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ON SPREADING SEQUENCES AND ASYMPTOTIC

STRUCTURES

D. FREEMAN, E. ODELL, B. SARI, AND B. ZHENG

Abstract. In the first part of the paper we study the structure of Banach
spaces with a conditional spreading basis. The geometry of such spaces exhibits
a striking resemblance to the geometry of James space. Further, we show
that the averaging projections onto subspaces spanned by constant coefficient
blocks with no gaps between supports are bounded. As a consequence, every
Banach space with a spreading basis contains a complemented subspace with
an unconditional basis. This gives an affirmative answer to a question of
H. Rosenthal.

The second part contains two results on Banach spaces X whose asymptotic
structures are closely related to c0 and do not contain a copy of �1:

i) Suppose X has a normalized weakly null basis (xi) and every spreading
model (ei) of a normalized weakly null block basis satisfies ‖e1 − e2‖ = 1.

Then some subsequence of (xi) is equivalent to the unit vector basis of c0.
This generalizes a similar theorem of Odell and Schlumprecht and yields a new
proof of the Elton–Odell theorem on the existence of infinite (1+ ε)-separated
sequences in the unit sphere of an arbitrary infinite dimensional Banach space.

ii) Suppose that all asymptotic models of X generated by weakly null arrays
are equivalent to the unit vector basis of c0. Then X∗ is separable and X is
asymptotic-c0 with respect to a shrinking basis (yi) of Y ⊇ X.

1. Introduction

A basic sequence (xi) in a Banach space is called spreading if it is equivalent to all
of its subsequences. If, in addition, the sequence is unconditional, then it is called
subsymmetric. When (xi) is spreading and weakly null it is automatically suppres-
sion unconditional. In Section 2 we will focus most of our attention on spreading
sequences that are not unconditional. A famous example is the boundedly com-
plete basis of the James space J , and we shall see that much of the structure for
J holds more generally for Banach spaces with a conditional spreading basis. We
observe that if (ei) is a normalized conditional spreading basis for X, then the
difference sequence (di) = (e1, e2 − e1, e3 − e2, . . .) is a skipped unconditional basis
for X. This means that if (xj) is a normalized block basis of (di) with supp(xj) <
ij < supp(xj+1) for some subsequence (ij) of N, then (xj) is unconditional. Here
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supp(xj) refers to the basis (di); that is, if xj =
∑

i b
j
idi, then supp(xj) = {i :

bji �= 0}. It follows that in the case (ei) is spreading but not weakly null, �1 �↪→ X
(�1 does not embed isomorphically into X) if and only if the difference basis (di)
is shrinking. Also we show that c0 �↪→ X if and only if (ei) is boundedly complete.
Furthermore, c0 and �1 do not embed into X if and only if X is quasi-reflexive of
order 1. It is interesting to note that these (except the skipped unconditionality
result) were already observed in the 1970’s by Brunel and Sucheston [BS] for ESA
(equal sign additive) bases, which is a stronger property than spreading. However,
our results are more general and the proofs are different. The crucial part of our
approach is an unconditionality result, Theorem 2.3(a), which is of independent in-
terest. We also show that the well-known averaging projection onto disjoint subsets
of a subsymmetric basis remains bounded for the conditional spreading case as long
as the subsets form a partition. One consequence is that X is isomorphic to D⊕X
where D is the subspace spanned by (d2n)

∞
n=1. Moreover, every Banach space with

a spreading basis contains a complemented subspace with an unconditional basis.
This answers an open problem of H. Rosenthal.

In Section 3 we make a few remarks on Banach spaces that admit conditional
spreading models. Our study of the conditional spreading sequences was motivated
by the problems discussed in this section.

In Section 4 we consider spaces whose asymptotic structure is closely related to
c0. In [OS] it was shown that if (xi) is a basis for X and any spreading model (ei)
of a normalized block basis of (xi) is 1-equivalent to the unit vector basis of c0 (in
fact, it is sufficient to assume that ‖e1 + e2‖ = 1), then c0 embeds into X. Our
first result of Section 4 generalizes this as follows. If (xi) is weakly null and if every
spreading model (ei) generated by a weakly null block basis satisfies ‖e1 − e2‖ = 1
and �1 �↪→ X, then c0 ↪→ X. This yields a quick proof of the Elton–Odell theorem
[EO]. Namely, for every Banach space X there exists an infinite sequence (zi) in
the unit sphere SX and λ > 1 so that ‖zi − zj‖ ≥ λ for all i �= j. Indeed, if X
contains �1 or c0 the result follows easily by the non-distortability of c0 and �1.
Otherwise, fix a weakly null normalized sequence (xi). By our theorem, (xi) must
have a normalized block basis with a spreading model (ei) with ‖e1−e2‖ > 1 which
yields an ε > 0 and an infinite (1 + ε)-separated sequence. Note that one cannot
similarly deduce this from [OS]. It is easy to construct examples of spreading (ei)
so that ‖ei + ej‖ = 2, while ‖ei − ej‖ = 1 for all i < j (see Example 3.1 of [OS]).

One of the long-standing open problems on asymptotic structures of Banach
spaces is the following. Suppose that every spreading model of X is equivalent to
the unit vector basis of c0 (or �p). Does X contain an asymptotic-c0 (or asymptotic-
�p) subspace? We solve the c0 case with a somewhat stronger assumption. If
all normalized asymptotic models (ei) of normalized weakly null arrays in X are
equivalent to the unit vector basis of c0 and �1 �↪→ X, then X∗ is separable and X
is asymptotic-c0 with respect to a shrinking basis (yi) of Y ⊇ X. Recall that (ei) is
an asymptotic model of X, denoted by (ei) ∈ AMw(X), if there exists a normalized
array (xi

j)i,j∈N so that (xi
j)

∞
j=1 is weakly null for all i ∈ N, and for some εn ↓ 0, all

n, and all (ai)
n
1 ⊆ [−1, 1] and n ≤ k1 < k2 < · · · < kn,

(1.1)

∣∣∣∣∣
∥∥∥

n∑
i=1

aix
i
ki

∥∥∥−
∥∥∥

n∑
i=1

aiei

∥∥∥
∣∣∣∣∣ ≤ εn.
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The notion of asymptotic models is a direct generalization of spreading models and
was introduced in [HO]. X is asymptotic-c0 if for some K < ∞ for all n and all
asymptotic spaces (ei)

n
i=1 are K-equivalent to the unit vector basis of �n∞ [MMT].

These notions are recalled in Section 4.

2. Spreading bases

We begin with a result solving a problem asked of us by S. A. Argyros.

Theorem 2.1. Let (en) be a normalized basis for X. If every subspace spanned by
a skipped block basis of (en) is reflexive, then X is either reflexive or quasi-reflexive
of order 1.

Proof. The hypothesis yields that (en) is shrinking. If not, then for some normalized
block basis (xn) of (en) there exists f ∈ BX∗ and ε > 0 with f(xn) > ε for all n.
But then (x2n) is a skipped block basis of (en) which cannot be shrinking, hence
cannot span a reflexive space.

Let F ∈ X∗∗. Since the basis (ei) is shrinking F is the w∗-limit of

(

n∑
i=1

F (e∗i )ei)
∞
n=1,

where (e∗i ) is the biorthogonal sequence to (ei) (a basis for X∗). We claim that if

lim inf
n

|F (e∗i )| = 0,

then F ∈ i(X), where i(X) is the natural embedding of X into X∗∗.
Indeed, pick a subsequence (ij) such that

∑∞
j=1 |F (e∗ij )| < ∞. Let

y =

∞∑
j=1

F (e∗ij )eij .

Then y ∈ i(X). Let G = F − y. Then G = w∗ − limn

∑n
j=1

∑
ij<i<ij+1

F (e∗i )ei
and (

∑
ij<i<ij+1

F (e∗i )ei)
∞
j=1 is a skipped block sequence which spans a reflexive

subspace. Thus G ∈ i(X) and so is F .
Now suppose X is not reflexive and let G ∈ X∗∗ and F ∈ X∗∗ \ i(X). Choose

λ ∈ R and a subsequence (in) of N so that G(e∗in) − λF (e∗in) → 0. Then by the
claim above we conclude that G− λF ∈ i(X). Therefore X∗∗ = RF ⊕ i(X). �

Remark 2.2. A generalization of the above from a basis to finite dimensional de-
compositions (FDD) is false. Indeed, the Argyros-Haydon space XK has an FDD
(Mn) with the property that every skipped blocking of (Mn) spans a reflexive sub-
space and yet its dual is isomorphic to �1 [AH, Theorem 9.1]. We thank Pavlos
Motakis for pointing out the example.

