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LINEAR DIFFERENTIAL EQUATIONS
WITH SLOWLY GROWING SOLUTIONS

JANNE GROHN, JUHA-MATTI HUUSKO, AND JOUNI RATTYA

ABSTRACT. This research concerns linear differential equations in the unit
disc of the complex plane. In the higher order case the separation of zeros (of
maximal multiplicity) of solutions is considered, while in the second order case
slowly growing solutions in H*°, BMOA, and the Bloch space are discussed.
A counterpart of the Hardy—Stein—Spencer formula for higher derivatives is
proved, and then applied to study solutions in the Hardy spaces.

1. INTRODUCTION

A fundamental objective in the study of complex linear differential equations
with analytic coefficients in a complex domain is to relate the growth of coeflicients
to the growth of solutions and to the distribution of their zeros. In the case of fast
growing solutions, Nevanlinna and Wiman-Valiron theories have turned out to be
very useful both in the unit disc [10,24] and in the complex plane [23][24].

We restrict ourselves to the case of the unit disc D = {z € C : |2|] < 1}. In
addition to the methods above, the theory of conformal maps has been used to
establish interrelationships between the growth of coefficients and the geometric
distribution (and separation) of zeros of solutions. This connection was one of the
highlights in Nehari’s seminal paper [25], according to which a sufficient condition
for the injectivity of a locally univalent meromorphic function can be given in
terms of its Schwarzian derivative. In the setting of differential equations, Nehari’s
theorem [25, Theorem I] admits the following (equivalent) formulation: if A is
analytic in D and

(1.1) sup |A(2)|(1 — |2[*)?
zeD

is at most one, then each nontrivial solution (f # 0) of
(1.2) f"+Af=0

has at most one zero in D. A few years later, in 1955, Schwarz showed [36, Theo-
rems 3—4] that if A is analytic in I, then zero-sequences of all nontrivial solutions
of ([[2)) are separated in the hyperbolic metric if and only if (1) is finite. The
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necessary condition, corresponding to Nehari’s theorem, was given by Kraus [22].
For recent developments based on localization of the classical results, see [5]. In
the case of higher order linear differential equations

(1.3) FO 4 A fED 4 A f 4 Agf =0, keN,

with analytic coefficients Ag, ..., Ag_1, this line of reasoning has not given complete
results. Some progress on the subject was obtained in the seventies and eighties by
Kim and Lavie, among many other authors.

Nevanlinna and Wiman-Valiron theories, in the form they are known today, do
not seem to be sufficiently delicate tools to study slowly growing solutions of (L.2]),
and hence a different approach must be employed. An important breakthrough
in this regard was [33], where Pommerenke obtained a sharp sufficient condition
for the analytic coefficient A which places all solutions f of (I2)) to the classical
Hardy space H?. Pommerenke’s idea was to use Green’s formula twice to write
the H2-norm of f in terms of f”, employ the differential equation (LZ), and then
apply Carleson’s theorem for the Hardy spaces [8, Theorem 9.3]. Consequently,
the coeflicient condition was given in terms of Carleson measures. The leading
idea of this (operator theoretic) approach has been extended to study, for example,
solutions in the Hardy and Bergman spaces [28/[35], Dirichlet type spaces [19], and
growth spaces [I6L21], to name a few instances.

Our intention is to establish sufficient conditions for the coefficient of (L.2]) which
place all solutions to H*°, BMOA, or to the Bloch space. In principle, Pom-
merenke’s original idea could be modified to cover these cases, but in practice, this
approach falls short since either it is difficult to find a useful expression for the
norm in terms of the second derivative (in the case of H*°) or the characterization
of Carleson measures is not known (in the cases of BMOA and Bloch). Concerning
Carleson measures for the Bloch space, see [I3]. Curiously enough, the best known
coefficient condition placing all solutions of (L2]) to the Bloch space is obtained by
straightforward integration [2I]. Our approach takes advantage of the reproducing
formulae and is different to ones in the literature.

2. MAIN RESULTS

Let H(D) denote the collection of functions analytic in D, and let m be the
Lebesgue area measure, normalized so that m(D) = 1. By postponing the rigorous
definitions to the forthcoming sections, we proceed to outline our results. We begin
with the zero distribution of nontrivial solutions of the linear differential equation

(2.1) 7 Asf + AL f + Agf =0

with analytic coefficients. Note that zeros of nontrivial solutions of (21 are at
most two-fold. Let ,(z) = (a — 2)/(1 — @z), for a,z € D, denote a conformal
automorphism of D which coincides with its own inverse.

Theorem 1. Let f be a nontrivial solution of (Z1I) where Ag, A1, As € H(D).
(i) 1f
(2.2) sup [4;(2)[(1 = |2*)°77 <0, j=0,1,2,
z€D

then the sequence of two-fold zeros of f is a finite union of separated se-
quences.
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(i) If
@3) s [14EI0 R0 @) dm(e) <, =012

then the sequence of two-fold zeros of f is a finite union of uniformly sep-
arated sequences.

Theorem [I}(i) should be compared to the second order case [36] Theorem 3],
which was already mentioned in the introduction. For the second order counter-
part of Theorem [II(ii), see [14, Theorem 1]. By a standard transformation as in
[23, p. 74], both [36, Theorem 3] and [14, Theorem 1] admit immediate generaliza-
tions to second order differential equations (I3]) with an intermediate coefficient
Aj. The proof of Theorem [Iis presented in Section Bl and it is based on a con-
formal transformation of (2.1I), Jensen’s formula, and on a sharp growth estimate
for solutions of (ZI)). Theorem [ extends to the case of higher order differential
equations ([L3), but we leave details for the interested reader.

The following results concern slowly growing solutions of the second order differ-
ential equation (L2, however, our methods could also be applied in more general
situations. A sufficient condition for the analytic coefficient A, which forces all
solutions of (L2)) to be bounded, is given in terms of Cauchy transforms. The
space K of Cauchy transforms consists of functions in H (D) that take the form
Jp(1 = ¢2)~1du(¢), where u is a finite, complex, Borel measure on the unit circle
T = OD. For more details we refer to Section Bl where the following theorem is
proved.

Theorem 2. Let A € H(D).
() 17 msup sup 4, < 1 for

r—1—
¢ A(
// Alw) 4 d¢, ueD,
l—uw

then all solutions of (L2) are bounded.
(ii) If a primitive of A belongs to the Hardy space H', then all solutions of
([C2) have their first derivative in H*.

For f € H(D), f' € H' if and only if f admits a continuous extension to D and
is absolutely continuous on T [8, Theorem 3.11]. Therefore, as a consequence of
Theorem [2[(ii), we obtain a coefficient condition which places all solutions of (L.2))
to the disc algebra. We refer to [I9] for other coefficient conditions concerning
bounded solutions.

The question converse to Theorem [(i) is open and appears to be difficult. The
boundedness of one nontrivial solution of ([Z)) is not enough to guarantee (L) is
finite, which can be easily seen by considering the solution f(z) = exp(—(1+ 2)/
(1—2)) of ([L2) for A(z) = —4z/(1—2)*, 2 € D. However, if (L2) admits linearly in-
dependent solutions f1, fo € H* such that inf.cp (|f1(2)|+[f2(2)|) > 0, then ()
is finite. This is a consequence of the Corona theorem [8, Theorem 12.1], according
to which there exist g1,g2 € H* such that fig1 + fag2 = 1, and consequently
A=A+ (figr + f292)" = 2(figr + f292) + fr9] + fog5.

