forms a torsion pair of Cohβ(P3).

Definition 2.4. Let A α,β ⊂ Db(P3) be the extension-closure 〈T ′
α,β ,Fα,β [1]〉. We

define the following two functions on A α,β , for s > 0:

Zα,β,s = −
(
ch3 − βch2 −

((
s+

1

6

)
α2 − β2

2

)
ch1 −

(
β3

6
−
(
s+

1

6

)
α2β

)
ch0

)

+ i

(
ch2 − βch1 +

(
β2

2
− α2

2

)
ch0

)
,

λα,β,s = −Re (Zα,β,s)

Im (Zα,β,s)

if Im(Zα,β,s) �= 0, and we let λα,β,s = +∞ otherwise. An object E ∈ A α,β is called
λα,β,s-(semi)stable if for all nontrivial subobjects F of E, we have λα,β,s(F ) <
(�)λα,β,s(E/F ).
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By [BMT14, Corollary 5.2.4] and [BMS14, Lemma 8.8], Theorem 2.3 implies the
following.

Proposition 2.5. The pair (A α,β , Zα,β,s) is a Bridgeland stability condition on
Db(P3) for all (α, β, s) ∈ R>0 × R× R>0. The function (α, β, s) 
→ (A α,β , Zα,β,s)
is continuous.

Once the existence problem is solved, we will study the moduli space Mλα,β,s
(v)

of λα,β,s-semistable objects E ∈ A α,β with a fixed Chern character ch(E) = v,
and the wall-crossing phenomena in the space of stability conditions when varying
(α, β, s) ∈ R>0 × R× R>0. For the wall-crossing phenomena, the expectation here
is something similar to [Bri08, Section 9]: we have a collection of codimension
1 submanifolds in (α, β, s) ∈ R>0 × R × R>0 called walls, and the complement
of all walls is a disjoint union of an open subset called chambers. If we move
stability conditions in a chamber, there is no strictly semistable object and the set
of semistable objects does not change. The set of semistable objects changes only
when we cross a wall. For the moduli space of semistable objects, we have two
technical difficulties according to [AP06] when we construct it: generic flatness and
boundedness. In the case of 3-folds, assuming the generalized Bogomolov–Gieseker
inequality, we have the following result from [PT16, Theorem 4.2 and Corollary
4.23].

Theorem 2.6. Assume X is a smooth projective 3-fold on which the generalized
Bogomolov–Gieseker inequality holds for tilt-semistable objects. Then the moduli
functor of Bridgeland semistable objects Mσ(v) for a fixed Chern character v is a
quasi-proper algebraic stack of finite-type over C. If there is no strictly semistable
object, then Mσ(v) is a C∗-gerbe over a proper algebraic space Mσ(v).

There is also an important behavior in Stab(P3) called the large volume limit
of Bridgeland stability. Roughly speaking, it means that when the polarization is
large enough (taking α → +∞ in Proposition 2.5), the moduli space of semistable
objects will become the same as the moduli space of Gieseker semistable sheaves.
[Bri08, Section 14] illustrates this picture in the case of K3 surfaces.

Now we are ready to define the notion of a simple wall-crossing. Fix a wall W
and two adjacent chambers C1, C2 in Stab(P3); we denote the stability conditions
in the chambers C1, C2 by λ1, λ2, respectively.

Definition 2.7. A wall-crossing is simple if there exist two nonempty moduli spaces
MA and MB of semistable objects in A α,β with Chern character vA and vB for
stability conditions in a neighborhood of a point on W meeting C1 and C2 such
that:

(1) vA + vB = v and any A ∈ MA and B ∈ MB is stable;
(2) if E is λ1-stable but not λ2-stable, then there exists a unique pair (A,B)

in MA × MB such that 0 −→ B −→ E −→ A −→ 0 is a nontrivial extension.
Conversely, all nontrivial extensions of A by B are λ1-stable but not λ2-stable;

(3) if F is λ1-stable but not λ2-stable, then there exists a unique pair (A,B)
in MA × MB such that 0 −→ A −→ F −→ B −→ 0 is a nontrivial extension.
Conversely, all nontrivial extensions of B by A are λ1-stable but not λ2-stable.

Now we fix v = ch(IC), where C is a twisted cubic in P3. We briefly recall
the main ideas of finding the wall-crossings in the Main Theorem without us-
ing [PS85, EPS87] as follows: First, we can formally use numerical properties of
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a wall together with the usual Bogomolov inequality to find the Chern charac-
ters vA and vB (actually, this procedure can be made into a computer algorithm;
see [SchB15, Theorem 5.3, Theorem 6.1, and Section 5.3] for more details). For
the first wall-crossing, we have vA = ch(O(−2)3) and vB = ch(O(−3)[1]2). In
[SchB15, Proposition 4.5], Schmidt showed that O(−2)3 and O(−3)[1]2 are the
only semistable objects with those Chern characters. Since these two objects are
only strictly semistable, the first wall-crossing is not simple. But it is still not hard
to construct the moduli space in this case via quiver representations. For the sec-
ond wall-crossing, we have vA = ch(Ip(−1)) and vB = ch(OV (−3)), where p is a
point in P3 and V is a plane in P3. In [SchB15, Theorem 5.3], Schmidt showed that
Ip(−1) and OV (−3) are all the semistable objects with those Chern characters. It
is also easy to check that in this case Ip(−1) and OV (−3) are stable, so the second
wall-crossing is simple, and the moduli spaces MA and MB in Definition 2.7 are
P3 and (P3)∗, respectively. The third wall-crossing is similar to the second wall-
crossing. We have vA = ch(O(−1)) and vB = ch(Iq/V (−3)), where V is a plane in

P3 and q is a point on V . O(−1) and Iq/V (−3) are all the semistable objects with
those Chern characters, and they are stable. The third wall-crossing is also simple,
with MA being a point and MB being the incidence hyperplane H contained in
P3 × (P3)∗. The statement that M3 is the Hilbert scheme is due to the fact that
the large volume limits of Bridgeland stability conditions coincides with Gieseker
stability conditions, and the moduli space of Gieseker semistable ideal sheaves is
the same with the Hilbert scheme.

We will study the three wall-crossings of the Main Theorem in detail in the next
three sections.

3. The first wall-crossing

In this section, we construct the moduli space M1 and prove that it is a smooth,
projective, and integral variety. This part first appeared in [SchB15, Theorem 7.1],
and we will give more details here.

We start with a quiver Q = (V,A) : V = {v1, v2}, A = {ei|i = 1, 2, 3, 4}, where
s(ei) = v1 and t(ei) = v2 (actually Q is just • 4−→ •). We set a dimension vector to
be (2, 3) and define θ : Z ⊕ Z −→ Z to be θ(m,n) = −3m + 2n. A representation
V with dimension vector (2, 3) is θ-(semi)stable if for any proper nontrivial subrep-
resentation W we have θ(dimW ) > (�)0, where dimW is the dimension vector of
W . If S is a scheme, we define a family of θ-semistable representations of Q over
S with dimension vector (2, 3) to be four homomorphisms f0, f1, f2, f3 : V −→ W ,
where V and W are locally free on S with rk(V ) = 2 and rk(W ) = 3, such that
the representation f0s, f1s, f2s, f3s : Vs −→ Ws is θ-semistable for any closed point
s ∈ S. We define Kθ : SchC −→ Sets to be the moduli functor sending a scheme
S to the set of isomorphism classes of families of θ-semistable representations with
dimension vector (2, 3) over S.

Proposition 3.1. The functor Kθ is represented by a smooth projective integral
variety Kθ.

Proof. By [Kin94], since the dimension vector (2, 3) is indivisible, Kθ is represented
by a projective variety Kθ and there is no strictly θ-semistable representation. The
path algebra of Q is hereditary since there is no relation between arrows; this means
Kθ is smooth and irreducible. �
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Theorem 3.2. The two moduli spaces Kθ and M1 are isomorphic.

