Uniform resolvent and Strichartz estimates for Schrödinger equations with critical singularities
Authors:
Jean-Marc Bouclet and Haruya Mizutani
Journal:
Trans. Amer. Math. Soc. 370 (2018), 7293-7333
MSC (2010):
Primary 35Q41; Secondary 35B45
DOI:
https://doi.org/10.1090/tran/7243
Published electronically:
May 9, 2018
MathSciNet review:
3841849
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: This paper deals with global dispersive properties of Schrödinger equations with real-valued potentials exhibiting critical singularities, where our class of potentials is more general than inverse-square type potentials and includes several anisotropic potentials. We first prove weighted resolvent estimates, which are uniform with respect to the energy, with a large class of weight functions in Morrey-Campanato spaces. Uniform Sobolev inequalities in Lorentz spaces are also studied. The proof employs the iterated resolvent identity and a classical multiplier technique. As an application, the full set of global-in-time Strichartz estimates including the endpoint case, is derived. In the proof of Strichartz estimates, we develop a general criterion on perturbations ensuring that both homogeneous and inhomogeneous endpoint estimates can be recovered from resolvent estimates. Finally, we also investigate uniform resolvent estimates for long range repulsive potentials with critical singularities by using an elementary version of the Mourre theory.
- [1] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2798103
- [2] Valeria Banica and Thomas Duyckaerts, Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds, Dyn. Partial Differ. Equ. 4 (2007), no. 4, 335–359. MR 2376801, https://doi.org/10.4310/DPDE.2007.v4.n4.a3
- [3] Juan Antonio Barceló, Luis Vega, and Miren Zubeldia, The forward problem for the electromagnetic Helmholtz equation with critical singularities, Adv. Math. 240 (2013), 636–671. MR 3046321, https://doi.org/10.1016/j.aim.2013.03.012
- [4] Marius Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J. 159 (2011), no. 3, 417–477. MR 2831875, https://doi.org/10.1215/00127094-1433394
- [5] Marius Beceanu and Michael Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys. 314 (2012), no. 2, 471–481. MR 2958960, https://doi.org/10.1007/s00220-012-1435-x
- [6] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
- [7] Jean-Marc Bouclet and Nikolay Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math. 129 (2007), no. 6, 1565–1609. MR 2369889, https://doi.org/10.1353/ajm.2007.0039
- [8] Anne Boutet de Monvel, Galina Kazantseva, and Marius Mantoiu, Some anisotropic Schrödinger operators without singular spectrum, Helv. Phys. Acta 69 (1996), no. 1, 13–25. MR 1398558
- [9] Anne Boutet de Monvel and Marius Mantoiu, The method of the weakly conjugate operator, Inverse and algebraic quantum scattering theory (Lake Balaton, 1996) Lecture Notes in Phys., vol. 488, Springer, Berlin, 1997, pp. 204–226. MR 1603530, https://doi.org/10.1007/BFb0104937
- [10] Nicolas Burq, Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal. 203 (2003), no. 2, 519–549. MR 2003358, https://doi.org/10.1016/S0022-1236(03)00238-6
- [11] Nicolas Burq, Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J. 53 (2004), no. 6, 1665–1680. MR 2106340, https://doi.org/10.1512/iumj.2004.53.2541
- [12] Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047
- [13] Daniele Cassani, Bernhard Ruf, and Cristina Tarsi, Optimal Sobolev type inequalities in Lorentz spaces, Potential Anal. 39 (2013), no. 3, 265–285. MR 3102987, https://doi.org/10.1007/s11118-012-9329-2
- [14] Michael Christ and Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), no. 2, 409–425. MR 1809116, https://doi.org/10.1006/jfan.2000.3687
- [15] Piero D’Ancona, Kato smoothing and Strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys. 335 (2015), no. 1, 1–16. MR 3314497, https://doi.org/10.1007/s00220-014-2169-8
- [16] Piero D’Ancona and Luca Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations 33 (2008), no. 4-6, 1082–1112. MR 2424390, https://doi.org/10.1080/03605300701743749
- [17] Piero D’Ancona, Luca Fanelli, Luis Vega, and Nicola Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal. 258 (2010), no. 10, 3227–3240. MR 2601614, https://doi.org/10.1016/j.jfa.2010.02.007
- [18] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [19] Thomas Duyckaerts, A singular critical potential for the Schrödinger operator, Canad. Math. Bull. 50 (2007), no. 1, 35–47. MR 2296623, https://doi.org/10.4153/CMB-2007-004-3
- [20] T. Duyckaerts, private communication.
