Paths to uniqueness of critical points and applications to partial differential equations
HTML articles powered by AMS MathViewer
- by Denis Bonheure, Juraj Földes, Ederson Moreira dos Santos, Alberto Saldaña and Hugo Tavares PDF
- Trans. Amer. Math. Soc. 370 (2018), 7081-7127 Request permission
Abstract:
We prove a general criterion for the uniqueness of critical points of a functional in the presence of constraints such as positivity, boundedness, or fixed mass. Our method relies on convexity properties along suitable paths and significantly generalizes well-known uniqueness theorems. Due to the flexibility in the construction of the paths, our approach does not depend on the convexity of the domain and can be used to prove the uniqueness in subsets, even if it does not hold globally. The results apply to all critical points and not only to minimizers, providing the uniqueness of solutions to the corresponding Euler-Lagrange equations. For functionals emerging from elliptic problems, the assumptions of our abstract theorems follow from maximum principles, decay properties, and novel general inequalities. To illustrate our method we present a unified proof of known results, as well as new theorems for mean-curvature type operators, fractional Laplacians, Hamiltonian systems, Schrödinger equations, and Gross-Pitaevskii systems.References
- Shinji Adachi and Tatsuya Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal. 75 (2012), no. 2, 819–833. MR 2847460, DOI 10.1016/j.na.2011.09.015
- Amandine Aftalion, Benedetta Noris, and Christos Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation, Comm. Math. Phys. 336 (2015), no. 2, 509–579. MR 3322380, DOI 10.1007/s00220-014-2281-9
- Nail Akhmediev, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), no. 13, 2661–2664.
- Stan Alama, Lia Bronsard, and Petru Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, J. Funct. Anal. 256 (2009), no. 4, 1118–1136. MR 2488336, DOI 10.1016/j.jfa.2008.10.021
- Yaniv Almog, Leonid Berlyand, Dmitry Golovaty, and Itai Shafrir, Radially symmetric minimizers for a $p$-Ginzburg Landau type energy in $\Bbb R^2$, Calc. Var. Partial Differential Equations 42 (2011), no. 3-4, 517–546. MR 2846265, DOI 10.1007/s00526-011-0396-9
- Herbert Amann, A uniqueness theorem for nonlinear elliptic boundary value problems, Arch. Rational Mech. Anal. 44 (1971/72), 178–181. MR 410079, DOI 10.1007/BF00250776
- Aomar Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the $p$-Laplacian, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), no. 1, 65–75 (English, with French summary). MR 971814, DOI 10.5802/afst.649
- Robert Bartnik and Leon Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), no. 1, 131–152. MR 680653, DOI 10.1007/BF01211061
- Thomas Bartsch, Louis Jeanjean, and Nicola Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\Bbb {R}^3$, J. Math. Pures Appl. (9) 106 (2016), no. 4, 583–614 (English, with English and French summaries). MR 3539467, DOI 10.1016/j.matpur.2016.03.004
- Thomas Bartsch and Michel Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3555–3561. MR 1301008, DOI 10.1090/S0002-9939-1995-1301008-2
- M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the $p$-Laplace operator, Manuscripta Math. 109 (2002), no. 2, 229–231. MR 1935031, DOI 10.1007/s00229-002-0305-9
- Rafael Benguria, Haïm Brézis, and Elliott H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167–180. MR 612246, DOI 10.1007/BF01942059
- C. Bereanu, P. Jebelean, and J. Mawhin, The Dirichlet problem with mean curvature operator in Minkowski space—a variational approach, Adv. Nonlinear Stud. 14 (2014), no. 2, 315–326. MR 3194356, DOI 10.1515/ans-2014-0204
- Henri Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Functional Analysis 40 (1981), no. 1, 1–29 (French, with English summary). MR 607588, DOI 10.1016/0022-1236(81)90069-0
- Melvyn S. Berger, Nonlinear problems with exactly three solutions, Indiana Univ. Math. J. 28 (1979), no. 4, 689–698. MR 542952, DOI 10.1512/iumj.1979.28.28047
- Julián Fernández Bonder and Julio D. Rossi, Existence results for the $p$-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001), no. 1, 195–223. MR 1864315, DOI 10.1006/jmaa.2001.7609