Proof. Fix (α0, β0) = ( 12 + ε,− 5
2 ), where ε > 0 is small. By [SchB15, Theorem 5.3,

Theorem 6.1], M1 is isomorphic to the moduli space Mtilt
α0,β0

(v) of να0,β0
-semistable

objects in Cohβ0(P3). Since (α0, β0) is in the interior of a chamber, there is no
strictly semistable object. Notice that −3 < β0 < −2, so by definition O(−2) and

O(−3)[1] are in Cohβ0(P3), and we have

Zα0,β0
(O(−2)) = −1

8
+

α2
0

2
+

1

2
i,

Zα0,β0
(O(−3)[1]) =

1

8
− α2

0

2
+

1

2
i.

On the other hand, We denote Rep(Q) to be the abelian category of quiver represen-
tations of Q, and we denote B to be the extension closure of O(−2) and O(−3)[1]

in Cohβ0(P3). By [SchB15, Theorem 5.1], all να0,β0
-semistable objects are in B. By

[Bon89, Theorem 6.2], there is an equivalence F : Db(B) −→ Db(Rep(Q)). This
functor F sends O(−3)[1] and O(−2) to the two simple representations C −→ 0
and 0 −→ C. On B, we can define a central charge Z and a slope function η by

Z (E) = θ
(
F−1 (E)

)
+ idim

(
F−1 (E)

)
,

η (E) = −Re (Z (E))

Im (Z (E))
= −

θ
(
F−1 (E)

)
dim (F−1 (E))

,

where dim is the sum of the two components of a dimension vector. This will make
σ := (Z,B) a stability condition on Db(B) by [Bri07, Example 5.5], and F sends
σ-semistable objects with Chern character v to θ-semistable representations with
dimension vector (2, 3). If we denoteMσ to be the moduli of σ-semistable objects in
B with Chern character v, then actually F defines a bijection map of sets between
Mσ and Kθ. We will globalize this construction later and get a bijective morphism
by using the existence of a universal family. Now we compute that

Z (O(−2)) = 2 + i,

Z (O(−3)[1]) = −3 + i.

If we view Z and Zα0,β0
|Db(B) as linear maps from Z2 to R2, then an easy com-

putation shows that they differ from each other by composing a linear map in
GL+(2;R). This means they define the same stability condition and hence have
the same moduli of semistable objects with Chern character v, so Mσ = Mtilt

α0,β0
(v).

It only remains to show that Kθ is isomorphic to Mσ. For any σ-semistable
object E ∈ Db(B) with Chern character v, F (E) is a θ-semistable representation
f1, f2, f3, f4 : C3 −→ C2. We have an obvious exact sequence

0 −−−−→ C3 −−−−→ C3

⏐⏐� fi

⏐⏐� ⏐⏐�
C2 −−−−→ C2 −−−−→ 0

in Rep(Q), which corresponds to an exact sequence O(−2)3 −→ E −→ O(−3)[1]2

in B. By applying the long exact sequence for Hom functor to it, we can see
that Ext2(E,E) = 0. But Ext2(E,E) computes the obstruction space of Mσ at
E by [Ina02] and [Lie06], so Mσ is smooth and hence a complex manifold. Since



5542 BINGYU XIA

there is no strictly σ-semistable object, a universal family U of σ-semistable objects
with Chern character v exists on Mσ × P3, and U is an extension of p∗O(−3)⊕2[1]
by p∗O(−2)⊕3. If we denote B′ to be the extension closure of p∗O(−3)⊕2[1] and
p∗O(−2)⊕3 in Db(Mσ × P3), and denote RepKθ

(Q) to be the category of families
of quiver representations over Kθ, then there exists an equivalence FKθ

: B′ −→
Db(RepKθ

(Q)) such that when restricted to a fiber x× P3, FKθ
is the same as F .

Because FKθ
(U)|x×P3 = F (U|x×P3) and U|x×P3 is a σ-semistable object with Chern

character v, FKθ
(U)|x×P3 is θ-semistable with dimension vector (2, 3). This means

FKθ
(U) is a family of θ-semistable objects with dimension vector (2, 3), so it induces

a morphism ϕ : Mσ −→ Kθ. As U is a universal family of σ-semistable objects
with Chern character v, and F is a bijection between σ-semistable objects with
Chern character v in B and θ-semistable representations with dimension vector
(2, 3), ϕ is a bijective morphism. We proved that Kθ is smooth in Proposition 3.1,
and any bijective morphism between complex manifolds is an isomorphism, so ϕ is
an isomorphism. Therefore Kθ is isomorphic to M1. �

4. The second wall-crossing

In this section, we study the second wall-crossing and prove (3) in the Main
Theorem. To be more precise, we will prove the following theorem. Let V be a
plane in P3 and let p be a point in P3.

Theorem 4.1. The second wall-crossing is simple with a family of pairs of desta-
bilizing objects (Ip(−1), OV (−3)). The moduli space of semistable objects after the
wall-crossing is a projective variety M2. M2 has two irreducible components B
and P, where P is a P9-bundle over P3 × (P3)∗ and B is the blow-up of M1 along
a 5-dimensional smooth center. The two components of M2 intersect transversely
along the exceptional divisor of B.

Throughout this section, we fix the family of pairs of destabilizing objects to be

(A,B) = (Ip(−1),OV (−3)) ,

and denote the stability conditions in the chamber of M1 (resp., M2) by λ1 (resp.,
λ2). Whenever we take an extension of A and B, we always mean a nontrivial
extension class modulo scalar multiplications. The following Hom and Ext group
computations are straightforward.

Lemma 4.2. Hom(A,B) = Hom(B,A) = 0, Hom(A,A) = Hom(B,B) = C;
Ext1(A,B) = C if p ∈ V , and 0 otherwise;
Ext1(A,A) = Ext1(B,B) = C3, Ext1(B,A) = C10;
Ext2(A,B) = C, Ext2(B,B) = 0, Ext2(A,A) = C3, Ext2(B,A) = 0;
Ext3(A,B) = Ext3(A,A) = Ext3(B,B) = Ext3(B,A) = 0.

Moduli space of nontrivial extensions. In this subsection, we construct two
moduli spaces H and P, where H parametrizes nontrivial extensions of A by B and
P parametrizes the reverse nontrivial extensions. We show that with the universal
extensions on those moduli spaces, H is embedded into M1 and P is embedded
into M2. Then we do some detailed computations on Ext groups for later use.

We recall the comments after Definition 2.7: the second wall-crossing is simple
and we have MA = P3 parametrizing Ip(−1) and MB = (P3)∗ parametrizing
OV (−3). We denote the universal family of semistable objects with Chern character
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vA on MA × P3 by UA, and the universal family of semistable objects with Chern
character vB on MB × P3 by UB. Denote two projections by

MA × P3 πA←− MA ×MB × P3 πB−→ MB × P3.

We also denote the projection onto the first two factors by MA × MB × P3 π−→
MA ×MB . Let H be the incidence hyperplane {(p, V ) ∈ P3 × (P3)∗|p ∈ V }, and
denote the restriction of the above three projections to H×P3 by πH

A , πH
B , and πH .

Define F to be π∗
AUA and G to be π∗

BUB, and define FH to be
(
πH
A

)∗ UA and GH to

be
(
πH
B

)∗ UB. Let S −→ MA ×MB and SH −→ H be any morphisms of schemes,

and denote the pullbacks of these two morphisms with respect to π and πH by qS

and qSH .

Proposition 4.3. There exists an extension on H × P3,

(1) 0 −→ GH ⊗ π∗
HL −→ UE −→ FH −→ 0,

where L = E xt1πH
(FH ,GH)∗ is a line bundle, which is universal on the category

of noetherian H-schemes for the classes of nontrivial extensions of
(
qSH

)∗ FH by(
qSH

)∗ GH on
(
H × P3

)
×H SH , modulo the scalar mutiplication of H0(SH ,O∗

SH
).