We proceed to consider BMOA, which consists of those functions in the Hardy
space H? whose boundary values are of bounded mean oscillation. The following
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result should be compared to [33, Theorem 2], as BMOA is a conformally invariant
subspace of H?2.

Theorem 3. Let A € H(D). [

] / AGPQ~ 2P0~ pa()) dm(2)

a€D
is sufficiently small, then all solutions of ([[2) belong to BMOA.

To the best of our knowledge BMOA solutions of ([Z2)) have not been previously
discussed in the literature. The coefficient condition in Theorem [ allows solutions
of (L2) to be unbounded; see Example 2 in Section [6 By [28, Lemma 5.3] or
[40, Theorem 1], (24 is comparable to

(2:5) ot ) /|A (1= [sf)* dm(2)
. sup — |z z),
aE]D) 1- ‘a|

where S, = {re? : |a| < r < 1,0 — arg(a)| < (1 — |a|)/2} denotes the Carleson
square with respect to @ € D\ {0} and Sy = D. See also [37, Lemma 3.4]. Solutions
in VMOA, the closure of polynomials in BMOA, are discussed in Section [6]in which
Theorem [3 is proved.

The case of the Bloch space B is especially interesting. For 0 < a < oo, let £
denote the collection of those A € H(D) for which

e «
JAllze = sup [A(2)|(1 — [2I?)? (log ) < .
zeD 1—1z]

The comparison between H3°, £* and the functions for which (Z4) is finite is
presented in Section Hl It is known that if ||A||z: is sufficiently small, then all
solutions of (2] belong to B. This result was recently discovered with the best
possible upper bound for || A|| 21 in [2I], Corollary 4(b) and Example 5(b)]. Moreover,
if A € £!, then all solutions of (LZ) are in H? by [33, Corollary 1]. We point out
that if A € L* for any 1 < a < oo, then all solutions of ([2)) are bounded by [18]
Theorem G(a)]. Solutions in the little Bloch space By, the closure of polynomials
in B, are discussed in Section [1] among other results involving the Bloch space.

The proof of Theorem [2(i) is based on an application of the reproducing formula
for H' functions, and it is natural to ask whether this method extends to the
cases of B and BMOA. In the case of B, by using the reproducing formula for
weighted Bergman spaces, we prove a result (namely, Theorem [I0) offering a family
of coeflicient conditions, which are given in terms of Bergman spaces induced by
doubling weights. The case of BMOA, with the reproducing formula for H*, is
further considered in Section [8

A careful reader observes that the results above are closely related to operator
theory. If f is a solution of (LZ), then

z ¢
(26)  f(z) = —/0 (/0 Fw)Aw) dw> dC + f/(0)z+ f(0), =eD.

By denoting
z ¢
Salf)(z) = / (/ f(w)A(w)dw> i, zeD,
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we obtain an integral operator, induced by the symbol A € H(D), that sends H(D)
into itself. With this approach, the search of sufficient coefficient conditions boils
down to finding sufficient conditions for the boundedness of S4. Therefore, it is not
a surprise that many results on slowly growing solutions are inspired by the study
of the classical integral operator

O RLGICLS

see [23[7,[32L[38]. The strength of the operator theoretic approach is demonstrated
by proving that the coefficient conditions arising from Theorem [I0] are essentially
interchangeable with A € £!; see Theorem [[11

Deep duality relations are implicit in the proofs of Theorems2{i),[I0 and 14l The
dual of H! is isomorphic to BMOA with the Cauchy pairing by Fefferman’s theorem
[12, Theorem 7.1], the dual of the disc algebra is isomorphic to the space of Cauchy
transforms with the dual pairing (f, Ku) = [ f du [6, Theorem 4.2.2], and the dual
of AL is isomorphic to the Bloch space with the dual pairing (f, g)az = fD fgwdm
under appropriate regularity hypothesis on the radial weight w [30, Corollary 7].

Finally, we turn to consider coefficient conditions which place solutions of (2]
in the Hardy spaces. Our results are inspired by an open question, which is closely
related to the Hardy—Stein—Spencer formula

(2.7) 1% = 1£(0 |p+—/ [F()P721f (2 )\zlogﬂdm( z),

that holds for 0 < p < oo and f € H(D). For p = 2, 7)) is the well-known
Littlewood—Paley identity, while the general case follows from [I7, Theorem 3.1] by
integration.

Question 1. Let 0 < p < co. Is it true that
(2.8)  IIfllE» < C(p)/DIf(Z)I”’QIf"(Z)IQ(l = [2[*)* dm(2) + |F(O) [ + | £ (0)[7

for any f € H(D), where C(p) is a positive constant such that C(p) — 0 as
p— 077

An affirmative answer to this question would have an immediate application to
differential equations; see Section In the context of second order differential
equation ([[2]), it suffices to consider Question [[lunder the additional assumptions
that all zeros of f are simple and f” vanishes at zeros of f. The estimate in
Question [Mis valid for a nontrivial subclass of H(D); see Section

The function f € H(D) is uniformly locally univalent if there is a constant
0 < 0 < 1 such that f is univalent in each pseudohyperbolic disc A(z,d) =
{weD:|p,(w)] <d} for z € D. A partial solution to Question [ is given by
Theorem [l Here a < b means that there exists C' > 0 such that a < Cb. Moreover,
a=<bif and only if a < b and a 2 b.

Theorem 4. Let f € H(D), and let k € N.
(i) If0 < p < 2, then

k—1 '
2.9 I/l N/\f 2B @R = 222 dm(z) + Y 1O
j=0
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(ii) If 2 < p < oo, then
k—1
(2.10) /D|f(2)|p_2|f(k)(2)\2(1 — 2% dm(z) + Y PO Sl
j=0

(iii) If 0 < p < o0 and f is uniformly locally univalent, then 2I0) holds.
The comparison constants are independent of f; in (i) and (ii) they depend on p,

and in (iil) it depends on § (the constant of uniform local univalence) and p.

The proof of Theorem [ is presented in Section [@ and it takes advantage of a
norm in HP, given in terms of higher derivatives and area functions, and an estimate
of the nontangential maximal function.

3. ZERO DISTRIBUTION OF SOLUTIONS

For 0 < p < oo, the growth space H;° consists of those g € H(ID) for which
gllzzge = sup |g(2)|(1 — |2[*)? < oc.
zeD

We write H* = Hg°, for short. The sequence {z,}>2; C D is called uniformly

separated if
1l
neN\{k}
while {z,}52, C D is said to be separated in the hyperbolic metric if there exists
a constant § > 0 such that |z, — zx|/|1 — Zp2k| > d for any n # k. After the proof
of Theorem [I] we present an auxiliary result which provides an estimate for the
number of sequences in the finite union appearing in the claim.

