## Multi-travelling waves for the nonlinear Klein-Gordon equation

HTML articles powered by AMS MathViewer

- by Raphaël Côte and Yvan Martel PDF
- Trans. Amer. Math. Soc.
**370**(2018), 7461-7487 Request permission

Corrigendum: Trans. Amer. Math. Soc.

**375**(2022), 3755-3757.

## Abstract:

For the nonlinear Klein-Gordon equation in $\mathbb {R}^{1+d}$, we prove the existence of multi-solitary waves made of any number $N$ of decoupled bound states. This extends the work of Côte and Muñoz (Forum Math. Sigma**2**(2014)) which was restricted to ground states, as were most previous similar results for other nonlinear dispersive and wave models.

## References

- Weiwei Ao, Monica Musso, Frank Pacard, and Juncheng Wei,
*Solutions without any symmetry for semilinear elliptic problems*, J. Funct. Anal.**270**(2016), no. 3, 884–956. MR**3438325**, DOI 10.1016/j.jfa.2015.10.015 - H. Berestycki and P.-L. Lions,
*Nonlinear scalar field equations. I. Existence of a ground state*, Arch. Rational Mech. Anal.**82**(1983), no. 4, 313–345. MR**695535**, DOI 10.1007/BF00250555 - H. Berestycki and P.-L. Lions,
*Nonlinear scalar field equations. II. Existence of infinitely many solutions*, Arch. Rational Mech. Anal.**82**(1983), no. 4, 347–375. MR**695536**, DOI 10.1007/BF00250556 - J. Bourgain,
*Global solutions of nonlinear Schrödinger equations*, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR**1691575**, DOI 10.1090/coll/046 - Thierry Cazenave,
*Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR**2002047**, DOI 10.1090/cln/010 - Vianney Combet,
*Multi-soliton solutions for the supercritical gKdV equations*, Comm. Partial Differential Equations**36**(2011), no. 3, 380–419. MR**2763331**, DOI 10.1080/03605302.2010.503770 - Vianney Combet,
*Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension*, Discrete Contin. Dyn. Syst.**34**(2014), no. 5, 1961–1993. MR**3124722**, DOI 10.3934/dcds.2014.34.1961 - Raphaël Côte and Stefan Le Coz,
*High-speed excited multi-solitons in nonlinear Schrödinger equations*, J. Math. Pures Appl. (9)**96**(2011), no. 2, 135–166 (English, with English and French summaries). MR**2818710**, DOI 10.1016/j.matpur.2011.03.004 - Raphaël Côte, Yvan Martel, and Frank Merle,
*Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations*, Rev. Mat. Iberoam.**27**(2011), no. 1, 273–302. MR**2815738**, DOI 10.4171/RMI/636 - Raphaël Côte and Claudio Muñoz,
*Multi-solitons for nonlinear Klein-Gordon equations*, Forum Math. Sigma**2**(2014), Paper No. e15, 38. MR**3264254**, DOI 10.1017/fms.2014.13 - Raphaël Côte and Hatem Zaag,
*Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension*, Comm. Pure Appl. Math.**66**(2013), no. 10, 1541–1581. MR**3084698**, DOI 10.1002/cpa.21452 - Wei Yue Ding,
*On a conformally invariant elliptic equation on $\textbf {R}^n$*, Comm. Math. Phys.**107**(1986), no. 2, 331–335. MR**863646**, DOI 10.1007/BF01209398 - Manuel del Pino, Monica Musso, Frank Pacard, and Angela Pistoia,
*Large energy entire solutions for the Yamabe equation*, J. Differential Equations**251**(2011), no. 9, 2568–2597. MR**2825341**, DOI 10.1016/j.jde.2011.03.008 - Manuel del Pino, Monica Musso, Frank Pacard, and Angela Pistoia,
*Torus action on $S^n$ and sign-changing solutions for conformally invariant equations*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**12**(2013), no. 1, 209–237. MR**3088442** - G. H. Derrick,
*Comments on nonlinear wave equations as models for elementary particles*, J. Mathematical Phys.**5**(1964), 1252–1254. MR**174304**, DOI 10.1063/1.1704233 - T. Duyckaerts, H. Jia, C. E. Kenig, and F. Merle,
