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RELATIVE MORITA EQUIVALENCE

OF CUNTZ–KRIEGER ALGEBRAS

AND FLOW EQUIVALENCE

OF TOPOLOGICAL MARKOV SHIFTS

KENGO MATSUMOTO

Abstract. We will introduce a relative version of imprimitivity bimodule and
a relative version of strong Morita equivalence for pairs of C∗-algebras (A,D)
such that D is a C∗-subalgebra of A satisfying certain conditions. We will then
prove that two pairs (A1,D1) and (A2,D2) are relatively Morita equivalent if
and only if their relative stabilizations are isomorphic. In particular, for two
pairs (OA,DA) and (OB ,DB) of Cuntz–Krieger algebras with their canonical
masas, they are relatively Morita equivalent if and only if their underlying two-
sided topological Markov shifts (XA, σ̄A) and (XB , σ̄B) are flow equivalent.
We also introduce a relative version of the Picard group Pic(A,D) for the pair

(A,D) of C∗-algebras and study them for the Cuntz–Krieger pair (OA,DA).
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1. Introduction

In [38] M. Rieffel introduced the notion of an imprimitivity bimodule for C∗-
algebras as a Hilbert C∗-bimodule satisfying certain conditions from a viewpoint
of representation theory of groups, so that he defined the notion of strong Morita
equivalence in C∗-algebras. Let A and B be C∗-algebras. An A–B-bimodule X
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means a Hilbert C∗-bimodule with a left A-module structure and an A-valued
inner product A〈 | 〉 and with a right B-module structure and a B-valued inner
product 〈 | 〉B satisfying some comparability conditions (see [34], [38], [19], [35],
etc.). It is said to be full if the ideals spanned by {A〈x | y〉 | x, y ∈ X} and
{〈x | y〉B | x, y ∈ X} are dense in A and in B, respectively. If a full A–B-bimodule
X further satisfies the condition

A〈x | y〉z = x〈y | z〉B for x, y, z ∈ X,

it is called an A–B-imprimitivity bimodule. Two C∗-algebras A and B are said
to be strongly Morita equivalent if there exists an A–B-imprimitivity bimodule,
which means that A and B have the same representation theory. Brown, Green,
and Rieffel in [5] have shown that two σ-unital C∗-algebras A and B are strongly
Morita equivalent if and only if they are stably isomorphic; that is, A ⊗ K is
isomorphic to B⊗K, where K denotes the C∗-algebra of compact operators on the
separable infinite-dimensional Hilbert space �2(N).

In this paper we will study Morita equivalence of C∗-algebras from a viewpoint of
symbolic dynamical systems. For an irreducible and non-permutation matrix A =
[A(i, j)]Ni,j=1 with entries in {0, 1}, the two-sided topological Markov shift (XA, σ̄A)

is defined as a topological dynamical system on the shift spaceXA consisting of two-
sided sequences (xn)n∈Z of xn ∈ {1, . . . , N} such that A(xn, xn+1) = 1 for all n ∈ Z

with the shift homeomorphism σ̄A((xn)n∈Z) = (xn+1)n∈Z on the compact Hausdorff
space XA. J. Cuntz and W. Krieger introduced a C∗-algebra OA associated to the
matrix A ([14]). The C∗-algebra is called the Cuntz–Krieger algebra, which is a
universal unique C∗-algebra generated by partial isometries S1, . . . , SN subject to
the relations

(1.1)

N∑
j=1

SjS
∗
j = 1, S∗

i Si =

N∑
j=1

A(i, j)SjS
∗
j , i = 1, . . . , N.

Since the stable isomorphism class of OA does not have complete information about
the underlying dynamical system (XA, σ̄A), we need some extra structure to OA

to study (XA, σ̄A). In this paper, we focus on the pair (OA,DA) where DA is the
C∗-subalgebra of OA generated by the projections of the form Si1 · · ·SinS

∗
in
· · ·S∗

i1
,

i1, . . . , in = 1, . . . , N . We call (OA,DA) the Cuntz–Krieger pair. As in [26] the iso-
morphism class of the pair (OA,DA) is a complete invariant of the continuous orbit
equivalence class of the underlying one-sided topological Markov shift (XA, σA).
As one of the remarkable relationships between symbolic dynamics and Cuntz–
Krieger algebras, Cuntz and Krieger showed in [14] that if topological Markov
shifts (XA, σ̄A) and (XB , σ̄B) are flow equivalent, then there exists an isomor-
phism Φ : OA⊗K −→ OB ⊗K such that Φ(DA⊗C) = DB ⊗C, where C denotes the
maximal commutative C∗-subalgebra of K consisting of the diagonal operators on
�2(N). Recently H. Matui and the author have proved that the converse implication
also holds, so that (XA, σ̄A) and (XB, σ̄B) are flow equivalent if and only if there
exists an isomorphism Φ : OA ⊗ K −→ OB ⊗ K such that Φ(DA ⊗ C) = DB ⊗ C
([30]). We call (OA ⊗K,DA ⊗ C) the stabilized Cuntz–Krieger pair or the relative
stabilization of (OA,DA), so that the isomorphism class of the relative stabilization
of (OA,DA) is a complete invariant for the flow equivalence class of the underlying
two-sided topological Markov shift (XA, σ̄A).
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In this paper we will introduce a relative version of imprimitivity bimodule and
a relative version of strong Morita equivalence for pairs of C∗-algebras (A,D) such
that D is a C∗-subalgebra of A for which D has an orthogonal countable ap-
proximate unit for A. Such a pair is said to be relative σ-unital. If D contains
the unit of A, the pair is relative σ-unital. Two relative σ-unital pairs (A1,D1)
and (A2,D2) of C∗-algebras are said to be relatively Morita equivalent, written
(A1,D1) ∼

RME
(A2,D2), if there exists an (A1,D1)–(A2,D2)-relative imprimitivity

bimodule. We will first show the following theorem for relative σ-unital pairs (A,D)
of C∗-algebras.

Theorem 1.1 (Lemma 3.9, Theorem 4.7 and Theorem 5.5). Let (A1,D1) and
(A2,D2) be relative σ-unital pairs of C∗-algebras. Then the following assertions
are mutually equivalent:

(1) (A1,D1) and (A2,D2) are relatively Morita equivalent.
(2) (A1 ⊗K,D1 ⊗ C) and (A2 ⊗K,D2 ⊗ C) are relatively Morita equivalent.
(3) There exists an isomorphism Φ : A1 ⊗ K −→ A2 ⊗ K of C∗-algebras such

that Φ(D1 ⊗ C) = D2 ⊗ C.
(4) (A1,D1) and (A2,D2) are complementary relative full corners.

We will next apply the theorem above to the Cuntz–Krieger pair (OA,DA) and
clarify relationships between relative Morita equivalence and flow equivalence of
underlying topological dynamical systems.

Two Cuntz–Krieger pairs (OA,DA) and (OB,DB) are said to be elementary
corner isomorphic if there exists a projection P ∈ DB and an isomorphism Φ :
POBP −→ OA such that Φ(DBP ) = DA. The equivalence relation in Cuntz–
Krieger pairs generated by elementary corner isomorphisms is said to be corner
isomorphic. In [9] T. M. Carlsen, E. Ruiz, and A. Sims have studied diagonal pre-
serving stable isomorphisms of graph C∗-algebras. Among other things, they have
shown that the graph C∗-algebras with their diagonals are corner isomorphic in
the above sense if and only if their underlying groupoids are Kakutani equivalent
in the sense of Matui [31], which is equivalent to an existence of diagonal preserv-
ing stable isomorphism of the graph C∗-algebras ([9, Corollary 4.5]). Hence the
equivalence between (3) and (4) in Theorem 1.2 below follows from their result.
Their technique is due to groupoid method. In this paper, we will give its proof
by a functional analytic technique (Theorem 6.3). By applying Theorem 1.1 to
Cuntz–Krieger pairs, we see the following result.

Theorem 1.2 (Theorem 6.4). Let A,B be irreducible and non-permutation matri-
ces with entries in {0, 1}. Let (OA,DA), (OB,DB) be the associated Cuntz–Krieger
pairs. Then the following assertions are mutually equivalent:

(1) (OA,DA) and (OB ,DB) are relatively Morita equivalent.
(2) (OA ⊗K,DA ⊗ C) and (OB ⊗K,DB ⊗ C) are relatively Morita equivalent.
(3) There exists an isomorphism Φ : OA ⊗K −→ OB ⊗K of C∗-algebras such

that Φ(DA ⊗ C) = DB ⊗ C.
(4) (OA,DA) and (OB ,DB) are corner isomorphic.
(5) The two-sided topological Markov shifts (XA, σ̄A) and (XB , σ̄B) are flow

equivalent.
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By using J. Franks’ s theorem [15] (cf. [3], [33]), the last assertion (5) is equiv-
alent to the following (6):

(6) The groups ZN/(id−A)ZN and ZM/(id−B)ZM are isomorphic and
det(id−A) = det(id−B), where N is the size of the matrix A and M
is that of B.

Hence the group Z
N/(id−A)ZN with the value det(id−A) is a complete invari-

ant of the relative Morita equivalence class of the Cuntz–Krieger pair (OA,DA). We
note that related results are seen in the paper [6] by N. Brownlowe, T. M. Carlsen
and M. F. Whittaker. They are studying Morita equivalence of graph algebras in
terms of groupoids (cf. [17], [18], [32], [40], etc.).

In [5] Brown, Green, and Rieffel introduced the notion of the Picard group Pic(A)
for a C∗-algebra A to study equivalence classes of imprimitivity bimodules of C∗-
algebras. Natural isomorphism classes [X] of imprimitivity bimodules X over A
form a group under the relative tensor product [X] · [Y ] = [X ⊗A Y ]. The group
is called the Picard group for the C∗-algebra A and is denoted by Pic(A), and
is considered a sort of generalization of the automorphism group Aut(A) of A.
We will introduce a relative version of the Picard group Pic(A,D) as the group of
(A,D)–(A,D)-relative imprimitivity bimodules and study their structure for the
Cuntz–Krieger pairs (OA,DA). Let

Aut◦(OA,DA) = {α ∈ Aut(OA) | α(DA) = DA, α∗ = id on K0(OA)}.

Its quotient group Aut◦(OA,DA)/ Int(OA,DA) by Int(OA,DA) is denoted by
Out◦(OA,DA). Let Aut1(Z

N/(id−At)ZN ) be the subgroup of the automorphism
group Aut(ZN/(id−At)ZN ) of the abelian group ZN/(id−At)ZN defined by

Aut1(Z
N/(id−At)ZN ) = {ξ ∈ Aut(ZN/(id−At)ZN ) | ξ([1]) = [1]},

where [1] ∈ ZN/(id−At)ZN denotes the class of the vector (1, . . . , 1) in ZN .
It is well known that there exists a canonical isomorphism εA : K0(OA) −→
ZN/(id−At)ZN such that ε([1OA

]) = [1] ([13]). We will obtain the following struc-
ture theorem for Pic(OA,DA).

Theorem 1.3 (Theorems 8.8 and 8.9). Let A be an irreducible and non-permutation
matrix. Then there exist short exact sequences

1 −→ Out◦(OA,DA)
Ψ̄−→ Pic(OA,DA)

K∗−→ Aut(ZN/(id−At)ZN ) −→ 1,

1 −→ Out(OA,DA)
Ψ̄−→ Pic(OA,DA)

K∗−→ Aut(ZN/(id−At)ZN )/Aut1(Z
N/(id−At)ZN ) −→ 1.

In Appendix A, we refer to the ordinary Picard groups Pic(OA) for Cuntz–
Krieger algebras OA and especially for the ordinary Picard groups Pic(ON ) for
Cuntz algebras ON (Theorem 9.4 and Corollary 9.5).

In Appendix B, we will present concrete construction of relative imprimitivity
bimodules from flow equivalent topological Markov shifts, which we regard as a
functional analytic proof of (5) =⇒ (1) of Theorem 1.2.
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2. Relative σ-unital C∗
-algebras

For a C∗-algebra A we denote by M(A) its multiplier C∗-algebra (cf. [41]). The
locally convex topology on M(A) generated by the seminorms x −→ ‖xa‖, x −→
‖ax‖ for a ∈ A is called the strict topology. Throughout the paper, we denote
by {ei,j}i,j∈N the matrix units on the separable infinite-dimensional Hilbert space
�2(N). The C∗-algebra generated by them is denoted by K which is the C∗-algebra
of all compact operators on �2(N). The C∗-subalgebra of K generated by diagonal
projections {ei,i}i∈N is denoted by C.

A C∗-algebra is said to be σ-unital if it has a countable approximate unit. We
will first introduce the notion of a relative version of a σ-unital C∗-algebra.

Definition 2.1. A pair (A,D) of C∗-algebras A,D is called relative σ-unital if it
satisfies the following conditions:

(1) D is a C∗-subalgebra of A.
(2) D contains a countable approximate unit for A.
(3) There exists a sequence an ∈ A, n = 1, 2, . . . , such that

(a) a∗ndan, anda
∗
n ∈ D for all d ∈ D and n = 1, 2, . . . .

(b)
∑∞

n=1 a
∗
nan = 1 in the strict topology of M(A).

(c) anda
∗
m = 0 for all d ∈ D and n,m ∈ N with n 
= m.

We call the sequence {an}n∈N satisfying the three conditions (a), (b), and (c) a
relative approximate unit for the pair (A,D).

Remark 2.2. By the above condition (2), we know that M(D) is a C∗-subalgebra
of M(A) in natural way (cf. [41, p. 46, 2G]).

Lemma 2.3. Assume that (A,D) is a relative σ-unital pair of C∗-algebras. Let
{an}n∈N be a relative approximate unit for (A,D). Then we have the following.

(i) a∗nan, ana
∗
n ∈ D for all n = 1, 2, . . . .

(ii) bn =
∑n

k=1 a
∗
kak belongs to D and the sequence {bn}n∈N is a countable

approximate unit for A.

Proof. (i) Take and fix k ∈ N. Since
∑∞

n=1 a
∗
nan = 1 in M(A), we have 0 ≤ a∗kak ≤

1 so that ‖ak‖ ≤ 1. As D has an approximate unit for A, for any ε > 0, there
exists d ∈ D such that ‖ak − dak‖ < ε, so that ‖a∗kak − a∗kdak‖ < ε. The condition
a∗kdak ∈ D ensures that a∗kak belongs to D. Similarly, we know that aka

∗
k belongs

to D.
(ii) Since bn =

∑n
k=1 a

∗
kak converges to 1 in the strict topology of M(A), {bn}n∈N

is an approximate unit for A. �
Lemma 2.4. Let D be a C∗-subalgebra of A. Then (A,D) is relative σ-unital if
and only if there exists a sequence dn ∈ D, n = 1, 2, . . . such that the following
holds.

(a) dn ≥ 0, n = 1, 2, . . . .
(b)

∑∞
n=1 dn = 1 in the strict topology of M(A).

(c) dnddm = 0 for all d ∈ D and n,m ∈ N with n 
= m.

Proof. Suppose that (A,D) is relative σ-unital. Take a relative approximate unit
{an}n∈N in A. Put dn = a∗nan. By the preceding lemma, dn belongs to D and
satisfies the desired properties. Conversely, suppose that there exists a sequence
dn in D satisfying the above three conditions. Put an =

√
dn, which becomes a

relative approximate unit for (A,D). �
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We call the sequence {dn}n∈N in D satisfying the conditions (a), (b), and (c) in
Lemma 2.4 an orthogonal approximate unit for (A,D).

Example 2.5. 1. If a C∗-subalgebra D of a unital C∗-algebra A contains the
unit 1 of A, the pair (A,D) is relative σ-unital by putting d1 = 1 and dn = 0 for
n = 2, 3, . . . .