Zn — %
n kS,

1—Z,z

Proof of Theorem [Il
(i) If f is a nontrivial solution of ([ZI), then g = f o ¢, solves

(3.1) J" + Bag" + Big + Bog = 0,
where
Lpll
By = (Apo ‘Pa)(@;)?)y By = (A2 0 ¢a)p, — 3 _77
¥a
(3.2) e
By = (A1 09,)(¢))? — (Ag 0 o)l +3 (_7) — fa,
gpa wa
By a conformal change of variable, we deduce || Bo||age = || Aol g,
6lal

| B2llmge < Sup | Aa(2)] (1= |2*) + Sup (1—2*) < || Azllme= + 12,
z€ 1S

|1 —az|

[Billge < sup [A1(2)] (1= |2[*)*+sup [Az(w)] (1—|w[?)
zeD weD

wf{(tpa(w))‘ 2
| (= lpa(w)])
P (pa(w))
12/af? 2,2 6|al® 22
ke bl B I i bl B T
P e O e D)
<A1l g + 4| Azl e + 72.

Let Z = Z(f) be the sequence of two-fold zeros of f, and let a € Z; we may
assume that Z is not empty, for otherwise there is nothing to prove. Then, the zero
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of g = f o, at the origin is two-fold. By applying Jensen’s formula to z + g(z)/z?
we obtain

r o
(3.3) Z log < — log
0

AR PYEN e
0<|a(zr)l<r

g(re®)

g"(0)

2
df +log—, 0<r<l,
r

where log™ 2 = max{0,log z} for 0 < x < co. Since

/0< > 1og—|%(%)|>rdr—

ZLEZ
0<|pa(z) <

! T
/ rlog ————dr
zreZ\{a} [pa(zk)l |<pa(zk)|

the estimate (B3] implies

> (1= lealz)?)’ §4/1og+ 9(2)

1
ne2\fa} D g"(0)

Consider the normalized solution h(z) = g(z)/g"” (0) of (B]), which has the initial
values h(0) = h’'(0) = 0 and A”(0) = 1. By the proofs of the growth estimates
[18, Theorems 3.1 and 4.1, and Corollary 4.2], there exists an absolute constant
(1 > 0 such that

Lo + i0 S [ (n) (410 3—j+n—1
%/0 log™ [h(re)| d§ < C4 ZZ/O /0 |B; " (se”)|(1 — )" 77" ds df.

§=0n=0

‘ dm(z) +4log2 + 4.

By Cauchy’s integral formula and the estimates above, there exists a positive
constant Cy = Ca(||Aol|mge, | A1l mge, [|A2||Hpe), independent of a € D, such that
|BS" <Oy j=0,1,2, n=0,...,J

l
H3 i

Let Moo (s, Bj(.n)) denote the maximum modulus of Bj(-n) on the circle of radius s.
Now

sup > (1= palan)?)?

€2 e2\{a}

2 J 1 pr
<4log2+4+16wCy sup » Z/ / Mo (s, B§”>)(1 _ §)270tn g dr
0 Jo

a€EZ j=07n=0

2 J 1 pr
d
§410g2+4—|—167rClC25 E// T SSer<oo.
oJo 1—

7=0n=0

The assertion of Theorem [I}i) follows from Lemma [Yi) below.
(ii) As in the proof of (i), we conclude that g = f o ¢, is a solution of (B,
where the coefficients By, B, and By depend on a € D. By ([23]),

(3.4) sup/\B§.”>(z)|(1—|z|2)2*j+ndm(z)<oo, F=0,02 n=0,....j
acD JD

In order to conclude ([B4), first get rid of the derivatives by standard estimates,
and then integrate the coefficients (8:2)) term by term.
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Let Z be the sequence of two-fold zeros of f. As above, there exists an absolute
constant C3 > 0 such that

T 2
sup log ——— < log —
a€EZ szGZ |90a(zk)| r?

0<|pa (z)|<r
2

+Coswp S [ B @11 = o dm)

€2 50 n=0

for 0 < r < 1. By letting » — 17, we obtain
sup Z (1- |g0a(zk)|2) < 0.
9€2 spez\{a)
This implies the assertion of Theorem [I[ii) by Lemma Blii) below. O
The following lemma gives an estimate for the number of sequences in the finite

union appearing in the statement of Theorem [II For more details, we refer to
[9, Chapter 2.11].

Lemma 5. Let Z = {z} be a sequence of points in D such that the multiplicity of
each point is at most p € N, and let M € N.

(i) If
2
sip S (1 [pala)2)? < M < oo,
acZ €2\ {a}
then {zp} can be expressed as a finite union of at most M + p separated
sequences.
(i) If
(35) sSup Z (1 - |<pa(zk)|2) <M <o,
acZ 2n€Z\{a}

then {zr} can be expressed as a finite union of at most M + p uniformly
separated sequences.

Proof.

(i) Assume, contrary to the claim, that every partition of Z into separated
subsequences is a union of at least M + p + 1 sequences. Then, for each n € N|
there exists a point z, € Z such that

#{z € Z: g, ()| <27} >M+p+1.

Now

prMEp+ Y (—fe () > Y (1= es (20)P)

zk€Z\{zn} ZLEZ
> €2 p., ()| <277 - (147" > (M +p+1)(1—47")2

By letting n — oo we arrive at a contradiction. Hence Z can be expressed as

a union of at most M + p separated sequences.
(ii) By part (i), Z can be expressed as a union of at most M + p separated
sequences, and each of these separated sequences is uniformly separated by (B.5]).
O
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Example 1. If {f, g} is a solution base of (L2, then {2, g2, fg} is a solution base
of
(3.6) h" +4AK +2A'h = 0.

Let us apply this property to a classical example [36, p. 162] originally due to Hille
20, p. 552]. For v > 0, the differential equation (IL2) with A(z) = (1 +4+2)/(1 —
22)2, 2 € D, admits the solution

1
f(z)=+v1—22sin <vlog +Z), zeD.

1—=2

The zeros of f are simple and real, and, moreover, the hyperbolic distance between
two consecutive zeros is precisely 7/(27). Consequently, [B:6) admits the solution
h = f? whose zero-sequence is a union of two separated sequences. This sequence
is a union of two uniformly separated sequences (in fact, a union of two exponential
sequences), since all zeros are real [8, Theorem 9.2]. In this case the coefficients of

B0 satisfy both conditions (Z2) and 23). o

4. INCLUSION RELATIONS BETWEEN FUNCTION SPACES

The following result can be used to compare the coefficient conditions. In par-
ticular, Lemma [6] shows that the coefficient condition in Theorem Bl (which implies
that all solutions of (L2)) are in BMOA) is strictly stronger than A € £ with suffi-
ciently small norm (which places all solutions in BN H?). Further, Lemma [6] proves
that A € £! with sufficiently small norm is strictly stronger than the coefficient
condition in Theorem [A] below (which forces solutions to be in Hardy spaces). The
reader is invited to compare Lemma [6] to the results in [4, Section 5].

If A e #H(D) and

(4.1) sup /DIA(Z)\Q(l = [21%)*(1 = lga(2)]*) dm(2)

acD
is finite, then we write A € BMOA”. Note that A € BMOA” if and only if there

exists a function g = g(A) € BMOA such that A = ¢”, which follows from standard
estimates. Correspondingly, if A € H(D) and

2
&
I4Raonr =5 (tog =101 ) [ IAGIRQ = 120~ (o)) dim(s) < .

then A € LMOA”. As expected, LMOA" consists of those functions in H (D) which
can be represented as the second derivative of a function in LMOA. For more details
on LMOA, see [37]. Finally, part (iv) of Lemma [0l gives a sufficient condition for
a lacunary series to be in LMOA”.

