## Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type

HTML articles powered by AMS MathViewer

- by The Anh Bui, Xuan Thinh Duong and Fu Ken Ly PDF
- Trans. Amer. Math. Soc.
**370**(2018), 7229-7292 Request permission

## Abstract:

Let $X$ be a space of homogeneous type and let $\mathfrak {L}$ be a nonnegative self-adjoint operator on $L^2(X)$ enjoying Gaussian estimates. The main aim of this paper is twofold. Firstly, we prove (local) nontangential and radial maximal function characterizations for the local Hardy spaces associated to $\mathfrak {L}$. This gives the maximal function characterization for local Hardy spaces in the sense of Coifman and Weiss provided that $\mathfrak {L}$ satisfies certain extra conditions. Secondly we introduce local Hardy spaces associated with a critical function $\rho$ which are motivated by the theory of Hardy spaces related to Schrödinger operators and of which include the local Hardy spaces of Coifman and Weiss as a special case. We then prove that these local Hardy spaces can be characterized by (local) nontangential and radial maximal functions related to $\mathfrak {L}$ and $\rho$, and by global maximal functions associated to ‘perturbations’ of $\mathfrak {L}$. We apply our theory to obtain a number of new results on maximal characterizations for the local Hardy type spaces in various settings ranging from Schrödinger operators on manifolds to Schrödinger operators on connected and simply connected nilpotent Lie groups.## References

