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REDUCIBILITY IN SASAKIAN GEOMETRY

CHARLES P. BOYER, HONGNIAN HUANG, EVELINE LEGENDRE,
AND CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract. The purpose of this paper is to study reducibility properties in
Sasakian geometry. First we give the Sasaki version of the de Rham decompo-
sition theorem; however, we need a mild technical assumption on the Sasaki
automorphism group which includes the toric case. Next we introduce the
concept of cone reducible and consider S3 bundles over a smooth projective
algebraic variety where we give a classification result concerning contact struc-
tures admitting the action of a 2-torus of Reeb type. In particular, we can

classify all such Sasakian structures up to contact isotopy on S3 bundles over
a Riemann surface of genus greater than zero. Finally, we show that in the
toric case an extremal Sasaki metric on a Sasaki join always splits.
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1. Introduction

A fundamental result in Riemannian geometry is the de Rham decomposition
theorem stating that any simply connected complete Riemannian manifold with
reducible holonomy is the product of simply connected complete Riemannian man-
ifolds. Of course, the product cannot make sense in the Sasaki category because a
product of Sasaki manifolds cannot be Sasaki for dimensional reasons. However, we
can consider product structures that are transverse to the characteristic foliation
of the Reeb vector field. This leads directly to the concept of a reducible Sasakian
structure which is the subject of this paper.

This notion of reducibility in Sasakian geometry was first discussed in the context
of the “join construction” for quasi-regular Sasaki–Einstein manifolds in [BG00a],
and later developed in the general Sasakian context in [BGO07]. However, recently
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a more intrinsic definition of reducibility on the tangent level was given by He
and Sun [HS15], and following the Riemannian analog we shall refer to the join as
decomposable.

Given two quasi-regular Sasaki manifolds M1,M2 with Reeb vector fields ξ1, ξ2,
respectively, and a pair of relatively prime integers (l1, l2), one can construct a
new quasi-regular Sasaki manifold M3 = M1 �l1,l2 M2 whose Reeb vector field
ξ3 is a certain linear combination of ξ1 and ξ2 and whose underlying manifold is
the quotient of the product M1 × M2 by an S1-action depending on l1 and l2.
This construction is known as the join construction and is the analogue of the
product in Sasakian geometry, that is, the closest notion one can define in this
category. Let S1

ξ denote the S1-action generated by the Reeb vector field ξ. In

particular, there is a Kähler isometry between the Kähler orbifolds (M3
/
S1
ξ3
, ω3)

and (M1
/
S1
ξ1

×M2
/
S1
ξ2
, l1ω1 + l2ω2).

The purpose of this paper is to study further the concept of reducible Sasakian
structures and the join of Sasaki manifolds. We address three main issues concern-
ing this notion.

1.1. Are simply connected reducible Sasaki manifolds always a join? This
is essentially Question 1.1 of He and Sun [HS15] and the theme of Section 3. As
in the product operation, the resulting structure has a special splitting or reducible
property in terms of holonomy. However, on a Sasaki manifold we have to consider
the so-called ‘transverse holonomy’, that is, the holonomy of the metric gT that
is transverse to the characteristic foliation Fξ generated by the Reeb vector field
ξ. The concept of a transverse decomposable Sasakian structure is that of the
join as mentioned previously. Contrary to the Riemannian or Kählerian case, this
reduciblility property is not quite as obvious in the Sasakian case.

He and Sun [HS15] gave a definition of a reducible Sasaki manifold (see Definition
3.2) and proved that a reducible Sasaki manifold whose irreducible components
have either transverse positive Ricci curvature or a transverse flat structure must
be quasi-regular. That is, irregular Sasakian structures are irreducible in this case.

Here we extend the He–Sun result to more general cases which include the toric
case. However, at this stage we fall short of a complete answer to the question.
Our first main result is the following theorem.

Theorem 1.1. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a compact
connected manifold M . Assume further that each piece (not necessarily irreducible)
has Sasaki automorphism groups of dimension greater than one. Then ξ is quasi-
regular. Furthermore, if M is simply connected, S is the join of quasi-regular
compact Sasaki manifolds with Sasaki automorphism groups of dimension greater
than one. Equivalently S is decomposable.

As a particular case we have the following corollary.

Corollary 1.2. An irregular toric Sasaki manifold is irreducible.