2. Let A = K and D = C. Then the pair (A,D) is relative σ-unital by putting
dn = en,n, n ∈ N, where {en,m}n,m∈N is the matrix units of K.

More generally we know the following proposition.

Proposition 2.6. If (A,D) is relative σ-unital, so is (A⊗K,D ⊗ C).

Proof. Take an orthogonal approximate unit {dn}n∈N in D for the pair (A,D).
Put d(n,m) = dn ⊗ em,m for n,m = 1, 2, . . . . It is straightforward to see that the
sequence d(n,m), n,m = 1, 2, . . . becomes an orthogonal approximate unit for the
pair (A⊗K,D ⊗ C). �

We call the pair (A⊗K,D ⊗ C) the relative stabilization for (A,D).

Corollary 2.7. If a C∗-subalgebra D of A contains the unit of A, both the pairs
(A,D) and (A⊗K,D ⊗ C) are relative σ-unital.

We remark that these kinds of pairs (A,D) in this section are seen in many
different contexts as in [23], [36], [37], etc.

3. Relative imprimitivity bimodules and relative Morita equivalence

In this section we first recall the definition of Rieffel’s imprimitivity bimodule
over C∗-algebras ([38]). Let A1 and A2 be C∗-algebras. A left Hilbert C∗-module
X over A1 is a C-vector space with a left A1-module structure and an A1-valued
inner product A1

〈 | 〉 satisfying the following conditions [19, Definition 1.1](cf.
[38], etc.).

(1) A1
〈 | 〉 is left linear and right conjugate linear.

(2) A1
〈ax | y〉 = aA1

〈x | y〉 and A1
〈x | ay〉 = A1

〈x | y〉a∗ for all x, y ∈ X and
a ∈ A1.

(3) A1
〈x | x〉 ≥ 0 for all x ∈ X, and A1

〈x | x〉 = 0 if and only if x = 0.
(4) A1

〈x | y〉 = A1
〈y | x〉∗ for all x, y ∈ X.

(5) X is complete with respect to the norm ‖x‖ = ‖A1
〈x | x〉‖ 1

2 .

If the closed linear span of {A1
〈x | y〉 | x, y ∈ X} is equal to A1, X is said to be

left full. Similarly a right Hilbert C∗-module X over A2 is defined as a C-vector
space with a right A2-module structure and an A2-valued inner product 〈 | 〉A2

satisfying the following conditions [19, Definition 1.2].

(1) 〈 | 〉A2
is left conjugate and right linear.

(2) 〈x | yb〉A2
= 〈x | y〉A2

b and 〈xb | y〉A2
= b∗〈x | y〉A2

for all x, y ∈ X and
b ∈ A2.

(3) 〈x | x〉A2
≥ 0 for all x ∈ XA2

, and 〈x | x〉A2
= 0 if and only if x = 0.

(4) 〈x | y〉A2
= 〈y | x〉∗A2

for all x, y ∈ X.

(5) X is complete with respect to the norm ‖x‖ = ‖〈x | x〉A2
‖ 1

2 .

The right fullness for X is similarly defined to the left fullness. Throughout the
paper, an A1–A2-Hilbert C∗-bimodule means a left Hilbert C∗-module over A1 and
also a right Hilbert C∗-module over A2 in the above sense ([38], [19], [35], etc.). In
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[38, Definition 6.10], M. Rieffel has defined the notion of an A1–A2-imprimitivity
bimodule in the following way. An A1–A2-bimodule X is said to be an A1–A2-
imprimitivity bimodule if the three conditions below hold.

(1) X is a full left Hilbert A1-module with A1-valued left inner product

A1
〈 | 〉, and a full right Hilbert A2-module with A2-valued right inner

product 〈 | 〉A2
.

(2) 〈a · x | y〉A2
= 〈x | a∗ · y〉A2

and A1
〈x · b | y〉 = A1

〈x | y · b∗〉 for all x, y ∈ X
and a ∈ A1, b ∈ A2.

(3) A1
〈x | y〉 · z = x · 〈y | z〉A2

for all x, y, z ∈ X.

We note that the above condition (2) implies

(3.1) ‖A1
〈x | x〉‖ = ‖〈x | x〉A2

‖, x ∈ X,

so that the two norms on X induced by the left-hand side and the right-hand side
of (3.1) coincide (cf. [19, Corollary 1.19], [35, Proposition 3.11]).

We will introduce a relative version of the above imprimitivity bimodule. Let
(A1,D1) and (A2,D2) be relative σ-unital pairs of C∗-algebras.

Definition 3.1. Let X be an A1–A2-Hilbert C∗-bimodule. Put

N(X) = {x ∈ X | A1
〈xd2 | x〉 ∈ D1 for all d2 ∈ D2,

〈x | d1x〉A2
∈ D2 for all d1 ∈ D1}.

The A1–A2-Hilbert C∗-bimodule X is called an (A1,D1)–(A2,D2)-relative imprim-
itivity bimodule if it satisfies the following conditions.

(1) X is an A1–A2-imprimitivity bimodule.
(2) There exists a sequence xn ∈ N(X), n = 1, 2, . . . , such that

(a)
∑∞

n=1〈xn | xn〉A2
= 1 in the strict topology of M(A2).

(b) A1
〈xnd2 | xm〉 = 0 for all d2 ∈ D2 and n,m ∈ N with n 
= m.

(3) There exists a sequence yn ∈ N(X), n = 1, 2, . . . , such that
(a)

∑∞
n=1 A1

〈yn | yn〉 = 1 in the strict topology of M(A1).
(b) 〈yn | d1ym〉A2

= 0 for all d1 ∈ D1 and n,m ∈ N with n 
= m.

Remark 3.2.

(1) Since X is an A1–A2-imprimitivity bimodule, norms on X defined by their

inner products coincide each other, that is, ‖A1
〈x | x〉‖ 1

2 = ‖〈x | x〉A2
‖ 1

2 for
x ∈ X (cf. [35, Proposition 3.11]). We denote the norm by ‖x‖.

(2) The above elements xn, yn ∈ N(X) in Definition 3.1 satisfy the inequalities

(3.2) A1
〈xn | xn〉 ≤ 1, 〈yn | yn〉A2

≤ 1

because of the inequalities

A1
〈xn | xn〉 ≤ ‖A1

〈xn | xn〉‖ = ‖〈xn | xn〉A2
‖ ≤ ‖

∞∑
n=1

〈xn | xn〉A2
‖ = 1

and of similar inequalities for 〈yn | yn〉A2
.

(3) Both the left action of A1 and the right action of A2 on X are non-
degenerate, that is, A1X = X = XA2. More strongly, we see that
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D1X = X = XD2. In fact, for d1 ∈ D1 and x ∈ X, the following in-
equalities hold:

‖x− d1x‖2 = ‖A1
〈x− d1x | x− d1x〉‖

= ‖A1
〈x | x〉 − d1A1

〈x | x〉 − A1
〈x | x〉d∗1 + d1A1

〈x | x〉d∗1‖
≤ ‖A1

〈x | x〉 − d1A1
〈x | x〉‖+ ‖A1

〈x | x〉 − d1A1
〈x | x〉‖‖d∗1‖.

As D1 has a countable approximate unit for A1, we have a sequence d1(n)
in D1 such that limn→∞ ‖x− d1(n)x‖ = 0 so that D1X = X.

In the following two lemmas, we assume that X will be an (A1,D1)–(A2,D2)-
relative imprimitivity bimodule and N(X) will be the subset of X defined in Defi-
nition 3.1.

Lemma 3.3. For x ∈ N(X), we have

(i) A1
〈x | x〉 ∈ D1.

(ii) 〈x | x〉A2
∈ D2.

Proof. (i) Let x ∈ N(X). For d2 ∈ D2, we have

(3.3) 〈x−xd2 | x−xd2〉A2
= 〈x | x〉A2

−〈x | x〉A2
d2−d∗2〈x | x〉A2

+d∗2〈x | x〉A2
d2.

Now D2 contains an approximate unit for A2, and the equality (3.3) shows that for
any ε > 0 there exists an element d2 ∈ D2 such that ‖〈x − xd2 | x − xd2〉A2

‖ < ε.
SinceX is an A1–A2-imprimitivity bimodule, we see that ‖A1

〈x−xd2 | x−xd2〉‖ < ε
by [35, Proposition 3.11]. By the Cauchy–Schwartz inequality (cf. [35, Lemma 2.5])
we have

‖A1
〈x− xd2 | x〉‖2 =‖A1

〈x− xd2 | x〉∗A1
〈x− xd2 | x〉‖

≤‖A1
〈x− xd2 | x− xd2〉‖‖A1

〈x | x〉‖
<ε‖A1

〈x | x〉‖.

Hence we have

(3.4) ‖A1
〈x | x〉 − A1

〈xd2 | x〉‖2 = ‖A1
〈x− xd2 | x〉‖2 < ε‖A1

〈x | x〉‖.

As A1
〈xd2 | x〉 belongs to D1, we conclude that A1

〈x | x〉 belongs to D1.
(ii) is proved similarly to (i). �

Lemma 3.4.

(i) We have z =
∑∞

n=1 A1
〈z | xn〉xn for z ∈ X, which converges in the norm

of X, and A1
〈xn | xm〉 = 0 for n,m ∈ N with n 
= m.

(ii) We have z =
∑∞

n=1 yn〈yn | z〉A2
for z ∈ X, which converges in the norm

of X, and 〈yn | ym〉 = 0 for n,m ∈ N with n 
= m.

Proof. (i) As X = XD2, for z ∈ X and ε > 0 there exists d2 ∈ D2 such that
‖z − zd2‖ < ε. Since

∑∞
n=1〈xn | xn〉A2

= 1 in the strict topology of M(A2), we
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may find K ∈ N such that ‖
∑K

n=1 d2〈xn | xn〉A2
− d2‖ < ε. Therefore we have

‖z −
K∑

n=1

A1
〈z | xn〉xn‖ = ‖z −

K∑
n=1

z〈xn | xn〉A2
‖

≤ ‖z − zd2‖+ ‖zd2 −
K∑

n=1

zd2〈xn | xn〉A2
‖

+ ‖
K∑

n=1

zd2〈xn | xn〉A2
−

K∑
n=1

z〈xn | xn〉A2
‖

≤ ‖z − zd2‖+ ‖z‖‖d2 −
K∑

n=1

d2〈xn | xn〉A2
‖

+ ‖(zd2 − z)

K∑
n=1

〈xn | xn〉A2
‖

= (2 + ‖z‖)ε,

so that
∑∞

n=1 A1
〈z | xn〉xn converges to z in the norm of X.

As in the proof of Lemma 3.3, for n,m ∈ N with n 
= m, there exists d2(k) ∈ D2

such that

lim
k→∞

‖A1
〈xn | xm〉 − A1

〈xnd2(k) | xm〉‖2 = 0.

Since A1
〈xnd2(k) | xm〉 = 0, we have A1

〈xn | xm〉 = 0. �

The sequences {xn}n∈N, {yn}n∈N ⊂ N(X) satisfying conditions (2) and (3) in
Definition 3.1 are called a relative left basis or a relative right basis, respectively.
The pair ({xn}, {yn}) is called a relative basis for X. We remark that study of
finite basis of Hilbert C∗-modules is seen in [42].

We arrive at our definition of the relative version of strong Morita equivalence.

Definition 3.5. Two relative σ-unital pairs of C∗-algebras (A1,D1) and (A2,D2)
are said to be relatively Morita equivalent if there exists an (A1,D1)–(A2,D2)-
relative imprimitivity bimodule. In this case we write (A1,D1) ∼

RME
(A2,D2).

Lemma 3.6. Let (A1,D1) and (A2,D2) be relative σ-unital pairs of C∗-algebras.
If there exists an isomorphism θ : A1 −→ A2 of C∗-algebras such that θ(D1) = D2,
then we have (A1,D1) ∼

RME
(A2,D2). In particular, for a relative σ-unital pair

(A,D) of C∗-algebras, we have (A,D) ∼
RME

(A,D).

Proof. Let an ∈ A1, n ∈ N, be a relative approximate unit for (A1,D1). Put
Xθ = A1 as vector space having module structure and inner products given by

a1 · x · a2 := a1xθ
−1(a2) for a1 ∈ A1, a2 ∈ A2, x ∈ Xθ,(3.5)

A1
〈x | y〉 = xy∗, 〈x | y〉A2

= θ(x∗y) for x, y ∈ Xθ.(3.6)

Put xn = an, n ∈ N. We have for d1 ∈ D1, d2 ∈ D2,

A1
〈xnd2 | xn〉 = anθ

−1(d2)a
∗
n ∈ D1, 〈xn | d1xn〉A2

= θ(a∗nd1an) ∈ D2,
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so that xn ∈ N(Xθ). We also have

∞∑
n=1

〈xn | xn〉A2
=

∞∑
n=1

θ(a∗nan) = 1

and

A1
〈xnd2 | xm〉 = anθ

−1(d2)a
∗
m = 0 for all d2 ∈ D2 and n,m ∈ N with n 
= m.

Similarly, by putting yn = a∗n, we have

A1
〈ynd2 | yn〉 = a∗nθ

−1(d2)an ∈ D1, 〈yn | d1yn〉A2
= θ(and1a

∗
n) ∈ D2,

so that yn ∈ N(Xθ). We also have

∞∑
n=1

A1
〈yn | yn〉 =

∞∑
n=1

a∗nan = 1

and

〈yn | d1ym〉 = θ(and1a
∗
m) = 0 for all d1 ∈ D1 and n,m ∈ N with n 
= m.

Hence ({xn}, {yn}) is a relative basis for Xθ so that Xθ becomes an (A1,D1)–
(A2,D2)-relative imprimitivity bimodule, thus proving (A1,D1) ∼

RME
(A2,D2). �

We will next show that the relation ∼
RME

is an equivalence relation in relative

σ-unital pairs of C∗-algebras. Relative tensor products of Hilbert C∗-bimodules are
seen in [38, Section 1] (see also [35, Section 3], [19, Definition 1.20]).

Lemma 3.7. Suppose that X12 is an (A1,D1)–(A2,D2)-relative imprimitivity bi-
module and X23 is an (A2,D2)–(A3,D3)-relative imprimitivity bimodule. Then the
relative tensor product X12 ⊗A2

X23 of bimodules is an (A1,D1)–(A3,D3)-relative
imprimitivity bimodule.

Proof. Take relative bases ({xn}, {yn}) for X12 and ({zn}, {wn}) for X23. We will
show that the pair ({xn ⊗ zm}n,m, {yn ⊗ wm}n,m) becomes a relative basis for
X12 ⊗A2

X23. For d3 ∈ D3, d1 ∈ D1, we have

A1
〈(xn⊗zm)d3 | xn⊗zm〉 =A1

〈xn⊗(zmd3) | xn⊗zm〉 = A1
〈xnA2

〈zmd3 | zm〉 | xn〉,
〈xn⊗zm | d1(xn⊗zm)〉A3

=〈xn⊗zm | (d1xn)⊗zm〉A3
= 〈zm | 〈xn | d1xn〉A2

zm〉A3
.

