TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY.

Volume 370, Number 8, August 2018, Pages 5983-6039
http://dx.doi.org/10.1090/tran/7293

Article electronically published on April 4, 2018

THE DEGENERATE EISENSTEIN SERIES ATTACHED
TO THE HEISENBERG PARABOLIC SUBGROUPS
OF QUASI-SPLIT FORMS OF Sping

AVNER SEGAL

ABSTRACT. In [J. Inst. Math. Jussieu 14 (2015), 149-184] and [Int. Math. Res.
Not. IMRN 7 (2017), 2014-2099] a family of Rankin-Selberg integrals was
shown to represent the twisted standard L-function L(s, 7, x,st) of a cuspidal
representation 7 of the exceptional group of type G2. These integral repre-
sentations bind the analytic behavior of this L£-function with that of a family
of degenerate Eisenstein series for quasi-split forms of Sping associated to an
induction from a character on the Heisenberg parabolic subgroup.

This paper is divided into two parts. In Part 1 we study the poles of these
degenerate Eisenstein series in the right half-plane fe(s) > 0. In Part 2 we
use the results of Part 1 to prove the conjecture, made by J. Hundley and
D. Ginzburg in [Israel J. Math. 207 (2015), 835-879], for stable poles and also
to give a criterion for 7 to be a CAP representation with respect to the Borel

subgroup of G2 in terms of the analytic behavior of L(s, 7, x,st) at s = %
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In [GS15] and [Segl7] a family of integral representations for the standard twisted
L-function L (s, 7, x, st) of a cuspidal representation 7 of G5 was considered. These
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integral representations bind the analytic properties of L (s, , x,st) with those of
a family of degenerate Eisenstein series &g (X, fs, s, g) attached to a degenerate
principal series induced from a character of the Heisenberg parabolic subgroup
of a quasi-split form Hpg of Sping. In this paper, we study the possible poles
of £ (x, fs,8,9) and draw a few corollaries connecting the analytic properties of
L (s,m,x,st) and properties of 7.

More precisely, let F' be a number field, let Ap be its ring of adeles and let P
denote the set of places of F'. The isomorphism classes of quasi-split forms of Sping
are parametrized by étale cubic algebras over F. Such an algebra F is of one of the
following types.

(1) E=F x F x F; this is called the split case.
(2) E=F x K, where K is a quadratic field extension of F.
(3) E is a cubic field extension of F, either Galois or non-Galois.

If E is an étale cubic algebra over I’ which is not a non-Galois field extension, we
call it a Galois €tale cubic algebra over F' and denote by x g the Hecke character
of A}X? associated to E by global class field theory. In particular xpxpxr = 1 and
XFxK = Xk- Here 1 denotes the trivial character.

For an étale cubic algebra E over F' there exists a quasi-split form of Sping
denoted by Hg. We fix the Heisenberg parabolic subgroup Pg = Mg - Ug with
Levi subgroup Mg and unipotent radical Ug. The Levi subgroup Mg is given by

Mg = (Resg/r GL2)0 = {g € Resg/r GLz | det (9) € G},

where det : Resgp/p GL2 — Resg/p GL1 is a rational map and we identify G, =
GL; as a subgroup of Resg/r GL1 in the natural way. Thus a determinant detyy,, :
Mg — Gy, of Mg is defined. For a Hecke character xy of F*\Aj we form the
unnormalized parabolic induction

-
(1.1) Ip, (x,s) = Indgj((ﬁf)) (x ® || +2) odetpsy, -
For a standard section f € Ip, (X, s) we define the Eisenstein series

Ep (X, fer5,9) = > £

YEPR(F)\Hp(F)

This series converges for Re (s) > 0 and admits a meromorphic continuation to the
whole complex plane. We say that £g (x, -, s, ) admits a pole of order n at sq if

(1.2) sup {ords—s, €6 (x> fs,5.9) | fs € Ipy (X,5), 9 € He (Ap)} =n,

where the order ord;—s, h (s) of a pole of a complex function h (s) at sq is the unique
integer n such that

lim (s —sg)" h(s) € C*.

S—So

In Part 1 of this paper we prove the following theorem.
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Theorem [A.3l The order of the poles of Eg (X, -, s,+) for Re (s) > 0 are given by
the following numbers:

S0=73 So=73 so=3

X*=1 [ x=1] x=xzxz | x=1
E=FxFxF 1 2 1
EF=FxK 1 1 1 1
FE Galois field extension 1 0 1 1
FE non-Galois field extension 1 0 1

Namely, for a datum (E,x, so,n) given in the table, £ (X, -, s,) admits a pole
of order precisely n at sqg. In particular, when x is everywhere unramified a pole of
the above-mentioned order is attained by the spherical vector. For any other triple
(E, x, s0), not appearing in the table, with Re (sg) > 0 the degenerate Eisenstein
series Eg (X, fs,8,9) s holomorphic at sg.

Furthermore, we find out which of the associated residual representations are
square-integrable. The residual representation at s = g with y = 1 is the trivial
representation. The residual representation at s = % is computed in [GGJ02] for
X = xg and in |[GSb|] for E = F x K and x = 1. The residual representation at
s = 1 for various y is computed in [Seg]. In the case where E/F is a cubic field
extension, the study of the (non-degenerate) residual spectrum is carried out in
[Laol.

Part 1 of this paper is dedicated to the proof of Theorem Il In order to deter-
mine the orders of the poles of &g (x, fs, s, g) we compute its constant term along
the Borel subgroup. This constant term is a sum of various intertwining operators.
The poles of these intertwining operators are the possible poles of £g (x, -, s,). We
proceed to check the possible cancellation of the poles of these intertwining opera-
tors. We note that while usually poles of such intertwining operators are canceled
in pairs, it happens that the cancellation of poles here also happens in triples or
quintuples of intertwining operators.

Part 2 of this paper is devoted to applications of Theorem 1] to the study of
cuspidal representations of G. For a cuspidal representation m = @, .p m, of
G and a Hecke character x = @), .p X» as above, we fix a finite set of places
S of F such that 7, and y, are unramified for any v ¢ S. For v ¢ S we let
tz, € G2 (C) denote the Satake parameter of m,. We also fix st to denote the
standard 7-dimensional representation of Gy (C). We define the standard twisted

partial L-function of 7 to be

(1.3) 5 (s,most) = ]
vgsS
where w,, is a uniformizer of F, and ¢, is the cardinality of the residue field of F),.
For an irreducible cuspidal form ¢ € 7 and a standard section fs € Ip, (x,s) it

is proven in [Segl7] that

1
det (1= x (@) st (tr,) 0 °)

(14) / gE (Xaf5757g)(p(g)dg:‘cs (Svﬂ-aX75t) dE,S (SafSa(PS)7
G2 (F)\G2(AF)
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where dp g is a given meromorphic function. Furthermore, for any 7 there exists
an étale cubic algebra E over F' such that the integral on the left hand side of
equation [[4] is non-zero. In this case, dg g # 0 and for any so € C one can choose
fs, ¢s such that dg s (s, fs, ¢s) is analytic and non-vanishing in a neighborhood
of sg. This proves the meromorphic continuation of £ (s, , x, st), and moreover we
have

(1.5) ords—s, (ES (s,m, X,st)) < ords—s, (Eg (X, 8,°)) -

The integral in equation [[4] can be used in order to characterize the image
of functorial lifts in terms of the analytic behavior of £ (s, x,st). We apply
Theorem E.1] and equation to classify CAP representations with respect to the
Borel subgroup B of Gs.

We recall that a cuspidal representation 7 of Gy is called CAP (cuspidal asso-
ciated to parabolic) with respect to B if there exists an automorphic character 7 of
the torus T such that 7 is nearly equivalent to a subquotient of Indg?}@f)) T.

We also recall that non-degenerate characters of the Heisenberg parabolic P =
M -U of G5 are parametrized by étale cubic algebras over F as explained in [Segl7].
Given a non-degenerate character ¥ : U (F)\U (A) — C* we say that a cuspidal
representation 7w of G5 supports the U-Fourier coefficient if

Jpem: / o (ug) ¥ (u) du # 0.

U(I\U(A)

We denote by WFy () the set of all non-degenerate étale cubic algebras E over
F such that w supports the corresponding Fourier coefficient along U. We call the
set WFy (m) the wave front of m along U; by [Gan03, Theorem 3.1] WFy () is
non-empty.

Given an étale cubic algebra E over F' we let Sp = Autp (E) and recall the dual
reductive pair

GQXSE<—>HE><ISE.

We denote the corresponding 6-lift from G5 to Sg by 0g,,.
For a Galois étale cubic algebra E over F' let

|2, E=FxFXxF,
e = 1, otherwise.

In Section [7] we prove

Theorem Let m be a cuspidal representation of G (A) supporting a Fourier
coefficient along U corresponding to an étale cubic algebra E over F which is not
a non-Galois field extension. The following are equivalent:

(1) 7 is a CAP representation with respect to B.

(2) The partial £-function £ (s, 7, x g, st) has a pole, of order ng at s = 2.

(3) The 6-lift Og, (7) of m to Sg = Autp (E) is non-zero. In particular 7 is
nearly equivalent to the 6-lift 6g, (1), where 1 here is the automorphic
trivial representation of Sg (Ap).
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Part 1. The degenerate Eisenstein series
2. DEFINITIONS AND NOTATION

Let F be a number field and let P be its set of places. For any v € P we denote
by F, the completion of F' at v. If v oo we denote by O, the ring of integers of
F,, by w, a uniformizer of F,, and by ¢, the cardinality of the residue field of F,,.
We also denote by A = Ap the ring of adeles of F'. Also, throughout this paper we
denote the trivial character of A* by 1 and the trivial character of F, by 1, or 1
if there is no source of confusion.

We also note that, in this paper, parabolic induction Indg for a parabolic sub-
group P of a group G is unnormalized.

2.1. Quasi-split forms of Sping. In this subsection we describe the structure of
the various quasi-split forms of Sping. For more details the reader may consult the
sources [Segl7|GHO6LIGGJ02,[HMS9S].

Recall from [Spr79], Section 3] the following parametrization of quasi-split forms
of a split simply-connected algebraic group H defined over F:

{Quasi-split forms of H over F'} «— {¢: Gal (F/F) — Aut (Dyn (H))},

where Dyn (H) is the Dynkin diagram of H.
The Dynkin diagram of type Dy is given as follows:
a1 (%) Q3

O—0O—>0

Qy

We restrict ourselves to the case H = Sping, the split simply-connected
group of type D4. The quasi-split forms of H were described in [GHO6]. Since
Aut (Dyn (Sping)) = S5 we have

- Isomorphism classes of
} +— {p:Gal (F/F) = S3} +— { étale cubic algebras

of Sping over F over F

{Quasi—split forms
For any cubic algebra E let Sg = Autp(F), which is a twisted form of S5. An
action of Sg on the algebraic group Sping determines a simply-connected quasi-
split form Hp = Spinf of the split group Sping over F. As in [GGJ02, Section 3]
we fix a Borel subgroup B containing a maximal torus Tg (both defined over F).
Let ®p, denote the set roots of Hg ® F =2 Sping (F) with respect to Bg (F); the
simple roots in ®p, are A = {ay, g, a3, a4}

Let &g denote the relative root system of Hg with respect to Bg and by Ag the
set of simple roots in ®g. For any ~ in the relative root system of Hg we denote
by F., the field of definition of v. We denote the cardinality of the residue field of
F, by ¢y. We denote by Wy, the Weyl group of Hg with respect to Bg.

We now recall, from [HMS98, eq. (1.8)], that an étale cubic algebra over F is
one of the following:

(1) FxF x F.

(2) F x K, where K is a quadratic field extension of F.
(3) E, where E is a cubic Galois field extension of F'.