Proof. We apply [Lan83, Proposition 4.2, Corollary 4.5] to FH , GH and πH . We
only need to check that E xt0πH

(FH ,GH) = 0 and E xt1πH
(FH ,GH) commutes with

base change in the sense that over any point (p0, V0) ∈ H, E xt1πH
(FH ,GH) restricts

to Ext1(A0, B0). First notice that E xt3πH
(FH ,GH) restricts to Ext3(A0, B0) over

(p0, V0), where the latter is 0 by Lemma 4.1. Then [Lan83, Theorem 1.4] tells us
E xt2πH

(FH ,GH) restricts to Ext2(A0, B0) over (p0, V0), where the latter is C for

all points in H. Hence E xt2πH
(FH ,GH) is a line bundle. Again [Lan83, Theorem

1.4] tells us E xt1πH
(FH ,GH) restricts to Ext1(A0, B0) over (p0, V0). By Lemma

4.1 we have Ext1(A0, B0) = C for all points in H, so E xt1πH
(FH ,GH) is a line

bundle. Applying [Lan83, Theorem 1.4] a third time, E xt0πH
(FH ,GH) will restrict to

Hom(A0, B0), where the latter is 0 by Lemma 4.1. Hence E xt0πH
(FH ,GH) = 0. �

Proposition 4.4. The relative Ext sheaf E xt1π(G,F) is locally free of rank 10 on
MA×MB . If we denote its projectivization P(E xt1π(G,F)∗) by P, then there exists
an extension on P× P3,

(2) 0 −→ h∗F ⊗ π∗
POP(1) −→ UF −→ h∗G −→ 0,

where h is the projection P×P3 −→ MA×MB×P3, πP is the projection P×P3 −→
P, and OP(1) is the relative O(1) on P, which is universal on the category of

noetherian MA ×MB-schemes for the classes of nontrivial extensions of
(
qS

)∗ F
by

(
qS

)∗ G on
(
MA ×MB × P3

)
×MA×MB

S, modulo the scalar multiplication of

H0(S,O∗
S).

Proof. The proof is completely analogous to the proof of Proposition 4.3. �

The existence of the above extension UE (resp., UF ) gives a flat family of λ1-
stable (resp., λ2-stable) sheaves on H (resp., P), hence it induces a morphism
ϕE : H −→ M1 (resp., ϕF : P −→ M2).
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Proposition 4.5.
(1) The induced morphism ϕE is a closed embedding.
(2) The induced morphism ϕF is injective on the level of sets and Zariski tangent

spaces.

Proof. On the level of sets, ϕE maps an extension 0 −→ B −→ E −→ A −→ 0 to
E. If we have two extensions 0 −→ B −→ E −→ A −→ 0 and 0 −→ B′ −→ E′ −→
A′ −→ 0 such that E ∼= E′ as stable sheaves, then E′ = E, and this isomorphism
is just a scalar multiplication by some c ∈ C∗. By the definition of a simple wall-
crossing with a pair of destabilizing objects, we must have A′ = A and B′ = B.
This implies that ϕE is injective on the level of sets.

On the level of Zariski tangent spaces, a tangent vector v of H at a point (p, V )
can be represented by a morphism SpecC[ε]/(ε2) −→ H. By pulling back the
universal extension (1) to

(
H × P3

)
×H SpecC[ε]/(ε2) = SpecC[ε]/(ε2)×P3, we get

an exact sequence of flat families

0 −→ Gε −→ Eε −→ Fε −→ 0,

and Gε, Eε, and Fε restrict to B, E, and A on the closed fiber, respectively. In
particular, Eε is a flat family of λ1-stable objects. It gives rise to a morphism
SpecC[ε]/(ε2) −→ M1 corresponding to TϕE ,(p,V )(v). Suppose we have two tan-

gent vectors v, v′ represented by morphisms ξ, ξ′ : SpecC[ε]/(ε2) −→ H and
TϕE ,(p,V )(v) = TϕE ,(p,V )(v

′). Then there exists an isomorphism η : Eε −→ E ′
ε

between the resulting flat families of λ1-stable objects such that η restricts to iden-
tity on the closed fiber. By [Ina02] and [Lie06], η corresponds to the following
diagram in the derived category:

E E

ζ

⏐⏐� ζ′
⏐⏐�

E[1]
c−−−−→ E[1]

where c is a multiplication by some nonzero constant c. By composing ξ and ξ′

with the natural projections

MA = P3 ←− H −→ (P3)∗ = MB,

we can complete ζ and ζ ′ to commutative diagrams

B −−−−→ E −−−−→ A B −−−−→ E −−−−→ A⏐⏐� ζ

⏐⏐�
⏐⏐�

⏐⏐� ζ′
⏐⏐�

⏐⏐�
B[1] −−−−→ E[1] −−−−→ A[1] B[1] −−−−→ E[1] −−−−→ A[1]

Via the two diagrams, the above diagram of η will induce two diagrams

B B A A

ζB

⏐⏐� ζ′
B

⏐⏐� ζA

⏐⏐� ζ′
A

⏐⏐�
B[1]

c−−−−→ B[1] A[1]
c−−−−→ A[1]
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corresponding to isomorphisms ηB : Gε −→ G′
ε and ηA : Fε −→ F ′

ε such that
they restrict to identities on closed fiber and they make the following diagram
commutative:

0 −−−−→ Gε −−−−→ Eε −−−−→ Fε −−−−→ 0

ηB

⏐⏐� η

⏐⏐� ηA

⏐⏐�
0 −−−−→ G′

ε −−−−→ E ′
ε −−−−→ F ′

ε −−−−→ 0

which implies the two morphisms ξ and ξ′ are the same. Therefore v = v′ and
TϕE ,E is injective. This proves that ϕE is a closed embedding. The proof of (2) is
completely analogous to the above argument. �

Now we study the normal sequence of the embedding ϕE : H −→ M1. Fix a
nontrivial extension 0 −→ B −→ E −→ A −→ 0. Then we have the following
lemma.

Lemma 4.6. The following diagram comes from taking the long exact sequences
for Hom functor in two directions. It is commutative with exact rows and columns
and all boundary homomorphisms are 0.

Ext1(A,B) = C
0−−−−−−→ Ext1(A,E) = C

2 −−−−−−→ Ext1(A,A) = C
3 −−−−−−→ Ext2(A,B) = C

0

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

Ext1(E,B) = C
2 −−−−−−→ Ext1(E,E) = C

12 −−−−−−→ Ext1(E,A) = C
10 −−−−−−→ Ext2(E,B) = 0

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

Ext1(B,B) = C
3 −−−−−−→ Ext1(B,E) = C

13 −−−−−−→ Ext1(B,A) = C
10 −−−−−−→ Ext2(B,B) = 0

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

Ext2(A,B) = C
0−−−−−−→ Ext2(A,E) = C

3 −−−−−−→ Ext2(A,A) = C
3 −−−−−−→ 0

Proof. This diagram is a straightforward computation by using that (A,B) =
(Ip(−1), OV (−3)) and that E satisfies a triangle O(−2)3 −→ E −→ O(−3)[1]2. �

The Kodaira–Spencer map KS : TM1,E −→ Ext1(E,E) is known to be an iso-

morphism by [Ina02] and [Lie06]. If we let θE to be the composition Ext1(E,E) −→
Ext1(E,A) −→ Ext1(B,A) (or Ext1(E,E) −→ Ext1(B,E) −→ Ext1(B,A)) in the
diagram of Lemma 4.6, and let the kernel of θE to beKE , then we have the following
proposition.