Even when one piece has a one-dimensional Sasaki automorphism group we
can say more if that piece also has either positive transverse Ricci curvature or
is transversally flat by incorporating the He–Sun result with ours using Molino
theory. This is Proposition 3.32 below.
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1.2. When is a Sasaki manifold cone reducible? In Section 4 we introduce
the concepts of cone reducible (decomposable) in which case the given Sasakian
structure is not reducible (decomposable); however, one can obtain a reducible
(decomposable) Sasakian structure after deforming in the Sasaki cone. We con-
centrate our attention mainly, though not entirely, on S3-bundles over a smooth
compact projective algebraic variety. The reason for this is two-fold. First, many
such examples of this occur in [BTF14,BTF16], and second a well-known theorem
of Eliashberg [Eli92] says that there is only one tight contact structure on S3 up to
oriented isotopy, and that is the standard contact structure. This allows us to give
certain classification results.

Question 1.3. Which Sasakian structures can be obtained from the join construc-
tion allowing for deformations of the Reeb vector field in the Sasaki cone?

Such a Sasakian structure is said to be cone decomposable. See Definition 4.1
below.

Theorem 1.4. Let M be an S3-bundle over a compact smooth algebraic variety of
the form N = N ′×A(N) where N ′ has finite automorphism group and A(N) is the
Albanese variety of N , and let D be a co-oriented contact structure on M with an
effective T2-action of Reeb type. Then T2 acts trivially on all N . Suppose further
that the Picard number ρ(N) = 1; then (M,D) is of Sasaki type and there is an
underlying T2-invariant Sasaki CR structure (D, J) that is cone decomposable, i.e.,
there is a Sasakian structure S ∈ t

+
2 that is isomorphic to an S3

w-join construction
of [BTF16].

There are also choices of Sasaki CR structures that are cone reducible, but not
cone decomposable. An example is given by Example 3.12 below. See also Remark
4.10. It also follows from the orbifold version of the de Rham decomposition, Lemma
3.9, that any simply connected cone reducible Sasaki manifold is cone decomposable.

A particular case of interest where we obtain stronger results occurs when N is
a Riemann surface of genus g studied in [BTF14] in which case the Picard number
is automatically one. We recall that the Picard group of line bundles on Σg has
the form Pic(Σg) ≈ T 2g × Z where T 2g is the Jacobian torus. However, for us line
bundles of degree −n are equivalent to those of degree n, so we are interested in
Pic(Σg)/Z2 ≈ T 2g × Z≥0. Here we let Mg denote the moduli space of complex
structures on Σg.

Theorem 1.5. Let M5 be an S3-bundle over a Riemann surface Σg of genus
g > 0 with a contact structure D that admits an action of a 2-torus T2 of Reeb
type. Then each compatible T2-invariant CR structure (D, J) is of Sasaki type and
cone reducible. Moreover, if g > 1 for each fixed τ ∈ Mg(Σg), there is a one-
to-one correspondence between such CR structures and elements of Pic(Σg)/Z2 ≈
T 2g × Z≥0 and for each degree n ∈ Z there is precisely one choice of CR structure
(D, J) that is cone decomposable. If g = 1 and the degree of the line bundle is zero,
then for each fixed τ ∈ Mg(Σ1) there is a one-to-one correspondence between cone
reducible T2-invariant CR structures and points of CP1; whereas, if the line bundle
has degree n > 0, then up to biholomorphism there is precisely one T2-invariant
CR structure and it is cone decomposable.

We remark that Theorem 1.5 does not hold in the genus g = 0 case. Indeed,
Example 4.15 below gives a T2-invariant CR Sasakian structure on S2 × S3 that is
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cone irreducible. For these Sasakian structures, the maximal torus (in particular,
the reduced Sasaki cone) is two-dimensional. The case of a T3 torus acting on
S2 × S3 becomes toric and then it is cone reducible as follows from [BP14] and is
a special case of Theorem 1.6 below.

