Large deviation principle for some beta ensembles
HTML articles powered by AMS MathViewer
- by Tien-Cuong Dinh and Viêt-Anh Nguyên PDF
- Trans. Amer. Math. Soc. 370 (2018), 6565-6584 Request permission
Abstract:
Let $L$ be a positive line bundle over a projective complex manifold $X$, $L^p$ its tensor power of order $p$, $H^0(X,L^p)$ the space of holomorphic sections of $L^p$, and $N_p$ the complex dimension of $H^0(X,L^p)$. The determinant of a basis of $H^0(X,L^p)$, together with some given probability measure on a weighted compact set in $X$, induces naturally a $\beta$-ensemble, i.e., a random $N_p$-point process on the compact set. Physically, depending on $X$ and the value of $\beta$, this general setting corresponds to a gas of free or interacting fermions on $X$ and may admit an interpretation in terms of some random matrix models. The empirical measures, associated with such $\beta$-ensembles, converge almost surely to an equilibrium measure when $p$ goes to infinity. We establish a large deviation theorem (LDT) with an effective speed of convergence for these empirical measures. Our study covers a large class of $\beta$-ensembles on a compact subset of the unit sphere $\mathbb {S}^n\subset \mathbb {R}^{n+1}$ or of the Euclidean space $\mathbb {R}^n$.References
- Robert J. Berman, Determinantal point processes and fermions on complex manifolds: large deviations and bosonization, Comm. Math. Phys. 327 (2014), no. 1, 1–47. MR 3177931, DOI 10.1007/s00220-014-1891-6
- Robert Berman and Sébastien Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), no. 2, 337–394. MR 2657428, DOI 10.1007/s00222-010-0248-9
- Robert Berman, Sébastien Boucksom, and David Witt Nyström, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math. 207 (2011), no. 1, 1–27. MR 2863909, DOI 10.1007/s11511-011-0067-x
- Bo Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom. 81 (2009), no. 3, 457–482. MR 2487599, DOI 10.4310/jdg/1236604342
- Thomas Bloom, Orthogonal polynomials in $\mathbf C^n$, Indiana Univ. Math. J. 46 (1997), no. 2, 427–452. MR 1481598, DOI 10.1512/iumj.1997.46.1360
- Tom Carroll, Jordi Marzo, Xavier Massaneda, and Joaquim Ortega-Cerdà, Equidistribution and $\beta$-ensembles, preprint (2015), arXiv:1509.06725.
- Jean-Pierre Demailly, Complex analytic and differential geometry, 2012. Available online at www-fourier.ujf-grenoble.fr/$\sim$demailly/books.html
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Stochastic Modelling and Applied Probability, vol. 38, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. MR 2571413, DOI 10.1007/978-3-642-03311-7
- Tien-Cuong Dinh, Xiaonan Ma, and Viêt-Anh Nguyên, Equidistribution speed for Fekete points associated with an ample line bundle, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 3, 545–578 (English, with English and French summaries). MR 3665550, DOI 10.24033/asens.2327
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI 10.1007/978-3-642-13171-4_{4}
- S. K. Donaldson, Scalar curvature and projective embeddings. II, Q. J. Math. 56 (2005), no. 3, 345–356. MR 2161248, DOI 10.1093/qmath/hah044
- Ioana Dumitriu and Alan Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), no. 11, 5830–5847. MR 1936554, DOI 10.1063/1.1507823
- Frank Ferrari and Semyon Klevtsov, FQHE on curved backgrounds, free fields and large N, J. High Energy Phys. 12 (2014), 086, front matter+16. MR 3303507, DOI 10.1007/JHEP12(2014)086
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Semyon Klevtsov, Xiaonan Ma, George Marinescu, and Paul Wiegmann, Quantum Hall effect and Quillen metric, Comm. Math. Phys. 349 (2017), no. 3, 819–855. MR 3602817, DOI 10.1007/s00220-016-2789-2
- F. Leja, Propriétés des points extrémaux des ensembles plans et leur application à la représentation conforme, Ann. Polon. Math. 3 (1957), 319–342 (French). MR 89279, DOI 10.4064/ap-3-2-319-342
- F. Leja, Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Polon. Math. 4 (1957), 8–13. MR 100726, DOI 10.4064/ap-4-1-8-13
- Nir Lev and Joaquim Ortega-Cerdà, Equidistribution estimates for Fekete points on complex manifolds, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 2, 425–464. MR 3459956, DOI 10.4171/JEMS/594
- Norm Levenberg, Approximation in $\Bbb C^N$, Surv. Approx. Theory 2 (2006), 92–140. MR 2276419, DOI 10.1021/ct0501607
- Norm Levenberg, Weighted pluripotential theory results of Berman-Boucksom, preprint (2010), arXiv:1010.4035
- Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007. MR 2339952, DOI 10.1007/978-3-7643-8115-8
- Thanh Van Nguyen and Ahmed Zériahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), no. 1, 81–91 (French, with English summary). MR 699992
- Józef Siciak, Extremal plurisubharmonic functions in $\textbf {C}^{n}$, Ann. Polon. Math. 39 (1981), 175–211. MR 617459, DOI 10.4064/ap-39-1-175-211
- Duc-Viet Vu, Equidistribution rate for Fekete points on some real manifolds, Amer. J. Math., to appear, arXiv:1512.08262
- Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
Additional Information
- Tien-Cuong Dinh
- Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
- MR Author ID: 608547
- Email: matdtc@nus.edu.sg
- Viêt-Anh Nguyên
- Affiliation: Université de Lille 1, Laboratoire de mathématiques Paul Painlevé, CNRS U.M.R. 8524, 59655 Villeneuve d’Ascq Cedex, France
- Email: Viet-Anh.Nguyen@math.univ-lille1.fr
- Received by editor(s): April 10, 2016
- Received by editor(s) in revised form: December 20, 2016
- Published electronically: February 26, 2018
- Additional Notes: The first author was supported by Start-Up Grant R-146-000-204-133 from National University of Singapore
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 6565-6584
- MSC (2010): Primary 32U15; Secondary 32L05, 60F10
- DOI: https://doi.org/10.1090/tran/7171
- MathSciNet review: 3814341