Linear differential equations with slowly growing solutions
HTML articles powered by AMS MathViewer
- by Janne Gröhn, Juha-Matti Huusko and Jouni Rättyä PDF
- Trans. Amer. Math. Soc. 370 (2018), 7201-7227 Request permission
Abstract:
This research concerns linear differential equations in the unit disc of the complex plane. In the higher order case the separation of zeros (of maximal multiplicity) of solutions is considered, while in the second order case slowly growing solutions in $H^\infty$, $\mathrm {BMOA}$, and the Bloch space are discussed. A counterpart of the Hardy–Stein–Spencer formula for higher derivatives is proved, and then applied to study solutions in the Hardy spaces.References
- Patrick Ahern and Joaquim Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of $\textbf {C}^n$, Rev. Mat. Iberoamericana 4 (1988), no. 1, 123–153. MR 1009122, DOI 10.4171/RMI/66
- Alexandru Aleman and Joseph A. Cima, An integral operator on $H^p$ and Hardy’s inequality, J. Anal. Math. 85 (2001), 157–176. MR 1869606, DOI 10.1007/BF02788078
- Alexandru Aleman and Aristomenis G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337–356. MR 1481594, DOI 10.1512/iumj.1997.46.1373
- Christos Chatzifountas, Daniel Girela, and José Ángel Peláez, Multipliers of Dirichlet subspaces of the Bloch space, J. Operator Theory 72 (2014), no. 1, 159–191. MR 3246986, DOI 10.7900/jot.2012nov20.1979
- Martin Chuaqui, Janne Gröhn, Janne Heittokangas, and Jouni Rättyä, Zero separation results for solutions of second order linear differential equations, Adv. Math. 245 (2013), 382–422. MR 3084433, DOI 10.1016/j.aim.2013.06.022
- Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy transform, Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, 2006. MR 2215991, DOI 10.1090/surv/125
- Manuel D. Contreras, José A. Peláez, Christian Pommerenke, and Jouni Rättyä, Integral operators mapping into the space of bounded analytic functions, J. Funct. Anal. 271 (2016), no. 10, 2899–2943. MR 3548283, DOI 10.1016/j.jfa.2016.05.021
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Peter Duren and Alexander Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR 2033762, DOI 10.1090/surv/100
- P. C. Fenton and John Rossi, ODEs and Wiman-Valiron theory in the unit disc, J. Math. Anal. Appl. 367 (2010), no. 1, 137–145. MR 2600385, DOI 10.1016/j.jmaa.2009.12.044
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- Daniel Girela, Analytic functions of bounded mean oscillation, Complex function spaces (Mekrijärvi, 1999) Univ. Joensuu Dept. Math. Rep. Ser., vol. 4, Univ. Joensuu, Joensuu, 2001, pp. 61–170. MR 1820090
- Daniel Girela, José Ángel Peláez, Fernando Pérez-González, and Jouni Rättyä, Carleson measures for the Bloch space, Integral Equations Operator Theory 61 (2008), no. 4, 511–547. MR 2434339, DOI 10.1007/s00020-008-1602-9
- Janne Gröhn, Artur Nicolau, and Jouni Rättyä, Mean growth and geometric zero distribution of solutions of linear differential equations, J. Anal. Math. 134 (2018), no. 2, 747–768. MR 3771498, DOI 10.1007/s11854-018-0024-0
- Janne Gröhn, José Ángel Peláez, and Jouni Rättyä, Jointly maximal products in weighted growth spaces, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 1, 109–118. MR 3186809, DOI 10.5186/aasfm.2014.3901
- Janne Gröhn and Jouni Rättyä, On oscillation of solutions of linear differential equations, J. Geom. Anal. 27 (2017), no. 1, 868–885. MR 3606572, DOI 10.1007/s12220-016-9701-3
- W. K. Hayman, Multivalent functions, 2nd ed., Cambridge Tracts in Mathematics, vol. 110, Cambridge University Press, Cambridge, 1994. MR 1310776, DOI 10.1017/CBO9780511526268
- J. Heittokangas, R. Korhonen, and J. Rättyä, Growth estimates for solutions of linear complex differential equations, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 233–246. MR 2041951
- J. Heittokangas, R. Korhonen, and J. Rättyä, Linear differential equations with solutions in the Dirichlet type subspace of the Hardy space, Nagoya Math. J. 187 (2007), 91–113. MR 2354557, DOI 10.1017/S0027763000025861
- Einar Hille, Remarks on a paper be Zeev Nehari, Bull. Amer. Math. Soc. 55 (1949), 552–553. MR 30000, DOI 10.1090/S0002-9904-1949-09243-1
- Juha-Matti Huusko, Taneli Korhonen, and Atte Reijonen, Linear differential equations with solutions in the growth space $H^\infty _\omega$, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 399–416. MR 3467718, DOI 10.5186/aasfm.2016.4128
- W. Kraus, Über den zusammenhang einiger charakteristiken eines einfach zusammenhängenden bereiches mit der kreisabbildung, Mitt. Math. Sem. Giessen 21 (1932), 1–28.