(4) E, where E is a cubic non-Galois field extension of F.
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We call the first three Galois étale cubic algebras over F'. We also refer to
F x F x F as the split cubic algebra over F.

For a Galois étale cubic algebra E we attach an automorphic character yg of
F*\A% as follows:

(1)  E=F x F x F, then xygp = 1.

(2) If E = F x K when K is a field, then xg = xk, where xx is the quadratic
automorphic character attached to K by global class field theory.

(3) If E is a field, then g is the cubic automorphic character attached to E by
global class field theory. Note that x% = Yz satisfies the same properties,
and indeed throughout this paper all statements regarding yg are also
stated for y%.

Remark 2.1. Note that whenever E/F is a non-Galois field extension the character
XE is not defined. Namely, if £/F" is a non-Galois extension and x o Nmg/r = 1,
then y = 1.

Indeed, assuming the existence of such a character, its kernel would be a subgroup
of index 3 in F* which would, due to [Mil, Theorem V.5.5, Theorem VIII.4.8],
correspond to an Abelian cubic extension L of F such that FF C L C FE, which
brings us to a contradiction.

We now give a more detailed description of Hg for the different kinds of étale
cubic algebras over F' in terms of the action of Gal (F//F) on Hg (F). This action
factors through I'g = Autp (E).

(1) E=F x F x F: In this case Hg is the split reductive simply-connected
group of type D4 over F. It corresponds to the trivial action of Gal (7/ F )
In this case we have I'y = {1}. Also in this case

Fo, =F,, =F, =F, =F.

(2) E=F x K: This is the case where F = F x K with K a quadratic (and
hence Galois) extension of F. It is enough to define an action of T'p =
Gal (K/F) = (o) on Sping (K). This action is determined by

().
0 (Ta, (k) = Ta, (0 (K)),
0 (Ta, (k) = Za, (0 (K)),
0 (Tay (k) = za, (0 (K)),
0 (Tay (k) = 2a, (0 (),

for k € K. In this case
r, =F,,=F, F,,=F, =K.

Here, we single out the root « from a3 and ay.
(3) E is a cubic Galois field extension: It is enough to define an action of 'y, =
Gal (E/F) = (o | 0% =1) on Sping (E). This action is determined by

0 (Tay (k) = Ta, (0 (K)),
0 (Ta, (k) = Za, (0 (K)),
0 (Tay (k) = 2o, (0 (K)),
0 (Ta, (k) = 2a, (0 ()),
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for k € E. In this case
F,,=F, F, =F,, =F,, =FE.

(4) E is a cubic non-Galois field extension: Here we assume that E is a cubic
non-Galois extension of F. In order to define Hg (F) we first consider
the Galois closure L of E over F'; this is a Sextic Galois extension with

Gal(L/F) = <a, T ‘ d=1,12=1, (o1)° = 1>. Note that L is also a
Galois extension of E. We consider the following tower of extensions:

\\//
where K = L9 and E, E, = £{om®) and E,. = L{7°™) are the o-

conjugates of E in L.
The action of 'y = Gal (L/F') on Sping (L) is determined by

0 (a, (1)) = 2as (0 (1)), o (T(1))
0 (Zay (1)) = 2ay (0 (1)), ( as (T(1))
0 (Tay (1)) = 2a, (0 (1)) 7 (2ay (1 o (T ()
0 (Tay (1)) = Zay (0 (), 7(2ay (1)) = Zay (T (1))

Here we singled out a4 from «; and ag, which is akin to distinguishing 7
from o702 and o270. In this case

Fo,=F, Fo =E, Fo=E =0(E), F.,=E =02(E).

I
HR&H

(
o (1))
1)
)

Let Pg be the (standard) Heisenberg parabolic subgroup of Hp with Levi de-
composition P = Mg - Ug such that

My = (RGSE/FGLQ)O = {9 € Resg,r GLy | det (9) € G }

is generated by the simple roots oy, a3, and ay. In particular, the determinant char-
acter det s, associated to the Levi subgroup Mg is well defined over F'. Restricted

to the torus, detar, equals the highest root in @, .

T

About the notatiorllE of roots and Weyl group elements in the quasi-split
case: Fix an étale cubic algebra E over F'. The absolute root system of Hp is of type
D, with simple roots oy, o, oz, and ay as above. Let Wp, denote the Weyl group of
type Dy. We denote by w,, the simple reflection in Wp, associated to ;. For what
follows it would be more convenient to fix notation for the roots and Weyl elements

in the various quasi-split groups Hg. Recall that Hg (F) = Hg (F) e C Hg (F)

o If FE = F x F x F, then Hg is split over F'. We denote the generators of
Wh by

W; = Wq, -

7
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The set of simple roots in this case is
AE - {ala a2, (3, 044} .

Furthermore, we write [a1, as, as, a4] for

4
[Gl,az,as,ad = E ;0.
i=1

We note here that for ¢ = hy, (t1) hay (t2) hag (t3) hay, (t4), where ¢y, o,
t3, ty € F*, it holds that

Y e e P Pl
F F F F

o If F = F x K, then the relative root system of Hg with respect to Tg is of
type Bs, and we denote the generators of Wy, by
W1 = Way, W2 = Way, W3 = WayWay-
The set of simple roots in this case is
Ap = {1, a9, (a3 +4)} .

Furthermore, we write [a1, ag, as] for

[a1, az,a3] = aroq + azas + a3 (a3 + ) = a1y + azaz + as (NmK/F 0043) .
We note here that for
t = ha, (t1) ha, (t2) hasaz (t3) = hay (t1) hay (t2) hay (t3) hay (£3)
where t1,to € F* t3 € K*, it holds that
a1, az, as] (1) = a5 7" ol 52772 [t 3072

Remark 2.2. Note that given a place v of F such that K, = F,, x F,,, the
Weyl element wz € Wi, 4) should be interpreted as wzws € Wy (r,)-

e If E/F is a field extension, then the relative root system of Hg with respect
to Ty is of type G2, and we denote the generators of Wiy, by

wy = Wy, Wy, Wy = Wy
The set of simple roots in this case is
AE = {(011 + Qa3 + 014) ,042}.
Furthermore, we write [a1, as] for
[a1, as] = a1 (a1 + a3 + au) + azaz = a1 (Nmp/p oan) + azas.
We note here that for
2
b=y gzt () Py (t2) = D (1) g (2) By () P, (87
where t; € E* to € F*| it holds that
lax, as] () = [t |5~ |t 52"

Remark 2.3. Note that given a place v of F' such that E, = F, x F, X
F,, the Weyl element wy € W, s) should be interpreted as wywsw, €
Why(F,)- At a place where £, = F, x K, (in particular E/F is a non-
Galois extension), w1 € Wy, 4) should be interpreted as wiws € Wy (p,)-

For any such quasi-split form of Sping we denote wj, . ;
wall PRI walk .

. Or w iy, ..., 4] for
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2.2. The degenerate Eisenstein series. Fix a finite order Hecke character y :
F*\A* — C*. We consider the induced representation

s+3
(2.1) Ip, (x,8) = Indgj((g)) (x o detar,) @ |detar, |*" 2,

where, as mentioned above, the induction on the right hand side is unnormalized.

We note that |det s, \% is the normalization factol] of the parabolic induction, and
hence the induced representation on the left hand side is normalized.

For any holomorphic section fs € Ip, (x,s) we define the following degenerate
Eisenstein series:

(2.2) Ee (X fs,8,9) = > fs (vg)-

YEPE(F)\Hp(F)

This series converges for Re(s) > 0 and admits a meromorphic continuation
to the whole complex plane. For any sy € C we write the Laurent expansion of

Ee (X, fs:5,9):

o0

E0 (X, for5,9) = D (s —50)" [Ax (x, 50) fu] (9),

k=—o00

where for each k the coefficient Ay, (x, o) is an intertwining map,

Ak (Xa 30) : IPE (Xv SO) - A (HE') /Im (Akfl (Xa SO)) )
where A (Hg) is the space of automorphic forms of Hg (A). In particular, if the or-
der of g (x, -, 8, ) at sg is n, then A_,, (X, o) is an intertwining map from I'p, (x, so)
to A (HE)
Part 1 of this paper is devoted to the study of the analytic properties of
Er (X, fs, 8, 9) in the right half-plane Re (s) > 0.

3. BACKGROUND THEORY ON EISENSTEIN SERIES
AND INTERTWINING OPERATORS

In this section we recall some general information regarding the theory of Eisen-
stein series. Most of the results quoted in this section can be found in [MW95].

3.1. Intertwining operators and the constant term. We start by noting that

(3.1) Ipy (,8) = Ipy (xs) = nd=®) 52y
M E b E S BE(A) BE S

where . B}
Xs = 555 ® (X © detME) ® |detME|s+% :

Note that, as above, the induction on the right hand side is unnormalized, while

the induced representation on the left hand side is normalized.

For any w € W we define the intertwining operator

M (w7Xs) : IBE (Xs) — IBE (wil 'Xs)
by
(32) M (w,x:) £ (9) = / Ji (wng) dn.
Ng(A)Nw=!Ng(A)w\Ng (A)
IFor the modulus character of Pg it holds that dpg = |detME |5.
Mg
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This integral converges for Re (s) > 0 and admits a meromorphic continuation to
C. When there is no source of confusion we denote M (w, xs) by M (w) or M,,.

Remark 3.1. Note that the definition here is slightly different from the definition
given in [MWO95]. As a consequence, if w = w'w”, then a cocycle equation is
satisfied:

(3.3) M (w,xs) = M (w",w'™" - xg) o M (w', x5) -
The constant term of £g (x, fs, s, g) along Ng is defined to be
(3.4) Er (X, fs,8,1)g, = / Er (X [y s,ut)du YVt € Tg (A).
Ng(F)\Ng(4)

By a standard computation as in [GRS97], we obtain

(35)  Er(fostp,= >, (M(wx) fs)

weW (Pg,Hg)

(t) VteTg(A),
T
where W (Pg, Hg) = {w € Wa, |w™' (y) > 0Vy € Ap\{az}} is a set of dis-
tinguished representatives for Pg\Hg/Bg = Wp,\Wpg,, given by the shortest
representative of each coset.

Theorem 3.2. The degenerate Eisenstein series Eg (X, fs,$,9) admits a pole of
order n at (X, so) if and only if its constant term Eg (X, fs,$,9) g, admits a pole of
order n at (X, So).

E

Indeed, in Section H we study the poles of &g (x, fs,s,9) via the poles of
Er (X, fs, 5, 9) g, using equation

3.2. Rank-one intertwining operators and local factors. In many instances,
the study of Eisenstein series and intertwining operators relies on reduction to the
rank-one case via the functional equation, equation 3.3l In this section, we recall
some useful facts about the rank-one case and the reduction to it.

We fix a number field extension L/F and let Dy, be the discriminant of L/Q.
Also let Ay, be the ring of adeles of L, let Pr, be the set of places of L, and for a
finite place v of L, denote by O, the ring of integers of L,,, by w, a uniformizer of
O,, and by ¢, the cardinality of the residue field of L, .

Let (1, (s) be the completed ¢-function of L. Following [Ike92], we define

€, (s) = Dr|? ¢p (s).

The normalized function & then satisfies the functional equation

(3.6) Eo(s) =& (1—s).
Let B =T - N be the Borel subgroup of SL, with torus 7 and unipotent radical

-1
N. Also let wg = (1) 0
recall some facts about the intertwining operator M,,, defined on representations
of SLy. Fix a Hecke character 0 = &), cp 0, of T (AL); it can be considered as a

1
representation of B (Ar). For a section fs € Indg(Lgi‘?L) 0(515;2 we let

(3.7)
M (wo,0,5) f» (g) = / f+ (wong) dn = / 1. (wong) dn.