Lemma 6. The following assertions hold:
(i) Lo C L* C HS® for any 0 < as < ag < 00;
(i) LMOA” C £ € £* C BMOA” C H$® for any 1/2 < o < 1;
(iii) £3/2 C LMOA”, and LMOA” \ ;o o< oo £* is nonempty;
(iv) if {nr}32, C N and {ar}3>, C C satisfy the conditions infren npq1/nk > 1
and Y 5o |ax*(logny)? /nj < oo, then (Yo axz™") € LMOA”.

Proof. As (i) is an immediate consequence of the definitions, we proceed to prove
(ii). Let A € LMOA”. Since (ZH) is finite and |A|? is subharmonic, we deduce
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A% S 1Al moar- Assume on the contrary to the assertion that LMOA” = £!.
By [15, Theorem 1], there exist Ag, A1 € H(D) satisfying

[Ao(2)] + [A1(2)] =

, z€D.

(1 —[2[*)?log 1_8‘2‘
Since Ag, A1 € LMOA”, we deduce

dm(z) 2 1-la
[ 2 < [ (A + ) - ) () s
o (1=12[2)(log 17|Z‘) Sa (log ITM)
as |a| — 17. This contradicts the fact that
d 1-—
/ m(2) 5 X |g| , ol =17,
Sa (1 — \Z|2)(10g 176\4) log 1—]al

and hence LMOA” # L. The remaining part of (ii) is a straightforward compu-
tation. Note that the inclusion £* C BMOA”, for any 1/2 < a < o0, is strict by
A(z) = (1 —2)72

To prove (iii) it suffices to prove the latter assertion, as £3/2 ¢ LMOA" follows di-
rectly from ZH). If A(z) = (1—2)"2(log 1fz)_1 for z €D, then A ¢ ;. pc00 £
To show that A € LMOA”, it is enough to verify (Z3]) for 0 < a < 1. Since

(4.2)

loglL‘ > log > log z € 8,
—z

e e
11— 2| 2(1—a)’

we conclude that

1og1 a
s / AP = |2 dm(z)
(4.3) 0cac1  l—a

27
3
S dr < oo.
S T, // \1—re19|4 — ) rdr <oo

In order to prove (iv), let A(z) = Y 7o apz"* for z € D. If h(z) = 220—1 2z
for z € D, then h € B with M (r,h) = Zk 17 S log +5
Cauchy—Schwarz inequality,

- 1/2
A) < (Z akzr”’“> <1og 1
k=1

p V8T / A1~ [22)? dm(2)
Sa

~

. 1/2
) , O0<r<l.
—r

It follows that

a€D 1- |a‘

where the asymptotic equality follows from [28, Lemma 1.3]. This completes the
proof of Lemma O
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5. BOUNDED SOLUTIONS

We consider bounded solutions of ([2)). As usual, the space H* consists of
f € H(D) for which || f| gree = sup,ep |f(2)| < 0o. The proof of Theorem [2(i) takes
advantage of the well-known representation formula

2w et
(.1 00 =5 [ (20w cev.

which holds for any g € H! [8, Theorem 3.6].
Let M be the collection of all (finite) complex Borel measures on T. For p € M,
the total variation measure |p| is defined as a set function

|u|(E) = sup Z (B

where the supremum is taken over all countable (Borel) partitions {E;} of E C T.
Moreover, ||u|| = |u|(T) is the total variation of p [34, Chapter 6]. Let K be the
space of Cauchy transforms, which consists of analytic functions in D of the form

d
) = [ e,
Tl— {Z
for some € M. For each f € K there is a set My = {,u eM: f= Ku} of
measures that represent f and produce the norm
I £llc = inf {lpll = o€ My}
We refer to [6] for more details.
Proof of Theorem [(i). Let f be any solution of ([2)), and write f,.(z) = f(rz) for

0 <r < 1. Then f, is analytic in D and satisfies f”(w) + r?A(rw)f.(w) = 0 for
w € D. By (2.6]), (IE[I) for g = f,, and Fubini’s theorem, we conclude that

1 r2 A(
fo =3 [ " f(eit) / / ”“)d dc dt + f1(0)z + £,(0), =€ D.
Forall0<r<1 suﬁi(nently large and z € I, there exists ., € M such that
(5.2) Ar2(u) = (Kprz)(u), uweD,

and ||y || < ¢ for some absolute constant 0 < 6 < 1. Hence, by [0, Theorem 4.2.2],

’I”2 2T

[r(z) = fr(e Zt)(KNTZ)(ezt)dt'i'f( )z + f(0)

“or /.
—r / Fo(@)dar (@) + [10)% + £,(0), 2 €D,

By [34] Theorem 6.12], there exist measurable functions h, . such that |h, ,(¢)] =1
for all ¢ € T and the polar decompositions du, . = hy , d|py | hold. Therefore

()] < ‘ / Fo @) 2@ it ()] + 1£(0)] + 1£,(0)

< Il / dltin2| + 1 £0)] + [ £-(0)]

<|lfr O+, zeD.

This implies || ]|z < (|f(0)] + |f/(0)])/(1 — §), and hence completes the proof of
Theorem [2(i). O
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Let 0 < p < o0, let n € N, and let f € H(D). The proof of Theorem [2(ii) relies
on a classical representation

p/2 n—1
&mnﬂ%x4<A@mW@thm%%M@)@HZ}NWV

=0

which involves nontangential approach regions; see [Il p. 125], for example. Hardy
spaces HP are further considered in Section [@ For a fixed 1 < o < oo, the non-
tangential approach region of aperture 2arctanva? — 1, with vertex at { € T, is
given by I'(() = {z €D : |z = (| < a(l — |z|)}. The corresponding nontangential
maximal function is

(5:4) f7(¢) = sup [f(z)

z€l'(¢)

, CeT.

Proof of Theorem (ii). Let A(z) = Y 0" janz™ for z € D. By the assumption,
= [ A(¢) d( satisfies A € H'. We compute

! _ - |an|
/O Moo(r,A)(l—r)dr</ <Z|an|r ) (=) dr =3 ity <Al

where the last estimate follows from Hardy’s inequality [8, p. 48]. By [I9] Corol-
lary 3.16], we conclude that all solutions of ([.2)) are bounded.
Let f be a solution of (L2). Then

—jff@MO%+f@,zem

and hence by ([B.3]), we deduce

HfWSHAﬂO dﬂ L1F0)

1/2
= [( [ ieriaePane) -+ 7o) +170)
T \JT(C)
< WAl +15/0)] + £ O).
The assertion f’ € H' follows. O

Remark 1. For each 0 < r < 1 and z € D, it is easy to see that

diiy - (v (/ ) z €T,
7T’L

is one of the representing measures for which (5.2) holds, and hence |4, ,|lx <
|ger. 2|l Moreover, the behavior of the second primitive of A is controlled by this
measure in the sense that

/OZ/OCA(MU)dwdC—/OZ/O< (%m/jrxd_x

which follows from Cauchy’s integral formula and Fubini’s theorem.

