A sharp $k$-plane Strichartz inequality for the Schrödinger equation
HTML articles powered by AMS MathViewer
- by Jonathan Bennett, Neal Bez, Taryn C. Flock, Susana Gutiérrez and Marina Iliopoulou PDF
- Trans. Amer. Math. Soc. 370 (2018), 5617-5633 Request permission
Abstract:
We prove that \begin{equation*} \|X(|u|^2)\|_{L^3_{t,\ell }}\leq C\|f\|_{L^2(\mathbb {R}^2)}^2, \end{equation*} where $u(x,t)$ is the solution to the linear time-dependent Schrödinger equation on $\mathbb {R}^2$ with initial datum $f$ and $X$ is the (spatial) X-ray transform on $\mathbb {R}^2$. In particular, we identify the best constant $C$ and show that a datum $f$ is an extremiser if and only if it is a gaussian. We also establish bounds of this type in higher dimensions $d$, where the X-ray transform is replaced by the $k$-plane transform for any $1\leq k\leq d-1$. In the process we obtain sharp $L^2(\mu )$ bounds on Fourier extension operators associated with certain high-dimensional spheres involving measures $\mu$ supported on natural “co-$k$-planarity” sets.References
- J. A. Barceló, J. M. Bennett, A. Carbery, A. Ruiz, and M. C. Vilela, Some special solutions of the Schrödinger equation, Indiana Univ. Math. J. 56 (2007), no. 4, 1581–1593. MR 2354692, DOI 10.1512/iumj.2007.56.3016
- Jonathan Bennett, Neal Bez, Chris Jeavons, and Nikolaos Pattakos, On sharp bilinear Strichartz estimates of Ozawa-Tsutsumi type, J. Math. Soc. Japan 69 (2017), no. 2, 459–476. MR 3638274, DOI 10.2969/jmsj/06920459
- Jonathan Bennett, Anthony Carbery, and Terence Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261–302. MR 2275834, DOI 10.1007/s11511-006-0006-4
- Jonathan Bennett and Andreas Seeger, The Fourier extension operator on large spheres and related oscillatory integrals, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 45–82. MR 2472161, DOI 10.1112/plms/pdn022
- Jean Bourgain and Larry Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal. 21 (2011), no. 6, 1239–1295. MR 2860188, DOI 10.1007/s00039-011-0140-9
- A. P. Calderón, On the Radon transform and some of its generalizations, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 673–689. MR 730101
- Emanuel Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. IMRN 16 (2009), 3127–3145. MR 2533799, DOI 10.1093/imrn/rnp045
- Michael Christ, Extremizers of a Radon transform inequality, Advances in analysis: the legacy of Elias M. Stein, Princeton Math. Ser., vol. 50, Princeton Univ. Press, Princeton, NJ, 2014, pp. 84–107. MR 3329848
- Michael Christ and René Quilodrán, Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids, Proc. Amer. Math. Soc. 142 (2014), no. 3, 887–896. MR 3148523, DOI 10.1090/S0002-9939-2013-11827-7
- A. Decoster, P. A. Markowich, and B. Perthame, Modeling of collisions, Series in Applied Mathematics (Paris), vol. 2, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 1998. With contributions by I. Gasser, A. Unterreiter and L. Desvillettes; Edited and with a foreword by P. A. Raviart. MR 1650315
- S. W. Drury, Generalizations of Riesz potentials and $L^{p}$ estimates for certain $k$-plane transforms, Illinois J. Math. 28 (1984), no. 3, 495–512. MR 748958, DOI 10.1215/ijm/1256046077
- Damiano Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 739–774. MR 2341830, DOI 10.4171/JEMS/95
- Stephen S. Gelbart, Fourier analysis on matrix space, Memoirs of the American Mathematical Society, No. 108, American Mathematical Society, Providence, R.I., 1971. MR 0492066
- Philip Gressman, Danqing He, Vjekoslav Kovač, Brian Street, Christoph Thiele, and Po-Lam Yung, On a trilinear singular integral form with determinantal kernel, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3465–3477. MR 3503714, DOI 10.1090/proc/13007
- Larry Guth, A restriction estimate using polynomial partitioning, J. Amer. Math. Soc. 29 (2016), no. 2, 371–413. MR 3454378, DOI 10.1090/jams827
- Alex Iosevich and Michael Rudnev, Distance measures for well-distributed sets, Discrete Comput. Geom. 38 (2007), no. 1, 61–80. MR 2322116, DOI 10.1007/s00454-007-1316-9
- P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ. 34 (1994), no. 2, 391–427, 429–461. MR 1284432, DOI 10.1215/kjm/1250519017
- R. Lucà, K. M. Rogers, Average decay of the Fourier transform of measures with applications, to appear in J. Eur. Math. Soc., arXiv:1503.00105
- D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650. MR 667786, DOI 10.1512/iumj.1982.31.31046
- Fabrice Planchon and Luis Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 261–290 (English, with English and French summaries). MR 2518079, DOI 10.24033/asens.2096
- Fraydoun Rezakhanlou and Cédric Villani, Entropy methods for the Boltzmann equation, Lecture Notes in Mathematics, vol. 1916, Springer, Berlin, 2008. Lectures from a Special Semester on Hydrodynamic Limits held at the Université de Paris VI, Paris, 2001; Edited by François Golse and Stefano Olla. MR 2407976, DOI 10.1007/978-3-540-73705-6
- Boris Rubin, Riesz potentials and integral geometry in the space of rectangular matrices, Adv. Math. 205 (2006), no. 2, 549–598. MR 2258266, DOI 10.1016/j.aim.2005.08.001
- Robert S. Strichartz, $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699–727. MR 782573, DOI 10.1215/S0012-7094-81-04839-0
- Luis Vega, Bilinear virial identities and oscillatory integrals, Harmonic analysis and partial differential equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI, 2010, pp. 219–232. MR 2664570, DOI 10.1090/conm/505/09925
- Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874–878. MR 934859, DOI 10.1090/S0002-9939-1988-0934859-0
Additional Information
- Jonathan Bennett
- Affiliation: School of Mathematics, The Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- MR Author ID: 625531
- Email: j.bennett@bham.ac.uk
- Neal Bez
- Affiliation: Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- MR Author ID: 803270
- Email: nealbez@mail.saitama-u.ac.jp
- Taryn C. Flock
- Affiliation: School of Mathematics, The Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- Address at time of publication: Department of Mathematics and Statistics, Lederle Graduate Research Tower, University of Massachusetts, Amherst, Massachusetts 01003-9305
- MR Author ID: 976421
- Email: flock@math.umass.edu
- Susana Gutiérrez
- Affiliation: School of Mathematics, The Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- Email: s.gutierrez@bham.ac.uk
- Marina Iliopoulou
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 1017823
- Email: m.iliopoulou@berkeley.edu
- Received by editor(s): December 9, 2016
- Published electronically: March 20, 2018
- Additional Notes: The work of the first, third, and fifth authors was supported by the European Research Council (grant number 307617).
The work of the second author was supported by a JSPS Grant-in-Aid for Young Scientists (A) (grant number 16H05995) - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 5617-5633
- MSC (2010): Primary 42B37, 35A23
- DOI: https://doi.org/10.1090/tran/7309
- MathSciNet review: 3803144