Proposition 4.7. The Kodaira–Spencer map KS restricts to an isomorphism be-
tween TH,E and KE, and we have the following commutative diagram:

0 −−−−→ TH,E −−−−→ TM1,E −−−−→ NH/M1,E −−−−→ 0⏐⏐�KS

⏐⏐�KS

⏐⏐�
0 −−−−→ KE −−−−→ Ext1(E,E)

θE−−−−→ Ext1(B,A)
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Proof. θE is the composition of Ext1(E,E) −→ Ext1(E,A) −→ Ext1(B,A), where
the first map is surjective with a 2-dimensional kernel Ext1(E,B) and the second
map has a 3-dimensional kernel Ext1(A,A) by Lemma 4.6. This implies KE is
5-dimensional since KE is an extension of Ext1(A,A) by Ext1(E,B), so dimKE =
dimTH,E . On the other hand, as shown in the proof of Proposition 4.5, a vector v
in TH,E is represented by a commutative diagram:

B −−−−→ E −−−−→ A⏐⏐� KS(v)

⏐⏐� ⏐⏐�
B[1] −−−−→ E[1] −−−−→ A[1]

θE(KS(v)) is equal to the composition B −→ E
KS(v)−→ E[1] −→ A[1], which is

zero by using the commutativity of the diagram. Hence TH,E is mapped into KE

under KS. Since we have proved dimKE = dimTH,E , KS canonically induces an
isomorphism between them. �

We can also define θF : Ext1(F, F ) −→ Ext1(A,B) for any nontrivial extension
0 −→ A −→ F −→ B −→ 0 in a similar way. Denote its kernel by KF ; then we
have the following corollary.

Corollary 4.8. The tangent space TP,F is canonically identified with KF under
the Kodaira–Spencer map.

Proof. The reason that TP,F is mapped into KF under the Kodaira–Spencer map
is the same as in the case of Proposition 4.7. Conversely, take any ζ ∈ KF ; we

have that the composition A −→ F
ζ−→ F [1] −→ B[1] is 0. By using the universal

property of a triangle in the derived category, there exist morphisms A −→ A[1]
and B −→ B[1] such that the following diagram is commutative:

A −−−−→ F −−−−→ B⏐⏐� ζ

⏐⏐� ⏐⏐�
A[1] −−−−→ F [1] −−−−→ B[1]

This diagram will correspond to an exact sequence of flat families on SpecC[ε]/(ε2)×
P3,

0 −→ Fε −→ F ′
ε −→ Gε −→ 0,

where Fε, F ′
ε, and Gε will restrict to A, F , and B on the closed fiber. By the

universal property of P proved in Proposition 4.4, this sequence induces a morphism
from SpecC[ε]/(ε2) to P corresponding to a tangent vector v of P at F . It is not
hard to check that KS(v) = ζ, so KS is also surjective between TP,F and KF . �

We can use the exact sequence (1) to write the following globalization of the
diagram in Proposition 4.7.
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Proposition 4.9. The following diagram has exact rows. Among the three vertical
morphisms, the left one and middle one are isomorphisms, and the right one is an
injection.

0 �� TH ��

��

TM1
|H ��

KS

��

NH/M1
��

��

0

0 �� KE
�� E xt1πH

(UE,UE) �� E xt1πH
(GH ⊗ π∗

HL,FH)

From this proposition we see that the normal bundle NH/M1
embeds into

E xt1πH
(GH ⊗ π∗

HL,FH), hence its projectivization P(N ∗
H/M1

) is embedded in

P(E xt1πH
(GH ⊗ π∗

HL,FH)∗) = P(E xt1πH
(GH ,FH)∗),

where the latter is the preimage of H under the projection P(E xt1π(G,F)∗) = P −→
P3 × (P3)∗.

Next we are going to compute the dimension of the Zariski tangent space TM2,F
∼=

Ext1(F, F ) for a nontrivial extension 0 −→ A −→ F −→ B −→ 0. First let us in-
troduce some notation: we denote e : A −→ B[1] as the nontrivial extension of A

by B and name the arrows B
h−→ E

j−→ A. Similarly let f : B −→ A[1] be the

extension we fix and name the arrows A
k−→ F

l−→ B. There are three cases, and
they are taken care of by the following three propositions.

Proposition 4.10. If F ∈ P(N ∗
H/M1

), then we have the following commutative

diagram with exact rows and columns. All boundary homomorphisms are 0 ex-
cept at Ext1(B,A), where the two homomorphisms Ext1(F,A) ←− Ext1(B,A) −→
Ext1(B,F ) have a same 1-dimensional kernel Cf .

Ext1(B,A) = C10 −−−−→ Ext1(F,A) = C12 −−−−→ Ext1(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,F ) = C12 −−−−→ Ext1(F, F ) = C16 −−−−→ Ext1(A,F ) = C4

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,B) = C3 −−−−→ Ext1(F,B) = C4 −−−−→ Ext1(A,B) = C⏐⏐� 0

⏐⏐� 0

⏐⏐�
0 −−−−→ Ext2(F,A) = C3 −−−−→ Ext2(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F, F ) = C4 −−−−→ Ext2(A,F ) = C4

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F,B) = C −−−−→ Ext2(A,B) = C

Proof. We show that the diagram holds if and only if F ∈ P(N ∗
H/M1

). If the diagram

holds, then θF �= 0. We can find ζ ∈ Ext1(F, F ) such that e = l[1] ◦ ζ ◦ k. Now we
have f ◦e[−1] = f ◦l◦ζ[−1]◦k[−1] = 0 because f ◦l = 0. This means f : B −→ A[1]
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factors through h : B −→ E, i.e., f = x ◦ h for some x : E −→ A[1]. On the other

hand, from the diagram in Lemma 4.6 we see that Ext1(E,E)
j∗−→ Ext1(E,A)

is surjective, hence x : E −→ A[1] lifts to some ξ : E −→ E[1]. So we have
f = j[1] ◦ ξ ◦ h and f is in the image of θE . By Proposition 4.7, this means f is
in P(N ∗

H/M1
). Conversely, if f is in P(N ∗

H/M1
), then we can write f = j[1] ◦ ξ ◦ h

for some nontrivial ξ : E −→ E[1]. Then f [1] ◦ e = j[2] ◦ ξ[1] ◦ h[1] ◦ e = 0 because
h[1] ◦ e = 0. This means e : A −→ B[1] factors through l[1] : F [1] −→ B[1], i.e.,

e = l[1] ◦ z for some z : A −→ F [1]. On the other hand, Ext1(F, F )
k∗
−→ Ext1(A,F )

is surjective because its cokernel Ext2(B,F ) = 0. This implies that z = ζ ◦ k for
some ζ : E −→ E[1]. So we have e = l[1]◦ζ◦k and e is in the image of θF . Therefore
θF �= 0. By Proposition 4.7, the kernel of θF is TP,F , which is 15-dimensional since

P is a P9-bundle over P3×(P3)∗. Hence Ext1(F, F ) = C16. The rest of the diagram
will follow automatically due to exactness. �

Proposition 4.11. If F ∈ P(E xt1πH
(GH ,FH)∗) \ P(N ∗

H/M1
), then we have the fol-

lowing commutative diagram with exact rows and columns. All boundary homomor-
phisms are 0 except at Ext1(B,A), where the two homomorphisms Ext1(F,A) ←−
Ext1(B,A) −→ Ext1(B,F ) have a same 1-dimensional kernel Cf .