We now turn to conditional spreading bases. Suppose that (ei) is a normalized
spreading basis for X which is not weakly null. Then the summing functional,

S(
∑
i

aiei) :=
∑
i

ai,

is bounded on X. Indeed for some λ �= 0, f ∈ X∗, and subsequence (in) of N we
have that f(ein)− λ → 0 rapidly. So a perturbation of λ−1f is constantly 1 on the
ein ’s. Then it follows from the spreading property that S is bounded on X.
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By renorming we can assume that (ei) is normalized, 1-spreading, and a bimono-
tone basis for X, and ‖S‖ = 1. This is easily achieved by replacing (ei) by a spread-
ing model of a subsequence and then by the renorming |||x||| := max(‖x‖, |S(x)|).
With this we also get that the functional SI(

∑
i aiei) :=

∑
i∈I ai is of norm one for

any interval I. Note that the boundedness of S implies that the summing basis of
c0 is dominated by every conditional spreading sequence.

Theorem 2.3. Let (ei) be a normalized 1-spreading, non-weakly null, bimonotone
basis for X.

(a) If (xi) is a normalized block basis of (ei) with S(xi) = 0 for all i, then (xi)
is suppression 1-unconditional.

(b) Let (di) = (e1, e2 − e1, e3 − e2, . . .). Then (di) is a skipped unconditional
basis for X.

(c) (ei) is boundedly complete if and only if c0 �↪→ X.
(d) (di) is shrinking if and only if �1 �↪→ X.
(e) �1 �↪→ X if and only if X∗ = RS ⊕ [(e∗i )].
(f) c0 and �1 do not embed into X if and only if X is quasi-reflexive of order

1.

Proof. For x, y ∈ X which are finitely supported with respect to the basis (ei), we
write x ∼ y if

x =

k∑
i=1

aieni
and y =

k∑
i=1

aiemi
where n1 < · · · < nk, m1 < · · · < mk.

(a) Let (xi) be as in (a). We now need the following lemma.

Lemma 2.4. For all ε > 0 and i0 ∈ N there exists m ∈ N such that for all f ∈ SX∗

there exists x̃ ∈ X, x̃ ∼ xi0 and supp(x̃) ⊆ [j,m], j = min supp(xi0), so that
|f(x̃)| < ε.

Proof. Let ε > 0 and i0 ∈ N. Since |f(ei)| ≤ 1 for any f ∈ SX∗ , by the pigeonhole
principle there exists m with the following property:

Let j = min supp(xi0). For all f ∈ SX∗ there exists λ ∈ [−1, 1] and F ⊆ [j,m]
with |F | = k = |supp(xi0)| so that for i ∈ F , |f(ei)− λ| < ε/k.

Place x̃ ≡
∑

i∈F aiei on F so that x̃ ∼ xi0 . Then S(x̃) = S(xi0) = 0 and

|f(x̃)| ≤ |f(x̃− λS(x̃))|+ |λS(x̃)| =
∣∣∣
∑
i∈F

ai(f(ei)− λ)
∣∣∣ < ε. �

Now let x =
∑k

i=1 aixi, ‖x‖ = 1, ε > 0. Let F ⊆ {1, 2, . . . , k}. We will
show that ‖

∑
i∈F aixi‖ ≤ 1 + ε. Let ji = min supp(xi) for i ≤ k and choose

mi by Lemma 2.4 for ε/k and ji. Since (ei) is 1-spreading we may assume that
j1 < m1 < j2 < m2 < · · · . Let f ∈ SX∗ with f(

∑
i∈F aixi) = ‖

∑
i∈F aixi‖. For

i �∈ F , i ≤ k, we choose x̃i ∼ xi with supp(x̃i) ⊆ [ji,mi] so that |f(x̃i)| < ε/k.
Then∥∥∥∥∥

∑
i∈F

aixi

∥∥∥∥∥ ≤

∣∣∣∣∣∣
f
(∑

i∈F

aixi +
∑
i �∈F

aix̃i

)
∣∣∣∣∣∣
+

∣∣∣∣∣∣
f
(∑

i �∈F

aix̃
)
∣∣∣∣∣∣
≤ ‖x‖+ ε =1 + ε.

This proves (a).
(b) To see that (di) is a basis for X we need only note that it is basic. This

is an easy calculation that holds for any difference sequence (di) obtained from



ON SPREADING SEQUENCES AND ASYMPTOTIC STRUCTURES 6937

a normalized basic (ei) that dominates the summing basis (i.e., S is bounded).
Indeed, for any n < m,

∥∥∥
n∑

i=1

aidi

∥∥∥ =
∥∥∥

n−1∑
i=1

(ai − ai+1)ei + anen

∥∥∥ ≤
∥∥∥

m∑
i=1

aidi

∥∥∥+ ‖an+1en‖

=
∥∥∥

m∑
i=1

aidi

∥∥∥+
∣∣∣S

( m−1∑
i=n+1

(ai − ai+1)ei + amem

)∣∣∣ ≤ 2
∥∥∥

m∑
i=1

aidi

∥∥∥.

That (di) is skipped unconditional follows from (a).
(c) We need only show that if (ei) is not boundedly complete, then c0 ↪→ X.

Suppose that there exists (ai) ⊆ R so that supn ‖
∑n

i=1 aiei‖ = 1 and
∑∞

i=1 aiei
diverges. Choose δ > 0 and a subsequence (ki) of N so that ‖xi‖ > δ where

xi =
∑ki+1−1

j=ki
aiei for i ∈ N.

Choose a block sequence (yi) of (ei) so that y2i−1 ∼ xi and y2i ∼ xi for all i.
Then (y2i−1) and (y2i) are each equivalent to (xi), and (y2i−1−y2i) is unconditional
by (a). Furthermore

sup
n

‖
n∑

i=1

(y2i−1 − y2i)‖ ≤ 2,

and 2 ≥ ‖y2i−1 − y2i‖ ≥ δ for all i. Thus (y2i−1 − y2i) is equivalent to the unit
vector basis of c0.

(d) This follows easily since (di) is skipped unconditional.
(e) Suppose �1 does not embed into X. By Rosenthal’s �1 theorem [R] and the

fact that (ei) is spreading, (ei) is weak Cauchy.
Let f ∈ X∗. Then f = w∗ − limn

∑n
i=1 f(ei)e

∗
i , and limi→∞ f(ei) ≡ λ exists.

Then f−λS ∈ [(e∗i )]. Indeed f−λS = w∗−limn→∞
∑n

i=1 bie
∗
i , where limi bi = 0. If

the series is not norm convergent there exists δ > 0, (ni) ∈ [N]ω, and a normalized
block basis (xi) of (ei) so that x1 < en1

< x2 < en2
< · · · , so that (f − λS)xi > δ

for all i and bni
→ 0 rapidly. In particular, (xi − S(xi)eni

) is unconditional and
(f − λS)(xi − S(xi)eni

) > δ/2 for all i. Thus (xi − S(xi)eni
) is equivalent to the

unit vector basis of �1, a contradiction.
(f) Let (un) be a skipped block basis of (di), and assume c0 and �1 do not

embed into X. Then (un) is unconditional and shrinking by (b) and (d) and is
also boundedly complete since X does not contain c0. Thus [(un)] is reflexive and
Theorem 2.1 yields the result. �

If X has an unconditional basis and Y ⊆ X has non-separable dual, then �1 ↪→ Y
[BP]. This also holds if X has a spreading basis. In fact, the result holds more
generally.

Proposition 2.5. Suppose X has a skipped unconditional basis and let Y ⊆ X
with Y ∗ not separable. Then �1 embeds into Y .

Proof. Assume that Y ∗ is not separable and �1 does not embed into Y . By Theorem
3.14 of [AJO] there exists an �+1 weakly null tree (yα)α∈Tω

in Y . Here Tω = {(ni)
k
1 :

n1 < · · · < nk, ni ∈ N, k ∈ N}. (y(α,n))n is weakly null and normalized for all
α ∈ {∅} ∪ Tω. Furthermore, for some c > 0, ‖

∑
i aiyαi

‖ ≥ c
∑

i ai for all branches
(αi) of Tω and ai ≥ 0. Using that the tree is weakly null and X has a skipped
unconditional basis it is easy to find a branch (yαi

) which is unconditional, hence
is equivalent to the unit vector basis of �1. This is a contradiction. �
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Remark 2.6. The same proof also yields that if X is a subspace of a space with
skipped unconditional finite dimensional decomposition and X∗ is non-separable,
then �1 embeds into X.