Recall that there are precisely two different diffeomorphism types of S3-bundles
over Riemann surfaces, the trivial bundle Σg×S3 and the nontrivial bundle Σg×̃S3.
In terms of Theorem 1.5 these are determined by the parity of the degree of the
holomorphic line bundle. We have the trivial bundle Σg × S3 when n is even, and
Σg×̃S3 when n is odd. Combining Theorem 1.5 with Theorem 4.5 of [BTF14] gives
a complete description of the moduli space of isotopy classes of Sasakian structures
on Σg×S3 with g > 1 whose automorphism group contains a 2-torus. This is given
by the k-bouquet with k ∈ Z+

Bk(Dk) =

k−1⋃
m=0

⋃
τ∈Mg

⋃
ρ∈Pic0(Σg)

κ(Dk, Jτ,ρ,m),

where c1(Dk) = 2− 2g − 2k, and m = 2n ≥ 0. These spaces are non-Hausdorff. A
similar bouquet can be given in the genus one case. We mention also that these give
all co-oriented contact structures of Sasaki type with a two-dimensional maximal
torus on Σg × S3 up to contact isotopy.

Another result in this direction is the following.

Theorem 1.6. A toric contact manifold of Reeb type whose moment cone has the
combinatorial type of a product of simplices is cone reducible. In particular, any
toric contact structure on an S2k+1-bundle over CPm or on a CPm-bundle over
S2k+1 is cone reducible (with k > 0).

1.3. Does an extremal Sasaki metric on a join split? As in the Kählerian
case, extremal Sasakian structures have recently become of much interest, especially
their relation to stability properties [CoSz12,BHLTF17]. The main result of Section
5 is a splitting theorem for extremal Sasakian structures. It is clear from the join
construction that if M1 and M2 both have extremal Sasaki structures, then the
standard Sasakian structure on the join will be extremal. The converse of this
statement is interesting and not known in full generality. However, we must allow
for contact isotopies. Here motivated by the work of [AH15,Hua13], we would like
to propose the following question.

Question 1.7. If M3 admits an extremal Sasaki metric by only deforming its
contact 1-form, i.e., its Reeb vector field is fixed, then can we conclude that M1,M2

all admit extremal Sasaki metrics by deforming their contact 1-forms, respectively?
Alternatively, is a reducible extremal Sasakian structure the join of two extremal
Sasakian structures up to contact isotopy?

We give an affirmative answer to the above question when M1,M2 are toric
Sasaki manifolds.

Theorem 1.8. Let M1,M2 be two toric quasi-regular Sasaki manifolds and let
(l1, l2) be a pair of relatively prime natural numbers. If the join manifold M3 =
M1 �l1,l2 M2 admits an extremal Sasaki metric by only deforming its contact 1-
form, then M1,M2 also admit extremal Sasaki metrics by deforming their contact
1-forms, respectively.
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2. Background

A Sasaki manifold is an odd-dimensional manifold M2n+1 endowed with a struc-
ture inherited from being a level set in a Riemannian cone with a compatible Kähler
structure. More precisely, the Riemannian cone manifold

(C(M), g̃) = (M × R+, r2g + dr2)

is a Kähler manifold with respect to some Kähler structure (ω̃, J̃). A Sasakian
structure on M is usually described by a quadruple S = (ξ, η,Φ, g), where η = rdcr

is a contact 1-form, ξ = J̃r ∂
∂r is its Reeb vector field which is a Killing vector

field, Φ is a parallel (1, 1) type tensor field determined by Φ = −∇ξ, and g is the
Riemannian metric that satisfies g = dη ◦ (�⊗Φ)⊕η⊗η. The contact form η gives
rise to the contact structure which is defined by the codimension one subbundle D

of the tangent bundle TM .
There is a classification of the Sasakian structures by the Reeb foliation Fξ on

M = M × {1} ⊂ C(M) generated by the Reeb vector field ξ. When M is compact
we say that it is a quasi-regular Sasaki manifold if the orbit of ξ corresponds to a
locally free isometric action of the circle group S1 = U(1). If this action is free,
then we say that M is a regular Sasaki manifold. Otherwise, when M is compact
and ξ has a noncompact orbit, then M is an irregular Sasaki manifold. For further
details about Sasaki manifolds we refer to [BG08] and the references therein. Unless
stated to the contrary we shall assume that our Sasaki manifolds are compact and
connected.

2.1. The space of Sasakian structures. It is well known that a Sasakian struc-
ture S = (ξ, η,Φ, g) has a transversal Kählerian structure which is determined by
(D = ker η,Φ|D, dη) with a Kähler form dη and a transverse metric

gT (·, ·) = dη(·,Φ·).
A smooth function f ∈ C∞(M) is called basic if ξ(f) = 0. A p-form θ is called
basic if

iξ(θ) = 0, £ξθ = 0.