N(AL)Nwg "N (Ar)wo\N (Ar) N(AL)

be the generator of the Weyl group of SL,. We
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This integral converges for Re(s) > 0 and admits meromorphic continuation to
the whole complex plane. The intertwining operator M,,, is factorizable in the
sense that if fs = @ fs,., then M (wo, 0,5) fs = @, cp M (wo,0,,5) fs., where for
Re (s) > 0,

(3.8) M (w0, 0, 8) fo (9) = / fu (wong) dn.
N(L,)

This integral admits a meromorphic continuation to C. For a spherical section f,

1
(in particular o, is unramified) of Indgffff”) UV(SZS;Z it holds that

(39) M(w07UV75) f:?,u = =2 (2S’O-V) )fgst’

ELV (28 + 1,0,
where:
e For v { oo and o, unramified
1
Ly, (s,0,) = ——F——.
L, ( g ) 1 —0o, (wy) q;s

This function is a non-vanishing meromorphic function on C with simple
poles at s = W for all n € Z.
e Asin [Kud03l eq. 3.16], if v { oo and o, is ramified, we define L, (s,0,) =

1.
e The only finite order characters o, of R* are either the trivial one or the

sign character. Let
€ — 0, o,=1,
Y11, o, =sgn

Lr(s,0,) = =T (S * 6”) .

and

2

e The only finite order character o, of C* is the trivial one. For n € Z let

Onw (2) = (%)n

Note that any continuous complex character of C* is of the form oy, (2) |2|
for some n € Z and s € C. Let

Lo (s,0m,) =2 (2m) ()T (s + @) .

Recall that T' (z) is a non-vanishing meromorphic function on C whose only poles
are simple, appearing at the points z = —n for n > 0.

We fix an additive character ¢ = @), .p ¢, : L\AL — C*. For simplicity, we
assume that v, has conductor 0 at all finite places.We also fix a global measure

dx = ][] dz, such that
veEPL

/dx,,zl Vv € Py

v
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Let €1, (s,0.,1,) be the local e-factor as defined in [Kud03, Corollary 3.7]. We
recall a few facts regarding ez, :

® €L, (57 UV7,(/)I/) is entire in s.
e For any finite v such that o, is unramified, it holds that e, (s,0,,%,) = 1.
e For any v it holds that ey, (s,0,,%,)€r, (1 —s,0,,%,) = 1.

Remark 3.3. We recall the global functional equation
(310) Lr, (S,U):EL (S,J)EL (1—8,5),
where

Ly (570) = H ‘CLu (Saau)a €L (S,O’) = H €L, (S5UV777Z)V)'

vePL vePL

Note that if o is unitary, then 0~! = 7. Also note that fixing a finite subset S C P
such that all data is unramified outside S, it holds that

€L (S; U) = H €L, (Sv UV7¢V) .
ves
Remark 3.4. We also recall the local functional equation [Kud03l eq. 3.26]
€L, (570'1/; wu) r
YL, (8,00,%)
where 7z, (s,0,,%,) is the local y-factor as defined in [Kud03]. In particular

IT e (siows) =1

vEPL

(3.11) Ly, (s,0,)= L, (1—s0,"),

v

Studying the analytic behavior of M (wq,0,,s), we have the following lemma
([Win78] for v 1 co and [Sha80] for v|oo):

Lemma 3.5. For any o, : L} — C* the operator mM (wg, 04, 8) is entire
and non-vanishing.

The normalized intertwining operator is defined to be
. ﬁL,/ (25+1,0’,,)

ELU (28, 01/) €L, (287 Ov, wu)
It follows from equation B.9] that
(312) N(’LU(),O'V,S) fso,u = fgs,u‘

For v 1 oo it holds that (from the above, [Tad12, Section 11], and [Tad94l, Section
5]):

N (wo, 00, 8) M (wo,0,,5).

e The operator M (wg, 0, s) is entire for o, ramified and so is the normalized
intertwining operator N (wg, 0, ).
e If g, is unramified, then M (wq,0,,s) is meromorphic with a simple pole
log(o, (w,))+2min
log(gv)

N (wo, 0y, s) admit a simple pole at s = —% + W for all n € Z.
1

e Furthermore, when o, = 1 then M (wy, 0., 8) is not injective at s = 5 and

s = —%. The normalized intertwining operator N (wg, 0., $) is not injective

at for all n € Z. The normalized intertwining operators

at s = %, and its residue is not injective at s = —%.



DEGENERATE EISENSTEIN SERIES FOR QUASI-SPLIT FORMS OF Sping 5995

e In particular, for o, = 1 we have

0—>1—>IndSL2(L)1—>St—>O

B(Ly)
0 — St — Indy 20 R SR
where St is the Steinberg representation.
e If 0, is a non-trivial quadratic character, then IndS(LQ( Uég is reducible.
In this case, Ind (LZ()L )062 = (1) D 7r,(, where 7r( ) and 7r,, - are irre-

() is also unramified. On the other

ducible, and if o, is unramified, then 7,
hand, 7ry Y is an irreducible representation unramified with respect to the

compact subgroup d - SLs (O,) - d~!, where

1 0
() 0.

Furthermore, M, (wy,o,,0) is bijective and acts as multiplication by a
scalar on 77( ) and 77571
acts on 7' as eld.
e The only reducible principal series representations are those described in
the previous bullets.
We now discuss the case v|oco (from the above and [Kna01l, Chapters IT and VII]).

If L, = R, then TI,, , = Ind5/7"*) 0,63 * is reducible if and only if 25 = n € Z

). The normalized intertwining operator N, (wg, oy, S)

and
e, =n+1 mod 2,
in which case, the decomposition series for 1., . is as follows:
e For s = 0 it holds that

Heu,s = Dir @D;v

where D} and D are irreducible representations known as the holomorphic
and non-holomorphic limits of discrete series (respectively).
e For 25 = n € N it holds that

Df @D, | <1, -, 4,

where ®,,_1 is the unique irreducible representation of SLs (R) of dimension
n —1and D) ,, D, _, are the irreducible representations known as the

holomorphic and non-holomorphic discrete series of highest weight n — 1.
e For —2s = n € N it holds that
Cpoy =1l s » Dy ® D,

If F, = C, then II,, , = Ind(?'1") 7,,, [ 1|* is reducible if and only if n =1 — k

and 4s=2+k+lorn=k—1land 4s=—(2+k +1) for k,l € NU {0}, in which
case

e Ifn=1[0—kand4s=2+k+1, then
=, > EF @8,

where @y, ; is the finite-dimensional representation realized as polynomials
in the complex variables (21, 22,271, Z3), homogeneous of degree k in (21, 22)
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and homogeneous of degree [ in (z7,%2). £, and £, ; are analogous to
D+ , and D,
The following lemma follows from the above discussion.

n—1-

Lemma 3.6. For a place v € P, it holds that
N (wo, 8,0,) o N (wg,—s,0,) =1d Vs eC.

For sg € R such that N (wo, s,0,) admits a pole at so or —sg this should be under-

stood as
lim N(U)(),S,Uy) ON(w07_SvU_V) =1d.

S—S0o

We finish the discussion of the rank-one case by recalling two results regarding
the global intertwining operator; one of them is the global analog of Lemma
As M (wg, s,0) o M (wg, —s,0) is an endomorphism of irreducible representations
for all s € C such that 2s ¢ Z, it equals a constant.

Lemma 3.7 ([Lan76], Lemma 6.3). It holds that
M (wg, s,0) o M (wp,—s,5) =1d Vs eC.
For s = :I:% with 0 = 1 this should be understood as

lim M (wq,s,0) 0 M (wg, —s,7) =1d.

€—>i—
We would also like to recall [Ike92] Lemma 1.5]:

Lemma 3.8. For o =1, the operator M (wo, s,1) is holomorphic at s =0 and is
equal to the scalar multiplication by —1 at so = 0.

3.3. Intertwining operators for induced representations of Hg. At this
point, it will be beneficial to consider a more general point of view. Let af =
X* (Tg) ® C. We equip af with the following system of coordinates:

o If E=F x F x F we have a} & C* and we write A = (s1, s2, $3,54) € af
for

A(hay (t1) hay (t2) hag (t3) hay (t2)) = 1|7 [t2]F 1ta] 7 [talm Vi to,ts,ta € F.
o If £ = F x K we have af = C? and we write A = (s1, 52, 83) € ag for
Aoy (1) By (t2) by (t3) B, (1)) = 6132 16232 [s32 VEr o € FX, Vit € K¥.

e If E is a field we have a} 2 C? and we write A = (s, s2) € af for
A (B (41) s (82) By () Py (857)) = [l a2 Wt € FX, ¥ € B
For any finite order character x = &, cp X» of Te (A) and any \ € a% we let

IBE (X7)‘) - IndgE((ﬁ)) (XodetME) )\+pBE ®IBE XV> )
veP
Ip, (X0, A) = Ind =) (xo o detar,) - (A + p,)
where pp,, is half the sum of positive roots in Hg with respect to Bg. We note, as
above, that the induction on the right hand side is unnormalized, while the induced
representation on the left hand side is normalized. This is not the most general
principal series representation, but it will suffice for our needs. We note that

IPE (X7 8) — IBE (Xs) = IBE (X>>\8)7
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where
(-1,s+3,-1,-1), E=FxFxF,
(3.13) As = (-1,s+3,-1), E=FxK,
(—1, s+ %) E/F is a cubic field extension.

For w € W and a holomorphic section fx € I (x,\) let

(314) M) (o) = / i (wng) dn
Np(A)Nw=! Ng(A)w\Ng(4)
This integral converges absolutely to an analytic function in the positive Weyl
chamber
Ct={Neal|Re(\,a¥)>0Va>0}

and admits a meromorphic continuation to ag.

Remark 3.9. Due to the choice of representatives in W (Pg, Hg), the intertwining
operators M (w, xs) defined in equation are generically (at points of holomor-
phy) restrictions of M (w, x, A) to the line A, as above.

Note that, by abuse of notation, for a Hecke character x we identify x and
x odetas,.
We recall that M (w, x, A) and M (w, xs) can be decomposed as

M (w,Xv )‘) = ® M, (U)vXua )‘)7
veP

M (W,Xs) = ® MV (U)vXu,s)v
veP

(3.15)

where for any v € P, A € CT, and Re (s) > 0, the local intertwining operators
M (w, xu, A) and M, (w, xs) are defined via

M (w, X0, N fau (9) = / Frw (wng) dn,
(3'16) NE(F,,)ﬂw_lNE(FV)w\NE(F,,)
M (w, XS,V) Jsw (9) = / Jsw (wng) dn.

Ng(F,)Nw=tNg(F,)w\Ng(F,)

These integrals converge for A € CT and PRe (s) > 0 respectively and admit a
meromorphic continuation to af and C respectively.

