Renormalization of the two-dimensional stochastic nonlinear wave equations
HTML articles powered by AMS MathViewer
- by Massimiliano Gubinelli, Herbert Koch and Tadahiro Oh PDF
- Trans. Amer. Math. Soc. 370 (2018), 7335-7359 Request permission
Abstract:
We study the two-dimensional stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing. In particular, we introduce a time-dependent renormalization and prove that SNLW is pathwise locally well-posed. As an application of the local well-posedness argument, we also establish a weak universality result for the renormalized SNLW.References
- Sergio Albeverio, Zbigniew Haba, and Francesco Russo, Trivial solutions for a non-linear two-space-dimensional wave equation perturbed by space-time white noise, Stochastics Stochastics Rep. 56 (1996), no. 1-2, 127–160. MR 1396758, DOI 10.1080/17442509608834039
- Richard F. Bass, Stochastic processes, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 33, Cambridge University Press, Cambridge, 2011. MR 2856623, DOI 10.1017/CBO9780511997044
- Árpád Bényi and Tadahiro Oh, Modulation spaces, Wiener amalgam spaces, and Brownian motions, Adv. Math. 228 (2011), no. 5, 2943–2981. MR 2838066, DOI 10.1016/j.aim.2011.07.023
- Jean Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445. MR 1374420, DOI 10.1007/BF02099556
- N. Burq, L. Thomann, and N. Tzvetkov, Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse Math., to appear.
- Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 (2008), no. 3, 449–475. MR 2425133, DOI 10.1007/s00222-008-0124-z
- R. R. Coifman and Yves Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331. MR 380244, DOI 10.1090/S0002-9947-1975-0380244-8
- James Colliander and Tadahiro Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\Bbb T)$, Duke Math. J. 161 (2012), no. 3, 367–414. MR 2881226, DOI 10.1215/00127094-1507400
- Giuseppe Da Prato and Arnaud Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), no. 1, 180–210. MR 1941997, DOI 10.1006/jfan.2002.3919
- Dashan Fan and Shuichi Sato, Transference on certain multilinear multiplier operators, J. Aust. Math. Soc. 70 (2001), no. 1, 37–55. MR 1808390, DOI 10.1017/S1446788700002263
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50–68. MR 1351643, DOI 10.1006/jfan.1995.1119
- Massimiliano Gubinelli and Nicolas Perkowski, KPZ reloaded, Comm. Math. Phys. 349 (2017), no. 1, 165–269. MR 3592748, DOI 10.1007/s00220-016-2788-3
- Massimiliano Gubinelli and Nicolas Perkowski, The Hairer-Quastel universality result at stationarity, Stochastic analysis on large scale interacting systems, RIMS Kôkyûroku Bessatsu, B59, Res. Inst. Math. Sci. (RIMS), Kyoto, 2016, pp. 101–115. MR 3675927
- M. Hairer and J. Quastel, A class of growth models rescaling to KPZ, arXiv:1512.07845 [math-ph].
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- Hui-Hsiung Kuo, Introduction to stochastic integration, Universitext, Springer, New York, 2006. MR 2180429
- Hans Lindblad and Christopher D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), no. 2, 357–426. MR 1335386, DOI 10.1006/jfan.1995.1075
- H. P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math. Phys. 168 (1995), no. 3, 479–491. MR 1328250, DOI 10.1007/BF02101840
- Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol. II, Cambridge Studies in Advanced Mathematics, vol. 138, Cambridge University Press, Cambridge, 2013. MR 3052499
- Edward Nelson, A quartic interaction in two dimensions, Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965) M.I.T. Press, Cambridge, Mass., 1966, pp. 69–73. MR 0210416
- David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
- M. Oberguggenberger and F. Russo, Nonlinear stochastic wave equations, Integral Transform. Spec. Funct. 6 (1998), no. 1-4, 71–83. Generalized functions—linear and nonlinear problems (Novi Sad, 1996). MR 1640497, DOI 10.1080/10652469808819152
- Michael Oberguggenberger and Francesco Russo, Singular limiting behavior in nonlinear stochastic wave equations, Stochastic analysis and mathematical physics, Progr. Probab., vol. 50, Birkhäuser Boston, Boston, MA, 2001, pp. 87–99. MR 1886565
- Tadahiro Oh, Periodic stochastic Korteweg-de Vries equation with additive space-time white noise, Anal. PDE 2 (2009), no. 3, 281–304. MR 2603800, DOI 10.2140/apde.2009.2.281
- T. Oh, J. Quastel, and P. Sosoe, Global dynamics for the stochastic KdV equation with white noise as initial data, in preparation.
- T. Oh and L. Thomann, A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing nonlinear Schrödinger equations, Stoch. Partial Differ. Equ. Anal. Comput. (2018), DOI 10.1007/s40072-018-0112-2.
- T. Oh and L. Thomann, Invariant Gibbs measure for the 2-$d$ defocusing nonlinear wave equations, Ann. Fac. Sci. Toulouse Math., to appear.
- Francesco Russo, Colombeau generalized functions and stochastic analysis, Stochastic analysis and applications in physics (Funchal, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 449, Kluwer Acad. Publ., Dordrecht, 1994, pp. 329–349. MR 1337971
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974. MR 0489552
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Laurent Thomann and Nikolay Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity 23 (2010), no. 11, 2771–2791. MR 2727169, DOI 10.1088/0951-7715/23/11/003
- N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), no. 3-4, 481–514. MR 2574736, DOI 10.1007/s00440-008-0197-z
Additional Information
- Massimiliano Gubinelli
- Affiliation: Hausdorff Center for Mathematics & Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
- MR Author ID: 692441
- Email: gubinelli@iam.uni-bonn.de
- Herbert Koch
- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
- MR Author ID: 340038
- Email: koch@math.uni-bonn.de
- Tadahiro Oh
- Affiliation: School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MR Author ID: 782317
- Email: hiro.oh@ed.ac.uk
- Received by editor(s): March 23, 2017
- Published electronically: June 7, 2018
- Additional Notes: The first author was partially supported by the DFG through CRC 1060
The second author was partially supported by the DFG through CRC 1060
The third author was supported by the ERC starting grant no. 637995 “ProbDynDispEq” - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7335-7359
- MSC (2010): Primary 35L71, 60H15
- DOI: https://doi.org/10.1090/tran/7452
- MathSciNet review: 3841850