As A2
〈zmd3 | zm〉 ∈ D2, we have A1

〈xnA2
〈zmd3 | zm〉 | xn〉 ∈ D1 so that

A1
〈(xn⊗zm)d3 | xn⊗zm〉 ∈ D1. Similarly, we know that 〈xn⊗zm | d1(xn⊗zm)〉A3

∈ D3.
We also have

∞∑
n,m=1

〈xn ⊗ zm | xn ⊗ zm〉A3
=

∞∑
n,m=1

〈zm | 〈xn | xn〉A2
zm〉A3

=

∞∑
m=1

〈zm | (
∞∑

n=1

〈xn | xn〉A2
)zm〉A3

=

∞∑
m=1

〈zm | zm〉A3
= 1.
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For d3 ∈ D3, we have

A1
〈(xn ⊗ zm)d3 | xl ⊗ zk〉 = A1

〈xn ⊗ (zmd3) | xl ⊗ zk〉 = A1
〈xnA2

〈zmd3 | zk〉 | xl〉.
Ifm 
= k, then A2

〈zmd3 | zk〉 = 0. If n 
= l, then A1
〈xnA2

〈zmd3 | zk〉 | xl〉 = 0 because

A2
〈zmd3 | zk〉 ∈ D2. Hence if (n,m) 
= (l, k), we have A1

〈(xn ⊗ zm)d3 | xl ⊗ zk〉 = 0,
thus proving that the sequence {xn⊗zm}n,m is a relative left basis for X12⊗A2

X23.
By a similar argument, one can show that {yn ⊗ wm}n,m is a relative right basis
for X12 ⊗A2

X23, so that ({xn ⊗ zm}n,m, {yn ⊗ wm}n,m) is a relative basis for
X12 ⊗A2

X23. �

Therefore, we have

Proposition 3.8. A relative Morita equivalence ∼
RME

is an equivalence relation in

relative σ-unital pairs of C∗-algebras.

Proof. The reflexive law follows from Lemma 3.6. We will show the symmetric
law. Suppose that (A1,D1) ∼

RME
(A2,D2) via relative imprimitivity bimodule X12.

Then its conjugate module X12 denoted by X21 becomes an (A2,D2)–(A1,D1)-
relative imprimitivity bimodule (see [38, Definition 6.17], cf. [19, p. 3443]), so that
(A2,D2) ∼

RME
(A1,D1). The transitive law follows from Lemma 3.7. �

Lemma 3.9. Let (A,D) be a relative σ-unital pair of C∗-algebras. Then we have

(A,D) ∼
RME

(A⊗K,D ⊗ C).

Proof. Let an ∈ A, n ∈ N be a relative approximate unit for (A,D). Recall that
{en,m}n,m∈N denotes the matrix units of K. DefineX = A⊗e1,1K. By identifying A
with A⊗Ce1,1, X has the natural structure of an A–A⊗K-imprimitivity bimodule.
Put xn,m = an ⊗ e1,m ∈ X,n,m ∈ N. For d1 ∈ D and d2 = d⊗ f ∈ D ⊗ C, we have

A〈xn,md2 | xn,m〉 = anda
∗
n ⊗ e1,mfe∗1,m ∈ D ⊗ Ce1,1,

〈xn,m | d1xn,m〉A⊗K = a∗ndan ⊗ em,1e1,1e1,m ∈ D ⊗ C,
so that xn,m belongs to N(X) under the identification between D with D ⊗ Ce1,1.
We also have

∞∑
n,m=1

〈xn,m | xn,m〉A⊗K =
∞∑

n,m=1

a∗nan ⊗ e∗1,me1,m = 1⊗ 1

in M(A⊗K). For d2 = d⊗ f ∈ D ⊗ C, we have

A〈xn,md2 | xk,l〉 = anda
∗
k ⊗ e1,mfe∗1,l.

If n 
= k, we have anda
∗
k = 0. If m 
= l, we have e1,mfe∗1,l = 0. Hence if (n,m) 
=

(k, l), we have A〈xn,md2 | xk,l〉 = 0.
Put yn = a∗n ⊗ e1,1. Then for d1 ∈ D and d2 = d⊗ f ∈ D ⊗ C, we have

A〈ynd2 | yn〉 = a∗ndan ⊗ e1,1fe
∗
1,1 ∈ D ⊗ Ce1,1,

〈yn | d1yn〉A⊗K = anda
∗
n ⊗ e1,1 ∈ D ⊗ C,

so that yn belongs to N(X). We also have

∞∑
n=1

A〈yn | yn〉 =
∞∑

n=1

a∗nan ⊗ e1,1 = 1⊗ e1,1,
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and 〈yn | d1ym〉A⊗K = anda
∗
m ⊗ e1,1 = 0 for n 
= m. Therefore, X becomes

an (A,D)–(A ⊗ K,D ⊗ C)-relative imprimitivity bimodule, so that (A,D) ∼
RME

(A⊗K,D ⊗ C). �

Example 3.10. For m, k ∈ N, let A1 = Mm(C),D1 = diag(Mm(C)) = Cm, and
A2 = Mk(C),D2 = diag(Mk(C)) = Ck. Then we have (A1,D1) ∼

RME
(A2,D2).

We will present an (A1,D1)–(A2,D2)-relative imprimitivity bimodule in the fol-
lowung way. Let A0,D0 be Mm+k(C), diag(Mm+k(C)), respectively. Let p1, p2 be
the projections in D0 defined by

p1 = (

m︷ ︸︸ ︷
1, · · · , 1,

k︷ ︸︸ ︷
0, · · · , 0), p2 = (

m︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
1, · · · , 1).

We then have

A1 = p1A0p1, D1 = D0p1 and A2 = p2A0p2, D2 = D0p2.

Put X = p1A0p2 with a natural A1–A2-bimodule structure and inner products
such that

(3.7) A1
〈x | y〉 = xy∗, 〈x | y〉A2

= x∗y for x, y ∈ X.

It is not difficult to see that X becomes an (A1,D1)–(A2,D2)-relative imprimitivity
bimodule so that (A1,D1) ∼

RME
(A2,D2).

4. Isomorphism of relative stabilizations

This section is devoted to proving the following theorem, which is a relative
version of a part of Brown–Green–Rieffel theorem [5, Theorem 1.2].

Theorem 4.1. Suppose (A1,D1) ∼
RME

(A2,D2). Then there exists an isomorphism

Φ : A1 ⊗K −→ A2 ⊗K of C∗-algebras such that Φ(D1 ⊗ C) = D2 ⊗ C.

Suppose that X is an (A1,D1)–(A2,D2)-relative imprimitivity bimodule. Let
X be the conjugate bimodule of X ([38, Definition 6.17], cf. [19, p. 3443]). The
corresponding element in X to y ∈ X is denoted by y. It is straightforward to
see that X is an (A2,D2)–(A1,D1)-relative imprimitivity bimodule. We define the
relative linking pair (A0,D0) by setting

A0 =

{[
a1 x
y a2

]
| a1 ∈ A1, a2 ∈ A2, x, y ∈ X

}
,(4.1)

D0 =

{[
d1 0
0 d2

]
| d1 ∈ D1, d2 ∈ D2

}
.(4.2)

As in [5, p. 350] the products between two elements of A0 are defined by[
a1 x
y a2

] [
b1 z
w b2

]
:=

[
a1b1 + A1

〈x | w〉 a1z + xb2
yb1 + a2w 〈y | z〉A2

+ a2b2

]
,

and the adjoint of

[
a1 x
y a2

]
∈ A0 is defined by

[
a1 x
y a2

]∗
:=

[
a∗1 y
x a∗2

]
.
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Let X ⊕A2 be the Hilbert C∗-right module over A2 with the natural right action
of A2 and A2-valued right inner product defined by

〈
[
x
a2

]
|
[
y
b2

]
〉A2

:= 〈x | y〉A2
+ a2b2.

The algebra A0 acts on X ⊕A2 by[
a1 x
y a2

] [
z
b2

]
=

[
a1z + xb2

〈y | z〉A2
+ a2b2

]
.

As seen in [35, Lemma 3.20], A0 itself is a C∗-subalgebra of all bounded adjointable
operators on the Hilbert C∗-right module X ⊕A2. We set

(4.3) P1 =

[
1 0
0 0

]
, P2 =

[
0 0
0 1

]
.

They satisfy P1 + P2 = 1 and

(4.4) P1A0P1 = A1, D0P1 = D1 and P2A0P2 = A2, D0P2 = D2.

To prove Theorem 4.1, we provide several lemmas.

Lemma 4.2. Let ({xn}, {yn}) be a relative basis for X.

(i) Put Un =

[
0 xn

0 0

]
∈ A0, n ∈ N. The sequence Un satisfies the following

conditions.
(a) P2 =

∑∞
n=1 U

∗
nUn which converges in the strict topology of M(A0).

(b) UnU
∗
n ≤ P1 and UnU

∗
m = 0 for n 
= m.

(c) UnD0U
∗
n ⊂ D0P1 = D1.

(d) U∗
nD0Un ⊂ D0P2 = D2.

(ii) Put Tn =

[
0 0
yn 0

]
∈ A0, n ∈ N. The sequence Tn satisfies the following

conditions.
(a) P1 =

∑∞
n=1 T

∗
nTn which converges in the strict topology of M(A0).

(b) TnT
∗
n ≤ P2 and TnT

∗
m = 0 for n 
= m.

(c) TnD0T
∗
n ⊂ D0P2 = D2.

(d) T ∗
nD0Tn ⊂ D0P1 = D1.

Proof. (i) For d1 ∈ D1, d2 ∈ D2, we have

(4.5) U∗
n

[
d1 0
0 d2

]
Un =

[
0 0
0 〈xn | d1xn〉A2

]
.

Since xn ∈ N(X) and d1 ∈ D1, we have 〈xn | d1xn〉A2
∈ D2, so that U∗

nD0Un ⊂
D0P2, which shows (d). Since we have

(4.6) U∗
nUn =

[
0 0
0 〈xn | xn〉A2

]
,

the equality
∑∞

n=1〈xn | xn〉A2
= 1 implies

∑∞
n=1 U

∗
nUn = P2 which shows (a). And

also for d1 ∈ D1, d2 ∈ D2, we have

(4.7) Un

[
d1 0
0 d2

]
U∗
n =

[
A1
〈xnd2 | xn〉 0

0 0

]
.
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Since xn ∈ N(X) and d2 ∈ D2, we have A1
〈xnd2 | xn〉 ∈ D1 so that UnD0U

∗
n ⊂

D0P1, which shows (c). Since we have

(4.8) UnU
∗
m =

[
A1
〈xn | xm〉 0

0 0

]
,

the inequality A1
〈xn | xn〉 ≤ 1 implies UnU

∗
n ≤ P1 and A1

〈xn | xm〉 = 0 for n,m ∈ N

with n 
= m, which shows (b).
(ii) is proved similarly to (i). �

Lemma 4.3. The pair (A0,D0) is relative σ-unital.

Proof. Refer to Lemma 4.2 and the notation given there. Put an =

[
0 xn

yn 0

]
=

Un + Tn. It then follows that
∞∑

n=1

a∗nan =

∞∑
n=1

U∗
nUn +

∞∑
n=1

T ∗
nTn = P2 + P1 = 1.

For d1 ∈ D1, d2 ∈ D2, we have

a∗n

[
d1 0
0 d2

]
an = U∗

n

[
d1 0
0 d2

]
Un + T ∗

n

[
d1 0
0 d2

]
Tn

=

[
〈yn | d2yn〉A1

0
0 〈xn | d1xn〉A2

]
∈ D1 ⊕D2 = D0.

Similarly, we have an

[
d1 0
0 d2

]
a∗n ∈ D1 ⊕D2. We also have

anda
∗
m = (Un + Tn)d(Um + Tm)∗ = UndU

∗
m + TndT

∗
m = 0

for d = d1 + d2 ∈ D1 ⊕D2 and n 
= m. Hence, {an} is a relative approximate unit
for (A0,D0), thus showing that (A0,D0) is relative σ-unital. �

Let us decompose the set N of natural numbers into disjoint infinite subsets
N =

⋃∞
j=1Nj and decompose Nj for each j once again into disjoint infinite sets

Nj =
⋃∞

k=0 Nj,k. Recall that {ei,j}i,j∈N denotes the matrix units which generate the
algebra K = K(�2(N)). Put the projections fj =

∑
i∈Nj

ei,i and f(j,k) =
∑

i∈Nj,k
ei,i.

Take a partial isometry s(j,k),j such that s∗(j,k),js(j,k),j = fj , s(j,k),js
∗
(j,k),j = f(j,k),

and put sj,(j,k) = s∗(j,k),j . Let P1, P2 be the projections of M(A0) defined in (4.3).

Take sequences Un, Tn, n ∈ N, as in Lemma 4.2. We set for n = 1, 2, . . . ,

un =
∞∑
k=1

Uk ⊗ s(n,k),n, wn = P1 ⊗ s(n,0),n + un,(4.9)

tn =
∞∑
l=1

Tl ⊗ s(n,l),n, zn = P2 ⊗ s(n,0),n + tn.(4.10)

Then we have

Lemma 4.4 (cf. [29, Lemma 3.3]). For each n ∈ N, we have

(i) wn is a partial isometry in M(A0 ⊗K) such that
(a) w∗

nwn = 1⊗ fn.
(b) wnw

∗
n ≤ P1 ⊗ fn.

(c) wn(D0 ⊗ C)w∗
n ⊂ D1 ⊗ C.

(d) w∗
n(D0 ⊗ C)wn ⊂ D2 ⊗ C.
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(ii) zn is a partial isometry in M(A0 ⊗K) such that
(a) z∗nzn = 1⊗ fn.
(b) znz

∗
n ≤ P2 ⊗ fn.

(c) zn(D0 ⊗ C)z∗n ⊂ D2 ⊗ C.
(d) z∗n(D0 ⊗ C)zn ⊂ D1 ⊗ C.

Proof. (i) Since u∗
nun = P2 ⊗ fn, we have

w∗
nwn = P1 ⊗ fn + u∗

nun = P1 ⊗ fn + P2 ⊗ fn = 1⊗ fn.

As un(P1 ⊗ sn,(n,0)) = (P1 ⊗ sn,(n,0))u
∗
n = 0, we have

wnw
∗
n = P1 ⊗ f(n,0) + unu

∗
n = P1 ⊗ f(n,0) +

∞∑
k=1

UkU
∗
k ⊗ f(n,k).

Since f(n,0), f(n,k) ≤ fn, we have

wnw
∗
n ≤ P1 ⊗ fn.

The assertions (c) and (d) directly follow from (i)(c) and (i)(d) in Lemma 4.2,
respectively.

(ii) is proved similarly to (i). �

We will construct and study a unitary V1 in M(A0 ⊗ K) such that Ad(V1) :
A0 ⊗K −→ A1 ⊗K and Ad(V1)(D0 ⊗ C) = D1 ⊗ C.

Let fn,m be a partial isometry satisfying f∗
n,mfn,m = fm, fn,mf∗

n,m = fn. The
following lemma is straightforward.

Lemma 4.5 (cf. [29, Lemma 3.4]). We put

v1 = w1 = P1 ⊗ s(1,0),1 + u1,

v2n = (P1 ⊗ fn − v2n−1v
∗
2n−1)(P1 ⊗ fn,n+1) for 1 ≤ n ∈ N,

v2n−1 = wn(1⊗ fn − v∗2n−2v2n−2) for 2 ≤ n ∈ N.

Then we have for n ∈ N

(a) v∗2n−2v2n−2 + v∗2n−1v2n−1 = 1⊗ fn.
(b) v2n−1v

∗
2n−1 + v2nv

∗
2n = P1 ⊗ fn.

(c) vn(D0 ⊗ C)v∗n ⊂ D1 ⊗ C.
(d) v∗n(D1 ⊗ C)vn ⊂ D0 ⊗ C.

By Lemma 4.5 we have the following proposition.

Proposition 4.6. Assume that (A1,D1) ∼
RME

(A2,D2). Let (A0,D0) be the relative

linking pair defined in (4.1) and (4.2).

(i) There exists an isometry V1 in M(A0 ⊗K) such that
(a) V ∗

1 V1 = 1⊗ 1.
(b) V1V

∗
1 = P1 ⊗ 1.

(c) V1(D0 ⊗ C)V ∗
1 = D1 ⊗ C.

(d) V ∗
1 (D1 ⊗ C)V1 = D0 ⊗ C.