Let C∞
B (M) be the space of all smooth basic functions on M . Then the space of

transversal Kähler potentials is

H = {ϕ ∈ C∞
B (M) | dηϕ = dη +

√
−1∂∂̄ϕ > 0}.

Now we consider the set

S(ξ) = {Sasakian structure (ξ̃, η̃, Φ̃, g̃) | ξ̃ = ξ}.
S(ξ) is called the space of Sasakian structures compatible with ξ. We are also
interested in the set

S(Fξ) = {Sasakian structure (ξ̃, η̃, Φ̃, g̃) | ξ̃ = a−1ξ, a ∈ R+}.
Let V (Fξ) be the vector bundle whose fiber at a point p ∈ M is TpM/Lξ(p),

where Lξ is the line bundle generated by ξ. Let π : TM → V (Fξ) be the natural
projection. We can define a complex structure J̄ on V (Fξ) as follows:

J̄(π(X)) := π(Φ(X)),

where X is any vector field in M . We define S(ξ, J̄) to be the subset of all Sasakian

structures (ξ̃, η̃, Φ̃, g̃) in S(ξ) with the same complex normal bundle (V (Fξ), J̄). A
choice of Sasakian structure S ∈ S(ξ, J̄) gives a splitting of the tangent bundle
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TM = D ⊕ Lξ, an isomorphism D ≈ V (Fξ), and a strictly pseudoconvex CR
structure (D, J).

2.2. Extremal Sasakian structures. As in Kähler geometry, we are particularly
interested in certain preferred Sasakian structures called extremal Sasakian struc-
tures which were first defined in [BGS08]. Given a transversal Kähler form dηϕ
with ϕ ∈ H, we denote its scalar curvature by Rϕ. Following [BGS08] we define
the following energy functional:

E : S(ξ, J̄) −−−→ R,
S �→

∫
M

R2
g dμg,

where Rg is the scalar curvature of g and μg is the volume form. Recall that a
vector field X is transversally holomorphic if π(X) is holomorphic with respect to
J̄ . A real basic function ϕ is a real transversally holomorphic potential if gradgϕ is
transversally holomorphic.

Definition 2.1. We say that S = (ξ, η,Φ, g) ∈ S(ξ, J̄) is an extremal Sasakian
structure if gradgRg is a real transversally holomorphic vector field.

When this happens we also say that the Sasaki metric g is an extremal Sasaki
metric. In [BGS08] it is shown that a Sasakian structure S ∈ S(ξ, J̄) is a critical
point of the energy functional E iff the transverse Kähler metric gT = dη ◦ (�⊕Φ)
is an extremal Kähler metric. Thus we have the following proposition.

Proposition 2.2. A transversal Kähler form dηϕ defines a transversally extremal
Kähler metric if and only if Rϕ is a real transversally holomorphic potential.

We emphasize the following obvious statement. A constant scalar curvature
(CSC) Sasaki metric is extremal. We also mention the relation Rg = RgT − 2n
where the Sasaki manifold M has dimension 2n+1 and RgT is the scalar curvature

of the transverse Kähler metric gT .

2.3. The join construction. The general join construction was described in
[BGO07] (see also Section 7.6.2 of [BG08]). Let Mi, i = 1, 2 be two compact
quasi-regular Sasaki manifolds with Sasakian structures (ξi, ηi,Φi, gi). Let (l1, l2)
be a pair of relative prime positive integers. Since the Reeb vector field ξi generates
a locally free circle action, the quotient is a Kähler orbifold Zi with Kähler form
ωi satisfying π∗

i ωi = dηi, where

πi : Mi → Zi

is the natural projection map. Using a transverse homothety we can always assume
that [ωi] is a primitive element in H2

orb(Zi,Z). Then the product orbifold Z =
Z1 × Z2 admits a primitive Kähler form [ω = l1ω1 + l2ω2] ∈ H2

orb(Z1 × Z2,Z).
By the orbifold Boothby–Wang construction [BG00a], the total space of the S1

V-bundle over Z1 ×Z2 is an orbifold, denoted by M = M1 �l1,l2 M2 with a contact
1-form η such that dη = π∗ω, where π : M → Z is the natural projection. We have
η = ηl1,l2 = l1η1 + l2η2, and the Reeb vector field ξl1,l2 on M is given by

(1) ξl1,l2 =
1

2l1
ξ1 +

1

2l2
ξ2.
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Note also that M1 �l1,l2 M2 is the quotient orbifold of M1 ×M2 by the circle action
generated by the vector field

(2) Ll1,l2 =
1

2l1
ξ1 −

1

2l2
ξ2.