The next result answers a question asked of us by Rosenthal: IfX has a spreading
basis, does X contain a complemented subspace with an unconditional basis?

Proposition 2.7. If (ei) is a normalized spreading basis for X, then the subspace
Y spanned by the unconditional block basis [(e2n−1 − e2n)] is complemented in X.

It suffices to prove that the complementary “projection” Q is bounded where

Q(
∑
i

aiei) =
∑
i

a2i−1 + a2i
2

(e2i−1 + e2i).

This is a consequence of the following more general result which is well known if
the basis is subsymmetric.

Theorem 2.8. Let (ei) be a normalized bimonotone 1-spreading basis for X. Let
(σj)

∞
j=1 be a partition of N into successive intervals, σ1 < σ2 < · · · , with |σj | = nj

for j ∈ N. Then the averaging operator

Q
(∑

i

aiei

)
=

∞∑
j=1

(( ∑
i∈σj

ai
)
/nj

)( ∑
i∈σj

ei

)

is a bounded projection on X with ‖Q‖ ≤ 3.

It is important to note that, unlike the subsymmetric case, there are no gaps
allowed between blocks in this averaging operator.

Proof. It suffices to prove that for all k, ‖Qx‖ ≤ 3‖x‖ if supp(x) ⊆
⋃k

i=1 σi. Let

k ∈ N, x =
∑max(σk)

j=1 ajej . Let M be the least common multiple of (n1, n2, . . . , nk)

and set mj = M/nj for j ≤ k.

We will construct vectors (yi)
2M
i=1 so that 1

2M

∑2M
j=1 yj = x̄ +

∑M
j=1 zj where

yi ∼ x, 2x̄ ∼ Qx, and zj ∼ 1
2M x for j ≤ M . It follows that

‖Qx‖ = 2‖x̄‖ ≤ 2
(
‖x‖+M

1

2M
‖x‖

)
=3‖x‖.

To begin we spread x to obtain y1 so that the coordinates of y1 look like

y1 = (a1, a2, . . . , an1
, 0, . . . , 0, an1+1, . . . , an1+n2

, 0, . . . , 0, an1+n2+1, . . .).

For each 1 ≤ j ≤ k−1, we insert 2nj−1 zeros between the blocks of x corresponding
to σj and σj+1, and let γj be the index set for the coordinates of the inserted block
of zeros. The vectors y2, . . . , y2M will be spreads of y1. The position of the first
block (a1, . . . , an1

) is preserved for y2, . . . , ym1
. This block is then shifted one unit

right for ym1+1, . . . , y2m1
. Then another unit to the right for y2m1+1, . . . , y3m1

and
so on n1 times until reaching y2M = y2n1m1

. The same scheme is followed for the
second block (an+1, . . . , an1+n2

) and the subsequent blocks. Thus the second block
is preserved for y2, . . . , ym2

and then shifted once right for ym2+1, . . . , y2m2
.

When we average the yj ’s, x̄ will be the average of the vectors y1, . . . , y2M re-
stricted to the coordinates given by the union over 1 ≤ j ≤ k of the first nj

coordinates of γj .
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We give a simple example in the diagram below explaining this averaging proce-
dure in the case k = 2, n1 = 2, n2 = 3, and so M = 6, m1 = 3, and m2 = 2.

a1 a2 0 0 0 a3 a4 a5 0 0 0 0 0
a1 a2 0 0 0 a3 a4 a5 0 0 0 0 0
a1 a2 0 0 0 0 a3 a4 a5 0 0 0 0
0 a1 a2 0 0 0 a3 a4 a5 0 0 0 0
0 a1 a2 0 0 0 0 a3 a4 a5 0 0 0
0 a1 a2 0 0 0 0 a3 a4 a5 0 0 0
0 0 a1 a2 0 0 0 0 a3 a4 a5 0 0
0 0 a1 a2 0 0 0 0 a3 a4 a5 0 0
0 0 a1 a2 0 0 0 0 0 a3 a4 a5 0
0 0 0 a1 a2 0 0 0 0 a3 a4 a5 0
0 0 0 a1 a2 0 0 0 0 0 a3 a4 a5
0 0 0 a1 a2 0 0 0 0 0 a3 a4 a5

The vector x̄ is the average of y1, . . . , y2M restricted to the coordinates given
in bold type. The remaining coefficients are easily partitioned into M spreads of
x. �

Proposition 2.9. Let (ei) be a normalized conditional spreading basis for X. Let
D = [(d2n)], where (dn) is the difference basis. Then X � D ⊕ Y where Y =
[(e1 + e2, e3 + e4, . . .)] is isomorphic to X.

Proof. We may assume (ei) is 1-spreading. By Proposition 2.7 and Theorem 2.8 it
suffices to prove that (e2n−1 + e2n)

∞
n=1 dominates (en). We will prove that if x =∑n

i=1 aiei, ‖x‖ = 1, then ‖
∑n

i=1 ai(e2i−1 + e2i)‖ ≥ 2/3. Write x1 =
∑n

i=1 aie3i−1,
x2 =

∑n
i=1 aie3i−2, and x3 =

∑n
i=1 aie3i. Assume ‖x1 + x2‖ = c. Let f ∈ SX∗ ,

1 = f(x1). Then f(x1 + x2) ≤ c so f(x2) ≤ c − 1. Also using ‖x1 + x3‖ =
c, f(x3) ≤ c − 1. Thus c ≥ −f(x2 + x3) ≥ 2 − 2c and so c ≥ 2/3. Thus,
‖
∑n

i=1 ai(e2i−1 + e2i)‖ = ‖
∑n

i=1 ai(e3i−2 + e3i−1)‖ = c ≥ 2/3. Note that the
argument can easily be generalized for all ε > 0 to get c ≥ 1− ε. �

It has been shown that spaces X whose dual are isomorphic to �1 are quite
plentiful and need not contain c0 [BD]. Moreover, any Y with Y ∗ separable embeds
into such a space [FOS]. But if X has a spreading basis, X∗ is separable, and
�1 ↪→ X∗, then c0 ↪→ X. This holds more generally if X∗ is separable and X∗∗ is
not separable, assuming a spreading basis, by Theorem 2.3. More can be said if
X∗ is isomorphic to �1.

Theorem 2.10. Let (ei) be a normalized spreading basis for X and assume X∗ is
isomorphic to �1. Then (ei) is equivalent to either the unit vector basis of c0 or the
summing basis.

Proof. If (ei) is weakly null, then it is unconditional. It follows that (e∗i ) is sub-
symmetric. Since X∗ � �1 some subsequence of (e∗i ) is equivalent to the unit vector
basis of �1, so (e∗i ) is such and so (ei) is equivalent to the unit vector basis of c0.

If (ei) is not weakly null, then we consider the difference basis (di) of X. To show
(ei) is equivalent to the summing basis it suffices to show that (di) is equivalent
to the unit vector basis of c0. To do this, it suffices, by the triangle inequality, to
show that (d2i) is equivalent to the unit vector basis of c0 since (d2i) is equivalent
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to (d2i−1). Now D = [(d2n)] is complemented in X and (d2n) is unconditional and
shrinking. So (d∗2n|D) is an unconditional basis for D∗ which is isomorphic to �1,
since it is complemented in X∗ � �1. Thus (d

∗
2n|D) is equivalent to the unit vector

basis of �1. These are due to the fact that �1 is prime and has unique unconditional
basis. Hence (d2n) is equivalent to the unit vector basis of c0. �

3. Remarks on conditional spreading models

Recall that a normalized basic sequence (ei) is a spreading model of a sequence
(xi) if for some εn ↓ 0, for all n, (ai)

n
1 ⊆ [−1, 1] positive integers n ≤ k1 < · · · < kn,

(3.1)

∣∣∣∣∣∣
∥∥∥

n∑
j=1

ajxkj

∥∥∥−
∥∥∥

n∑
i=1

aiei

∥∥∥
∣∣∣∣∣∣
≤ εn.