(ii) There exists an isometry V2 in M(A0 ⊗K) such that
(a) V ∗

2 V2 = 1⊗ 1.
(b) V2V

∗
2 = P2 ⊗ 1.

(c) V2(D0 ⊗ C)V ∗
2 = D2 ⊗ C.

(d) V ∗
2 (D2 ⊗ C)V2 = D0 ⊗ C.
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Proof. (i) Let vn be the sequence of partial isometries in M(A0 ⊗ K) defined in
Lemma 4.5. Recall that {ei,j}i,j∈N denotes the set of matrix units of the C∗-
algebra K of compact operators on �2(N). For a⊗ ei,j ∈ A0 ⊗K and m,n ∈ N with
m > n, we have

‖
2m−2∑
k=1

vk(a⊗ ei,j)−
2n−2∑
k=1

vk(a⊗ ei,j)‖2 =‖(
2m−2∑

k=2n−1

vk)(a⊗ ei,j)‖2

=‖(a∗ ⊗ e∗i,j)(
2m−2∑

k=2n−1

v∗kvk)(a⊗ ei,j)‖

=‖(a∗ ⊗ ej,i)(

m∑
k=n

1⊗ fk)(a⊗ ei,j)‖

≤
m∑

k=n

‖a∗a⊗ ej,ifkei,j)‖

and

‖(a⊗ ei,j)

2m−2∑
k=1

vk − (a⊗ ei,j)

2n−2∑
k=1

vk‖2 =‖(a⊗ ei,j)(

2m−2∑
k=2n−1

vkv
∗
k)(a

∗ ⊗ e∗i,j)‖

=‖(a⊗ ei,j)(

m∑
k=n

P1 ⊗ fk)(a
∗ ⊗ e∗i,j)‖

≤
m∑

k=n

‖aa∗ ⊗ ei,jfkej,i)‖.

As fk =
∑

i∈Nk
ei,i, we have ej,ifkei,j = ei,jfkej,i = 0 for sufficiently large numbers

k. Since the linear span of the form a⊗ ei,j for a ∈ A0, i, j ∈ N is dense in A0 ⊗K,
a routine argument shows that the summation

∑∞
n=1 vn converges in M(A0 ⊗ K)

to an element V1 in the strict topology of M(A0 ⊗K). The conditions (a) and (b)
in Lemma 4.5 let V1 satisfy the conditions (a) and (b) in (i) of Proposition 4.6, so
that V1 becomes a partial isometry in M(A0 ⊗ K). It satisfies the conditions (c)
and (d) because of the conditions (c) and (d) in Lemma 4.5.

(ii) We similarly obtain a desired partial isometry V2 in M(A0 ⊗ K) from the
preceding partial isometries tn, zn defined in (4.10) instead of un, wn. �

Therefore, we reach the following theorem.

Theorem 4.7. Let (A1,D1) and (A2,D2) be relative σ-unital pairs of C∗-algebras.
Then (A1,D1) ∼

RME
(A2,D2) if and only if there exists an isomorphism Φ : A1 ⊗

K −→ A2 ⊗K of C∗-algebras such that Φ(D1 ⊗ C) = D2 ⊗ C.

Proof. Suppose (A1,D1) ∼
RME

(A2,D2). Take isometries V1, V2 in M(A0 ⊗ K) as

in Proposition 4.6. Put Φ = Ad(V2V
∗
1 ) which gives rise to an isomorphism Φ :

A1 ⊗K −→ A2 ⊗K of C∗-algebras such that Φ(D1 ⊗ C) = D2 ⊗ C.
Converse implication comes from Lemma 3.6, Proposition 3.8, and Lemma 3.9.

�
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5. Relative full corners

In [4], L. G. Brown introduced the notion of full corner of a C∗-algebra and
proved that two σ-unital C∗-algebras are stably isomorphic if and only if they are
full corners of some common σ-unital C∗-algebra ([4, Corollary 2.9]). Brown, Green,
and Rieffel have further shown that two C∗-algebras are strongly Morita equivalent
if and only if they are complementary full corners of some C∗-algebra ([5, Theorem
1.1]). In this section, we will study a relative version of their result.

Definition 5.1. For a relative σ-unital pair (A,D) of C∗-algebras, a projection
P ∈ M(D) is said to be relatively full in (A,D) if it satisfies the following conditions.

(1) Pd = dP for all d ∈ D.
(2) There exists a sequence an ∈ A, n = 1, 2, . . . , such that

(a) a∗ndan ∈ D, anda
∗
n ∈ DP for all d ∈ D and n = 1, 2, . . . .

(b)
∑∞

n=1 a
∗
nPan = 1− P in the strict topology of M(A).

(c) anda
∗
m = 0 for all d ∈ D and n,m ∈ N with n 
= m.

We call the sequence {an}n∈N satisfying the three conditions (a), (b), and (c) a
relative full sequence for P .

Remark 5.2. By condition (b) above, we know that

(b’) a∗ndPan ∈ D(1− P ) for all d ∈ D,

because we have

(a∗ndPan)
∗a∗ndPan = a∗nPd∗ana

∗
ndPan ≤ ‖d∗ana∗nd‖a∗nPan ≤ 1− P.

Definition 5.3. Relative σ-unital pairs (A1,D1) and (A2,D2) of
C∗-algebras are said to be complementary relative full corners if there exists a
relative σ-unital pair (A0,D0) of C∗-algebras such that there exist relative full
projections P1, P2 ∈ M(D0) such that

(5.1) P1 + P2 = 1 and PiA0Pi = Ai, D0Pi = Di, i = 1, 2.

Proposition 5.4. Let (A1,D1) and (A2,D2) be relative σ-unital pairs of C∗-
algebras. If they are complementary relative full corners, then we have (A1,D1) ∼

RME

(A2,D2).

Proof. Let (A0,D0) and Pi ∈ M(D0), i = 1, 2, be a relative σ-unital pair of C∗-
algebras and projections, respectively, satisfying Definition 5.3. Let {an} and {bn}
be relative full sequences for the projections P1, P2, respectively. We set X =
P1A0P2 with natural A1–A2-bimodule structure and inner products as in (3.7).
Define two sequences by xn = P1anP2 and yn = P1b

∗
nP2. For d ∈ D0, put di =

dPi, i = 1, 2. It then follows that

A1
〈xnd2 | xn〉 = P1anP2d2P2a

∗
nP1 ∈ D0P1 = D1,

〈xn | d1xn〉A2
= P2a

∗
nP1d1P1anP2 ∈ D0P2 = D2.

Hence, xn belongs to N(X). We also have

∞∑
n=1

〈xn | xn〉A2
=

∞∑
n=1

P2a
∗
nP1anP2 = P2
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and

A1
〈xnd2 | xm〉 = P1anP2dP2a

∗
mP1 = 0 for n 
= m,

because P2dP2 ∈ D0 and anP2dP2a
∗
m = 0 for n 
= m. Hence, {xn} is a relative left

basis for X. Similarly, we have

A1
〈ynd2 | yn〉 = P1b

∗
nP2d2P2bnP1 ∈ D0P1 = D1,

〈yn | d1yn〉A2
= P2bnP1d1P1b

∗
nP2 ∈ D0P2 = D2.

Hence, yn belongs to N(X). We also have

∞∑
n=1

A1
〈yn | yn〉 =

∞∑
n=1

P1b
∗
nP2bnP1 = P1

and

〈yn | d1ym〉A2
= P2bnP1dP1b

∗
mP2 = 0 for n 
= m.

Hence, {yn} is a relative right basis for X. Therefore, X is an (A1,D1)–(A2,D2)-
relative imprimitivity bimodule, so that we have (A1,D1) ∼

RME
(A2,D2). �

We obtain the following theorem.

Theorem 5.5. Let (A1,D1) and (A2,D2) be relative σ-unital pairs of C∗-algebras.
Then (A1,D1) ∼

RME
(A2,D2) if and only if (A1,D1) and (A2,D2) are complemen-

tary relative full corners.

Proof. The “if” part has been proved in Proposition 5.4. To show the “only if” part,
suppose (A1,D1) ∼

RME
(A2,D2). Take (A0,D0) the linking pair defined in (4.1) and

(4.2). Let P1, P2 be the projections in M(D0) defined by (4.3). Take the sequences
Un, Tn as in Lemma 4.2. The proof of Lemma 4.2 shows us that the sequences
an := Un and bn := Tn are relative full sequences for P1 and P2, respectively, so
that P1 and P2 are relative full projections in (A0,D0). Since P1 + P2 = 1, the
equalities (4.4) show that (A1,D1) and (A2,D2) are complementary relative full
corners. �

6. Relative Morita equivalence in Cuntz–Krieger pairs

In this section, we will study relative Morita equivalence, particularly in Cuntz–
Krieger algebras, from a viewpoint of symbolic dynamical systems. For a non-
negative matrix A = [A(i, j)]Ni,j=1, the associated directed graph GA = (VA, EA)

consists of the vertex set VA = {vA1 , . . . , vAN} of N -vertices and the edge set EA =
{a1, . . . , aNA

} where there are A(i, j) edges from vAi to vAj . For ai ∈ EA, denote
by t(ai), s(ai) the terminal vertex of ai and the source vertex of ai, respectively.

The graph GA has the NA ×NA transition matrix AG = [AG(ai, aj)]
NA
i,j=1 of edges

defined by

(6.1) AG(ai, aj) =

{
1 if t(ai) = s(aj),

0 otherwise

for ai, aj ∈ EA. The Cuntz–Krieger algebra OA for the matrix A is defined as the
Cuntz–Krieger algebra OAG for the matrix AG which is the universal C∗-algebra
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generated by partial isometries Sai
indexed by edges ai, i = 1, . . . , NA subject to

the relations

(6.2)

NA∑
j=1

Saj
S∗
aj

= 1, S∗
ai
Sai

=

NA∑
j=1

AG(ai, aj)Saj
S∗
aj

for i = 1, . . . , NA.

The subalgebra DA is defined as the algebra DAG . The pair (OA,DA) is called the
Cuntz–Krieger pair for the matrix A. In what follows, we assume that the matrix
A is irreducible and non-permutation. Since 1 ∈ DA ⊂ OA, the pair (OA,DA)
is relative σ-unital. As in [26], the isomorphism class of the pair (OA,DA) is
exactly corresponding to the continuous orbit equivalence class of the underlying
one-sided topological Markov shift (XA, σA). Its complete classification result has
been obtained in [30, Theorem 3.6] (cf. [8] for more general result).

Let A,B,Z be square irreducible and non-permutation matrices with entries in
nonnegative integers.

Definition 6.1. Two Cuntz–Krieger pairs (OA,DA) and (OZ ,DZ) are said to be
elementary corner isomorphic if there exists a projection P ∈ DZ and an isomor-
phism Φ : POZP −→ OA such that Φ(DZP ) = DA. We identify POZP, DZP with
OA, DA through Φ, respectively, so that we write

(6.3) POZP = OA, DZP = DA.

Two Cuntz–Krieger pairs (OA,DA) and (OB,DB) are said to be corner isomorphic
if there exists a finite chain of Cuntz–Krieger pairs (OZi

,DZi
), i = 0, 1, . . . , n, such

that Z0 = A,Zn = B, and either (OZi
,DZi

) and (OZi+1
,DZi+1

) or (OZi+1
,DZi+1

)
and (OZi

,DZi
) are elementary corner isomorphic for all i = 0, 1, . . . , n. That is,

the equivalence relation generated by elementary corner isomorphisms in Cuntz–
Krieger pairs is the corner isomorphism.

This equivalence relation appears in Carlsen, Ruiz, and Sims’s paper [9] related
to Kakutani equivalence of groupoids introduced by Matui [31]. Carlsen, Ruiz, and
Sims are discussing a more general setting, the so-called graph algebra setting. By
their result [9, Corollary 4,5], we see that two Cuntz–Krieger pairs (OA,DA) and
(OB,DB) are corner isomorphic if and only if there is a diagonal preserving isomor-
phism of their stabilized Cuntz–Krieger algebras. Hence the following proposition
and Theorem 6.3 are obtained directly from their result. Their methods are due to
groupoid technique. We will prove the following proposition and Theorem 6.3 by a
functional analytic method.

Proposition 6.2. Let A,B be nonnegative irreducible non-permutation matrices.
If two Cuntz–Krieger pairs (OA,DA) and (OB,DB) are corner isomorphic, then
they are relatively Morita equivalent, and hence there exists an isomorphism Φ :
OA ⊗K −→ OB ⊗K of C∗-algebras such that Φ(DA ⊗ C) = DB ⊗ C.

Proof. We assume that (OA,DA) and (OZ ,DZ) are elementary corner isomor-
phic by a projection P ∈ DZ satisfying (6.3), so that we identify OA,DA with
POZP,DZP, respectively. We set X = POZ which has a natural structure of an
OA–OZ-imprimitivity bimodule in the following way:

a · x · b := axb for a ∈ OA, b ∈ OZ , x ∈ X,

OA
〈x | y〉 = xy∗, 〈x | y〉OZ

= x∗y for x, y ∈ X.



7030 KENGO MATSUMOTO

We will show that X becomes an (OA,DA)–(OZ ,DZ)-relative imprimitivity bimod-
ule. We may assume that the projection Q = 1−P is not zero. Let S1, . . . , SNZ

be
the canonical generating partial isometries of the Cuntz–Krieger algebra OZ satis-
fying the relations (6.1) for the matrix Z. As Q ∈ DZ , one may find a finite family
of admissible words μ(k), k = 1, . . . , N1 of XZ such that |μ(1)| = · · · = |μ(N1)|
and Q =

∑N1

k=1 Sμ(k)S
∗
μ(k), where |μ(i)| denotes the length of μ(i). Since Z is

irreducible, we may find admissible words ν(k) of XZ for each μ(k) such that
|ν(1)| = · · · = |ν(N1)| and

P ≥ Sν(k)S
∗
ν(k), Sν(k)Sμ(k) 
= 0, k = 1, . . . , N1.

As ν(k)μ(k) is an admissible word in XZ , we know S∗
ν(k)Sν(k) ≥ Sμ(k)S

∗
μ(k). For

k = 0, 1, . . . , N1, put

xk =

{
P if k = 0,

Sν(k)Sμ(k)S
∗
μ(k) if k = 1, . . . , N1.

As xk = Pxk, k = 0, 1, . . . , N1, the sequence xk, k = 0, 1, . . . , N1 belongs to X. We
then see that for k = 0, 1, . . . , N1,

OA
〈xkd2 | xk〉 = xkd2x

∗
k ∈ DZP for d2 ∈ DZ ,

〈xk | d1xk〉OZ
= x∗

kd1xk ∈ DZ for d1 ∈ DZP

so that xk, k = 0, 1, . . . , N1 belong to N(X). We also see that

N1∑
k=0

〈xk | xk〉OZ
= P +

N1∑
k=1

Sμ(k)S
∗
μ(k)S

∗
ν(k)Sν(k)Sμ(k)S

∗
μ(k)

= P +

N1∑
k=1

Sμ(k)S
∗
μ(k) = P +Q = 1

and

OA
〈xkd2 | xl〉 = 0 for d2 ∈ DZ , k 
= l.

Hence the sequence xk, k = 0, 1, . . . , N1, is a relative left basis for X in the sense
of right before Definition 3.5. It is easy to see that the sequence yk = PSk, k =
1, . . . , N1 belongs to N(X) and satisfies the equalities

N1∑
k=1

OA
〈yk | yk〉 =

N1∑
k=1

PSkS
∗
kP = P

and

〈yk | d1yl〉OZ
= S∗

kPd1PSl = 0 for d1 ∈ DZP, k 
= l.