Ext1(B,A) = C10 −−−−→ Ext1(F,A) = C12 −−−−→ Ext1(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,F ) = C12 −−−−→ Ext1(F, F ) = C15 −−−−→ Ext1(A,F ) = C3

⏐⏐�
⏐⏐� 0

⏐⏐�
Ext1(B,B) = C3 −−−−→ Ext1(F,B) = C4 −−−−→ Ext1(A,B) = C⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ Ext2(F,A) = C3 −−−−→ Ext2(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F, F ) = C3 −−−−→ Ext2(A,F ) = C3

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F,B) = C −−−−→ Ext2(A,B) = C

Proof. By the proof of previous proposition, we know that θF = 0 since F is not in
P(N ∗

H/M1
). Therefore Ext1(F, F ) = C15. By Lemma 4.2, we know Ext1(A,B) = C,

since F is mapped into H under the bundle projection P −→ P3 × (P3)∗. The rest
of the diagram then follows automatically due to exactness. �

Proposition 4.12. If F ∈ P \ P(E xt1πH
(GH ,FH)∗), then we have the follow-

ing commutative diagram with exact rows and columns. All boundary homomor-
phisms are 0 except at Ext1(B,A), where the two homomorphisms Ext1(F,A) ←−
Ext1(B,A) −→ Ext1(B,F ) have a same 1-dimensional kernel Cf .
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Ext1(B,A) = C10 −−−−→ Ext1(F,A) = C12 −−−−→ Ext1(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,F ) = C12 −−−−→ Ext1(F, F ) = C15 −−−−→ Ext1(A,F ) = C3

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,B) = C3 −−−−→ Ext1(F,B) = C3 −−−−→ Ext1(A,B) = 0⏐⏐� 0

⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F,A) = C3 −−−−→ Ext2(A,A) = C3

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(F, F ) = C4 −−−−→ Ext2(A,F ) = C4

⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ Ext2(F,B) = C −−−−→ Ext2(A,B) = C

Proof. Since F is not in P(N ∗
H/M1

), we have θF = 0 and Ext1(F, F ) = C15. By

Lemma 4.2, we know Ext1(A,B) = 0 since F is mapped outside H under the bundle
projection P −→ P3 × (P3)∗. The rest of the diagram then follows automatically
due to exactness. �

Remark 4.13. From the above propositions, we can see that for F ∈ P\P(N ∗
H/M1

),

P is smooth at F and dimTP,F = dimTM2,F = 15. By Proposition 4.5(2), TϕF ,F is
injective. This implies ϕF is an isomorphism at F and M2 is smooth at F .

Elementary modification. In this subsection, we construct a flat family of λ2-
stable objects on the blow-up of M1 along H. The key is to perform a so-called
elementary modification on the pullback of the universal family of λ1-stable objects
along the exceptional divisor with respect to extension (1) in Proposition 4.3.

Let us first introduce some notation: denote the blow-up of M1 along H by
B, the blow-up morphism B × P3 −→ M1 × P3 by b, and its restriction to the
exceptional divisor P(N ∗

H/M1
)×P3 −→ H ×P3 by bH . Denote the universal family

of λ1-stable objects on M1 × P3 by U1. Then U1|H×P3 and UE both induce the
embedding ϕE : H −→ M1, so they differ from each other by tensoring a pullback
of a line bundle from H via projection. Assume U1|H×P3 = UE⊗π∗

HL′ for some line
bundle L′ on H. Consider the composition of the restriction map and the pullback
of the surjection in (1) by bH :

b∗U1 � b∗U1|P(N∗
H/M1

)×P3 = b∗HUE ⊗ b∗Hπ∗
HL′ � b∗HFH ⊗ b∗Hπ∗

HL′.

Denote the kernel of this composition by K. Then we have the following proposition.

Proposition 4.14. The sheaf K is a flat family of λ2-stable objects.
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Proof. K is a flat family of λ2-stable objects outside the exceptional divisor because
it is identical to U1. If we restrict the exact sequence 0 −→ K −→ b∗U1 −→
b∗HFH ⊗ b∗Hπ∗

HL′ −→ 0 to the exceptional divisor P(N ∗
H/M1

)× P3, we will get

0 −→ T or1(b∗HFH ⊗ b∗Hπ∗
HL′,OP(N∗

H/M1
)×P3) −→ K|P(N∗

H/M1
)×P3

−→ b∗HUE ⊗ b∗Hπ∗
HL′ −→ b∗HFH ⊗ b∗Hπ∗

HL′ −→ 0.

On the other hand, tensoring b∗HFH ⊗ b∗Hπ∗
HL′ to the exact sequence 0 −→

IP(N∗
H/M1

)×P3 −→ O −→ OP(N∗
H/M1

)×P3 −→ 0, we have

0−→T or1(b∗HFH ⊗ b∗Hπ∗
HL′,OP(N∗

H/M1
)×P3)

=−→ b∗HFH ⊗ b∗Hπ∗
HL′ ⊗ IP(N∗

H/M1
)×P3

0−→ b∗HFH ⊗ b∗Hπ∗
HL′ =−→ b∗HFH ⊗ b∗Hπ∗

HL′ −→ 0.

Hence

T or1(b∗HFH ⊗ b∗Hπ∗
HL′,OP(N∗

H/M1
)×P3) = b∗HFH ⊗ b∗Hπ∗

HL′ ⊗ IP(N∗
H/M1

)×P3

= b∗HFH ⊗ b∗Hπ∗
HL′ ⊗N ∗

P(N∗
H/M1

)×P3 .

Also notice that the kernel of

b∗HUE ⊗ b∗Hπ∗
HL′ −→ b∗HFH ⊗ b∗Hπ∗

HL′

is b∗HGH ⊗ b∗Hπ∗
HL ⊗ b∗Hπ∗

HL′, so K|P(N∗
H/M1

)×P3 satisfies

0 −→ b∗HFH ⊗ b∗Hπ∗
HL′ ⊗N ∗

P(N∗
H/M1

)×P3 −→ K|P(N∗
H/M1

)×P3

−→ b∗HGH ⊗ b∗Hπ∗
HL ⊗ b∗Hπ∗

HL′ −→ 0.(3)

This means that on each fiber x×P3, the restriction Kx is an extension of B by A.
In particular, Kx has the same Chern character as other fibers, therefore K is flat
since B is smooth. To prove it is a family of λ2-stable objects, we need to show
Kx is a nontrivial extension of B by A. Actually since x ∈ P(N ∗

H/M1
) represents a

nonzero normal direction of H in M1, we expect Kx to be θE(KS(x)) in Ext1(B,A).
This is indeed the case because K|P(N∗

H/M1
)×P3 can be interpreted in the following

way: First we use the injection

b∗HGH ⊗ b∗Hπ∗
HL ⊗ b∗Hπ∗

HL′ −→ b∗HUE ⊗ b∗Hπ∗
HL′

to pull back the exact sequence

0 −→ b∗U1 ⊗ IP(N∗
H/M1

)×P3 −→ b∗U1 −→ b∗HUE ⊗ b∗Hπ∗
HL′ −→ 0.

Thus we get

0 −→ b∗U1 ⊗ IP(N∗
H/M1

)×P3 −→ K −→ b∗HGH ⊗ b∗Hπ∗
HL ⊗ b∗Hπ∗

HL′ −→ 0.

Then we push out the resulting exact sequence using the surjection

b∗U1 ⊗ IP(N∗
H/M1

)×P3 −→ b∗HFH ⊗ b∗Hπ∗
HL′ ⊗ IP(N∗

H/M1
)×P3

= b∗HFH ⊗ b∗Hπ∗
HL′ ⊗N ∗

P(N∗
H/M1

)×P3 ,

and we will get (3). On a fiber x× P3, this means first we take an extension

0 −→ E −→ G −→ E −→ 0
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representing x ∈ Ext1(E,E), and then do a pullback using B −→ E followed by a
pushout using E −→ A. The resulting extension

0 −→ A −→ Kx −→ B −→ 0

is exactly θE(KS(x)). This shows that K is a flat family of λ2-stable objects. �

If we denote the induced morphism of K by δ : B −→ M2, then we have the
following.

Proposition 4.15.
(1) The induced morphism δ is an isomorphism outside P(N ∗

H/M1
), and the

restriction δ|P(N∗
H/M1

) coincides with ϕF |P(N∗
H/M1

).

(2) The induced morphism δ is injective on the level of sets and Zariski tangent
spaces.

