On the strict monotonicity of the first eigenvalue of the $p$-Laplacian on annuli
HTML articles powered by AMS MathViewer
- by T. V. Anoop, Vladimir Bobkov and Sarath Sasi PDF
- Trans. Amer. Math. Soc. 370 (2018), 7181-7199 Request permission
Abstract:
Let $B_1$ be a ball in $\mathbb {R}^N$ centred at the origin and let $B_0$ be a smaller ball compactly contained in $B_1$. For $p\in (1, \infty )$, using the shape derivative method, we show that the first eigenvalue of the $p$-Laplacian in annulus $B_1\setminus \overline {B_0}$ strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as $p \to 1$ and $p \to \infty$ are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the $p$-Laplacian on bounded radial domains.References
- T. V. Anoop, P. Drábek, and Sarath Sasi, On the structure of the second eigenfunctions of the $p$-Laplacian on a ball, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2503–2512. MR 3477066, DOI 10.1090/proc/12902
- Mark S. Ashbaugh and Rafael D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 105–139. MR 2310200, DOI 10.1090/pspum/076.1/2310200
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the $p$-Laplacian, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), no. 1, 65–75 (English, with French summary). MR 971814, DOI 10.5802/afst.649
- Thomas Bartsch and Marco Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17 (2006), no. 1, 69–85. MR 2237744, DOI 10.4171/RLM/454
- Thomas Bartsch, Tobias Weth, and Michel Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. 96 (2005), 1–18. MR 2177179, DOI 10.1007/BF02787822
- Jiří Benedikt, Pavel Drábek, and Petr Girg, The first nontrivial curve in the Fučík spectrum of the Dirichlet Laplacian on the ball consists of nonradial eigenvalues, Bound. Value Probl. (2011), 2011:27, 9. MR 2853863
- H. Bueno and G. Ercole, On the $p$-torsion functions of an annulus, Asymptot. Anal. 92 (2015), no. 3-4, 235–247. MR 3371114, DOI 10.3233/asy-141275
- Anisa M. H. Chorwadwala and Rajesh Mahadevan, An eigenvalue optimization problem for the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 6, 1145–1151. MR 3427602, DOI 10.1017/S0308210515000232
- Anisa M. H. Chorwadwala, Rajesh Mahadevan, and Francisco Toledo, On the Faber-Krahn inequality for the Dirichlet $p$-Laplacian, ESAIM Control Optim. Calc. Var. 21 (2015), no. 1, 60–72. MR 3348415, DOI 10.1051/cocv/2014017
- M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations 159 (1999), no. 1, 212–238. MR 1726923, DOI 10.1006/jdeq.1999.3645
- Mabel Cuesta, Djairo G. De Figueiredo, and Jean-Pierre Gossez, A nodal domain property for the $p$-Laplacian, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 669–673 (English, with English and French summaries). MR 1763908, DOI 10.1016/S0764-4442(00)00245-7
- P. R. Garabedian and M. Schiffer, Convexity of domain functionals, J. Analyse Math. 2 (1953), 281–368. MR 60117, DOI 10.1007/BF02825640
- Jorge García Melián and José Sabina de Lis, On the perturbation of eigenvalues for the $p$-Laplacian, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 893–898 (English, with English and French summaries). MR 1838765, DOI 10.1016/S0764-4442(01)01956-5
- Evans M. Harrell II, Pawel Kröger, and Kazuhiro Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal. 33 (2001), no. 1, 240–259. MR 1858877, DOI 10.1137/S0036141099357574
- Antoine Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. MR 2251558, DOI 10.1007/3-7643-7706-2
- Joseph Hersch, The method of interior parallels applied to polygonal or multiply connected membranes, Pacific J. Math. 13 (1963), 1229–1238. MR 163493, DOI 10.2140/pjm.1963.13.1229
- Petri Juutinen, Peter Lindqvist, and Juan J. Manfredi, The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), no. 2, 89–105. MR 1716563, DOI 10.1007/s002050050157
- B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), no. 4, 659–667. MR 2062882
- S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected domains, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 617–624. MR 1983689, DOI 10.1017/S0308210500002560
- J. C. Navarro, J. D. Rossi, A. San Antolin, and N. Saintier, The dependence of the first eigenvalue of the infinity Laplacian with respect to the domain, Glasg. Math. J. 56 (2014), no. 2, 241–249. MR 3187895, DOI 10.1017/S0017089513000219
- A. I. Nazarov, The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers, J. Math. Sci. (New York) 102 (2000), no. 5, 4473–4486. Function theory and applications. MR 1807067, DOI 10.1007/BF02672901
- Enea Parini and Nicolas Saintier, Shape derivative of the Cheeger constant, ESAIM Control Optim. Calc. Var. 21 (2015), no. 2, 348–358. MR 3348401, DOI 10.1051/cocv/2014018
- A. G. Ramm and P. N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus, Math. Inequal. Appl. 1 (1998), no. 4, 559–563. MR 1646670, DOI 10.7153/mia-01-54
- Jan Sokołowski and Jean-Paul Zolésio, Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16, Springer-Verlag, Berlin, 1992. Shape sensitivity analysis. MR 1215733, DOI 10.1007/978-3-642-58106-9
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
Additional Information
- T. V. Anoop
- Affiliation: Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India
- Email: anoop@iitm.ac.in
- Vladimir Bobkov
- Affiliation: Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, Plzeň 306 14, Czech Republic — and — Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences, Chernyshevsky str. 112, Ufa 450008, Russia
- MR Author ID: 1040393
- Email: bobkov@kma.zcu.cz
- Sarath Sasi
- Affiliation: School of Mathematical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni 752050, India
- Address at time of publication: Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhipara, Palakkad 678557, Kerala, India
- Email: sarath@iitpkd.ac.in
- Received by editor(s): November 10, 2016
- Received by editor(s) in revised form: March 15, 2017
- Published electronically: June 26, 2018
- Additional Notes: The second author was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7181-7199
- MSC (2010): Primary 35J92, 35P30, 35B06, 49R05
- DOI: https://doi.org/10.1090/tran/7241
- MathSciNet review: 3841846