- [21] M. Burak Erdoğan, Michael Goldberg, and Wilhelm Schlag, Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in ℝ³, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 507–531. MR 2390334, https://doi.org/10.4171/JEMS/120
- [22] M. Burak Erdoğan, Michael Goldberg, and Wilhelm Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Math. 21 (2009), no. 4, 687–722. MR 2541480, https://doi.org/10.1515/FORUM.2009.035
- [23] Luca Fanelli, Non-trapping magnetic fields and Morrey-Campanato estimates for Schrödinger operators, J. Math. Anal. Appl. 357 (2009), no. 1, 1–14. MR 2526801, https://doi.org/10.1016/j.jmaa.2009.03.057
- [24] Luca Fanelli, Veronica Felli, Marco A. Fontelos, and Ana Primo, Time decay of scaling invariant electromagnetic Schrödinger equations on the plane, Comm. Math. Phys. 337 (2015), no. 3, 1515–1533. MR 3339184, https://doi.org/10.1007/s00220-015-2291-2
- [25] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, https://doi.org/10.1090/S0273-0979-1983-15154-6
- [26] S. Fournais and E. Skibsted, Zero energy asymptotics of the resolvent for a class of slowly decaying potentials, Math. Z. 248 (2004), no. 3, 593–633. MR 2097376, https://doi.org/10.1007/s00209-004-0673-9
- [27] Rupert L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials, Bull. Lond. Math. Soc. 43 (2011), no. 4, 745–750. MR 2820160, https://doi.org/10.1112/blms/bdr008
- [28] Michael Goldberg, Strichartz estimates for the Schrödinger equation with time-periodic 𝐿^{𝑛/2} potentials, J. Funct. Anal. 256 (2009), no. 3, 718–746. MR 2484934, https://doi.org/10.1016/j.jfa.2008.11.005
- [29] Michael Goldberg, Luis Vega, and Nicola Visciglia, Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not. , posted on (2006), Art. ID 13927, 16. MR 2211154, https://doi.org/10.1155/IMRN/2006/13927
- [30] M. Goldberg and W. Schlag, A limiting absorption principle for the three-dimensional Schrödinger equation with 𝐿^{𝑝} potentials, Int. Math. Res. Not. 75 (2004), 4049–4071. MR 2112327, https://doi.org/10.1155/S1073792804140324
- [31] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- [32] Colin Guillarmou and Andrew Hassell, Uniform Sobolev estimates for non-trapping metrics, J. Inst. Math. Jussieu 13 (2014), no. 3, 599–632. MR 3211800, https://doi.org/10.1017/S1474748013000273
- [33] Andrew Hassell and Junyong Zhang, Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds, Anal. PDE 9 (2016), no. 1, 151–192. MR 3461304, https://doi.org/10.2140/apde.2016.9.151
- [34] Arne Jensen and Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), no. 3, 583–611. MR 544248
- [35] Arne Jensen and Gheorghe Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys. 13 (2001), no. 6, 717–754. MR 1841744, https://doi.org/10.1142/S0129055X01000843
- [36] Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1965/66), 258–279. MR 190801, https://doi.org/10.1007/BF01360915
- [37] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
- [38] Tosio Kato and Kenji Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), no. 4, 481–496. MR 1061120, https://doi.org/10.1142/S0129055X89000171
- [39] Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048
- [40] C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), no. 2, 329–347. MR 894584, https://doi.org/10.1215/S0012-7094-87-05518-9
- [41] Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, and Jiqiang Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst. 37 (2017), no. 7, 3831–3866. MR 3639442, https://doi.org/10.3934/dcds.2017162
- [42] Rowan Killip, Jason Murphy, Monica Visan, and Jiqiang Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differential Integral Equations 30 (2017), no. 3-4, 161–206. MR 3611498
- [43] Seonghak Kim and Youngwoo Koh, Strichartz estimates for the magnetic Schrödinger equation with potentials 𝑉 of critical decay, Comm. Partial Differential Equations 42 (2017), no. 9, 1467–1480. MR 3717441, https://doi.org/10.1080/03605302.2017.1377229
- [44] H. Kovařík and F. Truc, Schrödinger operators on a half-line with inverse square potentials, Math. Model. Nat. Phenom. 9 (2014), no. 5, 170–176. MR 3264315, https://doi.org/10.1051/mmnp/20149511