Proof. δ is an isomorphism outside P(N ∗
H/M1

) because K is the same with U1. On

the other hand, under the identification

Ext1
(
b∗HGH ⊗ b∗Hπ∗

HL ⊗ b∗Hπ∗
HL′, b∗HFH ⊗ b∗Hπ∗

HL′ ⊗N ∗
P(N∗

H/M1
)×P3

)

=Ext1
(
b∗HGH ⊗ b∗Hπ∗

HL, b∗HFH ⊗N ∗
P(N∗

H/M1
)×P3

)

=H0

(
P(N ∗

H/M1
), E xt1πP(N∗

H/M1
)

(
b∗HGH⊗b∗Hπ∗

HL, b∗HFH⊗π∗
P(N∗

H/M1
)OP(N∗

H/M1
)(1)

))

=H0
(
H, E xt1πH

(GH ⊗ π∗
HL,FH)⊗N ∗

H/M1

)

=Hom
(
NH/M1

, E xt1πH
(GH ⊗ π∗

HL,FH)
)
,

extension (3) corresponds to the injection i from NH/M1
to E xt1πH

(GH ⊗π∗
HL,FH)

constructed in Proposition 4.9 via the Kodaira–Spencer map. Similarly in Propo-
sition 4.4, extension (2) corresponds to the identity id in

Hom(E xt1π(G,F), E xt1π(G,F)) = Ext1(h∗G, h∗F ⊗ πPOP(1)).

Notice that i is the restriction of id to NH/M1
. This means (3) is a restriction of

(2) to P(N ∗
H/M1

)×P3 up to tensoring a pullback of some line bundle on P(N ∗
H/M1

).

Therefore δ|P(N∗
H/M1

)×P3 = ϕF |P(N∗
H/M1

)×P3 . In particular, δ|P(N∗
H/M1

)×P3 is injec-

tive on the level of Zariski tangent spaces since ϕF is injective. To show δ is
injective on the level of Zariski tangent spaces, it only remains to show that the
normal direction vx of P(N ∗

H/M1
) in B at a point x ∈ P(N ∗

H/M1
) is not sent to the

image of TP(N∗
H/M1

),x under Tδ,x. If it were so, we suppose ξ : SpecC[ε]/(ε2) −→ B

represents vx. Notice that we have a pullback diagram

P(N ∗
H/M1

) −−−−→ P⏐⏐� ϕF

⏐⏐�
B

δ−−−−→ M2

since δ(B) ∩ ϕF (P) = δ(P(N ∗
H/M1

)). Because Tδ,x(TP(N∗
H/M1

),x) is contained in

TϕF ,x, we can lift δ ◦ξ to ξ′ : SpecC[ε]/(ε2) −→ P that makes the pullback diagram
above commutative; hence ξ factors through P(N ∗

H/M1
). This implies vx is in

TP(N∗
H/M1

),x, which is a contradiction. �
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Remark 4.16.
(1) The last argument also shows that the normal direction vx is not mapped to

the image of TP,Kx
under TϕF ,F . By Proposition 4.7, TϕF ,F (TP,Kx

) is the kernel of
θF , so we must have θF (vx) �= 0.

(2) Since TϕF ,F (TP,F ) = C15 and Tδ,F (TB,F ) = C12, the pullback diagram in the
above proof also implies TϕF ,F (TP,F ) ∩ Tδ,F (TB,F ) = Tδ,F (TP(N∗

H/M1
),F ) = C11.

Obstruction computation. In this subsection, we study the deformation theory
of complexes on the intersection of the two irreducible components of M2. We give
explicit local equations defining M2 at a point in the intersection. In particular,
this will imply the two irreducible components of M2 intersect transversely.

Recall that we have constructed two morphisms δ : B −→ M2 and ϕF : P −→
M2; both of them are injective on the level of sets and Zariski tangent spaces. By
the definition of a simple wall-crossing, any λ2-stable object has to lie in the image of
one of the two morphisms. Thus M2 has two irreducible components corresponding
to the image of δ and ϕF . The intersection of the two components is the image of
the exceptional divisor P(N ∗

H/M1
) by Proposition 4.15. Outside the intersection of

the two components, M2 is smooth by Remark 4.13 and Remark 4.16(1). To study
the singularity of M2, we fix a λ2-semistable object F in P(N ∗

H/M1
). Then we have

the following.

Proposition 4.17. The tangent vectors of M2 at F in the subspaces TϕF ,F (TP,F )
and Tδ,F (TB,F ) correspond to miniversal deformations of F .

Proof. Suppose a Zariski tangent vector of M2 at F in TϕF ,F (TP,F ) is represented
by a morphism η : SpecC[ε]/(ε2) −→ M2. Then η factors through ϕF : P −→ M2:

SpecC[ε]/(ε2) ��

η′

��

η

����
���

���
���

SpecS

ξ
�����

���
���

���

P
ϕF �� M2

If S is a finite-dimensional local Artin C-algebra with a local surjection S −→
C[ε]/(ε2), then we can lift η′ to ξ : SpecS −→ P since P is smooth. By composing
ξ with ϕF , we get a lift of η. Hence η corresponds to a miniversal deformation. A
similar argument works for tangent vectors in Tδ,F (TB,F ). �

In order to show TϕF ,F (TP,F ) and Tδ,F (TB,F ) are all the miniversal deforma-
tions of F , we study the quadratic part of the Kuranishi map κ2 : TM2,F

∼=
Ext1(F, F ) −→ Ext2(F, F ). First we give a decomposition of TM2,F

∼= Ext1(F, F )
with respect to some geometric structures. In the blow-up B, we have TB,F =
NP(N∗

H/M1
)/B,F ⊕ TP(N∗

H/M1
),F and NP(N∗

H/M1
)/B,F is 1-dimensional. Suppose it is

generated by a vector vF . Then we have the following.

Proposition 4.18. The Zariski tangent space TM2,F
∼= Ext1(F, F ) has the follow-

ing decomposition:
(4)
TM2,F = CvF ⊕TP(N∗

H/M1,E
),F ⊕NP(N∗

H/M1,E
)/P(Ext1(B,A)∗),F ⊕TH,E⊕NH/P3×(P3)∗,E .
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In this decomposition,

Tδ,F (TB,F ) = CvF ⊕ TP(N∗
H/M1,E

),F ⊕ TH,E ,

TϕF ,F (TP,F ) = TP(N∗
H/M1,E

),F ⊕NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F

⊕ TH,E ⊕NH/P3×(P3)∗,E

Proof. By Remark 4.16(1), θF (vF ) �= 0; hence we can decompose Ext1(F, F ) =
CvF⊕TP,F because the kernel of θF is TP,F . On the other hand, P=P(E xt1π(G,F)∗)
is a projective bundle over P3 × (P3)∗, so we have TP,F = TP(Ext1(B,A)∗),F ⊕
TP3×(P3)∗,(A,B). To give further decomposition, denote E as the nontrivial exten-

sion of A by B. We have that P(N∗
H/M1,E

) is embedded in P(Ext1(B,A)∗) via the

Kodaira–Spencer map by Proposition 4.7, so TP(Ext1(B,A)∗),F = TP(N∗
H/M1,E

),F ⊕
NP(N∗

H/M1,E
)/P(Ext1(B,A)∗),F . Also notice that the incidence hyperplane H is em-

bedded in P3 × (P3)∗, so TP3×(P3)∗,(A,B) = TH,E ⊕NH/P3×(P3)∗,E . By composing all
the decompositions above, we have proved the proposition. �

The importance of this decomposition is that some of the summands have direct
relations with the Ext2 groups in Lemma 4.6, Proposition 4.7, and Proposition 4.10,
which becomes crucial later when we compute κ2. Fix a nontrivial ζ ∈ Ext1(F, F ).
Let e : A −→ B[1] correspond to the nontrivial extension E and let f : B −→ A[1]

correspond to F ; name the arrows A
k−→ F

l−→ B. Then we have the following
two lemmas.