We now recall the connection between the rank-one case and the intertwining
operators M, , where w, is the simple reflection with respect to a simple root .
For any simple root «, we have an embedding ¢, : SLy — Hg, defined over F, so
that

(5 2) e () (¢ )
()

We denote by T, the image of h,.
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Lemma 3.10. The following diagram is commutative:

My (wa,Xvs\)

IBE (XV} )\)

*
[/(Y

SLo(F,
Indyy 2" ([xy ® A

IBE (wa * Xy We - )\)

*
LO(

My,
) T Indgf;ff”) (wa xw ® A

)

where the vertical maps should be understood as the pull-back map. By restriction
to Ip, (x,$), this is also true for M (we, Xs)-

To

Proof. We note that
Ng (F)) Nwy'Ng (F,) wa \Ng (F,) = 1o (N (F,) Nwy "N (F,) wo\N (F,))
and that
N (E,) Nwy N (F,)wo\N (E,) = N (F,).
Consequently, for fs, € Ip, (xu,s) and g € SLy (F,) it holds that

Mayt2, (fo) (9) = / 1%, (fau) (wong) dn
N(F,)

_ / (fsw) (ta (wong)) dn
N(F)

- / (four) (an'rc (g))
Ng(F,)Nws ' Ng(F,)wa\Ng (F,
= (Mv (waa Xs,u) f) (La (g)) = LZ (MV (wav Xs,v) f) (g) .
|

The following is a corollary of the previous lemma, equation3.3], and equation[3.91

Corollary 3.11 (The Gindikin-Karpelevich formula). Let v € P be a place such
that x, is unramified. Also, let w € W.

o Let fO € Ip, (Xu,A) be an unramified vector. It then holds that

\% \%
E1n) My =[] e (el oddisoa) gy
a>0, w—la<0 LF"““ (<A’ aV> + 1’ Xv © detME Oav)

o Let f2 € Ip, (xs.) be an unramified vector. It then holds that

£ S,V v
(3.18) M, 0= ] Foy (00 007) _go.
>0, w-la<0 EFa,u (Qame,u o« )
We denote the Gindikin-Karpelevich term by
J (w /\) _ H ‘CFa,u (<>‘v av> » Xv o detary, Oav)
o= A (a¥)  Lx, o detag, 0a¥)’
(3 19) a>0, w—la<0 s
' ACFQ v (Xs,u o Oév)
Ju (’LU, Xs) = H -

_1 Vi .
a>0, w—la<0 ﬁFav" (Qa,qu,u oo )
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Denote
(3.20) (w, xs) H Jy (w, xs) -
veP

We list the various Gindikin-Karpelevich terms and their poles in the tables in
Appendix [Al

The following is a corollary of Lemma [3.§ and Lemma [3.10l We note that it can
also be viewed as the application of [KS88, Proposition 6.3] to a simple reflection
associated to a simple root.

Corollary 3.12. Let « be a simple root and let w, be the associated simple reflec-
tion and fix w € W. Further assume that

U};l . [’I,U_l . )\0] — w—l . )\0
and
[w™' - (x o detar,)] (ha (t) =1 Vt €A™
Then M (wa; w oy, w - /\0) is holomorphic at Ao, and

_ _ A
M (wa, w™" X, w™ - Ag) : Indp i w™ - (A ® x o dety,)
— IndHE((A) (Ao ® x odetary)

acts as a scalar multiplication by —1.

Given a standard section fy it generates a finite-dimensional K-representation,
where K is a fixed maximal compact subgroup of Hg (A) as in [MW95, Sec-
tion I.1.1]. We let § denote the finite set of K-types determining the finite-

dimensional subspace of IndgE (A)NK (Xs Note that

K
both IndBE(A)ﬂK (XS’BE(A)ﬂK
For w € W (Pg, Hg) we let Mgz (w, xs) be the associated intertwining operator

generated by f

‘BE(A)QK) ‘K

) and f = f5|K are independent of s.

K
on Indp, s)nk XS}BE(A)HK :

Lemma 3.13. For any w € W (Pg,Hg), b € Bg (A), and k € K it holds that
M (w, Xs) e (bk) = Xs (b) M (’LU, Xs) f (k) :

Furthermore:

e For a simple reflection w;, the operator Mz (w;, xs) depends only on xsoh, -
e For two commuting simple reflections w; and w; the operators Mg (w;, Xs)
and Mz (w;, xs) commute.

3.4. Normalized intertwining operators. It is customary to define the normal-
ized intertwining operator to be
(3.21)

Ny (w, X, A) =

—1
{ (w, xs) M (w,Xu, A).

H Fo v </\’O‘V>7XVodetME oav,l/)l,)

a>0, w*1a<0

Lemma 3.14. The normalized intertwining operators satisfy the local functional
equation

Nl/ (’LU’LU/,XV,)\) = Nl/ (’U)/,U)_l : XV7w_1 : )‘) o Nl/ (w7XV7)‘) Vw7wl € WHE
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For simplicity we write
N, (w,xs) = N, (Uth As) -
By Corollary B11] and Remark B3] it holds that

M (w,xs) fs (@M (w, ) fsy> ((X)J w, Xs) >

ves vgS

w Xs <®J w Xs 1 (w Xs fs V) <®fgu>

ves v¢S
(3.22)

= H er, (N, "), xu o detpg, oY)

a>0, w—la<0

XJ ’U) Xs <®N W, Xs fsu) & <®f2u> :

ves vgS

Hence the analytic behavior of M (w, xs) fs (¢) is governed by that of J (w, xs) and
N, (w, xs) fs.vo (9) for v € S. Note that according to Lemma BB N, (w, xs) fs,. 18
holomorphic whenever Re ((xs, ")) > —1 for all @ > 0 such that w-a < 0. In
light of Tables[El @ and I3 and the discussion in Subsection the following holds:

Lemma 3.15. For any PRe(sg) > 0 and v € P it holds that N (w, Xs) fs 18
analytic at sg. Moreover, there exists an fs, such that N (w, Xs ) fs s non-zero
at sg.

4. POLES OF THE EISENSTEIN SERIES

In this section we use equation to study the poles of £ (x, fs, 5,9)p,- BY
Theorem [3.2] these are the poles of &g (x, fs,5,9). We start by considering the
poles of the various intertwining operators, thus getting a bound on the order of
the poles. In the following table we list the possible triples (F,x,so) for which
Er (X, fs, 8, g) might admit a pole at sy and give bounds on the orders of the poles
at these points. Here F is an étale cubic algebra over F', x is a Hecke character
of FX\A*, and so € C with fRe (sg) > 0. More precisely, due to Theorem and
equation 3.5 for a given étale cubic algebra E over F and a finite order automorphic
character xy we have

{Poles of &g (x,+, s,-)} = {Poles of &g (x, -, s, ')BE}
C {Poles of M (w, xs) |w e W (Pg,Hg)}.
We note that for fRe(s) > 0 the poles of M (w,xs) for various values of w €

W (Pg, Hg) and x can occur only at sg € {%, %, g} For such triples (E, x, so), the
following table lists

max {ords=s, M (w, xs) fs (9) | w € W (Pg,Hg), fs € Ip, (x,s), g€ Hg (A)}.

If this has positive value, we list this value in Table [l in the cell corresponding to
(E, X, 80). The orders of poles of the intertwining operators are given by Tables [
R and [[2in Appendix [Al For a Galois étale cubic algebra recall the definition of
Y from Subsection 211
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TABLE 1. Trivial bounds on the order of poles of £ (X, fs, S, 9)

So = % So = % So = %
x=1|x=xg,xe | XxX#Lxe,Xxe |x=1|x=x8,XB| X=1
and X2 =1
E=FXFXF 4 1 3 1
E=FXxXK 3 2 1 2 1 1
FE Galois field extension 2 1 1 1 1 1
FE non-Galois field extension 2 1 1 1

Theorem 4.1. The order of the poles of Eg (x,,s,) for Re(s) > 0 are given by
the following numbers:

TABLE 2. Orders of poles of &g (X, fs, 8, 9)

So — % So — % So = %

X’=1 |x=1[x=xpx5| x=1
E=FxFxF 1 2 1
EFE=FxK 1 1 1 1
E Galois field extension 1 0 1 1
FE non-Galois field extension 1 0 >< 1

Namely, the FEisenstein series admits the following poles:
o A simple pole at sy = % for x> =1.
e A simple pole at sg = % if E/F is a non-split Galois étale cubic algebra
and X = XE-
e A double pole at sy =
e A simple pole at sqg =
e A simple pole at sy =

ifE=FXFxF andx=1.

if E=F x K is non-split and x = 1.

if x=1.

For all other triples (E, X, so), the series Eg (X, [s, S, ) is holomorphic at so.

The orders described above can indeed be realized by sections of Ip, (x,s), and
in particular, when x is everywhere unramified a pole of the above-mentioned order
is obtained for the spherical vector.

Furthermore, for a triple (E, x, so) appearing in Table 2, the residual represen-
tation of Eg (X, -, S,) is square-integrable with the exception of the following cases:

o £ =F x K where K is a field:
— s=2%withy=1,xx.
— s=5 with x =1.
° E:FXFXF,S:% with x = 1.

[SJ[SAUSI GV [o)

[SSIN]

Before proving Theorem 1] we wish to describe the key ideas of the proof.

In the course of the proof we use equation to evaluate the constant term
and check the cancellation of the poles of the various intertwining operators. Fix a
triple (E, x, so) as above such that

maX{OrdS:SOM(waXs)fs (g) | w e W(PE’HE)’ fs € IPE (X75)7 g e Hg (A)}
=n>0.

We denote this integer by ords—s, M (w, xs). For 0 <m < n let
Y(Ex.s0,m) = 1w € W (P, Hp) | ords—sy M (w, xs) > m}.
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We say that the pole of order m cancels if

lim (S - SO)m Z M (wa Xs)
sTrso weW (P, Hz)

Ipg (x:s)

= lim (s —s9)™ Z M (w, xs)

WEX (B, x,50,m)

=0.

IPE (st)

We describe now the reason behind the cancellation of poles.
% Reason for cancellation of poles. Assume that we can decompose ¥
into a disjoint union of pairs {w’, w'w”}. We then have

Mw/w// = Mw// (@] Mw/,

1X350,M)

Assume that for any such pair we can further show that M, is an endomorphism
of the image of M, acting as —Id; this is done using Corollary B.12] for example.
Then
(41) hm (S — So)n [Mw’ —+ Mw’w”] =0.
S$—So
It then follows that the pole of order n cancels.
More generally, we define an equivalence class on ¥ (g y so.m) by

1 1

(42) W~ ’U}/ — w L. Xso = ’LU/_ * Xso-
Clearly, cancellations of poles of intertwining operators can occur only within the
same equivalence class.

Assume that after decomposing ¥  s,,») into equivalence classes X; and for all
i,

. n J—
(4.3) 31520 (s — s0) Z M, = 0.
wEeX;

Then the pole of order n cancels. This is done, for example, in Subsection

After, maybe, cancellation of higher orders of a pole, we wish to determine its
actual order. Namely, for 0 < m < n assume that

. m+1 —
o™ x| =0
weW (Pg,Hg) Ipy (x;s)
Then &g (x, -, s, -) attains a pole of order m at sq if
Jm (=)™ 5L M(wxi)
wEW(PE,HE) IPE (X7S)
“hm e M| 0
WEX(E,x,s0,m) Ipg (x:8)

In particular, for any holomorphic section fs € Ip, (x,s) and any t € Tg (A) it
holds that

lim (S - S())m Z M (’LU, Xs) fs (t) € C’
5770 weW (Pg,Hg)

and the limit is non-zero for some fs and ¢.
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We prove this using one of the following reasons:
% Reason 1 for non-vanishing of the leading term. One can prove the non-
vanishing of the leading term by providing a section fs € Ip, (X, s) such that

sli{?o (3 - SO)m Z M (wa Xs) fs ?_é 0.

weE(E,x,Soym)

Remark 4.2. A global spherical section exists if and only if x is everywhere unram-
ified. In the case that y is everywhere unramified one can check that the orders of
the poles in Table 2] are realized by the global spherical section.

% Reason 2 for non-vanishing of the leading term. The representation

fS € IPE (X’S)}

decomposes into a sum of copies of one-dimensional representations of Tg:

Res (s0, x, E) g, = Spang { lim (s —s0)" €g (X, fs: 8:1) g,

5$—So

{w™ Xs [ w € By 50m)}-

The elements M (w, xs) fs (t) lie in the representation w=! - x, as representations

of Tg. And so, if there exists w € X gy 5,,m) such that w o5, w’ for all w # w' €

Y(Ex,50,m)» then the term lim (s — so)™ M (w, xs) fs cannot by canceled by other
S—So

terms in the sum, while it is non-zero due to equation B.22] and Lemma [3.15]

Remark 4.3. In fact, reason 2 for non-vanishing of the leading term is contained in
reason 1, but due to its usefulness it is worth noting separately.
Proof of Theorem [l For any E the poles corresponding to the triple (E, XE, %)
are treated in [GGJ02]. Also, the poles at s = % and x = 1 arise only from the
intertwining operator associated with the coset of the longest element of the Weyl
group, and hence they cannot be canceled.