- [45] Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal. 255 (2008), no. 6, 1497–1553. MR 2565717, https://doi.org/10.1016/j.jfa.2008.05.022
- [46] Giorgio Metafune, Motohiro Sobajima, and Chiara Spina, Weighted Calderón-Zygmund and Rellich inequalities in 𝐿^{𝑝}, Math. Ann. 361 (2015), no. 1-2, 313–366. MR 3302622, https://doi.org/10.1007/s00208-014-1075-x
- [47] H. Mizutani, Eigenvalue bounds for non-self-adjoint Schrödinger operators with the inverse-square potential, preprint. http://arxiv.org/abs/1607.01727
- [48] Haruya Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, J. Differential Equations 263 (2017), no. 7, 3832–3853. MR 3670038, https://doi.org/10.1016/j.jde.2017.05.006
- [49] Kiyoshi Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci. 46 (2010), no. 4, 741–754. MR 2791005, https://doi.org/10.2977/PRIMS/24
- [50] Shu Nakamura, Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys. 161 (1994), no. 1, 63–76. MR 1266070
- [51] Benoit Perthame and Luis Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164 (1999), no. 2, 340–355. MR 1695559, https://doi.org/10.1006/jfan.1999.3391
- [52] Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh, 𝐿^{𝑝} estimates for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 427–442. MR 1952384, https://doi.org/10.3934/dcds.2003.9.427
- [53] Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh, Dispersive estimate for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. 9 (2003), no. 6, 1387–1400. MR 2017672, https://doi.org/10.3934/dcds.2003.9.1387
- [54] M. Reed and B. Simon, Methods of Modern Mathematical Physics I, IV, Academic Press, 1972, 1978.
- [55] Serge Richard, Some improvements in the method of the weakly conjugate operator, Lett. Math. Phys. 76 (2006), no. 1, 27–36. MR 2223761, https://doi.org/10.1007/s11005-006-0079-1
- [56] Igor Rodnianski and Wilhelm Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451–513. MR 2038194, https://doi.org/10.1007/s00222-003-0325-4
- [57] Igor Rodnianski and Terence Tao, Effective limiting absorption principles, and applications, Comm. Math. Phys. 333 (2015), no. 1, 1–95. MR 3294943, https://doi.org/10.1007/s00220-014-2177-8
- [58] Keith M. Rogers, Strichartz estimates via the Schrödinger maximal operator, Math. Ann. 343 (2009), no. 3, 603–622. MR 2480704, https://doi.org/10.1007/s00208-008-0283-7
- [59] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. MR 1175693, https://doi.org/10.2307/2374799
- [60] Hart F. Smith and Christopher D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), no. 11-12, 2171–2183. MR 1789924, https://doi.org/10.1080/03605300008821581
- [61] Giorgio Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994) Prometheus, Prague, 1994, pp. 177–230. MR 1322313
- [62] Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925
- [63] Björn G. Walther, A sharp weighted 𝐿²-estimate for the solution to the time-dependent Schrödinger equation, Ark. Mat. 37 (1999), no. 2, 381–393. MR 1714761, https://doi.org/10.1007/BF02412222
- [64] Junyong Zhang and Jiqiang Zheng, Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal. 267 (2014), no. 8, 2907–2932. MR 3255478, https://doi.org/10.1016/j.jfa.2014.08.012
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q41, 35B45
Retrieve articles in all journals with MSC (2010): 35Q41, 35B45
Additional Information
Jean-Marc Bouclet
Affiliation:
Institut de Mathématiques de Toulouse (UMR CNRS 5219), Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse FRANCE
Email:
jean-marc.bouclet@math.univ-toulouse.fr
Haruya Mizutani
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email:
haruya@math.sci.osaka-u.ac.jp
DOI:
https://doi.org/10.1090/tran/7243
Keywords:
Strichartz estimates,
resolvent estimates,
Schr\"odinger operator,
critical singularities
Received by editor(s):
July 12, 2016
Received by editor(s) in revised form:
March 8, 2017, and March 23, 2017
Published electronically:
May 9, 2018
Additional Notes:
The first author is partially supported by ANR Grant GeRaSic, ANR-13-BS01-0007-01.
The second author is partially supported by JSPS Grant-in-Aid for Young Scientists (B), No. 25800083, and by Osaka University Research Abroad Program, No. 150S007.
Article copyright:
© Copyright 2018
American Mathematical Society