- Nadine Badr and Besma Ben Ali,
*$L^p$ boundedness of the Riesz transform related to Schrödinger operators on a manifold*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**8**(2009), no. 4, 725–765. MR**2647910** - D. L. Burkholder, R. F. Gundy, and M. L. Silverstein,
*A maximal function characterization of the class $H^{p}$*, Trans. Amer. Math. Soc.**157**(1971), 137–153. MR**274767**, DOI 10.1090/S0002-9947-1971-0274767-6 - Federico Cacciafesta and Piero D’Ancona,
*Weighted $L^p$ estimates for powers of selfadjoint operators*, Adv. Math.**229**(2012), no. 1, 501–530. MR**2854182**, DOI 10.1016/j.aim.2011.09.007 - A.-P. Calderón and A. Torchinsky,
*Parabolic maximal functions associated with a distribution*, Advances in Math.**16**(1975), 1–64. MR**417687**, DOI 10.1016/0001-8708(75)90099-7 - Michael Christ,
*A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral*, Colloq. Math.**60/61**(1990), no. 2, 601–628. MR**1096400**, DOI 10.4064/cm-60-61-2-601-628 - Ronald R. Coifman and Guido Weiss,
*Extensions of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 569–645. MR**447954**, DOI 10.1090/S0002-9904-1977-14325-5 - Thierry Coulhon and Adam Sikora,
*Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem*, Proc. Lond. Math. Soc. (3)**96**(2008), no. 2, 507–544. MR**2396848**, DOI 10.1112/plms/pdm050 - E. B. Davies,
*Pointwise bounds on the space and time derivatives of heat kernels*, J. Operator Theory**21**(1989), no. 2, 367–378. MR**1023321** - Shai Dekel, Gerard Kerkyacharian, George Kyriazis, and Pencho Petrushev,
*Hardy spaces associated with non-negative self-adjoint operators*, Studia Math.**239**(2017), no. 1, 17–54. MR**3673075**, DOI 10.4064/sm8646-12-2016 - Xuan Thinh Duong and Ji Li,
*Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus*, J. Funct. Anal.**264**(2013), no. 6, 1409–1437. MR**3017269**, DOI 10.1016/j.jfa.2013.01.006 - Xuan Thinh Duong, Steve Hofmann, Dorina Mitrea, Marius Mitrea, and Lixin Yan,
*Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems*, Rev. Mat. Iberoam.**29**(2013), no. 1, 183–236. MR**3010127**, DOI 10.4171/RMI/718 - Xuan Thinh Duong and Lixin Yan,
*Duality of Hardy and BMO spaces associated with operators with heat kernel bounds*, J. Amer. Math. Soc.**18**(2005), no. 4, 943–973. MR**2163867**, DOI 10.1090/S0894-0347-05-00496-0 - Jacek Dziubański and Jacek Zienkiewicz,
*Hardy space $H^1$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality*, Rev. Mat. Iberoamericana**15**(1999), no. 2, 279–296. MR**1715409**, DOI 10.4171/RMI/257 - Jacek Dziubański and Jacek Zienkiewicz,
*$H^p$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes*, Colloq. Math.**98**(2003), no. 1, 5–38. MR**2032068**, DOI 10.4064/cm98-1-2 - Jacek Dziubański,
*Hardy spaces associated with semigroups generated by Bessel operators with potentials*, Houston J. Math.**34**(2008), no. 1, 205–234. MR**2383704** - Jacek Dziubański,
*Note on $H^1$ spaces related to degenerate Schrödinger operators*, Illinois J. Math.**49**(2005), no. 4, 1271–1297. MR**2210363** - Jacek Dziubański and Jacek Zienkiewicz,
*$H^p$ spaces for Schrödinger operators*, Fourier analysis and related topics (Będlewo, 2000) Banach Center Publ., vol. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 45–53. MR**1971563**, DOI 10.4064/bc56-0-4 - Charles L. Fefferman,
*The uncertainty principle*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), no. 2, 129–206. MR**707957**, DOI 10.1090/S0273-0979-1983-15154-6 - C. Fefferman and E. M. Stein,
*$H^{p}$ spaces of several variables*, Acta Math.**129**(1972), no. 3-4, 137–193. MR**447953**, DOI 10.1007/BF02392215 - David Goldberg,
*A local version of real Hardy spaces*, Duke Math. J.**46**(1979), no. 1, 27–42. MR**523600** - RuMing Gong, Ji Li, and LiXin Yan,
*A local version of Hardy spaces associated with operators on metric spaces*, Sci. China Math.**56**(2013), no. 2, 315–330. MR**3015377**, DOI 10.1007/s11425-012-4428-5 - W. Hebisch and L. Saloff-Coste,
*On the relation between elliptic and parabolic Harnack inequalities*, Ann. Inst. Fourier (Grenoble)**51**(2001), no. 5, 1437–1481 (English, with English and French summaries). MR**1860672**, DOI 10.5802/aif.1861 - Steve Hofmann, Guozhen Lu, Dorina Mitrea, Marius Mitrea, and Lixin Yan,
*Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates*, Mem. Amer. Math. Soc.**214**(2011), no. 1007, vi+78. MR**2868142**, DOI 10.1090/S0065-9266-2011-00624-6 - Steve Hofmann and Svitlana Mayboroda,