In this case (ei) is 1-spreading, and if (xi) is weakly null, then (ei) is suppression
1-unconditional. We denote by SPw(X) the set of all spreading models of X gener-
ated by weakly null sequences. If (yi) is normalized basic, then, via Ramsey theory,
some subsequence (xi) of (yi) generates a spreading model (ei) as in (3.1) above. If
(yi) is normalized but does not have a basic subsequence, then any basic spreading
model admitted by (yi) must be equivalent to the unit vector basis of �1. Indeed,
by Rosenthal’s �1 theorem we may assume (yi) is weak Cauchy. Every non-trivial
weak Cauchy sequence has a basic subsequence (see the proof of [Ro, Proposition
2.2]). Thus a subsequence (xi) of (yi) weakly converges to a non-zero element x0,
and (xi−x0) generates an unconditional spreading model (ui). So (ei) is equivalent
to (x0+ui) in 〈x0〉⊕ [(ui)]. Since (ei) is basic, (ui) is not weakly null and therefore
is equivalent to the unit vector basis of �1, and so is (ei).

One of the questions of interest about spreading models is whether there exists
a “small” space that is universal for all (or a large class of) spreading models.
Recall that the space C(ωω) is universal for all unconditional spreading models,
that is, every subsymmetric basic sequence is a spreading model of C(ωω) [O]. In
[AM] a remarkable example of a reflexive space is constructed so that every infinite
dimensional subspace of it is universal for all unconditional spreading models. For
the case of conditional spreading models, S. A. Argyros raised the following problem,
which partly motivated our study of conditional spreading sequences above.

Problem 3.1. Let (ei) be a conditional normalized spreading sequence. Does
there exist a quasi-reflexive of order 1 space X with a normalized basis (xi) which
generates (ei) as a spreading model?

We show that the answer is affirmative for the summing basis of c0. For a given
basis (ei), recall the space J(ei). For x ∈ J(ei), the norm is given by

‖x‖ = sup
{∥∥∥

k∑
i=1

si(x)epi

∥∥∥ : s1 < s2 < · · · < sk are intervals in N, min si = pi

}
,

where si(x) =
∑

j∈si
aj , si = [pi, qi), and x = (aj).

Proposition 3.2. Let (ei) be the unit vector basis of the dual Tsirelson space T ∗.
Then the space J(ei) is quasi-reflexive of order 1 and the spreading model generated
by its natural basis is equivalent to the summing basis of c0.
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Proof. In [BHO] it is shown that if (ei) is a basis of a reflexive space, then J(ei) is
quasi-reflexive of order 1. Thus the first assertion follows since T ∗ is reflexive.

Also it is easy to see that any subsequence of the basis (ui) of J(ei) generates
a spreading model equivalent to the summing basis (si). Indeed, to estimate the

norm of a vector x =
∑k

j=1 ajuij where k ≤ i1 < · · · < ik note that for an arbitrary
s1 < · · · < sk we have

∥∥∥
k∑

j=1

sj(x)eij

∥∥∥
T∗

≤ 2max
j

|
∑
i∈sj

ai|,

and the latter expression is at most twice the summing norm of x. The reverse
inequality is trivial (consider intervals s = [l, ik], k ≤ l ≤ ik). �

In a follow-up work [AMS] constructions similar to the above are studied in more
detail and, in particular, Problem 3.1 is solved affirmatively.

4. Spreading and asymptotic models

Our first result of this section is a strengthening of the c0-part of the follow-
ing theorem of Odell and Schlumprecht [OS]: If X has a basis (xi) so that every
spreading model of a normalized block basis of (xi) is 1-equivalent to the unit vector
basis of c0 (respectively, �1), then X contains an isomorphic copy of c0 (respectively,
�1). Here we show that it is sufficient to restrict the assumption to those spreading
models generated by weakly null block bases.

Theorem 4.1. Let (xi) be a normalized weakly null basis for X. Assume that �1
does not embed into X and whenever (yi) is a normalized weakly null block basis of
(xi) with spreading model (ei), then ‖e1 − e2‖ = 1. Then some subsequence of (xi)
is equivalent to the unit vector basis of c0.

Remark. The hypothesis yields that every spreading model (ei) generated by a
weakly null normalized sequence (yi) is 1-equivalent to the unit vector basis of c0.
Indeed, we may assume (yi) is a weakly null normalized block basis of (xi). Then(

y2n−1−y2n

‖y2n−1−y2n
‖
)

is a weakly null block basis generating the normalized spreading

model (e2n−1 − e2n) and so ‖e1 − e2 − e3 + e4‖ = 1. By iteration of this argument,
1-spreading, and the suppression 1-unconditionality of (ei),

∥∥
n∑

i=1

±ei
∥∥ = 1 for all ± 1 and all n.

This implies (ei) is 1-equivalent to the unit vector basis of c0.

As was pointed out in the introduction this immediately implies the following
well-known theorem of Elton and Odell [EO].

Theorem 4.2 (Elton–Odell). Let X be an infinite dimensional Banach space.
Then there exist λ > 1 and an infinite sequence (xi) ⊂ SX such that ‖xi − xj‖ ≥ λ
for all i �= j.

For the proof of Theorem 4.1 we need to recall some terminology. A collection
F ⊆ [N]<ω is called thin if there do not exist F,G ∈ F with F being a proper
initial segment of G. F is large in M ∈ [N]ω if for all N ∈ [M ]ω there exists an
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initial segment F of N with F ∈ F . For a sequence (xi) ⊆ X and E ∈ [N]<ω we
set xE =

∑
i∈E xi. For a thin F ⊆ [N]<ω we let

FI = {G∈ [N]<ω : G is an initial segment of some F ∈ F}.

Lemma 4.3. Let X and (xi) be as in the hypothesis of Theorem 4.1. Let F be a
collection of finite subsets of N satisfying

(4.1) sup{‖xE‖ : E ∈ F} < ∞.

Then there exists M ∈ [N]ω so that for all E1 < E2 < · · · with Ei ∈ F ∩ [M ]<ω for
all i ∈ N, the sequence (xEi

) is weakly null.

Proof. By Elton’s near unconditionality theorem [E], there exists M ⊆ N such that
for some C < ∞ the subsequence (xi)i∈M satisfies, for all E ⊆ F ∈ [M ]<ω,

(4.2)
∥∥∑

i∈E

δixi

∥∥ ≤ C
∥∥∑

i∈F

δixi

∥∥ for all choices of signs, δi = ±1.

Suppose that for some E1 < E2 < · · · , Ei ∈ F with Ei ⊆ M for all i, the
sequence (xEi

) is not weakly null. Then after passing to a subsequence, there exist
ε > 0 and f ∈ BX∗ so that f(xEj

) > ε for all j ∈ N. Since X does not contain �1,
by Rosenthal’s �1 theorem and passing to a further subsequence, we may assume
that (xEj

) is weak Cauchy.
Let zj = xE2j−1

− xE2j
for j ∈ N. Then (zj) is weakly null, and moreover by

(4.2)

nε ≤
∥∥∑

j∈G

xE2j−1

∥∥ ≤ C
∥∥∑

j∈G

zj
∥∥

for all |G| = n, n ∈ N. Thus (zj/‖zj‖)j cannot have a c0 spreading model since
supj ‖zj‖ < ∞ by the assumption (4.1). �

Lemma 4.4. Let X and (xi) be as in the hypothesis of Theorem 4.1. Let F be
a thin collection of finite subsets of N which is large in N. Assume that (xEi

) is
weakly null for all E1 < E2 < · · · in F and

(4.3) lim sup
n

{‖xE‖ : E ∈ F , n ≤ E} = 1.

Then there exists N = (ni) ∈ [N]ω so that G, defined by

G =
{ k⋃

i=1

Ei : k ∈ N, nk = min(E1), E1 < · · · < Ek, Ei ∈ F ∩ [N ]<ω for i ≤ k
}
,

is thin and large in N and furthermore G satisfies (4.3) (when G replaces F).

Proof. First we note that by passing to a subsequence, using that (xi) is normalized
and weakly null, we may assume that

(4.4) lim inf
n→∞

{‖xE‖ : n ≤ E ∈ [N]<ω} ≥ 1.

Indeed, for each j ∈ N we may choose fj ∈ X∗ with ‖fj‖ = 1 such that fj(xj) =
‖xj‖ = 1. Fix δn ↓ 0, and after passing to a subsequence we may assume that
fn(xj) < δn2

−j for each n < j. Thus, 1 − δn < fminE(xE) ≤ ‖xE‖, for all n ≤ E,
and (4.4) follows.
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Let εk ↓ 0 and set

Ak =
{
M ∈ [N]ω : if E1 < · · · < Ek, Ei ∈ F for i ≤ k,

E =

k⋃
i=1

Ei is an initial segment of M, then ‖xE‖ ≤ 1 + εk

}
.