Hence, the sequence yk, k = 1, . . . , N1, is a relative right basis for X, so that the
pair ({xk}N1

k=0, {yk}
N1

k=1) is a relative basis for X, proving that X is an (OA,DA)–
(OZ ,DZ)-relative imprimitivity bimodule, which gives rise to a relative Morita
equivalence between (OA,DA) and (OZ ,DZ). The assertion that there exists an
isomorphism Φ : OA⊗K −→ OZ ⊗K of C∗-algebras such that Φ(DA⊗C) = DZ ⊗C
follows from Theorem 4.7. �

Therefore we have the following theorem, which has already appeared in Carlsen,
Ruiz, and Sims [9].



RELATIVE MORITA EQUIVALENCE 7031

Theorem 6.3 (Carlsen–Ruiz–Sims [9]). Let A,B be nonnegative irreducible and
non-permutation matrices. The Cuntz–Krieger pairs (OA,DA) and (OB,DB) are
corner isomorphic if and only if there exists an isomorphism Φ : OA⊗K −→ OB⊗K
of C∗-algebras such that Φ(DA ⊗ C) = DB ⊗ C.

Proposition 6.2 shows the only if part of the above theorem. The if part directly
follows from Carlsen–Ruiz–Sims [9, Corollary 4.5] as well as the only if part. The
if part also follows from the discussions in Appendix B with [30, Corollary 3.8].
As a consequence we have a functional analytic proof of the above theorem using
[30, Corollary 3.8].

We may summarize our discussions for Cuntz–Krieger algebras in the following
way.

Theorem 6.4. Let A,B be irreducible non-permutation matrices with entries in
{0, 1}. Let OA,OB be the associated Cuntz–Krieger algebras. Then the following
assertions are mutually equivalent.

(1) (OA,DA) ∼
RME

(OB,DB).

(2) (OA ⊗K,DA ⊗ C) ∼
RME

(OB ⊗K,DB ⊗ C).
(3) There exists an isomorphism Φ : OA ⊗K −→ OB ⊗K of C∗-algebras such

that Φ(DA ⊗ C) = DB ⊗ C.
(4) (OA,DA) and (OB ,DB) are corner isomorphic.
(5) The two-sided topological Markov shifts (XA, σ̄A) and (XB , σ̄B) are flow

equivalent.

Proof. (1) ⇐⇒ (2) comes from Lemma 3.9.
(1) ⇐⇒ (3) comes from Theorem 4.7.
(3) ⇐⇒ (4) comes from Theorem 6.3 ([9, Corollary 4.5]).
(5) =⇒ (3) comes from [14, 4.1 Theorem].
(3) =⇒ (5) comes from [30, Corollary 3.8]. �

7. Relative Picard groups

Let (A1,D1) and (A2,D2) be relative σ-unital pairs of C
∗-algebras. Let X,Y be

an (A1,D1)–(A2,D2)-relative imprimitivity bimodule. Then X and Y are said to
be equivalent if there exists an isomorphism ϕ : X −→ Y of an A1–A2-imprimitivity
bimodule such that

〈ϕ(x1) | ϕ(x2)〉 = 〈x1 | x2〉 for x1, x2 ∈ X

for both left and right inner products. As ϕ : X −→ Y preserves the bimodule
structures and inner products of X and Y , we know ϕ(N(X)) = N(Y ). We denote
by [X] the equivalence class of a relative imprimitivity bimodule X. For a relative
σ-unital pair (A,D) of C∗-algebras, we introduce a notion of relative version of
Picard group as follows.

Definition 7.1. The relative Picard group Pic(A,D) for (A,D) is defined by the
group of equivalence classes [X] of an (A,D)–(A,D)-relative imprimitivity bimodule
by the product

[X] · [Y ] := [X ⊗A Y ].
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We remark that the identity element of the group Pic(A,D) is the class of the
identity (A,D)–(A,D)-relative imprimitivity bimodule X = A defined by the mod-
ule structure and the inner products

(7.1) a ·x · b = axb, A〈x | y〉 := xy∗, 〈x | y〉A := x∗y for a, b, x, y ∈ A.

Since (A,D) is relative σ-unital, the above X becomes an (A,D)–(A,D)-relative
imprimitivity bimodule as seen in Lemma 3.6.

Lemma 7.2. If (A1,D1) ∼
RME

(A2,D2), we have isomorphic Picard groups

Pic(A1,D1) ∼= Pic(A2,D2). Hence we have Pic(A,D) ∼= Pic(A ⊗ K,D ⊗ C) for
every relative σ-unital pair (A,D) of C∗-algebras.

Proof. Let X be an (A1,D1)–(A2,D2)-relative imprimitivity bimodule, and let X
be its conjugate module, which is an (A2,D2)–(A1,D1)-relative imprimitivity bi-
module. It is easy to see that the correspondence

[Y ] ∈ Pic(A1,D1) −→ [X ⊗A1
Y ⊗A1

X] ∈ Pic(A2,D2)

yields an isomorphism as groups, because [X ⊗A1
X] is the unit of the group

Pic(A2,D2) and [X ⊗A2
X] is the unit of the group Pic(A1,D1). �

If θ : A1 −→ A2 is an isomorphism of C∗-algebras such that θ(D1) = D2, then we
write θ : (A1,D1) −→ (A2,D2) and call it an isomorphism of relative σ-unital pairs
of C∗-algebras. As in Lemma 3.6, any isomorphism θ : (A1,D1) −→ (A2,D2) gives
rise to an (A1,D1)–(A2,D2)-relative imprimitivity bimodule Xθ. The following
lemma holds.

Lemma 7.3. Let θ12 : (A1,D1) −→ (A2,D2) and θ23 : (A2,D2) −→ (A3,D3) be
isomorphisms of relative σ-unital pairs of C∗-algebras. Then we have

[Xθ12 ⊗A2
Xθ23 ] = [Xθ23◦θ12 ].

Therefore, we have a contravariant functor from the category of relative σ-unital
C∗-algebras with isomorphisms θ : (A1,D1) −→ (A2,D2) as morphisms into the
category of relative σ-unital C∗-algebras with equivalence classes of relative im-
primitivity bimodules.

Proof. As in the proof of Lemma 3.6, for the isomorphism θii+1 : (Ai,Di) −→
(Ai+1,Di+1), i = 1, 2, the (Ai,Di)–(Ai+1,Di+1)-relative imprimitivity bimodule
Xθii+1

is defined by Xθii+1
= Ai having module structure and inner products given

by

ai · xii+1 · ai+1 = aixii+1θ
−1
ii+1(ai+1) for ai ∈ Ai, ai+1 ∈ Ai+1, xii+1 ∈ Xθii+1

,

Ai
〈xii+1 | yii+1〉 = xii+1y

∗
ii+1, 〈xii+1 | yii+1〉Ai+1

= θii+1(x
∗
ii+1yii+1)

for xii+1, yii+1 ∈ Xθii+1
, i = 1, 2. We will see that the correspondence

ϕ : x12 ⊗ x23 ∈ Xθ12 ⊗A2
Xθ23 −→ x12θ

−1
12 (x23) ∈ Xθ23◦θ12

yields an isomorphism from Xθ12 ⊗A2
Xθ23 to Xθ23◦θ12 . For ai ∈ Ai, i = 1, 3, we

have the equalities

ϕ(a1(x12 ⊗ x23)a3) = ϕ(a1x12 ⊗ x23θ
−1
23 (a3))

= a1x12θ
−1
12 (x23θ

−1
23 (a3))

= a1x12θ
−1
12 (x23)(θ23 ◦ θ12)−1(a3)

= a1ϕ(x12 ⊗ x23)a3.



RELATIVE MORITA EQUIVALENCE 7033

We also have

A1
〈ϕ(x12 ⊗ x23) | ϕ(y12 ⊗ y23)〉 = A1

〈x12θ
−1
12 (x23) | y12θ−1

12 (y23)〉
= x12θ

−1
12 (x23y

∗
23)y

∗
12

= (x12A2
〈x23 | y23〉)y∗12

= A1
〈x12A2

〈x23 | y23〉 | y12〉
= A1

〈x12 ⊗ x23 | y12 ⊗ y23〉
and

〈ϕ(x12 ⊗ x23) | ϕ(y12 ⊗ y23)〉A3
= 〈x12θ

−1
12 (x23) | y12θ−1

12 (y23)〉A3

= (θ23 ◦ θ12)((x12θ
−1
12 (x23)

∗)y12θ
−1
12 (y23))

= θ23(x
∗
23(〈x12 | y12〉A2

y23))

= 〈x23 | 〈x12 | y12〉A2
y23〉A3

= 〈x12 ⊗ x23 | y12 ⊗ y23〉A3
.

Hence, we know that ϕ : Xθ12 ⊗A2
Xθ23 −→ Xθ23◦θ12 yields an isomorphism so that

[Xθ12 ⊗A2
Xθ23 ] = [Xθ23◦θ12 ]. �

Let Aut(A,D) be the group of automorphisms θ on A such that θ(D) = D, that
is,

Aut(A,D) := {θ ∈ Aut(A) | θ(D) = D}.
We denote by U(A,D) the group of unitaries u ∈ M(A) satisfying uDu∗ = D.
We denote by Ad(u) the automorphism of (A,D) defined by Ad(u)(a) = uau∗ for
a ∈ A. Let us denote by Int(A,D) the subgroup of Aut(A,D) consisting of such au-
tomorphisms of (A,D). Each θ ∈ Aut(A,D) can be extended to an automorphism
of M(A) in a unique way by [7] and denoted by θ. Hence Int(A,D) is a normal
subgroup of Aut(A,D). By the preceding lemma, we have an antihomomorphism

θ ∈ Aut(A,D) −→ [Xθ] ∈ Pic(A,D).

Proposition 7.5 and Corollary 7.6 below are achieved in a similar manner to Brown,
Green, and Rieffel’s argument [5, Proposition 3.1] and [5, Corollary 3.2], respec-
tively. We will give the proofs for the sake of completeness. We provide a lemma
below.

Lemma 7.4. Let X0 = A be the identity element of the group Pic(A,D) which
has a natural (A,D)–(A,D)-relative imprimitivity bimodule structure. Then for
u ∈ U(A,D), the correspondence

ϕu : x ∈ X0 −→ xu ∈ XAd(u)

yields an isomorphism of (A,D)–(A,D)-relative imprimitivity bimodules.

Proof. For a, b ∈ A and x, y ∈ X0, we have

ϕu(axb) = axbu = axu · u∗bu = axuAd(u)−1(b) = aϕu(x)b

and

A〈ϕu(x) | ϕu(y)〉 = ϕu(x)ϕu(y)
∗ = xu(yu)∗ = xy∗ = A〈x | y〉,

〈ϕu(x) | ϕu(y)〉A = Ad(u)(ϕu(x)
∗ϕu(y)) = u((xu)∗(yu))u∗ = x∗y = 〈x | y〉A.
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Hence, ϕu : x ∈ X0 −→ xu ∈ XAd(u) gives rise to an isomorphism of A–A-
bimodules, which yields an isomorphism of (A,D)–(A,D)-relative imprimitivity
bimodules. �

Proposition 7.5 (cf. [5, Proposition 3.1]). The kernel of the antihomomorphism
from Aut(A,D) into Pic(A,D) is exactly Int(A,D). That is, we have an exact
sequence

1 −→ Int(A,D) −→ Aut(A,D) −→ Pic(A,D).

Proof. The identity element of the group Pic(A,D) is X0 = A with a natural
(A,D)–(A,D)-relative imprimitivity bimodule. For any u ∈ U(A,D), Lemma 7.4
says that the map ϕu : x ∈ X0 −→ xu ∈ XAd(u) gives rise to an isomorphism of
an (A,D)–(A,D)-relative imprimitivity bimodule so that [X0] = [XAd(u)]. Hence
Ad(u) belongs to the kernel of the antihomomorphism Aut(A,D) −→ Pic(A,D).

Conversely, for θ ∈ Aut(A,D), suppose that Xθ represents the identity element
of Pic(A,D), which means that Xθ is equivalent to X0 = A. Hence one may take
an isomorphism ξ : X0 −→ Xθ as (A,D)–(A,D)-relative imprimitivity bimodules.
It satisfies for a, b ∈ A, x, y ∈ X0

ξ(ax) = aξ(x), ξ(xb) = ξ(x)θ−1(b),(7.2)

ξ(x)ξ(y)∗ = xy∗, θ(ξ(x)∗ξ(y)) = x∗y.(7.3)

We then have by (7.2), ξ(x)y = ξ(xθ(y)) = xξ(θ(y)) for x, y ∈ A, so that the pair
(ξ ◦ θ, ξ) gives rise to a double centralizer of A which is regarded as an element
of M(A) denoted by u (cf. [41, Proposition 2.2.11]). This means that ξ(x) =
xu, (ξ ◦ θ)(y) = uy for x, y ∈ A. Equation (7.3) implies that xuu∗y∗ = xy∗ for
x, y ∈ A so that uu∗ = 1. Now ξ preserves the right A-valued inner product so
that θ(u∗x∗yu) = x∗y and hence u∗x∗yu = θ−1(x∗y) for all x, y ∈ A. This implies
that u∗au = θ−1(a) for all a ∈ A. By taking an approximate unit {an} in A, we
see that u∗u = 1. Therefore, we obtain a unitary u ∈ M(A). Since θ(D) = D, we
have u ∈ U(A,D) and Ad(u) ∈ Int(A,D), thus proving that the sequence

1 −→ Int(A,D) −→ Aut(A,D) −→ Pic(A,D)

is exact. �

Corollary 7.6 (cf. [5, Corollary 3.2]). Let (A1,D1) and (A2,D2) be relative σ-
unital pairs of C∗-algebras. Let α, β : (A1,D1) −→ (A2,D2) be isomorphisms.
If Xα and Xβ are equivalent, then there exists a unitary u ∈ U(A,D) such that
β = Ad(u) ◦ α.

Proof. Since [Xα] = [Xβ], we have

id = [Xα]
−1[Xβ] = [Xα−1 ⊗A1

Xβ] = [Xβ◦α−1 ].

Hence β−1 ◦α ∈ Int(A2,D2) so that there exists a unitary u ∈ U(A2,D2) such that
β−1 ◦ α = Ad(u). �

The following lemma is also a relative version of [5, Lemma 3.3].

Lemma 7.7 (cf. [5, Lemma 3.3]). Let X be an (A1,D1)–(A2,D2)-relative imprim-
itivity bimodule. Let (A0,D0) be the linking pair of X defined by (4.1) and (4.2).
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Then X is equivalent to Xθ for some isomorphism θ : (A1,D1) −→ (A2,D2) if and
only if there exists a partial isometry v ∈ M(A0) such that

v∗v =

[
1 0
0 0

]
, vv∗ =

[
0 0
0 1

]
(7.4)

and

vD0v
∗ = D0vv

∗, v∗D0v = D0v
∗v.(7.5)

In this case, θ is defined by θ(a) = vav∗, a ∈ A1.

Remark 7.8. Under equality (7.4), the second equality of (7.5) follows from the
first equality of (7.5), because the first equality of (7.5) ensures the equality

(7.6) v∗vD0v
∗v = v∗D0vv

∗v.

By (7.4), v∗v commutes with any elements of D0 so that (7.6) goes to the second
equality of (7.5).

Proof of Lemma 7.7. Although the proof basically follows the proof of [5, Lemma
3.3], we give it here for the sake of completeness. Suppose that X is equivalent
to Xθ for some isomorphism θ : (A1,D1) −→ (A2,D2). By this isomorphism, the
linking algebra A0 of X is identified with that of Xθ. Hence, Xθ = A1 and

A0 =

{[
a1 x
y a2

]
| a1 ∈ A1, a2 ∈ A2, x, y ∈ Xθ

}
.