The Sasaki orbifold Ml1,l2 = M1 �l1,l2 M2 is called the (l1, l2)-join of M1 and M2,
or just the join of M1 and M2 when l1, l2 are understood. Generally, the topology
of M1 �l1,l2 M2 depends on l1 and l2. Note that we have the commutative diagram

(3)

M1 ×M2

↘ πLl1,l2⏐⏐⏐⏐�π2 Ml1,l2 = M1 �l1,l2 M2

↙ π1

Z1 ×Z2

where the π’s are the obvious projections.
The following result is proved in [BGO07]: Recall that since Mi are quasi-regular

Sasaki manifolds, then Fξi is generated by a locally free circle action. Thus the
isotropy groups are finite cyclic groups. We denote by υi the order of Mi, i.e., the
lcm of the orders of the isotropy groups.

Proposition 2.3. Ml1,l2 is a smooth Sasaki manifold iff gcd(l1υ2, l2υ1) = 1.

2.4. The multiplicative structure of the join. As in the beginning of Section
7.6.2 of [BG08] we denote the set of compact quasi-regular Sasaki manifolds (orb-
ifolds) by SM(SO) where SO is given the Cm,α topology. SM is a subspace of
SO and SO is graded by dimension. Let SO2n+1 denote the subset of Sasakian
orbifolds having dimension 2n+ 1. We have

(4) SO =
∞⊕

n=0

SO2n+1 ,

and similarly for SM manifolds. Note that here we consider SO1 = SM1 to consist
of one element, namely the circle S1 with its “Sasakian structure” S1 = (∂t, dt, dt

2).
Here the transverse structure is a point and the Reeb orbit is the entire Sasaki
manifold.

For every pair of relatively prime positive integers (l1, l2) the join operation
defines a graded multiplication

(5) �l1,l2 : SO2n1+1 × SO2n2+1−−→SO2(n1+n2)+1

which satisfies the “commutivity relation” O1 �l1,l2 O2 = O2 �l2,l1 O1, and a partial
“associativity” relation in the form

(O1 �l1,l2 O2) �l3,l2l4 O3 = O1 �l1l3,l2 (O2 �l3,l4 O3).

Notice that l2l4 and l1l3 are composite, so this “associativity relation” does not hold
in general. By Proposition 2.3 the restriction of �l1,l2 to SM×SM is in SM only for
those pairs of elements which satisfy gcd(l1υ2, l2υ1) = 1. Note that S1�l1,l2 S1 = S1

by a change of variables, and that S1�1,1 (�1,1S1) is the left (right) identity on SO.
We have a map

(6) �l1,l2S1 : SO2n+1−−−→SO2n+1

defined by sending the Sasakian orbifold O2n+1 to the join O2n+1 �l1,l2 S1.
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Proposition 2.4. O2n+1 �l1,l2 S1 is the Sasakian structure on O2n+1/Zl1 with Reeb
vector field l2ξ where ξ is the Reeb vector field for O2n+1. Hence, the map �l1,l2S1

is an l1-fold covering map, and the map �1,l2S1 : O2n+1−−→O2n+1 is a rescaling by
a transverse homothety.

Proof. The S1-action on O2n+1 × S1 is defined by

eiθ · (x, eit) �→ (eil2θ · x, ei(−l1θ+t)).

We do this in stages. First we divide by the Zl1 subgroup of S1 to give O2n+1/Zl1 ×
S1. Then the residual circle action is given by

eiθ · (x, eit) = (ei
l2
l1

θ · x, ei(−θ+t)).

Thus, if ξ is the Reeb vector field for O2n+1 the induced Reeb vector field on
O2n+1 �l1,l2 S1 = O2n+1/Zl1 is l2ξ. �

Of course, there is a similar result for the map

(7) S1�l1,l2 : SO2n+1−−−→SO2n+1.