Note that as F is thin and large in N, for each M ∈ [N]ω there exists unique

E1 < · · · < Ek with Ei ∈ F for 1 ≤ i ≤ k such that
⋃k

i=1 Ei is an initial
segment of M . Thus, whether or not a sequence M ∈ [N]ω is contained in Ak

depends entirely on a unique initial segment of M . This makes Ak ⊂ [N]ω open
in the product topology. Open sets are Ramsey, so we can find subsequences of N,
M1 ⊃ M2 ⊃ · · · , so that either [Mk]

ω ⊆ Ak or [Mk]
ω ∩Ak = ∅ for each k.

By the 1-equivalent to c0 spreading model hypothesis we must always have
[Mk]

ω ⊆ Ak. Let N = (ni) be a diagonal sequence, (ni)
∞
i=k ∈ Mk for all k.

Define G as in the statement of the lemma with respect to N . �
Proof of Theorem 4.1. We may assume, using [E] as in the proof of Lemma 4.3,
that for some C < ∞,

(4.5) ‖xE‖ ≤ C‖xF ‖ for all E ⊆ F ∈ [N]<ω.

We will show that for α < ω1 there exists Nα = (nα
i )i ∈ [N]ω and Gα ⊆ [Nα]

<ω

so that Gα is thin and large in Nα. Moreover, GI
α has Cantor-Bendixson index

CB(GI
α) ≥ ωα and

(4.6) sup{‖xE‖ : E ∈ Gα, nα
k ≤ E} ≤ 1 + εk,

where εk ↓ 0 is fixed. By (4.5) we have that

(4.7) sup{‖xE‖ : E ∈ GI
α, nα

k ≤ E} ≤ C(1 + εk).

Recall that if K is a countable set, then its Cantor-Bendixson index will be a
countable ordinal. Thus, the Cantor-Bendixson index of

⋃
α<ω1

GI
α is uncountable,

and it follows that for some N = (ni) ∈ [N]ω, 1N is in the pointwise closure of

{1E : ‖xE‖ ≤ 2C, E ∈ [N]<ω} in {0, 1}N.
Thus supk ‖

∑k
i=1 xni

‖ < ∞, and by (4.5) we obtain that (xni
) is equivalent to the

unit vector basis of c0.
To begin we use Lemma 4.4 applied to {{j} : j ∈ N} to obtain N1 = (n1

i )
and G1 = {E : n1

k = minE, |E| = k, E ⊆ N1} satisfying (4.6) and note that
CB(GI

1) = ω. Assume Nα and Gα are chosen to satisfy the given conditions.

Choose Ñα+1 ⊆ Nα by Lemma 4.3. Then apply Lemma 4.4 to Ñα+1 and Gα to
obtain Nα+1 and Gα+1. By the definition of Gα+1, CB(GI

α+1) ≥ ωα+1.

If α is a limit ordinal, choose βn ↑ α, and let Ñα be a diagonal sequence of (Nβn
)

so that (ñα
i )

∞
i=k ⊆ Nβk

and (4.6) holds. Let G̃α = {E ⊆ Ñα : E ⊆ Gβn
for some n}.

Apply Lemmas 4.3 and 4.4 as above. �
Recall that the n-dimensional asymptotic structure of X (with respect to a fixed

filter cof(X) of finite co-dimensional subspaces of X) is the collection {X}n of
normalized basic sequences (ei)

n
1 satisfying the following. For all ε > 0 and all

X1 ∈ cof(X) there exists x1 ∈ SX1
such that for all X2 ∈ cof(X) there exists

x2 ∈ SX2
so that for all Xn ∈ cof(X) there exists xn ∈ SXn

so that (xi)
n
1 is

(1 + ε)-equivalent to (ei)
n
1 [MMT]. X is asymptotic-c0 if for some K < ∞ and all
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n, (ei)
n
1 ∈ {X}n implies that (ei)

n
1 is K-equivalent to the unit vector basis of �n∞.

In this case X∗ must be separable, and the condition can be described in terms
of weakly null trees. Namely, X is asymptotic-c0 (assuming X∗ is separable) if
and only if for some K < ∞ for all n ∈ N and all normalized weakly null trees
(xα)α∈Tn

in X, some branch is K-equivalent to the unit vector basis of �n∞ where
Tn = {(k1, k2, . . . , ki) : 1 ≤ k1 < · · · < ki, i ≤ n}. Recall that (xα)α∈Tn

is weakly
null if for all α = (k1, . . . , ki) ∈ Tn−1, the sequence of successors (x(α,k))k>ki

to xα

is weakly null.
The following question is open.

Problem 4.5. Suppose that �1 does not embed into X and every spreading model
generated by weakly null normalized sequences in X is equivalent to the unit vector
basis of c0. Does X contain an asymptotic-c0 subspace? Does X contain a subspace
Y with Y ∗ separable?

Note that the space JH constructed by Hagler [H] has non-separable dual, does
not contain �1, and every weakly null normalized sequence has a subsequence equiv-
alent to the unit vector basis of c0. So if the problem has an affirmative answer it
is necessary to pass to a subspace. We will prove a weaker theorem.

Theorem 4.6. Suppose that a Banach space X does not contain an isomorphic
copy of �1 and every asymptotic model (ei) generated by weakly null arrays in X is
equivalent to the unit vector basis of c0. Then:

(i) X∗ is separable, and thus X embeds into a space Y with a shrinking basis
(yi).

(ii) X is asymptotic-c0 (with respect to the basis (yi)).

Recall that (ei) is an asymptotic model of X, denoted by (ei) ∈ AMw(X), gen-
erated by a normalized weakly null array (xi

j)i,j∈N if (xi
j)

∞
j=1 is weakly null for all

i ∈ N, and for some εn ↓ 0, all n, and all (ai)
n
1 ⊆ [−1, 1] and n ≤ k1 < k2 < · · · < kn,

(4.8)

∣∣∣∣∣
∥∥∥

n∑
i=1

aix
i
ki

∥∥∥−
∥∥∥

n∑
i=1

aiei

∥∥∥
∣∣∣∣∣ ≤ εn.

Asymptotic models were introduced in [HO]. If every (ei) ∈ AMw(X) is equivalent
to the unit vector basis of c0, then there existsK < ∞ so that every (ei) ∈ AMw(X)
is K-equivalent to the unit vector basis of c0 [HO].

The hypothesis of the theorem can be contrasted with being asymptotic-c0 as
follows. The asymptotic model condition implies that for some K, every n ∈ N, and
normalized weakly null tree (xα)α∈Tn

of a certain type, some branch is K-equivalent
to the unit vector basis of �n∞. The “certain type” condition is: there exist n
normalized weakly null sequences (xi

j)
∞
j=1, 1 ≤ i ≤ n so that if α = (�1, . . . , �k),

then xk
�k

= xα. In short, the successor sequences to each |β| = k− 1 are tails of the
same sequence, depending only on k, for all 1 ≤ k ≤ n. Theorem 4.6 states that if
these specific normalized weakly null trees in X each have a branch K-equivalent
to the unit vector basis of �n∞, then all normalized weakly null trees (xα)α∈Tn

in X
do as well.

Proof. (i) We first show that X∗ is separable. Assume not. By a result of Stegall
[S] for all ε > 0 there exists Δ ⊆ SX∗ , Δ is w∗-homeomorphic to the Cantor set,
and a Haar-like system (xn,i) ⊆ X. More precisely, there exists a sequence (An,i)
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of subsets of Δ for n = 0, 1, 2, . . . and i = 0, 1, . . . , 2n − 1 such that A0,0 = Δ and
each An,i is the union of disjoint, non-empty, clopen subsets An+1,2i and An+1,2i+1

with limn→∞ sup0≤i<2n diam(An,i) = 0, and Haar functions hn,i ⊆ C(Δ) (relative
to (An,i)) so that

h2n+i := 1An+1,2i
− 1An+1,2i+1

, n = 0, 1, . . . , i = 0, 1, . . . , 2n − 1.

Finally, (xn,i) ⊆ X is a Haar-like system (relative to (An,i)) if, indexing above Haar
functions as h2n+i = hn,i, we have ‖xn,i‖ ≤ 1 + ε for all (n, i) so that

∞∑
n=0

2n−1∑
i=0

‖xn,i|Δ − hn,i‖C(Δ) < ε.