We define operators v, v∗ on Xθ ⊕A2 by

v

[
z
c2

]
=

[
0

θ(z)

]
, v∗

[
z
c2

]
=

[
θ−1(c2)

0

]
for z ∈ Xθ, c2 ∈ A2,

where Xθ is identified with A1 so that θ(z) ∈ A2 and θ−1(c2) ∈ Xθ. Put

Rv

([
a1 x
y a2

])
=

[
a1 x
y a2

]
v, Lv

([
a1 x
y a2

])
= v

[
a1 x
y a2

]
.

For z ∈ Xθ, c ∈ A2, we have

Rv

([
a1 x
y a2

])[
z
c2

]
=

[
a1 x
y a2

] [
0

θ(z)

]
=

[
x · θ(z)
a2 · θ(z)

]
.

Since z ∈ Xθ is regarded as an element of A1, the first component of the right-hand
side above is exactly xθ−1(θ(z)) = xz because of the definition of the right A1-
module structure of Xθ as in (3.5). The second component a2 · θ(z) equals a2θ(z).
On the other hand, we have[

x 0

θ−1(a2) 0

] [
z
c2

]
=

[
xz

〈θ−1(a2) | z〉A2

]
=

[
xz

a2θ(z)

]
so that

Rv

([
a1 x
y a2

])
=

[
x 0

θ−1(a2) 0

]
∈ A0.

Similarly, we see that

Lv

([
a1 x
y a2

])[
z
c2

]
= v

[
a1z + x · c2

〈y | z〉A2
+ a2c2

]

=

[
0

θ(a1z + xθ−1(c2))

]
=

[
0

θ(a1z) + θ(x)c2

]
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and [
0 0
a1 θ(x)

] [
z
c2

]
=

[
0

〈a1 | z〉A2
+ θ(x)c2

]
=

[
0

θ(a1z) + θ(x)c2

]
so that

Lv

([
a1 x
y a2

])
=

[
0 0
a1 θ(x)

]
∈ A0.

Hence, both Rv and Lv give rise to operators on A0. Since the identity

Rv

([
a1 x
y a2

])[
a′1 x′

y′ a′2

]
=

[
a1 x
y a2

]
Lv

([
a′1 x′

y′ a′2

])
hold, the pair (Lv, Rv) becomes a double centralizer of A0, which defines an element
of M(A0) (cf. [41, Proposition 2.2.11]). Similarly (Lv∗ , Rv∗) defines an element of
M(A0) such that (Lv, Rv)

∗ = (Lv∗ , Rv∗), so that we may write (Lv, Rv) = v. It
then follows that

v∗v

[
z
c2

]
=

[
z
0

]
and hence v∗v =

[
1 0
0 0

]
,

vv∗
[
z
c2

]
=

[
0
c2

]
and hence vv∗ =

[
0 0
0 1

]
.

For a1 ∈ A1, z ∈ Xθ, c2 ∈ A2, we have(
v

[
a1 0
0 0

]
v∗
)[

z
c2

]
= v

[
a1θ

−1(c2)
0

]
=

[
0

θ(a1)c2

]
=

[
0 0
0 θ(a1)

] [
z
c2

]
so that

v

[
a1 0
0 0

]
v∗ =

[
0 0
0 θ(a1)

]
.

This means that θ(a1) = va1v
∗ for a1 ∈ A1 under the identification between A1 and[

A1 0
0 0

]
. Since θ : A1 −→ A2 satisfies θ(D1) = D2 and D1 = D0v

∗v, D2 = D0vv
∗,

we have

vD0v
∗ = vD0v

∗vv∗ = vD1v
∗ = θ(D1) = D2 = D0vv

∗

and hence

v∗D0v = v∗(D0vv
∗)v = v∗(vD0v

∗)v = D0v
∗v.

Conversely, suppose that a partial isometry v ∈ M(A0) satisfies the equalities
(7.4) and (7.5). For a ∈ A1, the equalities[

0 0
0 1

]
v

[
a 0
0 0

]
v∗

[
0 0
0 1

]
= vv∗v

[
a 0
0 0

]
v∗vv∗ = v

[
a 0
0 0

]
v∗

hold, so that there exists an element θ(a) in A2 for each a ∈ A1 such that

v

[
a 0
0 0

]
v∗ =

[
0 0
0 θ(a)

]
,

and the correspondence a ∈ A1 −→ θ(a) ∈ A2 gives rise to an isomorphism of
C∗-algebras. The conditions (7.4) and (7.5) imply that vD0v

∗ = D0vv
∗ = D2 and

v∗D0v = D0v
∗v = D1 so that we have vD1v

∗ = vv∗D0vv
∗ = D2. This implies that

θ(D1) = D2.
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We will next see that X is equivalent to Xθ. We identify A1 with its image in
A0, and then we will define a map η : X −→ A1(= Xθ) by

η(x) :=

[
0 x
0 0

]
v for x ∈ X.

Since

v∗vη(x)v∗v =

[
1 0
0 0

] [
0 x
0 0

]
vv∗v =

[
0 x
0 0

]
v = η(x),

we see that η(x) ∈ A1. By a routine calculation, we know that η is a bimodule
homomorphism from X to Xθ which preserves both inner products, and hence η
gives rise to an isomorphism between X and Xθ. �

The following theorem is also a relative version of a Brown–Green–Rieffel theo-
rem [5, Theorem 3.4]. We will give its proof for the sake of completeness.

Theorem 7.9 (cf. [5, Theorem 3.4]). Let (A1,D1) and (A2,D2) be relative σ-
unital pairs of C∗-algebras. Let X be an (A1⊗K,D1⊗C)–(A2⊗K,D2⊗C)-relative
imprimitivity bimodule. Then there exists an isomorphism θ : A1 ⊗K −→ A2 ⊗K
satisfying θ(D1 ⊗ C) = D2 ⊗ C such that X is equivalent to Xθ. Furthermore, θ is
unique up to left multiplication by an element of Int(A2⊗K,D2⊗C), that is if X is
equivalent to Xϕ for some isomorphism ϕ : (A1⊗K,D1 ⊗C) −→ (A2 ⊗K,D2 ⊗C),
then there exists a unitary u ∈ U(A2 ⊗K,D2 ⊗ C) such that ϕ = Ad(u) ◦ θ.

Proof. The uniqueness follows immediately from Corollary 7.6.
Now let X be an (A1⊗K,D1⊗C)–(A2⊗K,D2⊗C)-relative imprimitivity bimod-

ule. We put Āi = Ai⊗K, D̄i = Di⊗C for i = 1, 2. Let (Ā0, D̄0) be the linking pair
for X defined from Āi, D̄i, i = 1, 2 and X by (4.1) and (4.2). By the assumption
that (Ā1, D̄1) ∼

RME
(Ā2, D̄2) with Proposition 4.6 and Theorem 4.7, we know that

there exists vi ∈ M(Ā ⊗ K), i = 1, 2, such that

v∗i vi = 1⊗ 1 in M(Ā0 ⊗K), i = 1, 2,

v1v
∗
1 = P1 ⊗ 1 where P1 =

[
1 0
0 0

]
in M(Ā0),

v2v
∗
2 = P2 ⊗ 1 where P2 =

[
0 0
0 1

]
in M(Ā0)

and

vi(D̄0 ⊗ C)v∗i = D̄i ⊗ C, v∗i (D̄i ⊗ C)vi = D̄0 ⊗ C, i = 1, 2.

Put a partial isometry w = v2v
∗
1 ∈ M(Ā ⊗ K) so that we have

w∗w = P1 ⊗ 1 =

[
1⊗ 1 0
0 0

]
, ww∗ = P2 ⊗ 1 =

[
0 0
0 1⊗ 1

]
in M(Ā0 ⊗K)

and

w(D̄1 ⊗ C)w∗ = D̄2 ⊗ C, w∗(D̄2 ⊗ C)w = D̄1 ⊗ C.

Let p ∈ C be the rank one projection p = e1,1 on �2(N). Regard K = K(�2(N))
as the C∗-algebra of compact operators on �2(N). As pKp ∼= Cp ∼= C and hence
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pKp⊗K ∼= K, Cp⊗C ∼= C, one may find an isometry t on �2(N)⊗ �2(N) ∼= �2(N×N)
such that tt∗ = p⊗ 1 and t∗t = 1⊗ 1 and

t(K ⊗K)t∗ = pKp⊗K, t∗(pKp⊗K)t = K ⊗K,

t(C ⊗ C)t∗ = Cp⊗ C, t∗(Cp⊗ C)t = C ⊗ C.

Put v̄1 = 1⊗ t ∈ M(Ā1 ⊗K ⊗K) so that

v̄∗1 v̄1 = 1⊗ 1⊗ 1, v̄1v̄
∗
1 = 1⊗ p⊗ 1.

By the construction of v̄1, we see that

v̄1(D̄1 ⊗ C ⊗ C)v̄∗1 = D̄1 ⊗ Cp⊗ C, v̄∗1(D̄1 ⊗ Cp⊗ C)v̄1 = D̄1 ⊗ C ⊗ C.

We identify Ā1 and D̄1 with Ā1 ⊗ C⊗K and D̄1 ⊗ C⊗ C, respectively, so that we
have v̄1 ∈ M(Ā1 ⊗K) and

v̄∗1 v̄1 = 1⊗ 1, v̄1v̄
∗
1 = 1⊗ p,

v̄1(D̄1 ⊗ C)v̄∗1 = D̄1 ⊗ Cp, v̄∗1(D̄1 ⊗ Cp)v̄1 = D̄1 ⊗ C.

Similarly we have v̄2 ∈ M(Ā2 ⊗K) and

v̄∗2 v̄2 = 1⊗ 1, v̄2v̄
∗
2 = 1⊗ p,

v̄2(D̄2 ⊗ C)v̄∗2 = D̄2 ⊗ Cp, v̄∗2(D̄2 ⊗ Cp)v̄2 = D̄2 ⊗ C.

Define v̄ ∈ M(Ā0 ⊗K) by

v̄ =

[
0 0
0 v̄2

]
w

[
v̄∗1 0
0 0

]
in M(Ā0 ⊗K).

We then have

v̄∗v̄ =

[
v̄1 0
0 0

]
w∗

[
0 0
0 1⊗ 1

]
w

[
v̄∗1 0
0 0

]

=

[
v̄1 0
0 0

]
w∗w

[
v̄∗1 0
0 0

]

=

[
1⊗ p 0
0 0

]
and

v̄v̄∗ =

[
0 0
0 v̄2

]
w

[
1⊗ 1 0
0 0

]
w∗

[
0 0
0 v̄∗2

]

=

[
0 0
0 v̄2

]
ww∗

[
0 0
0 v̄∗2

]

=

[
0 0
0 1⊗ p

]
.

We will next show that v̄(D̄0 ⊗ Cp)v̄∗ = (D̄0 ⊗ Cp)v̄v̄∗. For
[
d1 0
0 d2

]
∈ D̄0 with

di ∈ D̄i, i = 1, 2, we have

v̄

[
d1 ⊗ p 0

0 d2 ⊗ p

]
v̄∗ =

[
0 0
0 v̄2

]
w

[
v̄∗1(d1 ⊗ p)v̄1 0

0 0

]
w∗

[
0 0
0 v̄∗2

]
.
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Since v̄∗1(d1⊗p)v̄1 ∈ D̄1⊗C, we have w
[
v̄∗1(d1 ⊗ p)v̄1 0

0 0

]
w∗ ∈ w(D̄1⊗C)w∗ = D̄2⊗C

so that

v̄

[
d1 ⊗ p 0

0 d2 ⊗ p

]
v̄∗ ∈ v̄2(D̄2 ⊗ C)v̄∗2 = D̄2 ⊗ Cp = (D̄0 ⊗ Cp)v̄v̄∗.

Therefore, we have v̄(D̄0 ⊗ Cp)v̄∗ ⊂ (D̄0 ⊗ Cp)v̄v̄∗ and, similarly, v̄∗(D̄0 ⊗ Cp)v̄ ⊂
(D̄0 ⊗ Cp)v̄∗v̄ so that we have

v̄(D̄0 ⊗ Cp)v̄∗ = (D̄0 ⊗ Cp)v̄v̄∗ and v̄∗(D̄0 ⊗ Cp)v̄ = (D̄0 ⊗ Cp)v̄∗v̄.
By the equalities

v̄∗v̄ =

[
1⊗ p 0
0 0

]
, v̄v̄∗ =

[
0 0
0 1⊗ p

]
,

we know that v̄ commutes with 1 ⊗ p so that we can regard v̄ as an element of
M(Ā0 ⊗ pKp) = M(Ā0). Thus, we obtain a partial isometry v̄ in M(Ā0) such that

v̄∗v̄ =

[
1Ā1

0
0 0

]
, v̄v̄∗ =

[
0 0
0 1Ā2

]
,

and

v̄D̄0v̄
∗ = D̄0v̄v̄

∗ and v̄∗D̄0v̄ = D̄0v̄
∗v̄.

Therefore, by Lemma 7.7, we conclude that X is equivalent to Xθ for some isomor-
phism θ : (Ā1, D̄1) −→ (Ā2, D̄2). �

Recall that subgroups Aut(A ⊗ K,D ⊗ C), Int(A ⊗ K,D ⊗ C) of automorphism
group Aut(A⊗K) are defined by

Aut(A⊗K,D ⊗ C) = {β ∈ Aut(A⊗K) | β(D ⊗ C) = D ⊗ C},
Int(A⊗K,D ⊗ C) = {β ∈ Int(A⊗K) | β(D ⊗ C) = D ⊗ C}.

Corollary 7.10. Let (A,D) be a relative σ-unital pair of C∗-algebras. For any rel-
ative imprimitivity bimodule [X] ∈ Pic(A⊗K,D⊗C), there exists an automorphism
θ ∈ Aut(A⊗K,D ⊗ C) such that [X] = [Xθ]. Thus, we have an exact sequence

1 −→ Int(A⊗K,D ⊗ C) −→ Aut(A⊗K,D ⊗ C) −→ Pic(A⊗K,D ⊗ C) −→ 1.

Let us denote by Out(A ⊗ K,D ⊗ C) the quotient group Aut(A ⊗ K,D ⊗ C)/
Int(A⊗K,D ⊗ C). We then have

Corollary 7.11. Let (A,D) be a relative σ-unital pair of C∗-algebras. We have

Pic(A,D) = Out(A⊗K,D ⊗ C).

Proof. By Lemma 7.2, we see that Pic(A,D) = Pic(A⊗K,D⊗ C) so that we have
the desired equality by the preceding corollary. �

8. Relative Picard groups of Cuntz–Krieger pairs

In this section, we will study the relative Picard group Pic(A,D) for the Cuntz–
Krieger pairs (OA,DA). We are assuming that the matrix A is irreducible
and non-permutation. By [22, Lemma 1.1], for a unitary u ∈ M(OA ⊗ K), the
automorphism Ad(u) acts trivially on K0(OA ⊗ K). We will first show the fol-
lowing proposition which is a relative version of [22, Lemma 3.13] (Lemma 9.1 in
Appendix A).
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Proposition 8.1. Let β ∈ Aut(OA⊗K) satisfy β(DA⊗C) = DA⊗C, and let β∗ = id
on K0(OA). Then there exists a unitary u ∈ M(OA ⊗ K) and an automorphism
α ∈ Aut(OA) such that

β = Ad(u) ◦ (α⊗ id) and α∗ = id on K0(OA),

u(DA ⊗ C)u∗ = DA ⊗ C, α(DA) = DA.

To show the above proposition, we provide several lemmas.