- Denis Bonheure, Pietro d’Avenia, and Alessio Pomponio, On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys. 346 (2016), no. 3, 877–906. MR 3537339, DOI 10.1007/s00220-016-2586-y
- D. Bonheure, E. Moreira dos Santos, and H. Tavares, Hamiltonian elliptic systems: a guide to variational frameworks, Port. Math. 71 (2014), no. 3-4, 301–395. MR 3298466, DOI 10.4171/PM/1954
- Denis Bonheure, Patrick Habets, Franco Obersnel, and Pierpaolo Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations 243 (2007), no. 2, 208–237. MR 2371786, DOI 10.1016/j.jde.2007.05.031
- Barbara Brandolini and Cristina Trombetti, A symmetrization result for Monge-Ampère type equations, Math. Nachr. 280 (2007), no. 5-6, 467–478. MR 2308477, DOI 10.1002/mana.200410495
- Lorenzo Brasco and Giovanni Franzina, A note on positive eigenfunctions and hidden convexity, Arch. Math. (Basel) 99 (2012), no. 4, 367–374. MR 2990155, DOI 10.1007/s00013-012-0441-8
- Haïm Brezis and Luc Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55–64. MR 820658, DOI 10.1016/0362-546X(86)90011-8
- Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. MR 3469920, DOI 10.1007/978-3-319-28739-3
- Jaeyoung Byeon and Zhi-Qiang Wang, On the Hénon equation: asymptotic profile of ground states. I, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 6, 803–828 (English, with English and French summaries). MR 2271694, DOI 10.1016/j.anihpc.2006.04.001
- Shu-Ming Chang, Chang-Shou Lin, Tai-Chia Lin, and Wen-Wei Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D 196 (2004), no. 3-4, 341–361. MR 2090357, DOI 10.1016/j.physd.2004.06.002
- Ph. Clément and R. C. A. M. Van der Vorst, On a semilinear elliptic system, Differential Integral Equations 8 (1995), no. 6, 1317–1329. MR 1329843
- Mathieu Colin and Louis Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. 56 (2004), no. 2, 213–226. MR 2029068, DOI 10.1016/j.na.2003.09.008
- Mathieu Colin, Louis Jeanjean, and Marco Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity 23 (2010), no. 6, 1353–1385. MR 2646070, DOI 10.1088/0951-7715/23/6/006
- Chiara Corsato, Franco Obersnel, Pierpaolo Omari, and Sabrina Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl. 405 (2013), no. 1, 227–239. MR 3053503, DOI 10.1016/j.jmaa.2013.04.003
- Robert Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), no. 5, Ser. A: Theory Methods, 559–568. MR 1727272, DOI 10.1016/S0362-546X(98)00221-1
- Djairo Guedes de Figueiredo, Positive solutions of semilinear elliptic problems, Differential equations (S ao Paulo, 1981) Lecture Notes in Math., vol. 957, Springer, Berlin-New York, 1982, pp. 34–87. MR 679140
- François de Thélin, Sur l’espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 8, 355–358 (French, with English summary). MR 860838
- Francesco Della Pietra and Nunzia Gavitone, Anisotropic elliptic problems involving Hardy-type potentials, J. Math. Anal. Appl. 397 (2013), no. 2, 800–813. MR 2979615, DOI 10.1016/j.jmaa.2012.08.008
- Francesco Della Pietra and Nunzia Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal. 41 (2014), no. 4, 1147–1166. MR 3269718, DOI 10.1007/s11118-014-9412-y
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Jesús Ildefonso Díaz and José Evaristo Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 12, 521–524 (French, with English summary). MR 916325
- E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. MR 709038, DOI 10.1016/0362-546X(83)90061-5
- Mouhamed Moustapha Fall and Sven Jarohs, Overdetermined problems with fractional Laplacian, ESAIM Control Optim. Calc. Var. 21 (2015), no. 4, 924–938. MR 3395749, DOI 10.1051/cocv/2014048
- Vincenzo Ferone and Basilio Messano, A symmetrization result for nonlinear elliptic equations, Rev. Mat. Complut. 17 (2004), no. 2, 261–276. MR 2083955, DOI 10.5209/rev_{R}EMA.2004.v17.n2.16718
- Robert Finn, Equilibrium capillary surfaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. MR 816345, DOI 10.1007/978-1-4613-8584-4
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- Patrick Habets and Pierpaolo Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math. 9 (2007), no. 5, 701–730. MR 2361738, DOI 10.1142/S0219199707002617
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Michel Hénon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics 24 (1973), 229–238.