For simplicity in what follows we will assume xn,i|Δ = hn,i and ignore the tiny
perturbations, and we will refer to the sets An,i as intervals. We will construct a
Rademacher-type system (rn) from the xn,i’s and conclude that �1 ↪→ X to get a
contradiction.

Begin with r1 ≡ x0,0 and suppose r1, . . . , rn ∈ span(xk,i) have been constructed
so that for each choice of signs (εi)

n
1 there is an interval I in Δ on which for i ≤ n,

ri|I = εi. Fix such an I and consider the subsequence (xk,l) that is ‘supported’ on
I, that is, suppxk,l|Δ ⊆ I. A further subsequence has pairwise disjoint support, and
a further subsequence of that is weak Cauchy. Thus the corresponding difference
sequence is weakly null. The difference sequence has norm in [1, 2] and takes values
−1, 0, 1 on I.

Now consider that this has been done for all 2n such I’s. Label the sequences
as (dij)

∞
j=1 for i ≤ 2n. By the asymptotic model hypothesis (applied to the weakly

null array (dij)
∞
j=1, i ≤ 2n) we can form rn+1 =

∑2n

i=1 d
i
ji

with 1 ≤ ‖rn+1‖ ≤ 2K.

If (an)
N
n=1 ⊆ R we choose an interval I ⊆ Δ such that rn|I = sign(an) for

all 1 ≤ n ≤ N . Thus, ‖
∑

n anrn‖ ≥ ‖
∑

n anrn|I‖C(I)| =
∑

n |an|. Thus (rn)
is a seminormalized sequence which dominates the unit vector basis of �1. This
contradicts that �1 does not embed into X and hence X∗ must be separable. By
Zippin’s theorem X embeds into a space Y with a shrinking basis (yi).

(ii) We proceed to show that X is an asymptotic-c0 space with respect to the
basis (yi). We need to prove that there exists a constant C such that for all n every
asymptotic space (ei)

n
1 ∈ {X}n is C-equivalent to the unit vector basis of �n∞. If

(ei)
n
1 ∈ {X}n, then also (εiei)

n
1 ∈ {X}n for all sequences of signs (εi)

n
1 . Therefore,

it is sufficient to show that there exists C such that for all n ∈ N and for every
asymptotic space (ei)

n
1 ∈ {X}n we have ‖

∑n
i=1 ei‖ ≤ C.

Suppose this is not the case. Then for all C ≥ 1 there exists n and a normalized
asymptotic tree (i.e., countably branching block tree) (xα)α∈Tn

in X so that for
every branch β = (xi)

n
i=1 of (xα)α∈Tn

there exists fβ ∈ SX∗ with fβ(
∑n

i=1 xi) > C.
We will construct weakly null seminormalized sequences (y1i )i≥1, (y

2
i )i≥2, . . . ,

(yni )i≥n from the linear combinations of carefully chosen nodes of (xα)α∈Tn
so

that, after passing to subsequences in each and relabeling, the array {yki : 1 ≤
k ≤ n, i ≥ 1} satisfies ‖yki ‖ ≤ K for all 1 ≤ k ≤ n, i ≥ 1, and ‖

∑n
k=1 y

k
ik
‖ > C for

all i1 < · · · < in. This will contradict the assumption that all asymptotic models
generated by weakly null arrays are K-equivalent to the unit vector basis of c0.

We first describe a general procedure of extracting an array of weakly null se-
quences from a tree. The actual array will be obtained by applying this procedure
to a carefully pruned tree (using our assumptions) that we describe later.
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Extracting arrays from trees. The main idea of the construction is that each
yki is chosen to be a linear combination of nodes of (xα)α∈Tn

from the kth level so
that for every i1 < · · · < in the union of the supports (with respect to the tree Tn)
of y1i1 , . . . , y

n
in

contains a (unique) full branch of the tree Tn.
Let (xα)α∈Tn

be the tree above. For (i1, . . . , ik) ∈ Tn we label the node
xk(i1, . . . , ik) := x(i1,...,ik). The superscript (which denotes the kth level in the
tree) is redundant, but we keep it for the sake of clarity.

We will construct the desired n-array so that all rows (yki )i≥k and all diagonal
sequences (ykik)

n
k=1, i1 < · · · < in, are block sequences. We will often prune the tree

(xα)α∈Tn
by deleting nodes and then relabeling the remaining nodes. The pruned

tree will always be a full (sub)tree. Moreover, to ease the notation for later con-
structions we will relabel the full subtree to match the indices so that the resulting
array will have the property that for every diagonal sequence (ykik)

n
k=1, i1 < · · · < in,

the corresponding unique full branch is (x1(i1), x
2(i1, i2), . . . , x

n(i1, i2, . . . , in)).
The array is to be labeled as follows and constructed in diagonal order:

y11 y12 y13 y14 y15 · · ·
y22 y23 y24 y25 · · ·

. . .
. . .

. . .

ynn ynn+1 · · · .
Let y1i = x1(i) for all i ≥ 1. So (y1i )i is the sequence of initial nodes of (xα)α∈Tn

.
For the first diagonal sequence (y11 , . . . , y

n
n) take the leftmost branch of (xα)α∈Tn

,
that is,

(4.9) y11 = x1(1), y22 = x2(1, 2), . . . , ynn = xn(1, . . . , n).

The node y23 will be a sum of two successors to the nodes x1(1) and x1(2) that
comprise y11 and y12 , respectively. To do this we pick i1 > 2 and i2 > 2 large enough
so that x2(1, i1) and x2(2, i2) are supported after x1(2) (and hence after x1(1)).
Delete the nodes x2(1, j) for 2 < j < i1 and the nodes x2(2, j) for 3 ≤ j < i2 and
relabel the remaining sequences so that the chosen nodes become x2(1, i1) = x2(1, 3)
and x2(2, i2) = x2(2, 3). Put

(4.10) y23 = x2(1, 3) + x2(2, 3).

We proceed in similar fashion so that each vector ykj of the kth row (j > k > 1) is
defined as a sum of nodes from the kth level of the tree (xα)α∈Tn

and are successors

to the nodes that comprise the previously chosen vectors yk−1
k−1 , y

k−1
k , . . . , yk−1

j−1 . We
pick the nodes so that the block conditions are satisfied and relabel the tree after
deleting finitely many nodes. Thus y34 is a sum of nodes successor to the nodes of
y22 and y23 , and after relabeling the nodes it becomes

(4.11) y34 = x3(1, 2, 4) + x3(1, 3, 4) + x3(2, 3, 4).

In general, suppose that yk−1
j for k − 1 ≤ j < i and k ≤ n are defined. Let

yk−1
j = xk−1(t̄1) + xk−1(t̄2) + · · · =

∑

m∈Ak−1
j

xk−1(t̄m) for some Ak−1
j ⊂ N

be the enumeration of the (finitely many) nodes comprising yk−1
j ’s in the order they

appear and where each t̄s is a k − 1-tuple with maximal entry j.
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We denote concatenation by (a1, . . . , an)�an+1 = (a1, . . . , an, an+1). By passing
to subsequences and relabeling the sequences of successor nodes

(xk(t̄1� l))l≥j , (x
k(t̄2� l))l≥j , (x

k(t̄3� l))l≥j , . . . ,

we may assume that each of these vectors is supported after the previously chosen
ones. We define yki as a sum of successors to the nodes comprising yk−1

k−1 , . . . , y
k−1
i−1 .

That is, we put

(4.12) yki =

i−1∑
j=k−1

∑

m∈Ak−1
j

xk(t̄m� i).

Note that j is the maximal entry of t̄m ∈ Ak−1
j and hence xk(t̄m� i) is a successor

of xk(t̄m) as j < i.
This completes the construction of the array. It follows that the support of

any diagonal sequence (ykik)
n
k=1, i1 < · · · < in, contains the unique full branch

(x1(i1), x
2(i1, i2), . . . , x

n(i1, i2, . . . , in)) as desired.

Pruning the tree. For notational convenience we will denote branches

β = (x1(i1), x
2(i1, i2), . . . , x

n(i1, i2, . . . , in))

of the tree by β = (i1, i2, . . . , in). From the construction the support of (the sum
of) each sequence y1i1 , . . . , y

n
in

consists of the unique full branch β = (i1, i2, . . . , in)
and other off-branch nodes whose numbers add up quickly as in gets large. By our
assumption there is a branch functional fβ so that

(4.13) fβ

( n∑
k=1

xk(i1, . . . , ik)
)
> C.