- Ilpo Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR 1207139, DOI 10.1515/9783110863147
- Ilpo Laine, Complex differential equations, Handbook of differential equations: ordinary differential equations. Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 269–363. MR 2440163, DOI 10.1016/S1874-5725(08)80008-9
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- Miroslav Pavlović, Green’s formula and the Hardy-Stein identities, Filomat 23 (2009), no. 3, 135–153. MR 3433478, DOI 10.2298/FIL0903135P
- José Ángel Peláez, Small weighted Bergman spaces, Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics, Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci., vol. 22, Univ. East. Finl., Fac. Sci. For., Joensuu, 2016, pp. 29–98. MR 3760708
- José Ángel Peláez and Jouni Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124. MR 3155774
- José Ángel Peláez and Jouni Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), no. 1-2, 205–239. MR 3343875, DOI 10.1007/s00208-014-1108-5
- José Ángel Peláez and Jouni Rättyä, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9) 105 (2016), no. 1, 102–130 (English, with English and French summaries). MR 3427941, DOI 10.1016/j.matpur.2015.10.001
- José Ángel Peláez and Jouni Rättyä, Weighted Bergman projection in $L^\infty$, preprint.
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602 (German). MR 454017, DOI 10.1007/BF02567392
- Ch. Pommerenke, On the mean growth of the solutions of complex linear differential equations in the disk, Complex Variables Theory Appl. 1 (1982/83), no. 1, 23–38. MR 674359, DOI 10.1080/17476938208814004
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Jouni Rättyä, Linear differential equations with solutions in Hardy spaces, Complex Var. Elliptic Equ. 52 (2007), no. 9, 785–795. MR 2361156, DOI 10.1080/17476930701609478
- Binyamin Schwarz, Complex nonoscillation theorems and criteria of univalence, Trans. Amer. Math. Soc. 80 (1955), 159–186. MR 73038, DOI 10.1090/S0002-9947-1955-0073038-1
- Aristomenis G. Siskakis and Ruhan Zhao, A Volterra type operator on spaces of analytic functions, Function spaces (Edwardsville, IL, 1998) Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 299–311. MR 1678342, DOI 10.1090/conm/232/03406
- Wayne Smith, Dmitriy M. Stolyarov, and Alexander Volberg, Uniform approximation of Bloch functions and the boundedness of the integration operator on $H^\infty$, Adv. Math. 314 (2017), 185–202. MR 3658715, DOI 10.1016/j.aim.2017.04.028
- Shinji Yamashita, Schlicht holomorphic functions and the Riccati differential equation, Math. Z. 157 (1977), no. 1, 19–22. MR 486487, DOI 10.1007/BF01214676
- Ruhan Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 605–618. MR 2034196
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
Additional Information
- Janne Gröhn
- Affiliation: Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- MR Author ID: 943256
- Email: janne.grohn@uef.fi
- Juha-Matti Huusko
- Affiliation: Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- MR Author ID: 1156076
- Email: juha-matti.huusko@uef.fi
- Jouni Rättyä
- Affiliation: Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- MR Author ID: 686390
- Email: jouni.rattya@uef.fi
- Received by editor(s): November 14, 2016
- Received by editor(s) in revised form: March 17, 2017
- Published electronically: July 12, 2018
- Additional Notes: The first author was supported in part by the Academy of Finland #286877.
The second author was supported in part by the Academy of Finland #268009, and the Faculty of Science and Forestry of the University of Eastern Finland #930349.
The third author was supported in part by the Academy of Finland #268009, the Faculty of Science and Forestry of University of Eastern Finland #930349, La Junta de Andalucía (FQM210) and (P09-FQM-4468), and the grants MTM2011-25502, MTM2011-26538 and MTM2014-52865-P - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7201-7227
- MSC (2010): Primary 30H10, 34M10
- DOI: https://doi.org/10.1090/tran/7265
- MathSciNet review: 3841847