In what follows we treat the rest of the points in Table[Il We leave the discussion
of the square integrability of the residual representations to the end of this section.
In what follows, we denote by t an element of Tg (Ar) of the form

hOtl (tl) haz (t2) hOt3 (t3) ha4 (t4)7 E=FXFXxF, ty,t2,t3,t4 € A;w
t= hOél (tl) h’O(z (tQ) hOés (t3) h’0(4 (t'g)7 E=Ix Ka t17t2 € A;‘a t3 S A;(a
hay (1) hay (£2) hay (£7) ha, (t«f) . Eisafield,  t €AX tr€ AL

4.1. F a field, s = %, x = 1. The intertwining operators in this case have poles
at most of order 2. We show that the pole of order 2 cancels and that the pole of
order 1 does not.

(1) We have

E(15,1,%,2) = {wa12, w2121} .

Since w1 - X1 (t) = Worh xy (1) = # we have wa1a ~s, Wa121. We write
F
wWa121 = warowi. It follows from Corollary B.12] that

2 2
. 1 . 1
hrq (s — 5) M (w2121, Xs) = — hrq (s — 5) M (w212, Xs) -
S—3 s

Following the reason for cancellation of poles stated above,

. 1)*
lim (s - —) Er (X, fs:8:9)p, =0  Vfs€lpy (x;5).

1
-1 \" 72
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Thus, the pole of order 2 is canceled.
(2) We have

E(E,l,%,l) = {wa1, war2, w2121, War212} -

We note that w;' X1 (t) = wyy" - X1 (t) = Itz}F. We prove that

[t1] g
lims—lé'(fs)q‘é()
s—>% 2 E\X, /s, S, 9 Bg
by proving that for the global spherical section f{ it holds that
. 1
111111 (S - 5) (szl + Mw21212) fg 7£ 0,
S—35

thus applying both reason 1 and reason 2 for non-vanishing of the leading
term. Indeed, we write

v
Er(s)=—7+m+ . Epls)=
It holds that
. 1
lim <S - 5) (Mw21 + Mw21212) f:(?)

1
s—3

€1
s—1

+e+.

Er(s—2)Ep(s+2)ép(s—3)&r(29)
Ep(s—3)Ep(s+3)Ep(s+3)p(2s+1)

&R (2 m S_l s 1 Ep (=1) &g (s — 3) €r (25)
- i ( )<§E<+2)+5F<2> & (s— 1) )

£ (2) (6_1 i 61%71> _ £ (2) §6_1 £ 0.
93

(3 (2) —7-1 (3)€m(2) 2
Here we use the fact that e_; # 0 due to the class number formula [Was97,
pg. 37].

4.2. F a field, s = %, X = XE,XE- Note that here we assume that E/F is a
Galois field extension. The intertwining operators in this case have poles of order
at most 1. We show that the Eisenstein series is in fact holomorphic at this point.
We have

Z(E%%J) = {wa1, wa12, wa121, Wa1212}

and

-1 1) = wok 5 = n |t2|F
Way 'X%( )—w21212'X%( ) =x( 2)\t1| )
E

-1 -1 1
wa1p - X3 () = warpy - X3 (1) = X (t2) Tl
F

We write wa121 = worpwy. It follows from Corollary B.I2] and reason 2 for

cancellation of poles that

. 1
lim (s — 5) [M (w2121, Xs) + M (w212, X5)] = 0.

1
s—1
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On the other hand,
M (wa1212, Xs) = M (wa12, w57+ Xs) © M (wa1, Xs) -
With notation as in Lemma B.13] we write
[M (w21, Xs) + M (w21212, X5)] f5 (bg)
= [w2_11 “Xs (b) + waihyy - Xs (b) Mg (w212, wg_ll)] Mg (w21, xs) f (k).

Furthermore, we write
Mg (w212, w3,' - Xs) = Mgz (w2, wih; - Xs) 0 Mz (w1, way - Xs) 0 Mg (w2, w57 - Xs) -
‘We note that

_ EF S_éaX
J (w2, wyy' - xs) = L ES_ i X;’
27
_ Lo(s=51)  &p(s—3)
1 — 2 = 2
J (wi, wa5 - Xs) Lp(s+3,1) Ep(s+3)
L:F 2S7X2)

-1
T (wawn ) = Fog 1y

and hence Mgz (U}Q,’LU2_11 “Xs), Mg (wl,w2_112 “Xs), and Mg (wg,w2_1121 - xs) are all
holomorphic at s = % Also, by Corollary B.12] and Lemma 3.7 it follows that

lim Mg (wi,wyyy - xs) = —1d,
s—5

2

lim Mp (U)Q,wgllgl 'Xs) o Mz (U)Q’wgll 'XS) =1d,

1
s 2
and hence

lim My (wa12, wyy' + Xs)

s—3

= lim Mg (ws, waihy - Xs) © Mg (w1, w3t - Xs) © My (wa,wy; - xs) = —1d.

s—=3

Indeed, writing

1 1

Mg (wa, wyis - Xs) = Ao + A1 (S_§> +O<<S_§)>7
. 1 1

Mg (w1, w515 - Xs) = Bo + Bi 575 +o s=5) )
. 1 1

Mg(wg,wm-xs):Co—i—Cl s—5 +o0 s—3 ,

By = —1d, AyCy=1Id

where

we find that
My (w212, w3" - Xs)
= AygByCy + (s — %) [AgBoC1 + AgB1Cy + A1 ByCo] + 0 ((s — l))
=—Id+o(1).
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Using the fact that ws," - X1 = Wyih1o - X3 we apply the reason for cancellation of
poles stated above and conclude that

. 1
lim (s - 5) [M (w21212, X5) + M (w21, Xs)] = 0.

1
s—1

In conclusion,

. 1
hn} < )5E (X>f8787g)BE :07

s L
i\ 2

1

and hence g (X, fs, s, 9) is holomorphic at s = 3.

4.3. FE a field, s = %, x? = 1, x # 1. The intertwining operators in this case
have poles of order at most 1. We show that indeed the Eisenstein series admits a
simple pole at this point. We have

X(Ex,31) = {wa12, war21, w1212}

and
wary - X3 (8) = x (Nmpyp (1)) [t2]
F
h 1
waior - X3 (1) = X (t2 Nmpr (1)) [t2[
F

It2|
|t1|E

—1
Warz12 - X1 (8) = x (t2)

Following reason 2 for non-cancellation of poles, £g (x, fs, s, g) admits a simple

_1
pole at s = 3.

4.4. F afield, s = %, x = 1. The intertwining operators in this case have poles of
order at most 1. We show that the Eisenstein series is holomorphic at this point.
We have

E(E,L%l) = {wa121, w21212} -

. -1 -1 1 .
Since wyygy - X3 (£) = wag1p - X3 (1) = - we have waig1 ~s, war212. We write
wWa1212 = Wa121Ws. It follows from Corollary [3.12] that

3\? 3\’
lim <S - 5) M (w21212, Xs) = — lim (S — —) M (w2121, Xs) -

3 3
s—3 s—3 2

Following reason 1 for cancellation of poles,

3\ 2
lim <S—§) Ee (1, fs,8,9)p, =0 Vs € Ip, (X, 8)-

3
s—3
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Thus &g (1, fs, s, ¢) is holomorphic at s = %
45. E=F x K, K a field, s = %, x = 1. The intertwining operators in this case
have poles of order at most 3. We show that the Eisenstein series admits a simple
pole at this point. We have

Z(FXKJ’%’?,) = {wa132, 21321, W21323, W213213 } ,

Z(FXK,I,%Q) \ E(FXKI,%,?») = {wa13, wa321, W2132132 } ,

B(rxr1,30) \B(Fxra,t2) = (w2, wes, wasa}

and also
1
1 - 1 1
Warzp - X1 (1) = Warsa X1 (1) = wayzp3 - X1 (8) = Wayger - X1 (1) = ol
F
_ _ _ [to]
w2113 x1 (t) = w23121 X1 () = w21132132 X1 (1) = —F
: 2 2 [t1lp [ts]k
-1 1 g
Wag ~ X1 () = wyz e (t) = sl
K
-1 Its]
X1 () = — 2K
Woq X%() ‘tl‘F‘t2|F

We note that it follows from the above that

E(FXK,I,%Q)/ ~so— {E(FxK,l,%,s)’ E(FXK,I,%,Q) \E(FXK,L%,S)} :

After proving that the poles of orders 3 and 2 cancel, the fact that the simple
pole is attained follows from reason 2 for non-vanishing of the leading term. More
precisely, if f0 is the global spherical vector one has

lim M (wa1, xs) f # 0.

1
s—3

Namely, Epx i (1, 1o, s,g) admits a simple pole at s = %

We now turn to proving that the poles of higher order are canceled. With
notation as in Lemma B.13] we write

M (U)va) fs (bk) = (w71 . Xs) (b) MS (w’Xs) f (k) .

(FXK,I,%,?))' Note that E(FXK,I,%,S)
= wa132 - Wy, and that any element in Wy, is of the form wi'ws®, where €1, €3 €
{0,1}. Denote ns = w5y - Xs- It follows that

> M(w,xe) fo = (1d+ (wi' - ns) Mg (w1, n5))

1
F><K,1,2,3)

We start with the sum over the elements of

’LUGE(

x (Id+ (w§1 ) 775) MS (w:s, 775)) 77sM§ (w2132, Xs) f.

It follows from Corollary that Mg (wl, 77%) = —1Id and My (’(1)3,’[7%) = —1Id.

On the other hand, wl_ln% = wgln% =1 and hence

(Id +wi ™ ns Mg (w1,m5)) (Id 4wy " - Mg (ws,ns))
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admits a zero of order 2. Since Mz (w2132, Xs) f admits a pole of order 3 we conclude
that

o M(wx) fs

weZ(FXK,l,%,S)

can admit at most a simple pole.
We now consider the sum over the elements of Z(FxK 1,1.2) \E(FxK 1,13) We
1,3, )

oK)
note that

W213 = W2132132W2132,

W2321 = W2132132W212-

Write 75 = w5 50130 - Xs- We note that

2s5—1
> M (w,xs) fs (O) = |1+ |22

1
weE(FxK,l,%,2)\E(F><K,1,%,3)

Mz (w212,75)
F

c_ 3
tal e ?

X 1—&—757l T
[t * [tal

Mz (wa132, m)] ns (b) My (wa132132, Xs) f (k) — Mg (wa213232, Xs) fs

We further note that

® wri3232 = Wi21323 and hence
M (w213232, xs) = M (w213237w1_1Xs) M (w1, Xs) -

Recalling that M (wy, xs) ‘1 )= 0 we conclude that M (wa213232, Xs) s

Pp(1,s
=0.
o Mz (wa132132, Xs) f (k) admits a pole of order 2 at s = %
LY
e lim |— = lim ———5 =1.
s=1|t|p s |t1|;:§ |t3|§;5

e It follows from [Laol Subsection 5.5.3] that the image

. 1\’ 1
[hH} (3 - 5) M (w2132132aXs)] <IPE <1v 5))
s—i

is an irreducible representation (since F, is not a field for all v € P) and
that M (wa132,7s) acts on it as — Id.