Our goal here is to show that for all ε > 0 we can prune the tree so that the array
(with respect to the pruned tree) satisfies

(4.14) ‖yki ‖ ≤ K+ε, for all 1 ≤ k ≤ n, i ≥ k,

and

(4.15) fβ

( n∑
k=1

ykik

)
≥ C − ε.

Let ε > 0. Fix (εk)
n
k=1 so that

∑n
k=1 εk < ε. Let (xα)α∈Tn

be a full subtree
satisfying block conditions described in the above construction. That is, every
sequence of successor nodes of (xα)α∈Tn

is a block basis and whenever yki is defined
as in (4.25) the sequences (y1i1 , . . . , y

n
in
) are blocks as well.

As before we will proceed in diagonal order (of the array). Let y1i = x1(i) for
all i ≥ 1. For the first diagonal sequence (y11 , . . . , y

n
n) again we take the leftmost

branch of (xα)α∈Tn
, that is,

(4.16) y11 = x1(1), y22 = x2(1, 2), . . . , ynn = xn(1, . . . , n).

The condition (4.14) is clearly satisfied since the tree is normalized and the condition
(4.15) follows from the assumption (4.13).

We wish to define y23 as in (4.10). This will require two steps. First consider the
sequences of level 2 successor nodes

(x2(1, l))l≥3, (x
2(2, l))l≥3.
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By our main assumption, the array formed by these sequences can be refined to
generate an asymptotic model K-equivalent to the unit vector basis of �2∞. Thus by
passing to subsequences, relabeling, and ignoring tiny perturbations we can assume
that for all 3 ≤ l1 < l2,

(4.17) ‖x2(1, l1) + x2(2, l2)‖ ≤ K.

This will ensure that whenever y23 is defined as in (4.10) the condition (4.14) is
satisfied. The second refinement towards ensuring (4.15) is somewhat more com-
plicated.

Consider again the sequences of successor nodes (x2(1, l))l≥3 and (x2(2, l))l≥3.
By the main assumption each of these sequences generates spreading models which
are K-equivalent to the unit vector basis of c0. Fix N ≥ 1 + K2/ε21 + 2K/ε1.

By passing to subsequences and relabeling we can assume that both (x2(1, l))N+3
l=3

and (x2(2, l))N+3
l=3 are K-equivalent to the unit vector basis of �N∞. For every branch

β = (i1, . . . , in) of Tn we let f(i1,i2,...,in) denote the corresponding branch functional
satisfying (4.13). For each 3 ≤ l ≤ N + 3, f(1,l)�j̄ and f(2,l)�j̄ are the branch

functionals for branches extending (1, l) and (2, l) respectively, where j̄ is an (n−2)-
tuple. We stabilize the values of these functionals on the chosen nodes. That is, by
passing to subsequences and ignoring tiny perturbations we can assume that for all
j̄, j̄′ we have

f(1,l)�j̄(x
2(2, t)) = f(1,l)�j̄′(x

2(2, t)) and f(2,l)�j̄(x
2(1, t)) = f(2,l)�j̄′(x

2(1, t)),

for all 3 ≤ l, t ≤ N + 3.

Claim. There exist 3 ≤ l1, l2 ≤ N + 3 so that for all j̄,

(4.18) |f(1,l1)�j̄(x
2(2, l2))| < ε1 and |f(2,l2)�j̄(x

2(1, l1))| < ε1.

For any functional f of norm at most 1 and sequence (xt)
n
t=1 which is K-

equivalent to the unit vector basis of �n∞ there is a sequence of signs δt = ±1
so that

(4.19)
n∑

t=1

|f(xt)| =
∣∣∣∣∣f
( n∑

t=1

δtxt

)∣∣∣∣∣ ≤ K.

It follows that the cardinality |{t : |f(xt)| ≥ ε1}| ≤ K/ε1. Thus for each l and j̄,

|Al| :=
∣∣∣{t : |f(1,l)�j̄(x

2(2, t))| < ε1}
∣∣∣ ≥ N −K/ε1.

Then for any B ⊂ {3, . . . , N + 3} with K/ε1 + 1 ≤ |B| < K/ε1 + 2 we have
∣∣∣
⋂
l∈B

Al

∣∣∣ ≥ 1.

Indeed, N − |B|K/ε1 ≥ N − K2/ε21 − 2K/ε1 ≥ 1. Fix such a subset B and let
l2 ∈

⋂
l∈B Al. Then |f(1,l)�j̄(x

2(2, l2))| < ε1 for all l ∈ B. Now consider the

functionals f(2,l2)�j̄ . Since (x2(1, l))l∈B is K-equivalent to the unit vector basis of

�
|B|
∞ and |B| ≥ K/ε1 + 1, by a similar argument as above, there is l1 ∈ B such that
|f(2,l2)�j̄(x

2(1, l1))| < ε1, proving the claim.
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Now we relabel the nodes as x2(1, l1) = x2(1, 3) and x2(2, l2) = x2(2, 3) (by
deleting finitely many nodes) and put

(4.20) y23 = x2(1, 3) + x2(2, 3).

At this stage the pruned tree has the following gap property of the branch func-
tionals f(1,3)�j̄ and f(2,3)�j̄ :

f(1,3)�j̄

(
(y11 + y23)− (x1(1) + x2(1, 3))

)
= f(1,3)�j̄

(
x2(2, 3)

)
< ε1,

f(2,3)�j̄

(
(y12 + y23)− (x1(2) + x2(2, 3))

)
= f(2,3)�j̄

(
x2(1, 3)

)
< ε1.

We have that x1(1) and x2(1, 3) are the nodes on the branch of (1, 3)� j̄. Thus
the first inequality above states that the branch functional f(1,3)�j̄ is small on the

off-branch part of y11 + y23 , and the second inequality above states that the branch
functional f(2,3)�j̄ is small on the off-branch part of y12+y23 . This will be important
for us as the branch functionals fβ are defined to be large on their branch. We will
eventually be able to obtain (4.15) by showing that fβ is greater than C on the
branch part of

∑n
k=1 y

k
ik

and fβ is smaller than ε on the off-branch part of
∑n

k=1 y
k
ik

where β = (i1, . . . , in).
For the sake of clarity we also show how to define y34 as in (4.11) before proceeding

with the inductive step. The array formed by the sequences of level 3 successor
nodes

(x3(1, 2, l))l≥4, (x3(1, 3, l))l≥4, (x3(2, 3, l))l≥4

can be refined to generate an asymptotic modelK-equivalent to the unit vector basis
of �3∞. Thus by passing to subsequences, relabeling, and ignoring tiny perturbations
we get that for all 4 ≤ l1 < l2 < l3,

(4.21) ‖x3(1, 2, l1) + x3(1, 3, l2) + x3(2, 3, l3)‖ ≤ K.

This will ensure condition (4.14).
The second refinement is done as before. Fix a large N = N(K, ε2/2) and using

the c0 spreading models assumption pick sequences (x3(1, 2, l))N+4
l=4 , (x3(1, 3, l))N+4

l=4 ,

and (x3(2, 3, l))N+4
l=4 that are K-equivalent to the unit vector basis of �N∞. Refine

the tree by passing to subsequences of the successors of these so that the branch
functionals f(1,2,l)�j̄ , f(1,3,l)�j̄ , and f(2,3,l)�j̄ are stabilized. That is, their values

on the chosen nodes are independent of j̄. Then a similar combinatorial argument
as before yields (see the gap lemma below) a node from each sequence which we
relabel as x3(1, 2, 4), x3(1, 3, 4), and x3(2, 3, 4) so that

|f(1,2,4)�j̄(x
3(1, 3, 4))| < ε2/2, |f(1,2,4)�j̄(x

3(2, 3, 4))| < ε2/2,

|f(1,3,4)�j̄(x
3(1, 2, 4))| < ε2/2, |f(1,3,4)�j̄(x

3(2, 3, 4))| < ε2/2, and

|f(2,3,4)�j̄(x
3(1, 2, 4))| < ε2/2, |f(2,3,4)�j̄(x

3(1, 3, 4))| < ε2/2.

Let

y34 = x3(1, 2, 4) + x3(1, 3, 4) + x3(2, 3, 4).