- Peter Hess, On uniqueness of positive solutions of nonlinear elliptic boundary value problems, Math. Z. 154 (1977), no. 1, 17–18. MR 442468, DOI 10.1007/BF01215108
- Sven Jarohs, Symmetry via maximum principles for nonlocal nonlinear boundary value problems, PhD thesis, Goethe University of Frankfurt, 2015.
- B. Kawohl and M. Novaga, The $p$-Laplace eigenvalue problem as $p\to 1$ and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), no. 3, 623–634. MR 2431415
- Bernd Kawohl and Stefan Krömer, Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential, Adv. Calc. Var. 5 (2012), no. 4, 427–432. MR 2988315, DOI 10.1515/acv.2011.020
- Herbert B. Keller and Donald S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361–1376. MR 0213694
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Alexander Kurganov and Philip Rosenau, On reaction processes with saturating diffusion, Nonlinearity 19 (2006), no. 1, 171–193. MR 2191624, DOI 10.1088/0951-7715/19/1/009
- Vy Khoi Le, Some existence results on nontrivial solutions of the prescribed mean curvature equation, Adv. Nonlinear Stud. 5 (2005), no. 2, 133–161. MR 2126734, DOI 10.1515/ans-2005-0201
- Elliott Lieb, Robert Seiringer, and Jakob Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), no. 4, 043602.
- Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR 969499, DOI 10.1016/0362-546X(88)90053-3
- Erik Lindgren and Peter Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 795–826. MR 3148135, DOI 10.1007/s00526-013-0600-1
- Peter Lindqvist, On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, DOI 10.1090/S0002-9939-1990-1007505-7
- Jia-quan Liu, Ya-qi Wang, and Zhi-Qiang Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations 187 (2003), no. 2, 473–493. MR 1949452, DOI 10.1016/S0022-0396(02)00064-5
- Jiaquan Liu and Zhi-Qiang Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc. 131 (2003), no. 2, 441–448. MR 1933335, DOI 10.1090/S0002-9939-02-06783-7
- Marcello Lucia and S. Prashanth, Simplicity of principal eigenvalue for $p$-Laplace operator with singular indefinite weight, Arch. Math. (Basel) 86 (2006), no. 1, 79–89. MR 2201301, DOI 10.1007/s00013-005-1512-x
- Sandra Martínez and Julio D. Rossi, Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7 (2002), no. 5, 287–293. MR 1908191, DOI 10.1155/S108533750200088X
- Marcos Montenegro, The construction of principal spectral curves for Lane-Emden systems and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 193–229. MR 1765542
- Vitaly Moroz and Jean Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations 254 (2013), no. 8, 3089–3145. MR 3020872, DOI 10.1016/j.jde.2012.12.019
- Benedetta Noris, Hugo Tavares, Susanna Terracini, and Gianmaria Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1245–1273. MR 2928850, DOI 10.4171/JEMS/332
- Benedetta Noris, Hugo Tavares, and Gianmaria Verzini, Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 6085–6112. MR 3393268, DOI 10.3934/dcds.2015.35.6085
- Franco Obersnel and Pierpaolo Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Differential Equations 249 (2010), no. 7, 1674–1725. MR 2677812, DOI 10.1016/j.jde.2010.07.001
- Franco Obersnel, Pierpaolo Omari, and Sabrina Rivetti, Asymmetric Poincaré inequalities and solvability of capillarity problems, J. Funct. Anal. 267 (2014), no. 3, 842–900. MR 3212725, DOI 10.1016/j.jfa.2014.03.011
- Markus Poppenberg, Klaus Schmitt, and Zhi-Qiang Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 329–344. MR 1899450, DOI 10.1007/s005260100105
- Wolfgang Reichel, Uniqueness theorems for variational problems by the method of transformation groups, Lecture Notes in Mathematics, vol. 1841, Springer-Verlag, Berlin, 2004. MR 2068382, DOI 10.1007/b96984