L) Atrw) dwic = [ 7w
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6. SOLUTIONS OF BOUNDED AND VANISHING MEAN OSCILLATION

The space BMOA consists of those f € H(ID) for which
(6.1) £ lEmoa = Sup I fallF2 < oo,

where fo(2) = f(pa(2)) — f(a) for a,z € D. By the Littlewood—Paley identity,

62 Iflsios <450 [ 7P 02 dn() < 41 lfaons

see [ITl, pp. 228-230]. Clearly, BMOA is a subspace of the Bloch space B.
A positive Borel measure p on D is called a Carleson measure if

1(Sa)
1—al

||;Uf ‘ | Carleson — Sup < 00.

There exists a constant 1 < a < oo such that

1 1—lal?

= '(2)], € S,, eD,
Tl SO — ol 2e S,

since |1 —az| < |1 — |a|?| + ||a|* — @z| < 1 — |a|. Consequently,
1
(63) HMHCarleson = sup P < Q- sup |90a |d'u
aeD Js, 1 — |a| aeh

We prove Theorem [J] and consider its counterpart for VMOA. Theorem [ is
inspired by [37, Theorem 3.1]. We return to consider BMOA and VMOA solutions
in Section[]] where parallel results are obtained by using the representation formula
for H' functions.

Proof of Theorem Bl The proof consists of two steps. First, we show that
(6.4)

sup_sup (1o - ) L 1AG2R = 12PR0 - lou) Py dm(z) < Al aion

1/2<r<1 a€D

Denote
I(a,r) = /D JA(r2)2(1 = |2/2)2(1 = |pa(2)]?) dm(z), 0<r<1, acD,

for short. For |a] < 1/2 the estimate ([G.4) is trivial. Let 1/2 < |a| < 1/(2 —r).
Since |1 —az| < 2|1 —az/r| for |z| <r, we deduce
3 1—Jal?> dm(z)

2
-z
t-a;

r2

fan= [ )\A<z>| (1-I:F)

| /\

5 [ AP 1RP0 = e dm(e)

IN

2
1614 2n0ar (log - |)
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forany 1/2 <r < 1. Let 1/(2 —r) < |a|] < 1. Now

1— |22 2 1 — |pa(2)]2
I(a,7) < ||A||3:1/D El - :TL)Q)E(IO;Q% dm(z)

s ['_ (-5°(1—la) s
S 1Allzs /0 (1—rs)*(log 1_ers)2(1 — lals) -

Ast— (1 - t)2(10g ﬁ) is decreasing for 0 < t < 1, we apply r < 2 — 1/|a| to
obtain

ds
2(log 1%

IAIIZs ' 3
+ 5 1—-s)%ds
(1 —la))*(log =5-7) /|a ( )

1—lal

—2
5||A||il<1og ||> .

Since || A% < ||Al?moar by the proof of Lemma [6ii), this completes the proof
of (G4).

Second, we proceed to consider the differential equation (I2)). Let f be a non-
trivial solution of (L2)). By Lemma [B{(ii) and [2I, Corollary 4(b)], we may assume

that f € B. Now, (L2) and ([€2) yield

lal
aor) S A=) [

£+ Bion < sup (|f’<m>|2<1 a2
s [P PR - |saa<z>|2>dm<z>>
Sl+sup [ 15,2 = £ @ A=) P~ 2P0 lpa(2) ) dm(e)

+ sup Ifr(a)|2/ [A(r2)*(1 = 12*)*(1 = [@a(2)[?) dm(z)
a€D D

SIfAlE+4L+ I

with absolute comparison constants. By Carleson’s theorem [8, Theorem 9.3], (G1)),

and (63),
I S sup / (f)a(2)1? [Area(2))|* (1 — lea(2)[2) ¢4 (2)| dm(2)

2 3
< sup <||(fr)a||H2 - sup / [A(rea(2))]" (1 = lea(2)?) loa(2)lleh(2)] dm(Z))
a€D beD JD
< I llBvoa - Sup /D [A(r2)P(1 = [2%)?(1 = |ge(2)]?) dim(2).
Estimation of I is easier. By [12] Corollary 5.3],

I S |If: I Bnon - sup <1Og — ) /IA r2)P(1 = [2*)*(1 = |pa(2)]?) dm(2).
acD 1 ‘
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If (2.4 is sufficiently small, then (6.4]) implies that || f,.|[smoa is uniformly bounded
for 1/2 < r < 1. By letting »r — 17, we conclude f € BMOA. (]

The following example reveals that the coefficient condition in Theorem [B] allows
solutions of (I2)) to be unbounded. Moreover, the same construction with 1 < a <
oo illustrates that the finiteness of (Z4]) is not enough to guarantee that all solutions
of (L2) are in BMOA. The same construction is applied in [2I, Example 5(b)].

Example 2. Let 0 < o < 1, and define

A(z)—(l:—az)z((a—l) (1og1fz)2+ <1og1fz>l>, =)

Then A € H(D), and ([[2) admits two linearly independent solutions

e «@ z e —2a
1_2) /0 <10g1_<> d¢, zeD,

which are unbounded on the positive real axis; see also [2I, Example 5(b)]. We
denote A = —aB; — a(a — 1)Bs, where B;(z) = (1 — z)?(log(e/(1 — 2))) 7 for
zeDand j = 1,2. Since |By(z)|] < |By(2)| (log(e/2)) " for all z € D, and @)
holds for any 0 < a < 1, we conclude (£3). We point out that, for a sufficiently
small «, the coefficient A satisfies the assumptions of Theorem [B] and hence all
solutions of ([2)) are in BMOA.

fiz) = (1og - ) fa(2) = (log

The space VMOA consists of those f € H? for which

lim | fol 32 =0,
la]—1—

where f, is the auxiliary function in the beginning of Section [@l Clearly, VMOA
is a subspace of the little Bloch space By. As Theorem [3 is motivated by [37]
Theorem 3.1], the counterpart of the following result is [37, Theorem 3.6].

Theorem 7. Let A € H(D). If 24) is sufficiently small and
2
, e
lim _ <10g —> / [A()P(1 = [2*)*(1 = lga(2)[?) dm(z) = 0,
la|—1 1—|a D

then all solutions f of ([(L2)) satisfy f € VMOA.

The proof of Theorem [7]is omitted, since it is similar to the proof of Theorem [3l
Note that the coefficient condition in Theorem [7 implies (TIT), and hence forces
all solutions of (I2)) to be in the little Bloch space By. See the end of Section [7 for
more details.