Then the branch functionals through these nodes satisfy the desired gap properties:
For 1 ≤ t1 < t2 < 4, denoting x(t1,t2,4) = x1(t1) + x2(t1, t2) + x3(t1, t2, 4), and
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y(t1,t2,4) = y1t1 + y2t2 + y34 we have∣∣∣f(1,2,4)�j̄

(
y(1,2,4) − x(1,2,4)

)∣∣∣ ≤
∣∣∣f(1,2,4)�j̄

(
x3(1, 3, 4)

)∣∣∣+
∣∣∣f(1,2,4)�j̄

(
x3(2, 3, 4)

)∣∣∣
< ε2/2 + ε2/2,

∣∣∣f(1,3,4)�j̄

(
y(1,3,4) − x(1,3,4)

)∣∣∣
≤

∣∣∣f(1,3,4)�j̄

(
x2(2, 3)

)∣∣∣+
∣∣∣f(1,3,4)�j̄

(
x3(1, 2, 4)

)∣∣∣+
∣∣∣f(1,3,4)�j̄

(
x3(2, 3, 4)

)∣∣∣
< ε1 + ε2/2 + ε2/2,

and ∣∣∣f(2,3,4)�j̄

(
y(2,3,4) − x(2,3,4)

)∣∣∣
≤

∣∣∣f(2,3,4)�j̄

(
x2(1, 3)

)∣∣∣+
∣∣∣f(2,3,4)�j̄

(
x3(1, 2, 4)

)∣∣∣+
∣∣∣f(2,3,4)�j̄

(
x3(1, 3, 4)

)∣∣∣
< ε1 + ε2/2 + ε2/2.

As before, the idea is that fβ is large on the branch part of y1t1 + y2t2 + y34 and is
small on the off-branch part where β = (t1, t2, 4).

We now proceed inductively. Suppose that for k − 1 ≤ j < i and k ≤ n,

yk−1
j =

∑

m∈Ak−1
j

xk−1(t̄m)

are defined where xk−1(t̄m) are (k−1)-level nodes and Ak−1
j ⊂ N is finite. For each

t̄m = (t1, . . . , tk−1) denote the sum of the initial segment of a diagonal sequence of
the array constructed thus far by

yt̄m =

k−1∑
i=1

yiti

and the sum of the initial segment of the tree by

xt̄m =

k−1∑
i=1

xi(t1, . . . , tk−1).

For the induction hypothesis we also assume that the branch functionals ft̄m�j̄ for
the branches whose initial segments are t̄m satisfy the gap property:

(4.22)
∣∣∣ft̄m�j̄(yt̄m − xt̄m)

∣∣∣ <
k−1∑
i=1

εi.

Consider the array formed by the sequences of successor nodes

(xk(t̄1� l))l>max t̄1 , (x
k(t̄2� l))l>max t̄2 , . . . , (x

k(t̄M � l))l>max t̄M

for m ∈
⋃i−1

j=k−1A
k−1
j and where M = |

⋃i−1
j=k−1A

k−1
j |. The array is formed in the

order the nodes appear in the support of yk−1
k−1 , . . . , y

k−1
i−1 . By the main assumption

the array generates an asymptotic model K-equivalent to the unit vector basis of
�M∞ . Thus by passing to subsequences and relabeling we can assume that for all
max1≤m≤M max t̄m < l1 < l2 < · · · < lM ,

(4.23)

∥∥∥∥∥
M∑

m=1

xk(t̄m� lm)

∥∥∥∥∥ ≤ K.



ON SPREADING SEQUENCES AND ASYMPTOTIC STRUCTURES 6951

Fix a large N = N(K, εk/M) (determined by the lemma below). For each
1 ≤ m ≤ M , using the fact that every sequence of successor nodes generates a c0
spreading model, pick

(
xk(t̄m� l)

)
l∈Bm

, |Bm| = N , which is K-equivalent to the

unit vector basis of �N∞. For all m and l ∈ Bm, by passing to a subsequence of
the successors (xk+1(t̄m� l�j))j of xk(t̄m� l) we can assume that all the branch
functionals ft̄m�l�j̄ are stabilized on the chosen nodes. That is, for all j̄ and j̄′,
ignoring tiny perturbations, we have

ft̄m�l�j̄(x
k(t̄m′ � l′)) = ft̄m�l�j̄′(x

k(t̄m′ � l′))

for all m �= m′ and l ∈ Bm, l′ ∈ Bm′ . (Note: If k = n, the last level of the tree,
then all the branch functionals are already determined.)

Claim. For all 1 ≤ m ≤ M there exist lm ∈ Bm such that for all m �= m′,

(4.24)
∣∣∣ft̄m�lm�j̄(x

k(t̄m′ � lm′))
∣∣∣ < εk/M.

This is a consequence of the following combinatorial lemma (for ε = εk/M).

Gap lemma. Let ε > 0, M ∈ N. Then there exists N = N(ε,M,K) such that
given sequences (x1

l )
N
l=1, . . . , (x

M
l )Nl=1 each K-equivalent to the unit vector basis of

�N∞ and functionals (f1
l )

N
l=1, . . . , (f

M
l )Nl=1 of norm at most 1 there exists l1, . . . , lM

such that ∣∣∣f j
lj
(xi

li)
∣∣∣ < ε, for all i �= j.

Proof. The proof is by induction on M . For the base case M = 2 we prove the
following, which is a slight generalization of (4.18): For all N0 ∈ N there exists
N = N(N0, ε,K) so that whenever (x1

l )
N
l=1, (x

2
l )

N
l=1 and (f1

l )
N
l=1, (f

2
l )

N
l=1 are as in

the statement there exist A1, A2 ⊂ {1, . . . , N} with |A1|, |A2| ≥ N0 such that for
all j ∈ A1 and i ∈ A2 we have |f1

j (x
2
i )| < ε and |f2

i (x
1
j)| < ε.

Fix N ≥ N0(1 + K/ε + K2/ε2). For any functional f of norm at most 1
and sequence (xi)

n
1 K-equivalent to the unit vector basis �n∞, we have, by (4.19),

|{i : |f(xi)| ≥ ε}| ≤ K/ε. Thus for N0(1 +K/ε) ≤ N1 ≤ N0(1 +K/ε) + 1,

∣∣∣
N1⋂
l=1

{
1 ≤ i ≤ N : |f1

l (x
2
i )| < ε

}∣∣∣ ≥ N −N1K/ε ≥ N0.

Let A2 be a subset of
⋂N1

l=1

{
1 ≤ i ≤ N : |f1

l (x
2
i )| < ε

}
with cardinality N0, and we

have

|A1| =
∣∣∣
⋂
l∈A2

{
1 ≤ i ≤ N1 : |f2

l (x
1
i )| < ε

}∣∣∣ ≥ N1 −N0K/ε ≥ N0,

as desired.
For the induction suppose that for all N0 ∈ N there exists N and A1, . . . , Am

with |Ai| ≥ N0 so that for all li ∈ Ai,∣∣∣f j
lj
(xi

li)
∣∣∣ < ε, for all 1 ≤ i �= j ≤ m.

Fix N0 ≥ 1 + K/ε + K2/ε2 and apply the argument in the base case for the

pairs (xi
l)l∈Ai

, (xm+1
l )N0

l=1 and (f i
l )l∈Ai

, (fm+1
l )N0

l=1 for 1 ≤ i ≤ m to get the desired
(m+ 1)-tuple l1, . . . , lm+1 so that∣∣∣f j

lj
(xi

li)
∣∣∣ < ε, for all 1 ≤ i �= j ≤ m+ 1.

�
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Consider l1, . . . , lM from the Claim. We discard the nodes xl(t̄m� l), l ∈ Bm,
and l �= lm and relabel the rest so that for all 1 ≤ m ≤ M , xk(t̄m� lm) = xk(t̄m� i),
where i = maxm max t̄m + 1, and put

(4.25) yki =
i−1∑

j=k−1

∑

m∈Ak−1
j

xk(t̄m� i).

By (4.23) ‖yki ‖ ≤ K. By the induction hypothesis (4.22) and the Claim (4.24)
we have

(4.26)
∣∣∣f(t̄m,i,j̄)

(
(yt̄m + yki )− (xt̄m + xk(t̄m� i))

)∣∣∣ <
k−1∑
i=1

εi +

M∑
m=1

εk/M =

k∑
i=1

εi

for all 1 ≤ m ≤ M and j̄, as desired. This concludes the construction of the array.
Now let β = (i1, . . . , in) be arbitrary. Then by the construction and our main

assumption we have

fβ

( n∑
k=1

ykik

)
≥ fβ

( n∑
k=1

xk(i1, . . . , ik)
)
−
∣∣∣fβ

( n∑
k=1

xk(i1, . . . , ik)−
n∑

k=1

ykik

)∣∣∣

≥ C −
n∑

k=1

εk > C − ε. �

The proof is completed.
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