It follows that

2s—1
) M (w,x5) £ (k) = |1+ | 2

\S

Mg (w212, 773)]

weE( LIF

1 1
F><K,1,§‘2) (F><K,1,§,3)

3s—3
t 2
X [1+ 2l Mg (U)2132a77s)1 s (0) Mg (wa1s2132, X5) f (K)

_1 _1
1l Itsli 2

admits at most a simple pole at s = % In conclusion, &g (1, 1o s, g) admits a pole

of order 1 at s = %
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4.6. E=Fx K, K a field, s = %, X = xk. This case is similar to Subsection [£.21
The intertwining operators in this case have poles of order at most 2. We show
that the Eisenstein series admits a simple pole at this point. We have

E(FXKXK,%,Q) = {wa321, o132, Wa1321, W21323, Wo13213, W2132132

and
- e lt2|
Waso1 - X3 (1) = Warz9130 - X3 (£) = Xk (£2) TIPS
F I3k
= — 1
T X1 (1) = W53 X (8) = Xk (1) L
F
War321 * X3 (1) = wyy3013 X1 (t) = xx (tit2) [t2lp”
F

We write wo1303 = wao30ws3 and woi3913 = waizeiws. It follows from Corol-
lary B.12] that

2
. 1
lim (3 — 5) [M (wa1323, Xs) + M (w2132, Xs5)] = 0,

1
s—1

2
. 1
lm{ (s - 5) [M (wa13213, Xs) + M (wa1321, xs)] = 0.
s—3
On the other hand,
M (wa132132, Xs) = M (w232, Wazh1 - Xs) © M (waz21, Xs) -
With notation as in Lemma we write
[M (wasz21, Xs) + M (wa132132, Xs)] fs (bg)
= [w53121 “Xs (b) + (w;3112132 : Xs) (b) Mg (w232,w§3121)] Mg (was21, xs) f (k) .
Furthermore, we write
M (w232, wizhy * Xs)
= Mg (wg,w5312123 'Xs) o Mg (w3,w531212 : XS) o M (w2aw§3121 'XS) :
We note that
Lr(s+ 3, xK)
Lp(s+3,xK)’
_Lp(s—31) &p(s—3)
(b)) & (rd)

B LF S_laXK
J (w2, W15 - Xs) = W,

J (w27w2_3121 'Xs) =

J (w3’w531212 : Xs)

and hence Mg (w2,w£3121 . xs), Mz (w37w531212 - XS), and Mz (w27w5312123 'Xs) are
all holomorphic at s = 0. Also, by Corollary and Lemma [3.7 it follows that

lini Mg (wg,w2_31212 . Xs) =—1Id,

S—3

linll Mg (wg,w2_312123 'XS) o Mg (wg,w2_3121 'XS) =1d,

53



6010 AVNER SEGAL
and hence

. -1
hrq M (’wggg, Wogo1 * Xs)
s—3

= lim Mg (w2vw§312123 “Xs) © Mg (w37w§31212 “Xs) © My (w27w53121 Xs) = —1d.

s—3

Using the fact that wysh; - X 1= Wy 59130 * X 1 we apply the reason for cancellation
of poles stated above and conclude that

. 1
lim (s - 5) [M (wa1212, X5) + M (w21, xs)] = 0.

1
s—=3

In conclusion,

2
lim (s - %) Er (X, fs,5,9)p, = 0.

1
s—1

We now turn to proving that the simple pole does not cancel. It holds that

E(FXKXK,%J) = {was, was2, wars},

_ [t1] _ |t1]
w3y - X1 (t) = xx (t1t2) —|t3|F, Wi - X1 (t) = xx (t2) ‘t3‘F7
K K
_ |t2]
FItlK

Reason 2 for non-vanishing of the leading term then implies that Eg« i (X i 12,8, g)

admits a simple pole at s = %

4.7. E=Fx K, K afield, s = %, x?> =1, x # 1,xk. The intertwining operators
in this case have poles at most of order 1. We show that indeed the Eisenstein series
admits a simple pole at this point. We apply reason 1 for non-cancellation of poles;

namely, we construct a section fs € Ip, (x,s) such that &£ (x, fs,s,g) admits a
simple pole at s = % We have

ZE 1 :{w2321,w2132,w21321,w21323,w213213,w2132132}
X301

and

lta|

[t1lp sl

. . 1

Wy3 - X1 (t) = Wyz05 - X1 (1) = X (t1) 7,
2 2 [t2|p

w2_3121 X3 (t)= w2_1132132 "X1 (t) = x(t2)

Wyraen - X1 (t) = Waiaon3 X1 () =x (titaNmpg,p (t3)) [ta]p
P

We write wo1323 = waoyzows. It follows from Corollary B.12] that

. 1
lim (S - 5) [M (w21323, Xs) + M (w2132, Xs)] = 0.

1
s—1
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Write wa1321, W213213 = wa1321w3, and wa132132 = Wa321232 = Wa2321Wa32. The
sums over the two other equivalence classes:

. 1
lim (8 - 5) [M (wa32123, Xs) + M (waz212, Xs)] ,

s—%

. 1

llﬂ} (3 - 5) [M (waz21232, Xs) + M (wasz1, Xs)]
s—3

do not vanish. We prove this for the first sum, and the proof for the second one is
similar. We write

. 1
lim <S — 5) [M (wa32123, Xs) + M (w23212, Xs)]

1
s—3

= (1 +M (wg,wz’ém 'X%)) o [lirq (s - %) M(w21321,X5)‘| .

s—1

Our aim is to prove that 1 + M (wg, Wy 57 - X%) does not vanish on the image of
lims_% (s - %) M (wa1321, Xs), or in other words that there exists a section fs €

Ip (x,s) such that 1imsa% (s — %) M (wa1321, Xs) fs 7# 0 is not an eigenvector of
eigenvalue —1 of M (U)g, w2711321 'X%)- Applying equation 3.22] we have

. 1
lim <s — 5) M (wa1321, Xs)

1
s—3

= H €r, (<X%,av>) : [hrri <s—%> J(wglggl,xs)] - N (w21321, Xs)

a>0, wy;55,a<0
= C - N (w21321, Xs) s

where C is a non-zero constant. Let f; = ®V€P fs,» be a pure tensor and let S C P
be a finite set such that f,, = f2, is for any v ¢ S. It follows that

Shjr% <s - %) M (w1321, Xs) fos = C <® Ny (w21321v><%7u) féw) © <® f%V) '

ves vgsS
We show in Subsection [L7.1] that for any v € P there exists fs, € Ip, (xu,s) such
that N, (w21321, X%,y) fr, #0.

We consider the character x o Nmg,p of Resg,p (AIX,), by the assumption x o
Nmpg,p # 1. By the Strong Multiplicity One Theorem, [PS79], there are infinitely
many places v such that x, oNmg, /p, 7# 1,. We fix 1 { oo such that x, # 1,, xx, -

In Subsection 7.1l we prove that, for such a place,

Hp(F, _
IndBZEFus; (’%1%321 * (Xvo 0 detar,) ® A%) =1L &I,
where I, # 0, for € € {1,—1}, is the e-eigenspace of N, (w;;,w;lém . X%,uo)
We further prove in Subsection 7] that there exist v,, € Ip (Xm %) such that

. . 1
N, (w21321, X%,uo) v, is not an eigenvector of N, (wg,w21321 “Xiwo )

We may continue v,, into a standard section fs,, of Ip, (xu,,$s). By choosing
fs so that f,, is given as above, the claim follows.
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Remark 4.4. If x is unramified at all places, then the global spherical section exists
and realizes the pole.

4.7.1. Local calculations for Section B We now prove a few results regarding the
local intertwining operator which were used above.

The case of non-split F, = F,, x K, with X,% =1, and x, # 1, xk,. Let P5 be
the parabolic subgroup of Hgr whose Levi subgroup M3 is generated by as + «4.
The Levi M3 is isomorphic to GL; X (ResK/FGLg)O, where

(Res,rGL2)" (F,) = {g € GLy (K) | detg € F)}.

Note that M3 N Bgp = GL; x B° where B? is the Borel subgroup of
(ReSK/FGLg)O (F,). Also, associated to the root as 4+ a4 is an embedding of

SLy (K,) into (ResK/FGL2)0 (F,) and of B(K,) into B°.

Since
[w2_31212 'X%} (hag+as () = x (Nmgp (t3))

it follows that

— () g (D).

B(K)

SLy(F) | —
(4.4) Indj =) W12 e

where 7(¢) are as in Subsection Hence, by Lemma [B.10]
Hg(F) { —
IndBE((F)) (w231212 'X%) =1L 11,4,
where II, for € € {1, —1}, is the e-eigenspace of N, (wS,  Wozn1g - X%)-

Lemma 4.5. If F' is non-Archimedean, then there exists v € Ip, (Xl,, %) such that

N, (w23212, XV,%) v # 0 is not an eigenvector of N, (wg,w2_31212 - Xy,%)-

Proof. For a parabolic subgroup @ = L -V of Hg (F,) and an admissible repre-
sentation 2 of L, we denote by Jf (IndgE(Fu)Q> the Jacquet functor of  with
respect to L N Bg. We recall a corollary to the results of [Cas74] Section 6.3]:

Corollary 4.6. Let Q = L-V be a standard parabolic subgroup of Hg (F,) and let
Q be an admissible representation of L. The Jacquet functor j;{EE (IndgE(F”)Q>

of IndgE(F”)Q (normalized induction) has a composition series with factors w=! -

J%EQ, where w runs over the set of representatives of minimal length of the cosets
Of WL\WHE(FV) .

In what follows, we write w1321 = wa3212 and decompose

-1 -1
N, (w23212,XV,%) =N, (w27w2321 'Xyg) oN, (wl,w232 'Xu,%> oN, (w2327Xu,%> .
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We note that:
e N, (’wggg,XU, )\%) is an isomorphism and so is N, (wg,wz}él X, %)

e N, (wl,w;;z : /\%) Ind B (x 0 1) @wygh Ay = Ind el (v, 0 01)@
Wizn, - A1 is not an isomorphism. We now descrlbe its image and kernel.
Let P; be the standard parabolic subgroup of Hg whose Levi subgroup

is L1 = (Tg, %o, (1) ,Z—a, (r) | r € F,). We have a short exact sequence

Ind e (St1, © Q) = gt (wgh - xy ) - ag? ) (@),

where 2 is a character of L; such that j%ElQ (xpoar)® w232 )\1 and
Str, is the Steinberg representation of L;. We conclude that

Im [N <w23212, X%)} = IndHE(F v) Q).

e It follows from [Tad94l Section 7] that the Jacquet modules «71{? II; and
ij]IEEH_l of ITy and II_; are isomorphic.
Let A = (x owa)®(—1,1,—1), where (—1,1, —1) € a. is given by the coordinates
defined in Subsection Applying Corollary we calculate the multiplicity mx
of Ain jTH Po for various representations:

Hy(F,
° my (IndBfF ) )X,,, ) = ma (IndB(F) w23121 Xu,g) =2

%
Ipgr,) (Xur3)) = 2.
e my (ImN, (w23212,Xu,)\%)> =ma (IndglE(FV) (Q)> =2
) =ma (II,) =1

.mA

S~

[ ] mA
It follows that the image of Ip,(f,) (Xw %) under N, (w23212, X%%) cannot be con-
tained in either II; or II_;. O

The case of E = F'x F x F with x> =1 and  # 1. Applying a similar argument
as in the quasi-split case, one can show that

In dgE((z{j )) (wislzlzlz : X%) =1L &4,

where II, for € € {1, —1}, is the e-eigenspace of N, <w34, Wozors - X;;,%)-

Lemma 4.7. If F' is non-Archimedean, then there ezists v € Ip, (Xl,, %) such that

N, (w234212,xu7%> v # 0 is not an eigenvector of N, (w34,w2_314212 " Xu,1

Non-vanishing of N, (w2321, Xévy> féﬁy #0. Applying similar arguments as above,

one can show that for any y, the following holds.

