Weighted floating bodies and polytopal approximation
Authors:
Florian Besau, Monika Ludwig and Elisabeth M. Werner
Journal:
Trans. Amer. Math. Soc. 370 (2018), 7129-7148
MSC (2010):
Primary 52A38; Secondary 52A27, 52A55, 53C60, 60D05.
DOI:
https://doi.org/10.1090/tran/7233
Published electronically:
April 4, 2018
MathSciNet review:
3841844
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Asymptotic results for weighted floating bodies are established and used to obtain new proofs for the existence of floating areas on the sphere and in hyperbolic space and to establish the existence of floating areas in Hilbert geometries. Results on weighted best and random approximation and the new approach to floating areas are combined to derive new asymptotic approximation results on the sphere, in hyperbolic space, and in Hilbert geometries.
- Imre Bárány, Random polytopes in smooth convex bodies, Mathematika 39 (1992), no. 1, 81–92. MR 1176473, DOI https://doi.org/10.1112/S0025579300006872
- Imre Bárány, Daniel Hug, Matthias Reitzner, and Rolf Schneider, Random points in halfspheres, Random Structures Algorithms 50 (2017), no. 1, 3–22. MR 3583024, DOI https://doi.org/10.1002/rsa.20644
- I. Bárány and D. G. Larman, Convex bodies, economic cap coverings, random polytopes, Mathematika 35 (1988), no. 2, 274–291. MR 986636, DOI https://doi.org/10.1112/S0025579300015266
- Gautier Berck, Andreas Bernig, and Constantin Vernicos, Volume entropy of Hilbert geometries, Pacific J. Math. 245 (2010), no. 2, 201–225. MR 2608435, DOI https://doi.org/10.2140/pjm.2010.245.201
- Florian Besau and Franz Schuster, Binary operations in spherical convex geometry, Indiana Univ. Math. J. 65 (2016), no. 4, 1263–1288. MR 3549201, DOI https://doi.org/10.1512/iumj.2016.65.5867
- Florian Besau and Elisabeth M. Werner, The spherical convex floating body, Adv. Math. 301 (2016), 867–901. MR 3539392, DOI https://doi.org/10.1016/j.aim.2016.07.001
- Florian Besau and Elisabeth M. Werner, The floating body in real space forms, arXiv:1606.07690, J. Differential Geom., in press.
- Károly Böröczky Jr., Approximation of general smooth convex bodies, Adv. Math. 153 (2000), no. 2, 325–341. MR 1770932, DOI https://doi.org/10.1006/aima.1999.1904
- Károly J. Böröczky, Ferenc Fodor, and Daniel Hug, The mean width of random polytopes circumscribed around a convex body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499–523. MR 2603007, DOI https://doi.org/10.1112/jlms/jdp077
- Károly Böröczky Jr. and Monika Ludwig, Approximation of convex bodies and a momentum lemma for power diagrams, Monatsh. Math. 127 (1999), no. 2, 101–110. MR 1669812, DOI https://doi.org/10.1007/s006050050026
- László Fejes Tóth, Approximation by polygons and polyhedra, Bull. Amer. Math. Soc. 54 (1948), 431–438. MR 24640, DOI https://doi.org/10.1090/S0002-9904-1948-09022-X
- Fuchang Gao, Daniel Hug, and Rolf Schneider, Intrinsic volumes and polar sets in spherical space, Math. Notae 41 (2001/02), 159–176 (2003). Homage to Luis Santaló. Vol. 1 (Spanish). MR 2049442
- Stefan Glasauer and Peter M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies. III, Forum Math. 9 (1997), no. 4, 383–404. MR 1457133, DOI https://doi.org/10.1515/form.1997.9.383
- Peter M. Gruber, Aspects of approximation of convex bodies, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 319–345. MR 1242984
- Peter M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies. II, Forum Math. 5 (1993), no. 6, 521–538. MR 1242887, DOI https://doi.org/10.1515/form.1993.5.521
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Daniel Hug, Random polytopes, Stochastic geometry, spatial statistics and random fields, Lecture Notes in Math., vol. 2068, Springer, Heidelberg, 2013, pp. 205–238. MR 3059649, DOI https://doi.org/10.1007/978-3-642-33305-7_7
- Kurt Leichtweiß, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), no. 4, 429–464 (German). MR 860732, DOI https://doi.org/10.1007/BF01168504