Lemma 8.2. Let β ∈ Aut(OA ⊗K) satisfy β(DA ⊗ C) = DA ⊗ C, and let β∗ = id
on K0(OA). Then for each k ∈ N, there exists a partial isometry wk ∈ OA ⊗ K
such that

w∗
kwk = 1⊗ ek,k, wkw

∗
k = β(1⊗ ek,k),(8.1)

wk(DA ⊗ C)w∗
k ⊂ DA ⊗ C, w∗

k(DA ⊗ C)wk ⊂ DA ⊗ C.(8.2)

Proof. Let us denote by Ns(OA ⊗K,DA ⊗ C) the normalizer semigroup

{v ∈ OA⊗K | v is a partial isometry; v(DA⊗C)v∗ ⊂ DA⊗C, v∗(DA⊗C)v ⊂ DA⊗C}
of partial isometries in OA ⊗ K. Denote by K0(OA ⊗ K,DA ⊗ C) the Murray–
von Neumann equivalence classes of projections in DA ⊗ C by partial isometries
in Ns(OA ⊗ K,DA ⊗ C). It has been proved in [27, Proposition 3.6] that there
exists a natural isomorphism between K0(OA) and K0(OA ⊗ K,DA ⊗ C). Since
[β(1 ⊗ ek,k)] = β∗([1 ⊗ ek,k]) = [1 ⊗ ek,k], we have β(1 ⊗ ek,k) ∼ 1 ⊗ ek,k in
K0(OA ⊗K,DA ⊗ C). We may find a partial isometry wk ∈ OA ⊗K satisfying the
desired conditions. �

Lemma 8.3. Let β ∈ Aut(OA ⊗K) satisfy β(DA ⊗ C) = DA ⊗ C, and let β∗ = id
on K0(OA). Then there exists a unitary w ∈ M(OA ⊗K) such that

(Ad(w∗) ◦ β)(1⊗ ek,k) = 1⊗ ek,k,

(Ad(w∗) ◦ β)(OA ⊗ ek,k) = OA ⊗ ek,k,

(Ad(w∗) ◦ β)(DA ⊗ ek,k) = DA ⊗ ek,k

for all k ∈ N.

Proof. Take a partial isometry wk ∈ OA ⊗ K for each k ∈ N satisfying (8.1) and
(8.2). It is easy to see that the summation

∑∞
k=1 wk converges to an element w

in M(OA ⊗ K) in the strict topology of M(OA ⊗ K). By (8.1) and (8.2), we have
w∗w = ww∗ = 1 and w(DA ⊗ C)w∗ = w∗(DA ⊗ C)w = DA ⊗ C. We then see that

w(1⊗ ek,k)w
∗ = ww∗

kwkw
∗ = wkw

∗
k = β(1⊗ ek,k)

so that (Ad(w∗) ◦ β)(1⊗ ek,k) = 1⊗ ek,k. For x ∈ OA, we have

(Ad(w∗) ◦ β)(x⊗ ek,k) =(Ad(w∗) ◦ β)((1⊗ ek,k)(x⊗ ek,k)(1⊗ ek,k))

=(1⊗ ek,k) · (Ad(w∗) ◦ β)(x⊗ ek,k) · (1⊗ ek,k)

so that (Ad(w∗) ◦ β)(OA ⊗ ek,k) = OA ⊗ ek,k. As β(DA ⊗ C) = DA ⊗ C and
w∗(DA ⊗ C)w = DA ⊗ C, we have (Ad(w∗) ◦ β)(DA ⊗ ek,k) = DA ⊗ ek,k. �

Proof of Proposition 8.1. Suppose that β ∈ Aut(OA ⊗ K) satisfies β(DA ⊗ C) =
DA ⊗ C and β∗ = id on K0(OA). Take a unitary w ∈ M(OA ⊗ K) satisfying
the conditions of Lemma 8.3. Put βw = Ad(w∗) ◦ β ∈ Aut(OA ⊗ K). Since
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(Ad(w∗)◦β)(OA⊗ek,k) = OA⊗ek,k, we may find an automorphism αk ∈ Aut(OA)
for k ∈ N such that

αk(x)⊗ ek,k = βw(x⊗ ek,k) for x ∈ OA.

By replacing βw with β, we may assume that β(x⊗ek,k) = αk(x)⊗ek,k. For j, k ∈ N,
we have

β(x⊗ ej,k) = β((1⊗ ej,k)(x⊗ ek,k)) = β(1⊗ ej,k) · (αk(x)⊗ ek,k).

By putting x = 1, we see that

β(1⊗ ej,k) = (1⊗ ej,j)β(1⊗ ej,k)(1⊗ ek,k)

so that there exists wj,k ∈ OA such that w∗
j,k = wk,j and β(1⊗ ej,k) = wj,k ⊗ ej,k.

Since

w∗
j,kwj,k ⊗ ek,k = β(1⊗ ej,k)

∗β(1⊗ ej,k) = β(1⊗ ek,k) = 1⊗ ek,k,

we have w∗
j,kwj,k = 1 and similarly wj,kw

∗
j,k = 1. We also have for a ∈ DA

wj,kaw
∗
j,k ⊗ ej,j =(wj,k ⊗ ej,k)(a⊗ ek,k)(wj,k ⊗ ej,k)

∗

=β((1⊗ ej,k)(α
−1
k (a)⊗ ek,k)(1⊗ ek,j))

=β(α−1
k (a)⊗ ej,j)

=αj(α
−1
k (a))⊗ ej,j

so that wj,kDAw
∗
j,k = DA. Since

β(x⊗ ej,k) = β(1⊗ ej,k) · (αk(x)⊗ ek,k) = wj,kαk(x)⊗ ej,k

and similarly β(x⊗ej,k) = αj(x)wj,k⊗ej,k, we see wj,kαk(x)⊗ej,k = αj(x)wj,k⊗ej,k
and hence αk(x) = w∗

j,kαj(x)wj,k for x ∈ OA. Put u =
∑∞

k=1w1,k ⊗ ek,k, which is

easily proved to be a unitary in M(OA ⊗K). It then follows that

β(x⊗ ej,k) =β((1⊗ ej,1)(x⊗ e1,1)(1⊗ e1,k))

=(wj,1 ⊗ ej,1)(α1(x)⊗ e1,1)(w1,k ⊗ e1,k)

=(wj,1α1(x)w1,k)⊗ ej,k

=u∗(α1(x)⊗ ej,k)u

for x ∈ OA so that β = Ad(u∗) ◦ (α1 ⊗ id). Since w1,kDAw
∗
1,k = DA, we have

u(DA⊗C)u∗ = DA⊗C. By [22, Lemma 1.1], we know that Ad(u)∗ = id on K0(OA)
so that α1∗ = (β−1)∗ = id on K0(OA). �

We thus have the following theorem.

Theorem 8.4. Let β ∈ Aut(OA ⊗K). Then β satsifies the condition

(8.3) β(DA ⊗ C) = DA ⊗ C and β∗ = id on K0(OA)

if and only if there exists an automorphism α ∈ Aut(OA) and a unitary u ∈
M(OA ⊗K) such that

β = Ad(u) ◦ (α⊗ id) and α∗ = id on K0(OA),(8.4)

u(DA ⊗ C)u∗ = DA ⊗ C, α(DA) = DA.(8.5)

The following proposition shows that the expression β in the form (8.4) and (8.5)
is unique up to inner automorphisms on OA keeping DA globally.
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Proposition 8.5. Suppose that β ∈ Aut(OA ⊗ K,DA ⊗ C) is of the form β =
Ad(u) ◦ (α⊗ id) = Ad(u′) ◦ (α′ ⊗ id) for some automorphisms α, α′ ∈ Aut(OA,DA)
and unitaries u, u′ ∈ M(OA ⊗ K) satisfying both the conditions (8.4) and (8.5).
Then there exists a unitary V ∈ OA such that

(8.6) u = u′(V ⊗ 1), α = Ad(V ∗) ◦ α′ and VDAV
∗ = DA.

Proof. For x ⊗ K ∈ OA ⊗ K, we have u(α(x) ⊗ K)u∗ = u′(α′(x) ⊗ K)u′∗. Put
v = u′∗u ∈ M(OA ⊗ K) which is unitary satisfying v(α(x) ⊗ K) = (α′(x) ⊗ K)v.
We particularly see that v(1 ⊗ ej,k) = (1 ⊗ ej,k)v for all j, k ∈ N. Define V ∈ OA

by setting V ⊗ e1,1 = (1⊗ e1,1)v(1⊗ e1,1). As v commutes with 1⊗ e1,1, we know
that V is a unitary in OA. We then have

v(1⊗ ek,k) = v(1⊗ ek,1)(1⊗ e1,k)

= (1⊗ ek,1)v(1⊗ e1,k)

= (1⊗ ek,1)(V ⊗ e1,1)(1⊗ e1,k)

= V ⊗ ek,k

for all k ∈ N. Hence we have v = V ⊗ 1. As we have for x ∈ OA

α(x)⊗ e1,1 = v∗(α′(x)⊗ e1,1)v

= v∗(1⊗ e1,1)(α
′(x)⊗ e1,1)(1⊗ e1,1)v

= (V ∗ ⊗ e1,1)(α
′(x)⊗ e1,1)(V ⊗ e1,1)

= V ∗α′(x)V ⊗ e1,1

so that α(x) = V ∗α′(x)V for x ∈ OA. As α(DA) = α′(DA) = DA, we have
VDAV

∗ = DA. �

Corollary 8.6. Let β ∈ Aut(OA ⊗K). Then β satsifies the conditions

β(DA ⊗ C) = DA ⊗ C and β∗([1⊗ e1,1]) = [1⊗ e1,1] on K0(OA ⊗K)

if and only if there exists an automorphism α ∈ Aut(OA) and a unitary u ∈
M(OA ⊗K) such that

β = Ad(u) ◦ (α⊗ id) and α∗ = β∗ on K0(OA),

u(DA ⊗ C)u∗ = DA ⊗ C, α(DA) = DA.

Proof. The if part is clear. It suffices to show the only if part. Suppose that
β ∈ Aut(OA ⊗K) satsifies the following conditions

β(DA ⊗ C) = DA ⊗ C and β∗([1⊗ e1,1]) = [1⊗ e1,1] in K0(OA ⊗K).

Since β ∈ Aut(OA⊗K) satisfies β∗([1⊗ e1,1]) = [1⊗ e1,1], by [39, Theorem 6.5] and
its proof, there exists an automorphism α◦ of OA such that α◦∗ = β∗ on K0(OA).
Hence by using [27, Proposition 5.1], we may find an automorphism α1 of OA

such that α1(DA) = DA and α1∗ = α◦∗ on K0(OA). Put β1 := β ◦ (α−1
1 ⊗ id) ∈

Aut(OA⊗K). We have β1(DA⊗C) = DA⊗C and β1∗ = β∗ ◦α−1
1∗ = id on K0(OA).

By Theorem 8.4, one may take an automorphism α2 ∈ Aut(OA) and a unitary
u ∈ M(OA ⊗K) such that

β1 = Ad(u) ◦ (α2 ⊗ id) and α2∗ = id on K0(OA),

u(DA ⊗ C)u∗ = DA ⊗ C, α2(DA) = DA.
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Put α := α2 ◦ α1 ∈ Aut(OA). We then have

β = Ad(u) ◦ (α⊗ id), α∗ = β∗ on K0(OA), α(DA) = DA. �

Let

Aut◦(OA,DA) = {α ∈ Aut(OA) | α(DA) = DA, α∗ = id on K0(OA)}.
For a unitary u ∈ OA satisfying uDAu

∗ = DA, and α ∈ Aut◦(OA,DA), we have
α ◦ Ad(u) ◦ α−1 = Ad(α(u)). Since (α ◦ Ad(u) ◦ α−1)(DA) = DA and Ad(u)∗ = id
on K0(OA), the automorphism α ◦ Ad(u) ◦ α−1 belongs to Int(OA,DA) so that
Int(OA,DA) is a normal subgroup of Aut◦(OA,DA), and we may consider the
quotient group Aut◦(OA,DA)/ Int(OA,DA) which we denote by Out◦(OA,DA).

Let Ψ : Aut(OA,DA) −→ Aut(OA ⊗ K,DA ⊗ C) be the homomorphism defined
by Ψ(α) = α ⊗ id . Since Ψ(Int(OA,DA)) ⊂ Int(OA ⊗ K,DA ⊗ C), it induces a
homomorphism from Out(OA,DA) to Out(OA⊗K,DA⊗C) written Ψ̄. The following
is a corollary of Proposition 8.5.

Corollary 8.7. The homomorphism Ψ̄ : Out(OA,DA) −→ Out(OA ⊗ K,DA ⊗ C)
is injective.

Proof. Suppose that α ∈ Aut(OA,DA) satisfies α ⊗ id = Ad(u′) for some u′ ∈
U(OA ⊗K,DA ⊗ C). Put α′ = id and u = 1 in the statement of Proposition 8.5 to
have a unitary V ∈ U(OA,DA) such that u′ = V ⊗ 1 and α = Ad(V ). �

By [22, Lemma 1.1], we may define a homomorphism

K∗ : Out(OA ⊗K,DA ⊗ C) −→ Aut(K0(OA ⊗K))

by setting K∗([α]) = α∗ for [α] ∈ Out(OA ⊗ K,DA ⊗ C). Thanks to Theorem 8.4
and Corollary 8.6, we know the following theorem on the relative Picard group
Pic(OA,DA), which is a relative version of the results shown in Appendix A.

Theorem 8.8. Let A be an irreducible and non-permutation matrix. Then the
following short exact sequence holds:

(8.7) 1 −→ Out◦(OA,DA)
Ψ̄−→ Out(OA⊗K,DA⊗C) K∗−→ Aut(K0(OA⊗K)) −→ 1.

Hence, there exists a short exact sequence,

(8.8) 1 −→ Out◦(OA,DA)
Ψ̄−→ Pic(OA,DA)

K∗−→ Aut(ZN/(id−At)ZN ) −→ 1.

Proof. We will show the exactness of (8.7). The injectivity of the homomorphism
Ψ̄ : Out◦(OA,DA) −→ Out(OA ⊗ K,DA ⊗ C) follows from Corollary 8.7. The
inclusion relation Ψ̄(Out◦(OA,DA)) ⊂ Ker(K∗) is clear. Conversely, for any [β] ∈
Ker(K∗), we know β ∈ Aut(OA⊗K) satisfies β∗ = id on K0(OA). By Theorem 8.4
there exist a unitary u ∈ M(OA⊗K) and an automorphism α ∈ Aut(OA,DA) such
that β = Ad(u) ◦ (α⊗ id) and α∗ = id on K0(OA). Hence we have [β] = [α⊗ id] =
Ψ̄([α]) and [α] ∈ Aut◦(OA,DA)/ Int(OA,DA), so that we have Ψ̄(Out◦(OA,DA)) =
Ker(K∗)

For any ξ ∈ Aut(K0(OA ⊗ K)), ξ gives rise to an automorphism of the abelian
group Z

N/(id−At)ZN . The group Z
N/(id−At)ZN is isomorphic to the Bowen–

Franks group BF (A) = ZN/(id−A)ZN of the matrix A. By Huang’s theorem
[16, Theorem 2.15] and its proof, any automorphism of the Bowen–Franks group
BF (A) comes from a flow equivalence of the underlying topological Markov
shift (XA, σ̄A). It implies that there exists an automorphism ψ ∈ Aut(OA ⊗ K)
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such that ψ(DA ⊗ C) = DA ⊗ C and ψ∗ = ξ on K0(OA). Hence, ψ belongs to
Aut(OA ⊗ K,DA ⊗ C) such that K∗(ψ) = ξ. Consequently, the sequence (8.7) is
exact. �

Let Aut1(Z
N/(id−At)ZN ) be a subgroup of Aut(ZN/(id−At)ZN ) defined by

Aut1(Z
N/(id−At)ZN ) = {ξ ∈ Aut(ZN/(id−At)ZN ) | ξ([1]) = [1]},

where [1] ∈ ZN/(id−At)ZN denotes the class of the vector (1, . . . , 1) in ZN .