Lemma 4.8. For any v € P there exists v € Ip,(F,) (xv,8) such that

N, (w2321,X%,y) fur #0.
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48. F=F x K, K afield, s = %, x = 1. The intertwining operators in this case
have poles at most of order 2. We show that the Eisenstein series admits a simple
pole at this point. We have

E(FxK,XK,%,g) = {w213213, w2132132}

and

1

1 —1
'U}213213 . X% (t) = w2132132 ’ X% (t) = m

We write wo132130 = wai3213we. It follows from Corollary B.12] that

. 3\?
lim (3 - 5) [M (w2132132, Xs) + M (w213213, Xs)] = 0,

s—3
. 2
and hence Shi% (s—3)"€x(, fs5,9)p, =0.
2

We now turn to proving that the simple pole does not cancel. It holds that

E(FXK,XKéJ) = {wa32, w2321, Wa1321, W21323}

wih s (1) = —lale
w2 b2l p [tal
_ |tal7

Wazny - X1 (1) = —5 21—,

1] p [ts]

w*l cvi (t) _ |t3|K
21321 * X} = |t1t§|F’
—1 lt1|

w Xt (t) = —/———————.
21323 * X1 (t) 2l t3] 0

Reason 2 for non-vanishing of the leading term then implies that Egy i (XK7 12 s, g)

admits a simple pole at s = %

49. E=FxFxF, s= %, x = 1. This case is similar to Subsection The
intertwining operators in this case have poles at most of order 4. We show that the
FEisenstein series admits a simple pole at this point. We have

Z(FXFXRI,% A4)
= {w21342, W213421, W213423, W213424, W2134213, W2134214, W2134234, U)21342134} ,

Z(FXFXFVL%’?)) \ E(FXpXEL%A) = {wo134, Wo1324, W21423, W23421, W213421342 }

Z(FXFXF,L%Q) \E(FXFXF,l,%,g) = {w213, w214, W24, W2132, W2142, W2342} ,

Z(FXFXF,L%,I) \E(FxeF,1,§,2) = {w217w23,w24}
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and also
-1 -1 -1 -1
Wa1342 " X3 (t) = wy3401 T X4 (t) = wy13403 - X1 (t) = war3424 - X1 (t)
1

ta

-1 -1 -1 -1
= Wa134213 * X1 (t) = Wyy34014 - X1 (t) = wy134034 - X1 (t) = wa1349134 - X1 (t) =

)

Warsy X1 (t) = Waza21 X1 (t) = W03 X1 (1) = Wy 304 X1 (1)

t
-1 2
= Wy13421342 * X3 (1) = tata |’
_ t3ty _ t1tg _ tits
wyr Xy () = tin | way - xy (1) = tots |’ wyi Xy () = @‘v
_ _ 2}
wary - X1 (1) = Wi - X1 () = sl
-1 -1 ts
Wa14 - X1 (t) = wayyy - X1 (t) = ek
—1 —1 t1
Wazy - X3 (1) = wazgp - X1 (1) = Gl

‘We note that it follows from the above that

Z(FxeF,l,%,Q)/ ~so= {Z(FXFXF,L%A)’ E(FxF‘xF,l,%,Si) \ E(FxeF,l,%,éL)’

{w2137 w2132} , {w214, w2142} ) {w234, w2342} }

After proving that the poles of order 4, 3, and 2 cancel, the fact that the simple
pole is attained follows from reason 2 for non-vanishing of the leading term. More
precisely, if f0 is the global spherical vector one has

1 1
hm (S__>M(w217X8)fg> hm (S__)M(w237XS)fg7
2 s—1 2

1
s—1

lim <s — %) M (waq, xs) fO # 0.

1
s—1

Namely, Epxpxr (1, 1o, s,g) admits a simple pole at s = %
We now turn to proving that the poles of higher order are canceled. With

notation as in Lemma [B.13] we write

M (w7Xs) fs (bk) = (wil : XS) (b) Mf‘? (w7Xs) f (k) :
(FxK1,34)" Note that E(FXK,L%,LS)
= wa1342 - Wy, and that any element in Wy, is of the form wi'ws*wg*, where
€1,€3,€4 € {0, 1}
Denote 7, = Wy 540 - Xs- It follows that
Z M (w,xs) fs = (Id +w;1 s M (wl,ﬂs))

FxeF,L%A)

X (Id —|—w3_1 - ns Mg (w37 773)) (Id —I—w4_1 “ns Mz (w4, 773)) nsMz (w21342, Xs) f.

It follows from Corollary BI2 that Mgz (wl,n%> =—1d, M5 (wg, n%) = —1Id, and

We start with the sum over the elements of 2

weE(

Mg (w4,n%) = —Id. On the other hand, wfln% = wglr]% = wzln% =1, and
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hence

(Id +w;1 ‘N Mg (wlans)) (Id 'Hugl ‘MMz (w3ans)) (Id +w21 ‘N Mg (w4,775))

admits a zero of order 3. Since Mg (wa21342,xs) f admits a pole of order 4 we

conclude that
> M (w, xs) fs

weE(FXFXF,l,%A)

can admit at most a simple pole (in fact, one can show that it admits exactly a
simple pole).

We now consider the sum over the elements of E(FxK,l,%,B) \E(FXK,I,%A)' We
note that

W2134 = W213421342W21342,
W23421 = W213421342W2342,
W21423 = W213421342W2142,

W21324 = W213421342W2132-

Write 15 = Wy 5401342 * Xs- We note that

> M (w, x.) fs (bk)

weE(FxeF,l,%,B) \E(FXFXF,I,%,4)

(i

i=1

2s—1

t
Id+ |2

?

- M (wmﬂ?s)]) s (b) Mz (wa1342, Xs) f (k)

— [M (w21342342, Xs) + M (wa1342142, Xs) + M (W21342132, Xs)] fs-
We further note that

® W21342342 = W12134234, W21342142 = W32134214, and W21342132 = W42134213-
Hence

M (wa1342342, Xs) = M (wa134234, w7 "xs) M (w1, Xs) »
M (wa1342142, Xs) = M (wa134214, w3 "xs) M (w3, Xs) »

M (wa1342132, Xs) = M (wa134213, w1 "Xs) M (wa, Xs) -
Recalling that

M (w1, xs) |IPE(1’S) = M (ws, Xs) |IPE(1’S) = M (w4, Xs) |IPE(1’S) =0
we conclude that

M (wa1342342, Xs) fs = M (wa21342142, Xs) fs = M (w21342132, Xs) fs = 0.
o Mz (wa13213, Xs) f (k) admits a pole of order 3 at s = %
25—1

2 =1fori=1,3,4.

e lim

1 .
S—3 1

F
o It follows from [Lao, Subsection 5.5.3] that the image

3
. 1 1
[hn{ (s - 5) M(w213421342,xs)1 (IPE (1> 5))
s—%

is an irreducible representation (since E, is not a field for all v € P) and
that M (wa1342,7s) acts on it as —Id.
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By an argument similar to the one used there one could prove that
M (wa12,m5), M (wase,ns), and M (wag2,ms) will all act as —Id on this
irreducible representation.

Alternatively, one could argue as follows: M (wa12,7s), M (wa32,ns), and
M (wa42,ns) are endomorphisms of an irreducible representation and hence
act as multiplication by a scalar. By triality, they all act by the same scalar
z. Since M (wa12,7s) M (wase, ns) M (waae,ns) = M (wa1342,7s) it follows
that 22 = —1. On the other hand, M (w212,7s) M (w212,ms) = Id so that

2 = 1. It follows that z = —1. It follows that the product

I

admits a zero of order 3.

It follows that

2s—1

Id+ Mg (w2, Tis)]

> M (w, x.) fs (bk)

1. \2 1
F><F><F,1‘§,3) (FXFXF,1,§‘4)

(1

i=1

wEZ(

2s—1

¢
Id+ |2

n Mz (w2, ns)]> Ns (b) Mz (wa1342, xs) f (k)

F

admits at most a simple pole at s = %
Finally, we consider the sum over the elements of Z(FxK 1,1,2) \ E(FxK 1,13)

oK)
We note that

W2132 = W213W2,
W2142 = W214W2,
W2342 = W234W2-
We then note that M (ws, Wy - Xs), M (w2, wyr - Xs), and M (wo, Wy - Xs) sat-

isfy the conditions of Corollary B12] and hence we have a cancellation of the pole
of order two of the following sums:

M (wa1s, Xs) + M (w2132, Xs) =
M (w214, Xs) + M (w2142, Xs)
M (w234, Xs) + M (wa342, Xs)

0
0,
0

It follows that the pole of order two of

Z M (w, xs)

wWEX 3
€ (FXFXF,I,%,2)\ (FXFXF,I,%,S)

is canceled.
In conclusion, &g (1, 1o, s,g) admits a pole of order 1 at s = %

410. E=FxF xF, s =1, x* =1, x # 1. The intertwining operators in
this case have poles of order at most 1. We show that indeed the Eisenstein series
admits a simple pole at this point. Here we apply reason 2 for non-cancellation of
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poles. We have
E(FxeF%%J) = {w21324, W21423, W23421, W21342, W213421, W213423, W213424,
W2134213, W2134214, W2134234, W21342134, W213421342 }
and
Waisas X3 (1) = Waihas - X3 (1) = Wiy - X () = wiy: X3 (1)
21324 * X1 () = Warg23 " X1 (L) = Wazgoq " X1 1) = Wai3421342 " X1
ta
t1lsls

—1 -1 -1 —1
Warzas - X1 (8) = Waygan1s - X1 (£) = Wargaons - X1 (1) = Wayzuez4 - X1 (1)

= x (t2)

Y

= x (t1tsta)

1
tal’

—1 -1 —1 —1

Wa13421 " X1 (t) = war3423 " X1 (t) = Wars424 " X1 (t) = wi1340134 - X1 (t)
1
to|”

W213421342 = W21324W2132 = W21423W2142 = W23421W2342,

= X (t1tatsts)

We note that

W21342134 = W213424W13 = W213423W14 = W213421W34,
W2134213 — W21342W13,
W2134214 = W21342W14,
W2134234 = W21342W34.
According to Corollary B.12] we conclude that
. 1 . 1
lim <S - 5) M (w21342, Xs) = lim (5 - 5) M (w2134213, Xs)

1 1
S—3 S—3

. 1 . 1
= lim (8 - 5) M (w2134214, Xs) = lim (8 - 5) M (w2134234, Xs) »
5= s—3

. 1 . 1
lim <S - 5) M(w2134217Xs) = lim (S - 5) M (w2134237Xs)

1 1
s—3 s—3

. 1 . 1
= lim (S - 5) M (w213424, Xs) = hn} (5 - 5) M (w21342134, Xs) -

1 1
S35 S—3

We do not treat the rest of the terms, as they have different exponents; in

particular, the pole of order 1 does not cancel.

4.11. Square integrability of the residual representations. We now deter-
mine, for a point where g (X, fs, S, g) admits a pole, whether the residual represen-
tation is square-integrable or not. Before doing so, we recall the following criterion

from [Lan76, pg. 104].

For w € W (Pg, Hg) the element Re (wfl 'Xs) € aj is known as the ezponent

of Ip, (x,s) corresponding to w.

Assume &g (X, fs, 8, 9) admits a pole of order n at sg. We recall the equivalence

relation defined in equation and define the quotient set
Yo = E(vaqsoqn)/ ~so -
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Note that the exponent is well defined for equivalence classes, namely e (wil . Xs)

= fRe (w/*l . Xs) when w ~yg, w’. And we consider the elements contributing to the
residual representation at sy, namely

2 = {Q €34,

. n

Jlim (s —50)" D M (w,x5) # 0} :
weS

Lemma 4.9 (Langlands’ criterion for square integrability). Assume Eg (X, fs, S, 9)

admits a pole of order n at sg. The residual representation Ress—s, Eg (X, fs:,9) is

a square-integrable representation if and only if Re (Qfl . xs) <0 for all Q € Ego.