Lemma 4.19. The normal space NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F can be identified with

Ext2(A,A) under a canonical isomorphism. If ζ belongs to

NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F

in (4), then ζ = k[1] ◦ t ◦ l for some t ∈ Ext1(B,A) such that t[1] ◦ e is nonzero in
Ext2(A,A).

Proof. By Lemma 4.6, we know that the cokernel of θE : Ext1(E,E) −→ Ext1(B,A)
is Ext2(A,A). By Proposition 4.7, we know that the Kodaira–Spencer map KS
induces an isomorphism between the image of θE and NH/M1,E . On the other

hand, NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F is equal to the quotient Ext1(B,A)/NH/M1,E , so

NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F
∼= Ext2(A,A). To prove the second statement, we look

at the square

Ext1(B,A)
l∗−−−−→ Ext1(F,A)

k[1]∗

⏐⏐� k[1]∗

⏐⏐�
Ext1(B,F )

l∗−−−−→ Ext1(F, F )

in Proposition 4.10. There is an injection Ext1(B,A)/Cf −→ Ext1(F, F ),
which is the same as TP(Ext1(B,A)∗),F −→ Ext1(F, F ). Notice the fact that
NP(N∗

H/M1,E
)/P(Ext1(B,A)∗),F is contained in TP(Ext1(B,A)∗),F and that ζ has to be

in TP(Ext1(B,A)∗),F . This means ζ = k[1] ◦ t ◦ l for some t ∈ Ext1(B,A). For ζ to
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be nontrivial and lying in Ext2(A,A), t has to be nonzero under the cokernel map
(−)[1] ◦ e : Ext1(B,A) −→ Ext2(A,A), so t[1] ◦ e �= 0. �

Lemma 4.20. The normal space NH/P3×(P3)∗,E can be identified with Ext2(A,B)
under a canonical isomorphism. If ζ belongs to NH/P3×(P3)∗,E in (4), then ζ can
be completed to the following commutative diagram with e[1] ◦ t + r[1] ◦ e �= 0 in
Ext2(A,B):

A
k−−−−→ F

l−−−−→ B

t

⏐⏐� ζ

⏐⏐� r

⏐⏐�
A[1]

k[1]−−−−→ F [1]
l[1]−−−−→ B[1]

Proof. Recall thatKE is the kernel of θE , and by Proposition 4.7 it can be identified
with TH,E via the Kodaira–Spencer map. From the diagram in Lemma 4.6, we have
an exact sequence

0 −→ KE −→ Ext1(A,A)⊕ Ext1(B,B)
(e[1]◦−)+(−[1]◦e)−−−−−−−−−−−→ Ext2(A,B) −→ 0.

On the other hand, we have the canonical normal sequence of H embedded in
P3 × (P3)∗,

0 −→ TH,E −→ TP3×(P3)∗,(A,B) −→ NH/P3×(P3)∗,E −→ 0.

Since Ext1(A,A) ⊕ Ext1(B,B) can also be identified with TP3×(P3)∗,(A,B) via the
Kodaira–Spencer map, this induces a canonical isomorphism betweenNH/P3×(P3)∗,E

and Ext2(A,B).
Notice that NH/P3×(P3)∗,E is contained in TP,F and the latter is a kernel of θF .

We have θF (ζ) = 0. By using the universal property of triangles, ζ can be completed
to a commutative diagram:

A
k−−−−→ F

l−−−−→ B

t

⏐⏐� ζ

⏐⏐� r

⏐⏐�
A[1]

k[1]−−−−→ F [1]
l[1]−−−−→ B[1]

Since ζ is nontrivial, (t, r) has to be sent to a nonzero element in Ext2(A,B) under
the last map of the exact sequence above; therefore e[1] ◦ t+ r[1] ◦ e �= 0. �

With respect to the decomposition (4), we let

(5) ζ = u1vF + w1 + u2s1 + u3s2 + u4s3 + w2 + u5s4,

where w1 ∈ TP(N∗
H/M1,E

),F , {s1, s2, s3} forms a basis of NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F ,

w2 ∈ TH,E , {s4} is a basis of NH/P3×(P3)∗,E , and ui ∈ C are coefficients. (5)
is inspired by the explicit basis chosen in the proof of [PS85, Lemma 6]. In the
next theorem, we will see that the equations cutting out miniversal deformations
by using (5) are the same as using Piene and Schlessinger’s basis in the case of
deformations of ideals.
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Proposition 4.21. The quadratic part of the Kuranishi map takes the following
form with respect to (5):

κ2(ζ) = ζ ∪ ζ =

4∑
i=1

u1ui+1(vF + si) ∪ (vF + si),

where ∪ is the Yoneda pairing of extensions. {(vF + si) ∪ (vF + si)|i = 1, 2, 3, 4}
forms a basis of the obstruction space Ext2(F, F ).

Proof. The equality κ2(ζ) = ζ ∪ ζ is known for complexes in [Ina02], [Lie06] and
[KLS06]. The second equality is a straightforward computation. It only uses the
fact that for any v in TB,F or TP,F , we have v ∪ v = 0 since v is a miniversal
deformation by Proposition 4.17.

To prove the last statement, we first show that {(vF + si) ∪ (vF + si)|i =
1, 2, 3} is linearly independent. If not, then a certain nontrivial linear combination∑3

i=1 ai(vF +si)∪ (vF +si) = 0. We can rewrite it as vF [1]◦s+s[1]◦vF = 0, where

s =
∑3

i=1 aisi is a nontrivial first deformation of F in NP(N∗
H,E)/P(Ext1(B,A)∗),F . By

Lemma 4.19, we can write s = k[1] ◦ t ◦ l for some t ∈ Ext1(B,A) such that t[1] ◦ e
is nonzero in Ext2(A,A). Now

0 = (vF [1] ◦ s+ s[1] ◦ vF ) ◦ k
= vF [1] ◦ k[1] ◦ t ◦ l ◦ k + k[2] ◦ t[1] ◦ l[1] ◦ vF ◦ k.

Since l ◦ k = 0 and l[1] ◦ vF ◦ k = θF (vF ) = e, we have k[2] ◦ t[1] ◦ e = 0. From

the diagram in Proposition 4.10, we know that Ext2(A,A)
k[2]∗−→ Ext2(A,F ) is an

injection; hence t[1] ◦ e = 0, which is a contradiction.
It only remains to show that (vF + s4)∪ (vF + s4) is not a linear combination of

{(vF + si) ∪ (vF + si)|i = 1, 2, 3}. For this we will show for i = 1, 2, 3

l[2] ◦ ((vF + si) ∪ (vF + si)) = 0,

l[2] ◦ ((vF + s4) ∪ (vF + s4)) �= 0.

By Lemma 4.19, we can assume si = k[1] ◦ ti ◦ l for some ti ∈ Ext1(B,A) satisfying
ti[1] ◦ e �= 0. Then

l[2] ◦ ((vF + si) ∪ (vF + si))

=l[2] ◦ vF [1] ◦ k[1] ◦ ti ◦ l + l[2] ◦ k[2] ◦ ti[1] ◦ l[1] ◦ vF .

Since l[2]◦vF [1]◦k[1] = e[1] and l[2]◦k[2] = 0, we have l[2]◦((vF +si)∪(vF +si)) =
e[1]◦ ti ◦ l. Notice that e[1]◦ ti ∈ Ext2(B,B) = 0, so l[2]◦ ((vF +si)∪ (vF +si)) = 0.
On the other hand, s4 is a nontrivial element in NH/P3×(P3)∗,E . By Lemma 4.20, s4
can be completed to the following commutative diagram with e[1]◦ t4+r4[1]◦e �= 0
in Ext2(A,B):

A
k−−−−→ F

l−−−−→ B

t4

⏐⏐� s4

⏐⏐� r4

⏐⏐�
A[1]

k[1]−−−−→ F [1]
l[1]−−−−→ B[1]
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Now

l[2] ◦ ((vF + s4) ∪ (vF + s4)) ◦ k
=l[2] ◦ vF [1] ◦ s4 ◦ k + l[2] ◦ s4[1] ◦ vF ◦ k
=l[2] ◦ vF [1] ◦ k[1] ◦ t4 + r4[1] ◦ l[1] ◦ vF ◦ k
=e[1] ◦ t4 + r4[1] ◦ e �= 0.