7. SOLUTIONS IN THE BLOCH AND THE LITTLE BLOCH SPACES

An integrable function w : D — [0,00) is called a weight. The weight w is said
to be radial if w(u) = w(Ju|) for all w € D. For 0 < p < oo and a weight w, the
weighted Bergman space AP, consists of those f € H(D) for which

LI, = / | () [Peo(r) dm(w) < oo
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For a radial weight w, we define &(u) = fli\ w(r)dr for u € D. We denote w € D

whenever w is radial and there exist constants C = C(w) > 1, a = a(w) > 0, and
B = B(w) > a such that

(7.1) ot (1‘T>aa<t> smr)sc(l”)ﬁa(t)

1-1¢ 1-1¢

forall 0 < r <t < 1. The existence of constants 8 = S(w) > 0and C' = C(w) > 0 for
which the right-hand side inequality of (7)) is satisfied is equivalent to the existence
of a constant K = K (w) > 1 such that the doubling property @(r) < K @((1+r)/2)
holds for all 0 < r < 1 [29, Lemma 1]. Moreover, the left-hand side inequality of
([T1) is equivalent to the existence of constants K = K(w) > 1 and L = L(w) > 1
such that &(r) > K@(1 — (1 —r)/L) for all 0 < r < 1; see [3I] for more details.

Let 0 < p < 0o and w be a radial weight. If &(r) = 0 for some 0 < r < 1, then
AP = H(D). Let w be a radial weight such that &(r) > 0 for all 0 < r < 1. By
standard estimates,

1+7r P14 (1+7r
191 230, ( 15 0) (M) 2 aaenpra-na(H5) . 0<r<

where M, (r, f) denotes the H? mean of f, and hence

1fllaz
(7.2) 1f(2)] < < ;
() o

We will concentrate on the case p = 2. By (Z.2), the norm convergence in A2 implies
the uniform convergence on compact subsets of I, and consequently each point
evaluation L¢(f) = f(¢) is a bounded linear functional in the Hilbert space AZ.

z € D.

Hence, there exist unique reproducing kernels B¢ € A% with | L¢|| = [ B¢ || a2 such
that
13 HO= B = [ @B dml), f € A2,

Moreover, the normalized monomials (2way, 1)~ /22", for n € NU {0}, form the
standard orthonormal basis of A2, and hence

(7.4) BE(u) = ﬂ, u,{ €D

2w
n—0 2n+1

see [41, Theorem 4.19] for details in the classical case. Here w, = fol rfw(r) dr
for 1 < x < co. Weight w is called normalized if w; = 1/2, which implies that
w(D) = [ w(u)dm(u) = 2w, = 1.

We begin with a lemma which shows that the derivative of B¢ is closely re-
lated to the reproducing kernel of another Bergman space with a suitably chosen
weight. For example, B¢ (u) = (1 — u¢) ™27 is the reproducing kernel correspond-
ing to the standard weight w(u) = (a 4+ 1)(1 — [u[*)%, a > —1, while (BY)'(u) =
(2 + a)(1 — u¢)~3~« is related to the reproducing kernel of the Bergman space
with the weight @(u) = (1 — |u|?)®*!. In general, we define

w(u) = 2/ w(r)rdr, ueD,

ul

for any radial weight w.
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Lemma 8. Ifw is radial, then (B¢)'(u) = ZB?(U) foru,¢ € D.

Proof. 1t is clear that representations (7.4)) exist for both B¢ and Bg. By Fubini’s
theorem,

1 s
Bont1 = 2 2n+1 gr ds — W2n+3 ceNuU{0
Won+1 /0 w(s)s/o r rds=_""1, n {0},

and hence

_oy D" WO 2B, uceD.

2w
n—0 2n+3

This proves the assertion. |

The following auxiliary result is well known to experts. For a radial weight w,
we define

1
w*(u)—/l long( Yyrdr, uweD\{0}.

Lemma 9. If f, € H?, then

1

(7.5) — f( gleit) dt—2/f log

o dm(u) + [(0)g(0)

|ul
Moreover, if f,g € H(D) and w is a normalized radial weight, then
(f.9)az =4(f",g") a2, + £(0)g(0).

Proof. Identity () is a special case of [4Il Theorem 9.9]. Let f,g € H(D).
By (@3),

1 2w

L7 pretyglrem di = 4 / £ (u)g () log -

™ Jo D(0,r) |ul

dm(u) + 2£(0)g(0).

The assertion follows by integrating both sides with respect to the measure w(r)r dr
and using Fubini’s theorem. ]

Recall that the Bloch space B consists of those f € H(D) for which
1flls = Sup /()11 = [2*) < o0

Theorem 10. Let w € D be normalized, and let A € H(D) such that

(7.6) limsup sup (1 — |z|?) / '/ B“’ dC‘ dm(u) < l
r—1— z€D 4
Then every solution f of (L2) satisfies f € B, and
1
< - _
Il < e (FOTsa = 12| [ 4@ ad] + 17 01).
where
w* (u) 1
X5(A) =sup (1 — |2|%) B“’ A(¢)d¢ 5 dm(u) < —.
z€D 1-— | ‘ 4
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Proof. Observe that w*(u)/(1 — |u|?) < &(u) as |u| — 17, since w € D by the
hypothesis. For fixed z € D, Fubini’s theorem and Lemma [§ yield

i 1~ ) [ | [ B2V
(77) N<1—|z|>/D/OW dc\ m(u)

> (1-|2P) Oz<1,B§>Ag A<<><d<\ > (1-|2P)

5 dm(u)

/ ZA<<><d<\,

and it follows that A € H$°. Note that the use of the reproducing formula could
be avoided by a straightforward integration.
Let f be any solution of (L2). Then

(78) £ == [ 1OrAGQ dC+ £(0), zeD,
The reproducing formula (73] and Fubini’s theorem imply
fe == [ ([ #tw (0) dm(w) ) A(Q) dC + (0
_/ Fr(w) (/ BE(w)r*A(r¢) dg) w(u)dm(u) + f1(0), z€D,
D 0
from which the second part of Lemma [ yields
i [ g0 ([ BTG A0 ac) o) dont
~ 1) [ P40+ 10), e
0

It follows that

1ol <415l sup (1~ =) /\/ B

5 dm(u)

+1£(0)] sup (1 |2[)
zeD

A(TC)dC‘wLIf’(O)I, b<rel

We deduce f € B by reorganizing the terms and letting r — 1.
Since f € B, we know that M (r, f) < log(e/(1 —r)) for 0 < r < 1. Hence, for
any 0 < p < oo,

1 p—1 1
I 580 +p [ (loe15) oy dr <o

by partial integration and (Il); see also [27), Proposition 6.1]. Now that f € B C
A2 we may repeat the proof from the beginning with r = 1 to deduce the second
part of the assertion. O

Remark 2. The proof of Theorem shows that, in order to conclude f € B, it
suffices to take the supremum in (T.6) over any annulus R < |z| < 1 instead of D.
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We apply an operator theoretic argument to study the sharpness of Theorem [I0l
Let

I(A,w) =limsup sup (1 — \z|2)/
r—1— z€D D

S aaeny w*(u)
| BV ArG ac| £y dma)

denote the left-hand side of (7.6]), for short.