Example 2.5. Take O2n+1 to be the sphere S2n+1 with its weighted Sasakian struc-
ture Sw = (ξw, ηw,Φ, gw) which we denote by S2n+1

w . Then S1 �l1,l2 S
2n+1
w is the

general lens space L(l2; l1w1, · · · , l1wn) and S2n+1
w �l1,l2 S1 is L(l1; l2w1, · · · , l2wn).

3. The join construction and reducibility

Note that by construction the joinM1�l1,l2M2 has reducible transverse holonomy.
In Definition 7.6.11 of [BG08] any Sasakian structure that can be obtained as the
join of Sasakian structures was called reducible. However, to be consistent with the
usual terminology involving the de Rham decomposition theorem we shall refer to
this as decomposable and retain the term reducible for the He–Sun definition which
occurs at the tangent bundle level.

Definition 3.1. A quasi-regular Sasakian structure S = (ξ, η,Φ, g) on an orbifold
is Sasaki decomposable or just decomposable if it can be written as the (l1, l2)-
join of two Sasaki orbifolds of dimension greater than or equal to three; otherwise,
it is indecomposable.

We note that Definition 3.1 only applies to quasi-regular Sasakian structures.
We want to extend this definition to all Sasakian structures, and relate the irre-
ducible pieces to the multifoliate structures of Kodaira and Spencer [KS61]. The
main results of this section are: (1) that under a certain technical assumption on
the Sasaki automorphism group a reducible Sasakian structure must necessarily
be quasi-regular, and (2) a Sasaki version of the de Rham decomposition theorem
holds; hence, a reducible Sasakian structure on a compact simply connected mani-
fold must be a join. Interestingly, the proof of (1) uses the polyhedral structure of
the moment cone even in the nontoric case.

3.1. Reducible Sasakian structures. In a recent paper [HS15] He and Sun have
given such an extension of Sasakian reducibility and then have proven that irregular
Sasakian structures are irreducible whenever the irreducible pieces have positive
Ricci curvature or are flat. In particular, this shows that there can be no join
construction for irregular Sasakian structures with positive Ricci curvature or zero
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curvature on the irreducible subbundles. Their proof also shows that their definition
extends ours. We recall the induced connection on the subbundle D of TM

∇T
XY =

{
(∇XY )D if X is a section of D;

[ξ, Y ]D if X = ξ,

where (·)D denotes projection onto D.

Definition 3.2 (He–Sun). A Sasakian structure S = (ξ, η,Φ, g) is reducible if

(1) the contact bundle D splits as an orthogonal direct sum D = D1 ⊕D2 of
nontrivial subbundles;

(2) for i = 1, 2, ΦDi = Di;
(3) if Y is a section of Di, then so is ∇T

XY ;
(4) the transverse metric gT splits as gT = gT1 + gT2 where gTi = gT |Di

.

If there is no such splitting of D, then S is called irreducible

Hereafter, by reducible (irreducible) we shall mean He–Sun reducible (irreducible).
Following [HS15] we define subbundles Ei = Di + Lξ for each i = 1, 2. It is shown
that for a reducible Sasakian structure the subbundles Ei are integrable, and de-
fine foliations on M with totally geodesic leaves. Actually if D splits further into
subbundles as

D = D1 ⊕ · · · ⊕Dr

we obtain r integrable subbundles Ei for i = 1, . . . , r with dimDi = 2ni and∑r
i=1 ni = n. This gives rise to a multifoliate structure. Following [KS61] we define

the set of vector bundles Pr = {TM,E1, . . . ,Er, Lξ} with a partial ordering given by
inclusion. We put n0 = 0 and then define a surjective map ψ : {0, . . . , 2n+1}−−→Pr

by

ψ(j) =

⎧⎪⎨
⎪⎩
TM for j = 0;

Ek for 2
∑k−1

i=0 ni + 1 ≤ j ≤ 2
∑k

i=0 ni for k = 1 . . . , r;

Lξ for j = 2n+ 1.