*Soliton resolution along a sequence of times for the focusing energy critical wave equation*, preprint arXiv:1601.01871. - Thomas Duyckaerts, Carlos Kenig, and Frank Merle,
*Classification of radial solutions of the focusing, energy-critical wave equation*, Camb. J. Math.**1**(2013), no. 1, 75–144. MR**3272053**, DOI 10.4310/CJM.2013.v1.n1.a3 - Thomas Duyckaerts and Frank Merle,
*Dynamic of threshold solutions for energy-critical NLS*, Geom. Funct. Anal.**18**(2009), no. 6, 1787–1840. MR**2491692**, DOI 10.1007/s00039-009-0707-x - Thomas Duyckaerts and Frank Merle,
*Dynamics of threshold solutions for energy-critical wave equation*, Int. Math. Res. Pap. IMRP , posted on (2008), Art ID rpn002, 67. MR**2470571**, DOI 10.1093/imrp/rpn002 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879**, DOI 10.1007/BF01221125 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443**, DOI 10.1007/978-3-642-96379-7 - J. Ginibre and G. Velo,
*The global Cauchy problem for the nonlinear Klein-Gordon equation*, Math. Z.**189**(1985), no. 4, 487–505. MR**786279**, DOI 10.1007/BF01168155 - Manoussos Grillakis, Jalal Shatah, and Walter Strauss,
*Stability theory of solitary waves in the presence of symmetry. I*, J. Funct. Anal.**74**(1987), no. 1, 160–197. MR**901236**, DOI 10.1016/0022-1236(87)90044-9 - Manoussos Grillakis, Jalal Shatah, and Walter Strauss,
*Stability theory of solitary waves in the presence of symmetry. II*, J. Funct. Anal.**94**(1990), no. 2, 308–348. MR**1081647**, DOI 10.1016/0022-1236(90)90016-E - Emmanuel Hebey and Michel Vaugon,
*Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth*, J. Funct. Anal.**119**(1994), no. 2, 298–318. MR**1261094**, DOI 10.1006/jfan.1994.1012 - Joachim Krieger, Yvan Martel, and Pierre Raphaël,
*Two-soliton solutions to the three-dimensional gravitational Hartree equation*, Comm. Pure Appl. Math.**62**(2009), no. 11, 1501–1550. MR**2560043**, DOI 10.1002/cpa.20292 - J. Krieger, K. Nakanishi, and W. Schlag,
*Global dynamics above the ground state energy for the one-dimensional NLKG equation*, Math. Z.**272**(2012), no. 1-2, 297–316. MR**2968226**, DOI 10.1007/s00209-011-0934-3 - Man Kam Kwong,
*Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, DOI 10.1007/BF00251502 - Mihai Mariş,
*Existence of nonstationary bubbles in higher dimensions*, J. Math. Pures Appl. (9)**81**(2002), no. 12, 1207–1239 (English, with English and French summaries). MR**1952162**, DOI 10.1016/S0021-7824(02)01274-6 - Yvan Martel,
*Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations*, Amer. J. Math.**127**(2005), no. 5, 1103–1140. MR**2170139**, DOI 10.1353/ajm.2005.0033 - Kevin McLeod,
*Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^n$. II*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 495–505. MR**1201323**, DOI 10.1090/S0002-9947-1993-1201323-X - Frank Merle,
*Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity*, Comm. Math. Phys.**129**(1990), no. 2, 223–240. MR**1048692**, DOI 10.1007/BF02096981 - Yvan Martel and Frank Merle,
*Multi solitary waves for nonlinear Schrödinger equations*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**23**(2006), no. 6, 849–864 (English, with English and French summaries). MR**2271697**, DOI 10.1016/j.anihpc.2006.01.001 - Yvan Martel and Frank Merle,
*Stability of two soliton collision for nonintegrable gKdV equations*, Comm. Math. Phys.**286**(2009), no. 1, 39–79. MR**2470923**, DOI 10.1007/s00220-008-0685-0 - Yvan Martel and Frank Merle,
*Construction of multi-solitons for the energy-critical wave equation in dimension 5*, Arch. Ration. Mech. Anal.**222**(2016), no. 3, 1113–1160. MR**3544324**, DOI 10.1007/s00205-016-1018-7 - Yvan Martel, Frank Merle, and Tai-Peng Tsai,
*Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations*, Duke Math. J.**133**(2006), no. 3, 405–466. MR**2228459**, DOI 10.1215/S0012-7094-06-13331-8 - Mei Ming, Frederic Rousset, and Nikolay Tzvetkov,
*Multi-solitons and related solutions for the water-waves system*, SIAM J. Math. Anal.**47**(2015), no. 1, 897–954. MR**3315224**, DOI 10.1137/140960220 - Frank Merle and Hatem Zaag,
*Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension*, Amer. J. Math.**134**(2012), no. 3, 581–648. MR**2931219**, DOI 10.1353/ajm.2012.0021 - Robert M. Miura,
*The Korteweg-de Vries equation: a survey of results*, SIAM Rev.**18**(1976), no. 3, 412–459. MR**404890**, DOI 10.1137/1018076 - Makoto Nakamura and Tohru Ozawa,
*The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces*, Publ. Res. Inst. Math. Sci.**37**(2001), no. 3, 255–293. MR**1855424**, DOI 10.2977/prims/1145477225 - Kenji Nakanishi and Wilhelm Schlag,
*Invariant manifolds and dispersive Hamiltonian evolution equations*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011. MR**2847755**, DOI 10.4171/095 - K. Nakanishi and W. Schlag,
*Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation*, J. Differential Equations**250**(2011), no. 5, 2299–2333. MR**2756065**, DOI 10.1016/j.jde.2010.10.027 - Robert L. Pego and Michael I. Weinstein,
*Eigenvalues, and instabilities of solitary waves*, Philos. Trans. Roy. Soc. London Ser. A**340**(1992), no. 1656, 47–94. MR**1177566**, DOI 10.1098/rsta.1992.0055 - Peter Cornelis Schuur,
*Asymptotic analysis of soliton problems*, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986. An inverse scattering approach. MR**874343**, DOI 10.1007/BFb0073054 - James Serrin and Moxun Tang,
*Uniqueness of ground states for quasilinear elliptic equations*, Indiana Univ. Math. J.**49**(2000), no. 3, 897–923. MR**1803216**, DOI 10.1512/iumj.2000.49.1893 - Jalal Shatah and Walter Strauss,
*Instability of nonlinear bound states*, Comm. Math. Phys.**100**(1985), no. 2, 173–190. MR**804458**, DOI 10.1007/BF01212446 - Terence Tao,
*Low regularity semi-linear wave equations*, Comm. Partial Differential Equations**24**(1999), no. 3-4, 599–629. MR**1683051**, DOI 10.1080/03605309908821435 - Michael I. Weinstein,
*Modulational stability of ground states of nonlinear Schrödinger equations*, SIAM J. Math. Anal.**16**(1985), no. 3, 472–491. MR**783974**, DOI 10.1137/0516034 - Michael I. Weinstein,
*Lyapunov stability of ground states of nonlinear dispersive evolution equations*, Comm. Pure Appl. Math.**39**(1986), no. 1, 51–67. MR**820338**, DOI 10.1002/cpa.3160390103 - N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states,
*Phys. Rev. Lett.***15**(1965), 240–243. - V. E. Zakharov and A. B. Shabat,
*Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media*, Ž. Èksper. Teoret. Fiz.**61**(1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP**34**(1972), no. 1, 62–69. MR**0406174**

## Additional Information

**Raphaël Côte**- Affiliation: Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
- Email: cote@math.unistra.fr
**Yvan Martel**- Affiliation: CMLS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
- MR Author ID: 367956
- Email: yvan.martel@polytechnique.edu
- Received by editor(s): December 6, 2016
- Received by editor(s) in revised form: May 11, 2017
- Published electronically: June 20, 2018
- Additional Notes: The authors were supported in part by the ERC advanced grant 291214 BLOWDISOL. The first author was also supported in part by the ANR contract MAToS ANR-14-CE25-0009-01.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 7461-7487 - MSC (2010): Primary 35Q51; Secondary 35L71, 35Q40
- DOI: https://doi.org/10.1090/tran/7303
- MathSciNet review: 3841855