Theorem 11. Let w € D be normalized, and let A € H(D). Then the following
statements are equivalent:
(i) AecLt;
(ii) I(A,w) < o0;
(iii) the operator Sa : B — B is bounded.
Proof. (i) = (ii): Observe that w*(u)/(1 — |u|?) < &(u) as |u| — 1~. By Fubini’s
theorem,

I(A,w) < limsup sup (1 — |z]?) / |A(r¢) (/’BC (u))dd,
r—1—  z€D
where
< D) at a1 14
fleerwiamants [ 5505 [ 75 = ety ceD

by [30, Theorem 1], Fubini’s theorem, and (). It follows that I(A,w) <
JAlles < oo

(ii) = (iii): This implication follows by an argument similar to the proof of
Theorem [I0l As in (7.7), we deduce

sup (1 — |2[%) /‘/ BW dg‘
z€eD

and A € H3°. Let f € B C A2. The reproducing formula (Z3), Fubini’s theorem,
and Lemma [0 imply

dm(u) <I(Aw) < o0

1545l

)| [ T 10AQ) dc\ <7 (A @) + [FO)] - [ Al
< (1115 + 1FO)]) I(A,w),

and hence we deduce (iii).
(iii) = (i): By the assumption, there exists a constant C' > 0 such that

(7.9) sup £ AGI =12 = 1S40 ge S 184Dl < C Ul +10)])

— sup (1 - |2
zeD

for any f € B. Consider the family of test functions

fol?) =log == x(eD.

for which sup;¢p || f¢lls < 2. By ([@9),

log —— ‘ IA(2)|(1 - 232 < 3C, 2,¢eD,
1-(z

which gives (i) for ¢ = z. O



7220 JANNE GROHN, JUHA-MATTI HUUSKO, AND JOUNI RATTYA
A close look at the proof of Theorem [I1] implies
4
IAw) = sup (1 [:P) [ | [ TBET@IAC) de
D |Jo

zeD
We obtain the following consequence of Theorem [I0l

w*(u)
1= Jul?

dm(u).

Corollary 12. Let w € D be normalized, and let A € H(D) such that

(7.10) sup (1 — |Z|2)/D /OZ (BE) (u)A(¢) d¢ w_*(U)

z€D |’LL‘2
is sufficiently small. Then every solution of (L2 belongs to B.

dm(u)

1

Remark 3. In order to conclude that all solutions of (I2]) are in B, it suffices to
take the supremum in (ZI0) over any annulus R < |z| < 1 instead of D.

The little Bloch space By consists of those f € H(DD) for which
lim | f'(2)|(1 = |2[*) = 0.
|z]—1—

The following result is a counterpart of Theorem concerning the little Bloch
space.

Theorem 13. Let w € D be normalized, and let A € H(D) such that
z_ (JJ* (u)
Juf?

iim_ (1~ =) [ | [ TBEVwAQ) dc
\z\%l D 0 1-—
Then every solution of ([L2]) belongs to By.
Proof. As in (1), we conclude that

dm(u) = 0.

. 2 z o
Jim 11| [ A(<>¢d<\ 0.

By the assumption and Remark[3] it follows that each solution f of ([L2) satisfies
f € BC A2. As in the proof of Theorem [I0, we have

=N () <4l flls (1 - |Z2)/D‘/Oz (BE)' (u)A(C) dC’

w*(u)
e dm(u)

+IFOIA =12

[ a0+ a-1pirol ep.

0

The assertion follows. ([
If AeH(D) and

: 1232 € _
(7.11) Jim 1A [#f*)? log 7 =0,

then every solution of (I2)) belongs to By. Actually, f € B by Remark[Bl Therefore

[(z) = —A(2) /D% dm(u), =z €D.

By applying Lemma [ twice, we obtain

F(2)] S JAG) <|f<o>| PO+ g [ A= ul
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Since f € B, we deduce ' € HS°, and hence the argument above shows that f € By
by [41, Lemma 3.10 and Theorem 5.13].

The coefficient condition ([ITl), which forces all solutions of (2] to be in By,
is sharp in the sense that it cannot be replaced by A € £!. Indeed, the function
f(z) =log(e/(1 —z)) € B\ By is a solution of (I2) for

-1
N (A | M

8. SOLUTIONS OF BOUNDED AND VANISHING MEAN OSCILLATION—PARALLEL
RESULTS

In this section, we consider two coefficient estimates which are derived from the

representation (51J). These estimates give sufficient conditions for all solutions of
([C2) to be in BMOA or VMOA. Recall that, by ([€2) and (6.3]), the measure

dpg(z) = f(2)]2(1 — |2|) dm(z) satisfies
(81) HMf”Carlcson S, Hf||2BMOA
Actually, f € BMOA if and only if 417 is a Carleson measure [I1} p. 231].

Theorem 14. Let A € H(D). If
/Z A(r¢) d¢
0 1—e Zt(

1 27
(8.2) lim sup sup/ <—/ dt> (1 — |¢a(2)]?) dm(z)
r—1— aeD Jp \ 27 Jo
is sufficiently small, then all solutions of (L2) belong to BMOA.
Proof. By applying BI) to g = 1, we obtain

Arqdc| = |- [ ) | ] < o /0% [

for 0 <r <1and z€D. By ([62) and (82), any second primitive of A belongs to
BMOA.

Let f be a solution of (L2). Then f, is analytic in D and satisfies f”(¢) +
r2A(r¢) f-(¢) = 0. We deduce (IEI) By (&) and Fubini’s theorem,

2 r2A(r
5@ =g [0t [ acas i)

(8.3) dt,

2 th
7"2 27\'
=== | #e et o). zeD.
where
= A(rQ)
4 = D.
(84) o) = [ e we
Since f, gr. € H?, Lemma [ implies
1 27
% fr(e lt)grz ezt dt—2/f grz 10g| ‘d ( )+fr(O)QTZ(O)
‘We deduce

- 1 2 -
[fr(2)]? <8 }/Df;(w)g;,z(w)log— +2[£(0)g,,-(0) = f1(0)|", =2€D.

ol dm(w)
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By the Hardy—Stein—Spencer formula

g (W) 1
- dm(w) < 2||gr,z ||,

_— 0z log N
 lgrz(w)] 7 |w|

and hence by (81 and Carleson’s theorem [8, Theorem 9.3], there exist absolute
constants 0 < C' < oo and 0 < € < oo such that

51 L ? lgr-(w)]? 1
fl(w)gl.,(w)log — dm(w)| < [ =" ——log — dm(w)
‘/]D) " ” |w] D |9rz(w)] |wl
1
[ lonewllf ) g )
D [l
<2 ng,z ||:uf7- Carleson ||gT7z||H1

< 20 |lgr.q |3 I - Bron -

We have | f1(2)[* < 16C [|gr.z |7 £ [ Baioa+4 £ (0)*]gr,2 (0)*+4 | £(0)[? for z € D,
and by (G.2),

IF+laion < 64C | £vion 31 [ llan s (1 = ea(2)P) dm(2)

161, sup [ 19,0 (1~ [eu(2)) dm(:) + 16| O
By reorganizing terms and letting » — 17, the assertion follows. O

Remark 4. The proof of Theorem [I4] shows that in order to conclude f € BMOA,
it suffices to take the supremum in (82) over any annulus R < |z| < 1 instead of D.