The partial ordering on Pr induces a partial ordering on the set of integers {0, . . . ,
2n+ 1} (not the usual one) which we denote by �. So k � j if and only if ψ(j) ⊂
ψ(k). This gives rise to an integrable GPr

structure where GPr
⊂ GL(2n + 1,R)

is the subgroup of all matrices G such that Gj
k = 0 when k �� j where j labels the

columns and k labels the rows. Explicitly this is a 2n + 1 by 2n + 1 matrix with
the first 2n entries being block diagonal

(8) G =

⎛
⎜⎜⎜⎜⎜⎝

D1 0 0 0 ∗
0 D2 0 0 ∗

0 0
. . . 0 ∗

0 0 0 Dr ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎠ ,

where Di is a 2ni by 2ni matrix. Note that there is a nesting of multifoliate
structures, that is, if Fr denotes the multifoliate structure defined by the group (8),
then we have nestings F1 ⊃ F2 ⊃ · · · ⊃ Fr which can occur in many inequivalent
ways. Note that the case r = 1 is just a foliation. We are particularly interested in
the case r = 2. Of course, when we consider F2 it doesn’t mean that the subbundles
D1 and D2 are irreducible.
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We shall refer to the subbundles Ei as Sasaki subbundles. Clearly, we have
Ei ∩ Ej = Lξ for j �= i, and from (2) of Definition 3.2 we have ΦEi = Di. We
define Φi = Φ|Ei

, ηi = η|Ei
, and gi = g|Ei×Ei

. So on the subbundle Ei we have the
Sasakian structure Si = (ξ, ηi,Φi, gi).

Let us now consider the case r = 2. We have

(9) g1 = gT1 + η1 ⊗ η1, g2 = gT2 + η2 ⊗ η2.

Here the transverse metric gTi means transverse to the characteristic foliation Fξ on
the leaves of the foliation FEi

. So it is important to note that the transverse metric
to E1 is gT2 , a metric on D2, and that transverse to E2 is gT1 , a metric on D1. With
this in mind we have the decompositions TM = E1 ⊕D2 = E2 ⊕D1, so E⊥

1 = D2

and E⊥
2 = D1. Now generally leaves of foliations are immersed submanifolds, and

we have the following proposition.

Proposition 3.3. Each leaf Li of Ei is a totally geodesic immersed Sasakian sub-
manifold with the Sasakian structure Si.

Proof. That the leaves of Ei are totally geodesic was proved by He and Sun [HS15].
That the leaves are Sasakian follows from Definition 3.2 and Okumura’s theorem
([BG08], Theorem 7.6.2). �

Proposition 3.3 implies the following corollary.

Corollary 3.4. The leaves of the foliation Ei are complete with respect to the
metric gi.

As a Sasakian structure has much more than a foliate structure, so then a re-
ducible Sasakian structure has more than a multifoliate structure. Recall from
Proposition 6.4.8 in [BG08] that the characteristic foliation Fξ of a K-contact (hence
a Sasaki manifold) M2n+1 is an oriented Riemannian foliation, that is, it is a trans-
verse G-structure with the transverse frame group SO(2n,R). For transverse G-
structures see Chapter 2 of [Mol88]. But a Sasakian structure also has a transverse
holomorphic structure, so a Sasaki manifold has a transverse Kählerian structure,
that is, the transverse G-structure has the transverse frame group U(n). In the
case of a reducible Sasakian structure we have the following proposition.

Proposition 3.5. The foliations Ei are Kählerian with respect to the Sasaki metric
g, that is, g is bundle-like for the foliation Ei whose transverse metrics gTi+1 are
Kähler where i+ 1 is understood to be mod 2.

Proof. It is a well-known result (cf. [BG08, Proposition 2.5.7]) that a foliation E on
M is Riemannian if and only if it admits a bundle-like metric, that is, a Riemannian
metric g such that if V is a vector field along the leaves of the foliation E and X,Y
are horizontal foliate vector fields, then V g(X,Y ) = 0. In our case horizontal foliate
with respect to E1 corresponds to sections of D2 which are independent of the leaf
variables of the foliation E1, that is, a section X of D2 is foliate if [V,X] ∈ Γ(E1)
whenever V ∈ Γ(E1). Observe that in that case, condition (3) of Definition 3.2
implies

∇V X = η(V )Φ(X).
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Indeed, ∇V X − ∇XV = [V,X] ∈ Γ(E1) but the only part of ∇XV lying in D2 is
η(V )Φ(X). Hence,

V · g(X,Y ) = g(∇V X,Y ) + g(X,∇V Y )

= η(V )(g(Φ(X), Y ) + g(X,Φ(Y )))

= η(V )(g(Φ(X), Y ) + g(Φ(Y ), X))

= η(V )(dη(Φ(X),Φ(Y )) + dη(Φ(Y ),Φ(X))) = 0.