*Hardy and BMO spaces associated to divergence form elliptic operators*, Math. Ann.**344**(2009), no. 1, 37–116. MR**2481054**, DOI 10.1007/s00208-008-0295-3 - Renjin Jiang and Dachun Yang,
*Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates*, Commun. Contemp. Math.**13**(2011), no. 2, 331–373. MR**2794490**, DOI 10.1142/S0219199711004221 - Kazuhiro Kurata,
*An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials*, J. London Math. Soc. (2)**62**(2000), no. 3, 885–903. MR**1794292**, DOI 10.1112/S002461070000137X - N. N. Lebedev,
*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075** - Chin-Cheng Lin and Heping Liu,
*$\textrm {BMO}_L(\Bbb H^n)$ spaces and Carleson measures for Schrödinger operators*, Adv. Math.**228**(2011), no. 3, 1631–1688. MR**2824565**, DOI 10.1016/j.aim.2011.06.024 - Alexander Nagel, Elias M. Stein, and Stephen Wainger,
*Balls and metrics defined by vector fields. I. Basic properties*, Acta Math.**155**(1985), no. 1-2, 103–147. MR**793239**, DOI 10.1007/BF02392539 - Andrew Raich and Michael Tinker,
*Schrödinger operators with $A_\infty$ potentials*, Potential Anal.**45**(2016), no. 2, 387–402. MR**3518679**, DOI 10.1007/s11118-016-9556-z - L. Saloff-Coste,
*A note on Poincaré, Sobolev, and Harnack inequalities*, Internat. Math. Res. Notices**2**(1992), 27–38. MR**1150597**, DOI 10.1155/S1073792892000047 - L. Saloff-Coste,
*Parabolic Harnack inequality for divergence-form second-order differential operators*, Potential Anal.**4**(1995), no. 4, 429–467. Potential theory and degenerate partial differential operators (Parma). MR**1354894**, DOI 10.1007/BF01053457 - Zhong Wei Shen,
*$L^p$ estimates for Schrödinger operators with certain potentials*, Ann. Inst. Fourier (Grenoble)**45**(1995), no. 2, 513–546 (English, with English and French summaries). MR**1343560**, DOI 10.5802/aif.1463 - Elias M. Stein and Guido Weiss,
*On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces*, Acta Math.**103**(1960), 25–62. MR**121579**, DOI 10.1007/BF02546524 - Jan-Olov Strömberg and Alberto Torchinsky,
*Weighted Hardy spaces*, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR**1011673**, DOI 10.1007/BFb0091154 - Guorong Hu,
*Maximal Hardy spaces associated to nonnegative self-adjoint operators*, Bull. Aust. Math. Soc.**91**(2015), no. 2, 286–302. MR**3314148**, DOI 10.1017/S0004972714001105 - Liang Song and Lixin Yan,
*A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates*, Adv. Math.**287**(2016), 463–484. MR**3422683**, DOI 10.1016/j.aim.2015.09.026 - Akihito Uchiyama,
*A maximal function characterization of $H^{p}$ on the space of homogeneous type*, Trans. Amer. Math. Soc.**262**(1980), no. 2, 579–592. MR**586737**, DOI 10.1090/S0002-9947-1980-0586737-4 - N. Th. Varopoulos,
*Analysis on Lie groups*, J. Funct. Anal.**76**(1988), no. 2, 346–410. MR**924464**, DOI 10.1016/0022-1236(88)90041-9 - Dachun Yang and Yuan Zhou,
*Localized Hardy spaces $H^1$ related to admissible functions on RD-spaces and applications to Schrödinger operators*, Trans. Amer. Math. Soc.**363**(2011), no. 3, 1197–1239. MR**2737263**, DOI 10.1090/S0002-9947-2010-05201-8 - Dachun Yang and Yuan Zhou,
*Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications*, Math. Ann.**346**(2010), no. 2, 307–333. MR**2563690**, DOI 10.1007/s00208-009-0400-2

## Additional Information

**The Anh Bui**- Affiliation: Department of Mathematics, Macquarie University, NSW 2109, Australia
- MR Author ID: 799948
- Email: the.bui@mq.edu.au, bt_anh80@yahoo.com
**Xuan Thinh Duong**- Affiliation: Department of Mathematics, Macquarie University, NSW 2109, Australia
- MR Author ID: 271083
- Email: xuan.duong@mq.edu.au
**Fu Ken Ly**- Affiliation: The School of Mathematics and Statistics, Faculty of Science and the Mathematics Learning Center, Education Portfolio, University of Sydney, NSW 2006, Australia
- MR Author ID: 1038101
- Email: ken.ly@sydney.edu.au
- Received by editor(s): November 3, 2016
- Received by editor(s) in revised form: March 17, 2017
- Published electronically: July 5, 2018
- Additional Notes: The first and second authors were supported by the research grant ARC DP140100649 from the Australian Research Council.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 7229-7292 - MSC (2010): Primary 42B30, 42B35, 47B38
- DOI: https://doi.org/10.1090/tran/7289
- MathSciNet review: 3841848