- Monika Ludwig, Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika 46 (1999), no. 1, 103–125. MR 1750407, DOI https://doi.org/10.1112/S0025579300007609
- Monika Ludwig and Matthias Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999), no. 1, 138–172. MR 1725817, DOI https://doi.org/10.1006/aima.1999.1832
- Monika Ludwig and Matthias Reitzner, A classification of ${\rm SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI https://doi.org/10.4007/annals.2010.172.1223
- Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 1087796, DOI https://doi.org/10.1016/0001-8708%2891%2990049-D
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI https://doi.org/10.1006/aima.1996.0022
- Mathieu Meyer and Elisabeth Werner, On the $p$-affine surface area, Adv. Math. 152 (2000), no. 2, 288–313. MR 1764106, DOI https://doi.org/10.1006/aima.1999.1902
- Athanase Papadopoulos and Marc Troyanov, Harmonic symmetrization of convex sets and of Finsler structures, with applications to Hilbert geometry, Expo. Math. 27 (2009), no. 2, 109–124. MR 2518619, DOI https://doi.org/10.1016/j.exmath.2008.10.001
- Athanase Papadopoulos and Marc Troyanov (eds.), Handbook of Hilbert geometry, IRMA Lectures in Mathematics and Theoretical Physics, vol. 22, European Mathematical Society (EMS), Zürich, 2014. MR 3309067
- Matthias Reitzner, Random polytopes, New perspectives in stochastic geometry, Oxford Univ. Press, Oxford, 2010, pp. 45–76. MR 2654675
- A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählten Punkten, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1963), 75–84 (1963) (German). MR 156262, DOI https://doi.org/10.1007/BF00535300
- A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählten Punkten. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 138–147 (1964) (German). MR 169139, DOI https://doi.org/10.1007/BF00535973
- A. Rényi and R. Sulanke, Zufällige konvexe Polygone in einem Ringgebiet, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 146–157 (German). MR 229272, DOI https://doi.org/10.1007/BF01851005
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326
- Carsten Schütt, Random polytopes and affine surface area, Math. Nachr. 170 (1994), 227–249. MR 1302377, DOI https://doi.org/10.1002/mana.19941700117
- Carsten Schütt and Elisabeth Werner, The convex floating body, Math. Scand. 66 (1990), no. 2, 275–290. MR 1075144, DOI https://doi.org/10.7146/math.scand.a-12311
- Carsten Schütt and Elisabeth Werner, Surface bodies and $p$-affine surface area, Adv. Math. 187 (2004), no. 1, 98–145. MR 2074173, DOI https://doi.org/10.1016/j.aim.2003.07.018
- Elisabeth Werner, The $p$-affine surface area and geometric interpretations, Rend. Circ. Mat. Palermo (2) Suppl. 70 (2002), 367–382. IV International Conference in “Stochastic Geometry, Convex Bodies, Empirical Measures $\&$ Applications to Engineering Science”, Vol. II (Tropea, 2001). MR 1962608
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A38, 52A27, 52A55, 53C60, 60D05.
Retrieve articles in all journals with MSC (2010): 52A38, 52A27, 52A55, 53C60, 60D05.
Additional Information
Florian Besau
Affiliation:
Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Strasse 10, 60054 Frankfurt, Germany
MR Author ID:
1174501
ORCID:
0000-0002-6596-6127
Email:
besau@math.uni-frankfurt.de
Monika Ludwig
Affiliation:
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10/1046, 1040 Wien, Austria
MR Author ID:
353373
Email:
monika.ludwig@tuwien.ac.at
Elisabeth M. Werner
Affiliation:
Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
MR Author ID:
252029
ORCID:
0000-0001-9602-2172
Email:
elisabeth.werner@case.edu
Received by editor(s):
November 13, 2016
Received by editor(s) in revised form:
March 1, 2017
Published electronically:
April 4, 2018
Additional Notes:
The authors thank Juan Carlos Alvarez Paiva and Matthias Reitzner for helpful discussions.
The work of the second author was supported, in part, by Austrian Science Fund (FWF) Project P25515-N25.
The third author was partially supported by NSF grant 1504701.
Article copyright:
© Copyright 2018
American Mathematical Society