- Xavier Ros-Oton and Joaquim Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275–302 (English, with English and French summaries). MR 3168912, DOI 10.1016/j.matpur.2013.06.003
- Shigeru Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 403–421 (1988). MR 951227
- Alessandro Selvitella, The dual approach to stationary and evolution quasilinear PDEs, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 4, 22. MR 3459130, DOI 10.1007/s00030-016-0367-0
- Raffaella Servadei and Enrico Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887–898. MR 2879266, DOI 10.1016/j.jmaa.2011.12.032
- Boyan Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\Bbb R^n$, Comm. Math. Phys. 271 (2007), no. 1, 199–221. MR 2283958, DOI 10.1007/s00220-006-0179-x
- Didier Smets, Michel Willem, and Jiabao Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math. 4 (2002), no. 3, 467–480. MR 1918755, DOI 10.1142/S0219199702000725
- Nicola Soave and Hugo Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differential Equations 261 (2016), no. 1, 505–537. MR 3487267, DOI 10.1016/j.jde.2016.03.015
- Nicola Soave, Hugo Tavares, Susanna Terracini, and Alessandro Zilio, Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping, Nonlinear Anal. 138 (2016), 388–427. MR 3485154, DOI 10.1016/j.na.2015.10.023
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998), no. 26, 5718–5721.
- Anna Tuhola-Kujanpää and Harri Varpanen, The $p$-Laplacian with respect to measures, J. Math. Anal. Appl. 400 (2013), no. 1, 86–95. MR 3003966, DOI 10.1016/j.jmaa.2012.11.015
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
Additional Information
- Denis Bonheure
- Affiliation: Département de Mathématique, Université libre de Bruxelles, CP 214, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
- MR Author ID: 682372
- Email: denis.bonheure@ulb.ac.be
- Juraj Földes
- Affiliation: Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall, Charlottesville, Virginia 22904
- Email: foldes@virginia.edu
- Ederson Moreira dos Santos
- Affiliation: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, CEP 13560-970, São Carlos - SP, Brazil
- MR Author ID: 848409
- Email: ederson@icmc.usp.br
- Alberto Saldaña
- Affiliation: CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- ORCID: 0000-0002-4134-0082
- Email: alberto.saldana@tecnico.ulisboa.pt
- Hugo Tavares
- Affiliation: CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal – and – Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Edifício C6, Piso 1, Campo Grande 1749-016 Lisboa, Portugal
- MR Author ID: 823208
- Email: hrtavares@ciencias.ulisboa.pt
- Received by editor(s): August 16, 2016
- Received by editor(s) in revised form: February 24, 2017
- Published electronically: June 7, 2018
- Additional Notes: The first author was supported by INRIA - Team MEPHYSTO and the projects PDR T.1110.14F (FNRS) and ARC AUWB-2012-12/17-ULB1- IAPAS
The first, second, and fourth authors were supported by the project MIS F.4508.14 (FNRS)
The first and third authors were partially supported by a bilateral agreement FNRS/CNPq
The first and fifth authors were supported by the project ERC Advanced Grant 2013 no. 339958 “Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT”
The third author was partially supported by CNPq projects 309291/2012-7, 490250/2013-0, and 307358/2015-1 and FAPESP projects 2014/03805-2 and 2015/17096-6
The fifth author was supported by FCT/Portugal through the program Investigador FCT and through UID/MAT/04459/2013 - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7081-7127
- MSC (2010): Primary 46N10, 49K20, 35J10, 35J15, 35J47, 35J62
- DOI: https://doi.org/10.1090/tran/7231
- MathSciNet review: 3841843