Theorem 8.9. Let A be an irreducible and non-permutation matrix. Then there
exists a short exact sequence,

1 −→ Out(OA,DA)
Ψ̄−→ Pic(OA,DA)

K∗−→ Aut(ZN/(id−At)ZN )/Aut1(Z
N/(id−At)ZN ) −→ 1.

Proof. It suffices to show the exactness at the middle. The inclusion relation
Ψ̄(Out(OA)) ⊂ Ker(K∗) is clear. Conversely, by Rørdam’s result [39, Theorem
6.5] and its proof again, for any ξ ∈ Aut(K0(OA ⊗ K)) with ξ([1]) = [1], there
exists an automorphism α◦ of OA such that α◦∗ = ξ on K0(OA). By [27, Propo-
sition 5.1], we may find an automorphism α1 of OA such that α1(DA) = DA and
α1∗ = α◦∗ on K0(OA). Hence α1 ∈ Aut(OA,DA) such that Ψ̄([α1]) = ξ so that
Ψ̄(Out(OA)) = Ker(K∗), and the sequence is exact. �

Related studies of automorphism groups of Cuntz algebras have been done by
R. Conti, J. H. Hong, and W. Szymański (cf. [10], [11], etc).

9. Appendix A: Picard groups of Cuntz–Krieger algebras

In this appendix, we will refer to the Picard groups of Cuntz–Krieger algebras and
especially Cuntz algebras. As examples of the Picard groups for some interesting
class of C∗-algebras, K. Kodaka has studied the Picard groups Pic(Aθ) for irrational
rotation C∗-algebras Aθ to show that Pic(Aθ) is isomorphic to Out(Aθ) if θ is not
quadratic, and a semidirect product Out(Aθ) � Z if θ is quadratic ([21], [22]). He
also studied the Picard groups of certain Cuntz algebras in [22]. He proved that
Pic(ON ) = Out(ON ) for N = 2, 3. He also showed that there exists a short exact
sequence

(9.1) 1 −→ Out(ON )
Ψ̄−→ Pic(ON )

K∗−→ Aut(Z/(1−N)Z) −→ 1

for N = 4, 6. Since Aut(Z/(1−N)Z) is trivial for N = 2, 3, Kodaka’s results say
that the exact sequence (9.1) holds for N = 2, 3, 4, 6.

We will show that the above exact sequence holds for all 1 < N ∈ N (Theorem
9.4). As a corollary we know that the Picard group Pic(ON ) of the Cuntz algebra
ON is a semidirect product Out(ON )� Z/(N − 2)Z if N − 1 is a prime number.

We first refer to the Picard groups of Cuntz–Krieger algebras. Let u ∈ M(A) be
unitary in the multiplier C∗-algebra M(A) of a C∗-algebra A. The automorphism
Ad(u) on A acts trivially on its K-group K0(A) by [22, Lemma 1.1]. Throughout
Appendix A the matrix A of the Cuntz–Krieger algebra OA is assumed to be an
irreducible and non-permutation matrix.
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Lemma 9.1 (Kodaka [22, Lemma 1.3]). Let β ∈ Aut(OA ⊗ K) satisfy β∗ = id
on K0(OA). Then there exists a unitary u ∈ M(OA ⊗ K) and an automorphism
α ∈ Aut(OA) such that

β = Ad(u) ◦ (α⊗ id) and α∗ = id on K0(OA).

For a C∗-algebra A, we put

Aut◦(A) = {α ∈ Aut(A) | α∗ = id on K0(A)},
which is a subgroup of Aut(A). Since Ad(u)∗ = id on K0(A) for a unitary
u ∈ M(A), we see that Int(A) is a subgroup of Aut◦(A). The quotient group
Aut◦(A)/ Int(A) is denoted by Out◦(A).

Let A be a unital C∗-algebra. Let Ψ : Aut(A) −→ Aut(A ⊗ K) be the homo-
morphism defined by Ψ(α) = α ⊗ id for α ∈ Aut(A). It induces a homomorphism
Ψ̄ : Out(A) −→ Out(A ⊗ K). If Ψ̄([α]) = id for some α ∈ Aut(A), we have
Ψ(α) = Ad(W ) for some unitary W ∈ M(A⊗K). Hence we see that

(9.2) α(x)⊗ ei,j = W (x⊗ ei,j)W
∗ for all x ∈ A, i, j ∈ N.

Since
1⊗ e1,1 = α(1)⊗ e1,1 = W (1⊗ e1,1)W

∗,

the unitary W commutes 1 ⊗ e1,1 so that there exists a unitary w ∈ A such that
w ⊗ e1,1 = (1⊗ e1,1)W (1⊗ e1,1). We then have

α(x)⊗ e1,1 = (1⊗ e1,1)W (x⊗ e1,1)(1⊗ e1,1) = wxw∗ ⊗ e1,1 for all x ∈ A.

Hence, α = Ad(w) ∈ Int(A). This means that the map Ψ̄ : Out(A) −→ Out(A⊗K)
is injective. Any automorphism β ∈ Aut(A ⊗ K) induces an automorphism β∗ of
K0(A ⊗ K), which we denote by K∗(β) ∈ Aut(A ⊗ K). By [5, Theorem 1.2] with
[5, Corollary 3.5], we know Pic(A) = Pic(A⊗K) = Out(A⊗K).

Proposition 9.2. Let A be an irreducible and non-permutation matrix. Then the
following short exact sequence holds:

(9.3) 1 −→ Out◦(A)
Ψ̄−→ Out(OA ⊗K)

K∗−→ Aut(K0(OA ⊗K)) −→ 1.

Hence, there exists a short exact sequence

(9.4) 1 −→ Out◦(OA)
Ψ̄−→ Pic(OA)

K∗−→ Aut(ZN/(id−At)ZN ) −→ 1.

Proof. We will show the exactness of (9.3). We have already known that the injec-
tivity of Ψ̄ : Out◦(OA) −→ Out(OA ⊗ K). By definition of the group Aut◦(OA),
the inclusion relation Ψ̄(Out◦(OA)) ⊂ Ker(K∗) is clear. Conversely, for any [β] ∈
Ker(K∗), we know that β ∈ Aut(OA ⊗K) satisfies β∗ = id on K0(OA). By Lemma
9.1 there exists a unitary u ∈ M(OA⊗K) and an automorphism α ∈ Aut(OA) such
that

β = Ad(u) ◦ (α⊗ id) and α∗ = id on K0(OA).

Hence, we have [β] = [α ⊗ id] = Ψ̄([α]) and [α] ∈ Aut◦(OA)/ Int(OA). Therefore,
we have Ψ̄(Out◦(OA)) = Ker(K∗)

By Rørdam’s result [39], for any ξ ∈ Aut(K0(OA ⊗ K)), there exists an auto-
morphism β of OA ⊗K such that β∗ = ξ. Therefore the map K∗ is surjective, thus
proving the exactness of the sequence (9.3). �

Recall that Aut1(Z
N/(id−At)ZN ) denotes a subgroup of Aut(ZN/(id−At)ZN )

consisting of ξ ∈ Aut(ZN/(id−At)ZN ) satisfying ξ([1]) = [1].
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Proposition 9.3. Let A be an irreducible and non-permutation matrix. Then there
exists a short exact sequence

1 −→ Out(OA)
Ψ̄−→ Pic(OA)

K∗−→ Aut(ZN/(id−At)ZN )/Aut1(Z
N/(id−At)ZN ) −→ 1.

Proof. It suffices to show the exactness at the middle. The inclusion relation
Ψ̄(Out◦(OA)) ⊂ Ker(K∗) is clear. Conversely, by Rørdam’s result [39] again, for
any ξ ∈ Aut(K0(OA ⊗K)) with ξ([1]) = [1], there exists an automorphism β of OA

such that β∗ = ξ. The sequence is exact. �

Before closing Appendix A, we will mention the Picard groups of Cuntz algebras.
By using Proposition 9.2, we know the following theorem. Kodaka has already
shown it for N = 2, 3, 4, 6 in [21, Corollary 15, Remark 17].

Theorem 9.4. For each 1 < N ∈ N, there exists a short exact sequence:

(9.5) 1 −→ Out(ON )
Ψ̄−→ Pic(ON )

K∗−→ Aut(Z/(1−N)Z) −→ 1.

Proof. Since K0(ON ) = Z/(1−N)Z by [12] and the unit 1 of the C∗-algebra ON

corresponds to the generator [1] of the cyclic group Z/(1−N)Z, the fact α(1) = 1
for any automorphism α ∈ Aut(ON ) ensures us that α∗ = id on K0(ON ). Hence
we see that Aut◦(ON ) = Aut(ON ) and hence Out◦(ON ) = Out(ON ). Therefore,
the exact sequence (9.4) goes to (9.5). �

As a corollary, we have

Corollary 9.5. Suppose that N − 1 is a prime number. Then the Picard group
Pic(ON ) of the Cuntz algebra ON is a semidirect product Out(ON )� Z/(N − 2)Z
of the outer automorphism group by the cyclic group Z/(N − 2)Z:

Pic(ON ) = Out(ON )� Z/(N − 2)Z,

where for N = 2, the group Z/(N − 2)Z means {0}.

Proof. Since Kodaka has shown that Pic(O2) = Out(O2) ([22]), we may assume
N ≥ 3. As N − 1 is a prime number, an automorphism η of the cyclic group
Z/(1 − N)Z is determined by η(1) which can take its value in {1, 2, . . . , N − 2},
so that we have Aut(Z/(1−N)Z) is isomorphic to Z/(N − 2)Z. Since N is not
prime, by [21, Theorem 16], for any k ∈ N with 1 ≤ k ≤ N − 1, there exists
βk ∈ Aut(ON ⊗K) such that (βk)∗ = k · id on K0(ON ). Hence, the correspondence
k ∈ {1, 2, . . . , N − 1} −→ [βk] ∈ Pic(ON ) gives rise to a cross section for the exact
sequence (9.5). Therefore the exact sequence (9.5) splits and yields a decomposition
of Pic(ON ) into a semidirect product Out(ON )� Z/(N − 2)Z. �

10. Appendix B: Relative imprimitivity bimodules

from flow equivalent topological Markov shifts

In [9] it has been shown that flow equivalent topological Markov shifts give
rise to corner isomorphic Cuntz–Krieger pairs. In this appendix we will concretely
construct a finite chain of relative imprimitivity bimodules, which give rise to corner
isomorphic Cuntz–Krieger pairs from flow equivalent topological Markov shifts by
using the underlying matrix relations. Concrete construction of such imprimitivity
bimodules has not been discussed in [9]. We will see how flow equivalent topological
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Markov shifts are related to relatively imprimitivity bimodules from the viewpoint
of matrix relations. We remark that closely related results have been seen in T.
Bates [1] and Bates and Pask [2].

Let A,B be irreducible square matrices with entries in nonnegative integers. In
[43] R. F. Williams proved that the two-sided topological Markov shifts (XA, σ̄A)
and (XB, σ̄B) are topologically conjugate if and only if the matrices A,B are
strongly shift equivalent. Two nonnegative matrices A,B are said to be elemen-
tary equivalent if there exist nonnegative rectangular matrices C,D such that
A = CD,B = DC. If there exists a finite sequence of nonnegative matrices
A0, A1, . . . , An such that A = A0, B = An and Ai is elementary equivalent to
Ai+1 for i = 1, 2, . . . , n − 1, then A and B are said to be strongly shift equivalent
([43]). Hence, topological conjugacy of two-sided topological Markov shifts is gen-
erated by a finite sequence of elementary equivalence of underlying matrices (see
[20], [24] for general theory of symbolic dynamics).

In the first part of Appendix B, we will directly construct an (OA,DA)–(OB,DB)-
relative imprimitivity bimodule X from the assumption A = CD and B = DC,
although the condition (OA,DA) ∼

RME
(OB,DB) is deduced from the assumption

A = CD and B = DC through Theorem 4.7 and [28, Proposition 4.3].
Suppose that A = CD and B = DC with the size of A is N and that of B is M

so that C is an N ×M matrix and D is an M ×N matrix, respectively. We assume
that A and B are irreducible matrices that are not any permutations. We set the

square matrix Z =

[
0 C
D 0

]
as block matrix. Let us consider the Cuntz–Krieger

algebra OZ for the matrix Z. Recall the notations given in section 6. We have
denoted by EZ the edge set of the associated directed graph GZ = (VZ , EZ) to the
matrix Z. Since EZ is the disjoint union EC ∪ED of the edge sets EC and ED for
the matrices C and D, respectively, we may write the canonical generating partial
isometries of OZ as Sc, Sd, c ∈ EC , d ∈ ED so that

∑
c∈EC

ScS
∗
c +

∑
d∈ED

SdS
∗
d = 1

and

S∗
cSc =

∑
d∈ED

Z(c, d)SdS
∗
d , S∗

dSd =
∑
c∈EC

Z(d, c)ScS
∗
c

for c ∈ EC , d ∈ ED. Define the projections in OZ by PA =
∑

c∈EC
ScS

∗
c and

PB =
∑

d∈ED
SdS

∗
d . Both of them belong to DZ and satisfy PA + PB = 1. It has

been shown in [25] (cf. [29]) that

(10.1) PAOZPA = OA, PBOZPB = OB , DZPA = DA, DZPB = DB.

It is not difficult to see that X = PAOZPB has a natural structure of an (OA,DA)–
(OB,DB)-relative imprimitivity bimodule which gives rise to a relative Morita
equivalence between the Cuntz–Krieger pairs (OA,DA) and (OB,DB).

In [33] Parry and Sullivan proved that the flow equivalence relation of topologi-

cal Markov shifts is generated by strong shift equivalences and expansions A → Ã
defined bellow. In the second part of Appendix B, we will directly construct
an (OA,DA)–(OÃ,DÃ)-relative imprimitivity bimodule X, although the condition
(OA,DA) ∼

RME
(OÃ,DÃ) is deduced from Theorem 4.7 and [14, 4.1 Theorem].
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For an N ×N matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, put

Ã =

⎡
⎢⎢⎢⎢⎢⎣
0 A(1, 1) · · · A(1, N)
1 0 · · · 0
0 A(2, 1) · · · A(2, N)
...

...
...

0 A(N, 1) · · · A(N,N)

⎤
⎥⎥⎥⎥⎥⎦ ,

which is called the expansion of A at the vertex 1. The expansion of A at other
vertices are similarly defined. The arguments below follow the proof of [14, 4.1
Theorem].

Let {0, 1, . . . , N} be the set of symbols for the topological Markov shifts (XÃ, σ̄Ã)

defined by the matrix Ã. Let us denote by S̃0, S̃1, . . . , S̃N the canonical generat-

ing partial isometries of the Cuntz–Krieger algebra OÃ satisfying
∑N

j=0 S̃jS̃
∗
j =

1, S̃∗
i S̃i =

∑N
j=0 Ã(i, j)S̃jS̃

∗
j for i = 0, 1, . . . , N . Put P =

∑N
i=1 S̃iS̃

∗
i . Cuntz and

Krieger have shown in the proof of [14, 4.1 Theorem] the equalities:

POÃP = OA, DÃP = DA.

Hence, (OA,DA) and (OÃ,DÃ) are corner isomorphic, and X = POÃ becomes an
(OA,DA)–(OÃ,DÃ)-relative imprimitivity bimodule which gives rise to a relative
Morita equivalence between (OA,DA) and (OÃ,DÃ).

Remark. After the first draft of this paper was completed, a paper appeared
by Kazunori Kodaka and Tamotsu Teruya, The strong Morita equivalence for
inclusions of C∗-algebras and conditional expectations for equivalence bimodules
(arXiv:1609.08263).

They defined Morita equivalence for pairs of C∗-algebras in their paper; however,
their definition of Morita equivalence for pairs of C∗-algebras is different from ours.
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