Theorem 15. Let A € H(D). If B2) is sufficiently small and

Jm [ (% /0277 /0 i —(?df@

then every solution of ([L2)) belongs to VMOA.

dt) (1~ lpa(2)P) dmi(z) = 0,

Proof. First, by the assumption and (83, any second primitive of A belongs to
VMOA. Let f be any solution of ([2). By the assumption and Theorem [I4] we
have f € BMOA. As in the proof of Theorem [I4] we obtain

() S g1z llzn 1l Baoa + 91,2 ()£ (O +[f/(0)]%, = €D,
where ¢1 . is the function in (84). Hence, by (6.2)),

(1= lpa(2)*) dm(2)

Ialls S U ion [ .13
L I£(0 |2/|glz (1~ |a(2)?) dm(z)

2
HPOPL- o) [ T2 (),

The assertion follows by letting |a| — 17. O
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9. HARDY SPACES

For 0 < p < oo, the Hardy space H? consists of those f € H(D) for which
27

1 )
| fll = sup  — |f(re?)|P df < occ.

0<r<1 2T

Proof of Theorem [ The case p = 2 follows from the Littlewood—Paley identity by
standard estimates, and if £ = 1, then much more is true; see [26].

The following arguments rely on the representation (53] and on an application of
the nontangential maximal function (54). For z € D, let I(2) = {( € T: 2z € I'(¢)}
and note that its Euclidean arc length satisfies |I(z)| < 1 — |z]? for z € D.

(i) We proceed to prove the following preliminary estimate. If 0 < p < 2, k € N

and 0 < r < 1, then
k=1 2/p
(‘S oor)
§=0

(9.1)
(5l

for all f € H(D), f #£ 0. Write du.(z) = |f7gk)(z)|2(1 — |22)2%+=1 dm(z) for short.
Fubini’s theorem and Holder’s inequality (with indices 2/(2 — p) and 2/p) yield

Z k—1
P ) p
(WA= /T < /F " dm(Z)) IdCI+§|fﬂ (0)

Z k—1
*(()(2—P)§ 2)|P2 2 @ ()P
s/Tmo (/F(C)m( P2 dpa, >> dc+ 37179 (0)

Jj=0

( IR |d<|)27p< L/ (C)Ifr(Z)lpQdur(2)|d<>%+§|f(”(0)p

S ([ 1520 oy anta) ) +Z|f(”

where the last inequality follows from [I1l pp. 55-56]. Estimate (@) follows by
reorganizing the terms.
By a change of variable, we get

(R ~/|f JP2FP (2)P(1 = [2)2F D dm(2) +

[ 1@ 20 @ o240+ dm)
D
02) < [ U@ R (1= =) ()
By means of (@) we conclude that if (O.2)) is finite, then f € H? and
k=1 2/p
(Siroor)
3=0
117"

(9.3 anHpN/u P2 L) (1 - [#2)2 7 dm(2) +
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Cauchy’s integral formula, and the estimate | f(2)| < ||f|lae (1 — |2|>)"Y/P for z € D
B, p- 36], give |fD(0)2 S 17" - [f9(0)P for j =0,1,...,k — 1, which implies

k=1 2/p k-1 k=1
(9.4) (Z If(”(O)I”) < FOOR < 115 IO ).
=0 =0 i=o

Now ([@3) and ([@4]) prove [29].

(ii) Let 2 < p < oo. We may assume that f € HP, for otherwise there is
nothing to prove. Write ¢ = p — 2 and du(z) = |f®) (2)]2(1 — |2]?)>* =D+ dm(z),
for short. Fubini’s theorem, Holder’s inequality (with indices p/q and p/(p — ¢q)),
and [I1l pp. 55-56] yield

[1sGians = [ ( /. |d<|> Sopaer= [ [ Z|2 du2) |dc
<([rerm) ([ (/ . flf(@z)p ic
i | [ ( / ILCT R dm<z>> 1

K1 :
S I (Ifll%p - f‘j)(O)p> S I s

Jj=0

2
P

and the assertion of (ii) follows.

(iii) If f € H(D) is uniformly locally univalent, sup,cp, |f”(2)/f'(z)| (1 — |2|*)
is bounded by a constant depending on § [39, Theorem 2]. Here 0 < § < 1is a
constant such that f is univalent in each pseudohyperbolic disc A(z,d) for z € D.

Since
(f(k) ! f(k+1) f// f(k)
I ) B N

T R

we conclude that Hf(kﬂ)/f'Hch < oo for k € N by induction. By means of the
Hardy—Stein—Spencer formula, we deduce

/D|f<z)|p-2|f<’“><z>|2<1 — [2)?* " dm(z)
Fo 2 2 1 )
. ‘ H;e_lfm'“z)l 1 () log 1 dm(z) < 11z

where the comparison constant depends on § and p. This completes the proof of
Theorem [4 O

9.1. A class of functions for which Question [I] has an afﬁrmatlve answer.
If f € H(D) is nonvanishing, then g = fP=2/2f € H(D) and ¢’ = L2 "= (f’)2 +
f =N 1. The Hardy—-Stein—Spencer formula (27) implies

(9.5) 1£15 < IFO)P + C: 1 / ()P [2[2) dm(2),
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where 0 < C7 < oo is an absolute constant. By standard estimates, there exists
another absolute constant 0 < Cy < oo such that

[la@R @Ry dm(e) < . (|g<o>|2 + [wera- z|2>3dm<z>) |

By ([@3), we deduce

2—p 2

— [F'(0)]P +2C1C (p — 2)
f H>®

201 p? / P2 ()P - [22)? dim(z).

f f

£z < 1£(0)7 + C1LC2 p? 7

1/ 1%

H®

In conclusion, if f € H(D) is nonvanishing and ||f'/f||ze= = |log f||5 is suffi-
ciently small, then (28] holds with C'(p) < p? as p — 07.

9.2. Applications to differential equations. Theorem [ induces an alternative
proof for a special case of [35, Theorem 1.7].

Theorem A. Let 0 < p < 2, and let A € H(D). If @I) is sufficiently small
(depending on p), then all solutions of (L2) belong to HP.

Proof. Note that

(9.6) lim sup sup / A2 = [2P)2(1 — |9a(2)[2) dm(z)

r—1— a€b

is at most a constant multiple of ([@1l); compare to the proof of Theorem Bl Let f
be a solution of ([2)). By Theorem [i), we deduce

1f1Ere S/DIfr(Z)\p_2T2|f”(TZ)I2(1 = [2*)? dm(z) + [F(O)P + | f'(0)”
S / (I [A@2)P (1 = [2*)* dm(z) + [ £(0)” + |/ (0)]7-
D

If ([@6) is sufficiently small, then Carleson’s theorem [8, Theorem 9.3] implies that
| fr]| &> is uniformly bounded for all sufficiently large 0 < r < 1. By letting r — 17,
we obtain f € HP. (]

An argument similar to the one above, taking advantage of Theorem [l(i), leads
to a characterization of H? solutions of (L2)): if 0 < p <2, f is a solution of (L.2)
and dua(z) = |A(2)]?(1 — |2]?)3 dm(z) is a Carleson measure, then f € HP if and
only if

(9.7) / F)P duaz) < oo.

For example, if f is a normal (in the sense of Lehto and Virtanen) solution of (L.2))
and g4 is a Carleson measure, then (@0.7) holds for all sufficiently small 0 < p < oo
by [14, Corollary 9].

Remark 5. If Question [[lhad an affirmative answer, then Theorem [Al would admit
the following immediate improvement: if A € H (D) such that (@I is finite, then
all solutions of (L2)) belong to Uy, H”.
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