Corollary 4.10. The residual representation of Eg (x,-,s,*) is square-integrable

with the exception of the following cases:
o £ =F x K where K is a field:
- s:% with x =1, Xk -
- s:g with x = 1.
° E:FXFXF,s:% with x = 1.
This follows from the proof of Theorem [4.1] from Langlands’ criterion for square

integrability, and from the information in Tables Bl [0, and [I4]
|

Part 2. Applications

5. THE TWISTED STANDARD L-FUNCTION OF A CUSPIDAL
REPRESENTATION OF Gq

In this section we recall the main result of [Segl7].

5.1. The group G;. Let G be the simple, split group of type G5 defined over F.
In particular, G is adjoint and simply-connected. Let B be a Borel subgroup of G
and let T" be a maximal torus in B. Let a and [ be the short and long simple roots
of G with respect to (B,T). The Dynkin diagram of G is

a B
We have a short exact sequence
1— H%vd —>Aut(HE) — SE — 1.

Forming the semidirect product Hg x Sg it holds that G = Centp, x5, (Sg). This
gives a natural embedding

G — HE.
Moreover, (G, Sg) forms a dual reductive pair in Hg x Sg. Under this embedding,

it holds that B can be chosen so that B = G N Bg. The set of positive roots of G
is

T ={a,B,a+ B,2a+ B,3a + B,3a + 28} .

For any root v we fix a one-parameter subgroup z : G, — G. Also, let hy : G, —
T be the coroot subgroup such that for any root e,

€ (hy (1)) = t).
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The group G contains a Heisenberg maximal parabolic subgroup P = M - U. The

Levi subgroup M is isomorphic to G Lo and contains the root subgroups attached to

«a and —q, while U is a 5-dimensional Heisenberg group. It holds that P = GN Pg.
Finally, we let st : G — G L7 be the standard 7-dimensional embedding.

5.2. The twisted standard L-function and an integral representation. The
dual Langlands group “G of G is isomorphic to G5 (C).

Let 7 = @,cp ™ be an irreducible cuspidal representation of G (A) and let
X = Q,epXv : F*\AX — C* be a Hecke character, both unramified outside a
finite subset S C P. For v ¢ S we denote its Satake parameter by ¢, . We let

1
S _
L (577T;X75t) - V];Ldet (I—5t(t7r,,)X(wV) q;s).

This product converges for fRe (s) > 0 to an analytic function.
For factorizable data ¢ = @, cpwy € ™ and fo = @, cp fv € Ipy (X, 8) we
consider the following integral:

(5.1) Zp (x50, f) = / 2 (9) €5 (x5 f.9) dg.
G(F)\G(A)
It holds that

Theorem 5.1 ([Segl7]). Given a finite subset S C P such that for any v ¢ S all
data is unramified and v 12,3, 00, then

1
(52) ZE (X7S7§0, f) = L:S (S+ 577T>X75t> ds (X7S>\IIE79057fS)'

Moreover, for any so there exist vectors g, fs such that ds (x, s, VE, s, fs) is
analytic in a neighborhood of sy and dgs (X, so, Vg, ¢s, fs) # 0.

In particular, the family of twisted partial L-functions L£° (s,m,x,st) admits a
meromorphic continuation to the whole complex plane.

Remark 5.2. The reason to make the assumption that v t 2,3 is that some of
the structure constants of Gy are divisible by 2 and 3 and the local unramified
calculation of [Segl7] assumed that all structure constants are invertible in O,,.

For our applications, we need only the following corollary.

Corollary 5.3. £° (s + %,W,X,Ef) is a meromorphic function on C and for any
sg € C it holds that

(53) OTdszso (ES (57 T, Xaﬁt» < OTdszso (5E (X7 fsa S, g)) .

Remark 5.4. We note that the residual representation of £g (1, fs, s,9) at s = % is
the trivial representation. It follows that

G(F)I\G(A)

where the integral vanish due to the cuspidality of ¢. It follows that c° (s,m, X, 5t)
is holomorphic at s = 3 for any = and x. In particular, for fRe(s) > 0, poles of
o (s, m,x,5t) can occur only at s =1 and s = 2.
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6. A CONJECTURE OF GINZBURG AND HUNDLEY

In [GHI5], D. Ginzburg and J. Hundley have constructed a doubling integral
representing £ (s, 7, x, st). We recall the construction.

We first recall the commuting pair Go xGo C Eg. Given a cuspidal representation
mof Go, ¢ € m, and ¢ € T we consider the integral

(6.1) / 0 (@) (@) EL (91:92) + Fur) d(g1.02)
GQXGQ(F)\GQXGQ(A)

where Egsl is a certain Fourier coefficient of a degenerate Eisenstein series for Ejg
associated with the maximal parabolic subgroup whose Levi factor is of type Ax.
In [GHI5], Ginzburg and Hundley have shown that the integral in equation
represents £ (s, m, x, st).

Considering the normalizing factor of this integral they conjectured the following:

Conjecture A. The twisted partial standard L-function c’ (s,m,x,86t) can have
at most a double pole.

We prove the following variant of the conjecture.

Theorem 6.1. The stable poles of the twisted partial standard L-function
s (s, 7, x,8t) can be of order at most 2. Namely, the order of a pole of L5 (s, 7, x,st)
at Re (s) > 0, for a large enough finite subset S C P, is at most 2.

Proof. This follows immediately from Corollary (5.3l and Table 2 O

7. CAP REPRESENTATIONS WITH RESPECT TO THE BOREL SUBGROUP
We recall the definition of a CAP representation.

Definition 7.1. Let Q = L -V C G be a parabolic subgroup, let o be a cuspidal
unitary representation of the Levi part L, and let x be a character of L. A cuspidal
representation m of G (A) is called CAP (cuspidal attached to parabolic) with
respect to @, o, and x if 7 is nearly equivalent to a subquotient of Indggg o ®x.

CAP representations for G5 were constructed in [GGJ02] for the Borel subgroup,
in [RS89] for the Heisenberg parabolic subgroup P, and in [GGO09] for the non-
Heisenberg maximal parabolic subgroup. Using Corollary 5.3 and Table 2l we prove
that [GGJ02] exhausts the list of CAP representations with respect to the Borel
subgroup.

For a Galois étale cubic algebra E over F' let

|2, E=FxFXxF,
e = 1, otherwise.

Theorem 7.2. Let m be a cuspidal representation of G (A) supporting a Fourier
coefficient along U corresponding to an étale cubic extension E of F which is not
a non-Galois field extension. The following are equivalent:
(1) m is a CAP representation with respect to B.
(2) The partial L-function c° (s, 7, XE,5t) has a pole of order ng at s = 2.
(3) Og, (m) # 0. In particular m is nearly equivalent to Og, (1), where 1 here
is the automorphic trivial representation of Sg (A).

In particular, for © that satisfies these conditions we have WFy (m) = {E}.
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Proof. The fact that (3) implies (1) and (2) was proven in [GGJ02]. The fact that
(2) implies (3) is proven in [Segl7]. It is left to prove that (1) implies (2).

Let m be a CAP representation with respect to B that supports the Fourier
coefficient corresponding to an étale cubic algebra E over F. We will prove that (2)
holds by proving that 7 is nearly equivalent to O, (1s,) where 1g, is the trivial
representation of Sg (A).

Remark 7.3. Note that all irreducible automorphic representations of Sg (A) are
nearly equivalent to 1g,.

By the assumption, there exists an automorphic character p such that 7 is nearly

equivalent to a subquotient of Indggig 1, where the induction here is unitary. Let
(7.1) 1 (h2a+p (@) hsatap (b)) = pa (@) p2 (b) .

Zi

We denote p; (z) = n; (x) ||, where n; are unitary characters and z; € R. By
choosing a Weyl chamber we may assume that
(72) 0 S Z9 S zZ1 S 22’2.
According to [GGJ02] we need to show that:
o If E=F x F x F, then 4 (t) = po (t) = [t| for any ¢t € A*.
o If F = F x K, then uy (t) = |t| and ps (t) = xx (t) |t| for any t € A*, or
vice versa.
o If F/F is a cubic Galois extension, then p; (t) = pe (t) = xg (¢) |t| for any
te AX.
It holds that

L% (s,m,x,8t) = L3 (1ax, 8) L3 (17 x,8) L3 (p2x, 8) L (12 "X, 8) L3 (%XS)

x L3 <&XS) L3 (x:5) -
k1
For x (t) = py (¢) t| 7", £° (s,ﬂ,ul ||~ ,5t) admits a pole at s = 2, and hence

Er (,ul H_l ,fs,s,g) admits a pole at s = % Similarly, g (Mg |-|_1 7fs,s,g) also

; _ 3
admits a pole at s = 5.

We continue by considering different kinds of F.
e F=F x F x F: Since &g (,ul |7t ,fs,s,g) and &g (,ug ! ,fs,s,g> ad-

mit a pole at s = %, it holds that
(21,m) s (z2,m2) € {(0,n) | n* =1} U{(1, 1)},

We assume that z; = 0 and hence also that zo = 0. In this case 17; and
79 are quadratic characters. If n; = 1, then

L5 (s,m,x,88) = L3 (x, 8)° L (p2x,9)" .

If 5o = 1, then £° (s,m,1,5t) admits a pole of order 7 at s = 1, while
Ee (1, fs,s,g9) admits a pole of order at most 1 at s = %, which brings us
to a contradiction.

Assume that 75 # 1. Then £° (s, 7, 1m2,5t) admits a pole of order 4 at
s = 1, while g (12, fs, s,g) admits a pole of order at most 1 at s =
which again brings us to a contradiction.

N[=

)
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We now assume that 11,72 # 1 are quadratic characters. In this case

L5 (s,m,x,88) = L3 (mx, 5)> L3 (2, 5) L3 (mmex, 8)° L3 (x, 5) -

L5 (s, m,m1, 5t) admits a pole of order at least 2 at s=1, while Eg (11, fs, 5, g)
admits a pole of order at most 1, which again brings us to a contradiction.

In conclusion, z; = 1 and hence also zo > % In particular, zo = 1. We
conclude that 171 = 12 = 1, which proves the assertion.

E=FxK, where K/F is a quadratic extension: Since &g (ul |-|_1 s fs 8,g>

and £ (,ug |-|_1 ,fs,s,g) admit a pole at s = 2, it holds that

(Zla 771) ) (227772) € {(Ov 1) ) (O7XK) ) (17 1) ) (1’ XK)} :
The proof that z1,2o # 0 is similar to the split case. It then holds that
z1 = zo = 1. We need to prove that 11 =12 = 1 or 11 = 12 = xx cannot
happen.
Assume that 11 = 2 = 1. In this case

L5 (s,m,x,88) = L3 (x.8)° L3 (x5 — 1)2 L3 (x, s +1)°.

Lo (s,m,1,5t) would have a pole of order at least 3 at s = 1, while
Er (1, fs,s,9) admits a pole of order at most 1 at s = %, which brings
us to a contradiction.

Assume that 1 = n2 = xi. In this case

L5 (5,7, x,8t) = L3 (x, 3)3 L3 (XX, s — 1)2 L3 (XKX, s + 1)2 .
i (s,m,1,5t) would have a pole of order at least 3 at s = 1, while
Ee (1, fs,s,9) admits a pole of order at most 1 at s = %, which brings
us to a contradiction.

In conclusion, py = |-| and ps = || Xk, or vice versa, which proves the
assertion.
E/F is a cubic Galois extension: Since

gE (/1'1 |'|71 >f8787g> and gE (,U/Q Hil 7f8787.q)
admit a pole at s = 2, it holds that
(21,m), (22,10) € {(0,m) | n* = 1} U{(1,xm)} U{(1,XB)}-
The proof that (z1,m), (22,72) # (0,n) for n a quadratic character is similar

to the split case. Hence, p1 = po = xg |-| or 1 = p2 = Xz |+|, which proves
the assertion.

O
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