By the diagram in Proposition 4.10, k∗ : Ext2(F,B) −→ Ext2(A,B) is an isomor-
phism; hence l[2] ◦ ((vF + s4) ∪ (vF + s4)) �= 0. �
Corollary 4.22. The two irreducible components of M2 intersect transversely.

Proof. Proposition 4.21 shows that κ−1
2 (0) is cut out by equations u1u2, u1u3, u1u4,

u1u5 in Ext1(F, F ), so all first order deformations that can be lifted to the second
order form a C15∪C12 satisfying C15∩C12 = C11 in Ext1(F, F ). But TϕF ,F (TP,F )∪
Tδ,F (TB,F ) = C15∪C12 and TϕF ,F (TP,F )∩Tδ,F (TB,F ) = TϕF ,F (TP(N∗

H/M1
),F ) = C11

by Remark 4.16(2), so indeed we have exhibited all miniversal deformations of F
and the two components of M2 intersect transversely. �

We end this section by proving M2 is a projective variety.

Theorem 4.23. The moduli space M2 is a projective variety.

Proof. M2 is smooth outside the intersection of its two components by Remark
4.13 and Remark 4.16(1). For any F ∈ P(N ∗

H/M1
), since no first order deformation

other than a versal one can be lifted to the second order, M2 is reduced at F .
This proves M2 is reduced. Now we can view M2 as the pushout of the closed
embeddings B ←− P(N ∗

H/M1
) −→ P. In general, a pushout diagram does not exist

in the category of schemes, but when the two morphisms are closed embeddings it
exists [SchK05, Lemma 3.8]. This proves that M2 is a scheme. The fact that M2 is
projective and of finite type comes after the analysis of the third wall-crossing in the
next section, where we prove that M3 is a blow-up of M2 along a smooth center
contained in ϕF (P) \ δ(B). Since M3 is the Hilbert scheme, it is automatically
projective and of finite type, so M2 is a projective variety. �

5. The third wall-crossing

In this section, we study the third wall-crossing and prove (4) in the Main The-
orem. To be more precise, we will prove the following theorem. Let V be a plane
in P3 and let q be a point on V .

Theorem 5.1. The third wall-crossing is simple with a family of pairs of destabi-
lizing objects (O(−1), Iq/V (−3)). The moduli space of semistable objects after the
wall-crossing is the Hilbert scheme of twisted cubics M3. M3 is also the blow-up of
M2 along a 5-dimensional smooth center contained in P \B.

We fix the family of pairs of destabilizing objects to be

(A,B) =
(
O(−1), Iq/V (−3)

)
.

The method is almost the same as in the previous section, but the situation here
is easier since we expect no extra components or singularities to occur and M3 is a
blow-up of M2 along a smooth center.

The following Hom and Ext group computations are straightforward.
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Lemma 5.2. Hom(A,B) = Hom(B,A) = 0, Hom(A,A) = Hom(B,B) = C;
Ext1(A,B) = C, Ext1(A,A) = 0, Ext1(B,B) = C5, Ext1(B,A) = C10;
Ext2(A,B) = 0, Ext2(B,B) = C2, Ext2(A,A) = 0, Ext2(B,A) = C;
Ext3(A,B) = Ext3(A,A) = Ext3(B,B) = Ext3(B,A) = 0.

Similar to Proposition 4.3, the incidence hyperplane H is the moduli space of
nontrivial extensions of A by B. Similar to Proposition 4.5, we can construct an
embedding ϕ′

E : H −→ M2. Since M2 has two irreducible components B and P,
we want to know in which component H lies.

Proposition 5.3. Under the induced morphism ϕ′
E, H is embedded into P \B.

Proof. Take any E ∈ H; we have a nontrivial extension 0 −→ B −→ E −→ A −→
0. By using long exact sequences for the Hom functor, we get the following com-
mutative diagram with exact rows and columns, and all boundary homomorphisms
are 0:

Ext1(A,B) = C
0−−−−→ Ext1(E,B) = C5 −−−−→ Ext1(B,B) = C5

0

⏐⏐� ⏐⏐� ⏐⏐�
Ext1(A,E) = 0 −−−−→ Ext1(E,E) −−−−→ Ext1(E,B)⏐⏐� ⏐⏐� ⏐⏐�
Ext1(A,A) = 0 −−−−→ Ext1(E,A) = C10 −−−−→ Ext1(B,A) = C10

⏐⏐�
⏐⏐�

⏐⏐�
Ext2(A,B) = 0 −−−−→ Ext2(E,B) = C2 −−−−→ Ext2(B,B) = C2

⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→ Ext2(E,E) −−−−→ Ext2(B,E)⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ext2(E,A) = C −−−−→ Ext2(B,A) = C

If E ∈ B \P, then Ext1(E,E) = C12, but this violates the exactness of the central
column of the above diagram. If E ∈ P ∩ B, then by Proposition 4.9 we have
Ext1(E,E) = C16 and Ext2(E,E) = C4, which also does not fit into the above
diagram. Hence E ∈ P \B. �

Remark 5.4. This proposition means that the third wall-crossing only modifies one
irreducible component of M2, namely P. It does not touch the other component
B.

On the other hand, we can construct a morphism ϕ′
F : P′ −→ M3 that is

injective on the level of sets and Zariski tangent spaces, where P′ is a P9-bundle
over H parametrizing all nontrivial extensions of B by A. This implies that for any
F in the image of ϕ′

F , Ext
1(F, F ) is at least 14-dimensional since dimP′ = 14 and

P′ is smooth.
If we denote the blow-up of M2 along H by B′, then we can perform the ele-

mentary modification on the pullback of the universal family over M2 along the
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exceptional divisor of B′ to get a flat family K′. Similar to Proposition 4.15, K′

induces a morphism δ′ : B′ −→ M3 which is injective on the level of sets and Zariski
tangent spaces.

Theorem 5.5. The induced morphism δ′ is an isomorphism.

Proof. K′ is the same as the universal family over M2 outside the exceptional
divisor, so δ′ is an isomorphism outside the exceptional divisor. For any F lying in
the exceptional divisor, δ′ induces an injection TB′,F −→ Ext1(F, F ) = TM3,F . To

prove δ′ is an isomorphism at F , we only need to show Ext1(F, F ) = C15 = TB′,F .
Since we have an exact sequence 0 −→ A −→ F −→ B −→ 0, this can be done by
writing the long exact sequences for Hom functor again:

Ext1(B,A) = C10 −−−−→ Ext1(F,A) = C9 −−−−→ Ext1(A,A) = 0⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,F ) = C14 −−−−→ Ext1(F, F ) = C15 −−−−→ Ext1(A,F ) = C⏐⏐� ⏐⏐� ⏐⏐�
Ext1(B,B) = C5 −−−−→ Ext1(F,B) = C6 −−−−→ Ext1(A,B) = C

0

⏐⏐� 0

⏐⏐� ⏐⏐�
Ext2(B,A) = C −−−−→ Ext2(F,A) = C −−−−→ Ext2(A,A) = 0⏐⏐� ⏐⏐� ⏐⏐�
Ext2(B,F ) = C3 −−−−→ Ext2(F, F ) = C3 −−−−→ Ext2(A,F ) = 0⏐⏐�

⏐⏐�
⏐⏐�

Ext(B,B) = C2 −−−−→ Ext2(F,B) = C2 −−−−→ Ext2(A,B) = 0

�
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