(10)

However, it follows from Proposition 3.5 and Definition 3.2 that more is true, as
shown in the following corollary.

Corollary 3.6. Let (M,S) be a reducible Sasaki manifold with dimR Di = 2ni.
Then (M,S) has a transverse Kählerian product structure with transverse frame
group U(n1)×U(n2) where n1 + n2 = n and the transverse holonomy group lies in
U(n1)× U(n2).

For a multifoliate Sasakian structure Fr the transverse Kähler structure to Ei is
a product of r − 1 Kähler structures with product metric gT

î
= gT1 + · · · + gTi−1 +

gTi+1 + · · ·+ gTr , and the transverse holonomy group lies in U(n1)× · · · ×U(ni−1)×
U(ni+1)× · · · × U(nr).

It is important to realize that Sasakian structures come in rays obtained from a
transverse homothety [BG08]. So the induced Sasakian structure Si on the leaves
Li of Ei described above gives the ray ri = {aSi} of Sasakian structures defined by
the Sasakian structures aSi = (a−1ξ, aη,Φ, agi + (a2 − a)ηi ⊗ ηi) for a ∈ R+. We
now have the following proposition.

Proposition 3.7. The (l1, l2)-join M1 �l1,l2 M2 is He–Sun reducible. Equivalently,
a decomposable Sasakian structure is reducible.

Proof. As usual we consider vector fields on M1�l1,l2M2 as vector fields on M1×M2

mod Ll1,l2 where Ll1,l2 is given by equation (2). So by equation (1) the Reeb vector
field on M1 �l1,l2 M2 is ξ = 1

l1
ξ1+

1
l2
ξ2. Now from the join commutative diagram (3)

we have D splits as D = D1⊕D2. Moreover, since the transverse metric also splits
as gT = gT1 + gT2 , the splitting of D is orthogonal. But the transverse complex
structure J = J1 + J2 also splits, so one easily sees that ΦDi = Di. Since the
transverse connection ∇T on D is just the Levi–Civita connection lifted from the
orbifold Z1 ×Z2 item (3) of Definition 3.2 holds as well. This completes the proof
of the proposition. �
Remark 3.8. From the structure of the Reeb vector field ξ on the join we see that
the induced Sasakian structure on the leaves Li of Ei is not Si but the transverse
homothety translated Sasakian structure liSi.

We have the following converse of Proposition 3.7 under the added hypothesis
of simple connectivity. First we state an orbifold version of the de Rham decompo-
sition:

Lemma 3.9. Let Z be a compact Kähler orbifold of complex dimension n with
πorb
1 (Z) = {id}. Suppose that Z has Riemannian holonomy contained in U(n1) ×

U(n2) where n1 + n2 = n; then Z is isometric to Z1 ×Z2.

Proof. This follows as in the proof of Theorem 6.1 of [KN63] by working on local
uniformizing neighborhoods. �
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Proposition 3.10. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a
simply connected, compact, connected manifold M such that its Reeb vector field
ξ is quasi-regular. Then there exist simply connected compact Sasaki manifolds
M1,M2 and a pair of positive integers (l1, l2) such that M = M1 �l1,l2 M2 is the
join of M1 and M2. Equivalently, a reducible quasi-regular Sasakian structure on
a simply connected compact manifold is decomposable.

Proof. Since S is quasi-regular and M is compact, all leaves of the characteristic
foliation Fξ are compact. Thus, by Theorem 7.1.3 of [BG08] M is the total space
of an S1-orbibundle over a compact projective algebraic orbifold Z. Furthermore,
since M is simply connected πorb

1 (Z) = {id}, and since S is reducible, it follows
from Corollary 3.6 that the transverse holonomy group lies in U(n1)×U(n2) where
n1 + n2 = n. So by Lemma 3.9 Z is isometric to a product Z1 × Z2 of projective
algebraic orbifolds. Then by orbifold Boothby–Wang (cf. Theorem 7.1.3 of [BG08])
there are primitive forms ω1, ω2 on Z1,Z2, and a pair of positive integers l1, l2,
respectively, such that the Kähler form on Z1 × Z2 can be written as l1ω1 + l2ω2

and satisfies

(11) dη = π∗(l1ω1 + l2ω2),

where π : M−−→Z1×Z2 is the S
1-orbibundle. Then again by the orbifold Boothby–

Wang construction there are manifolds M1 and M2 with Sasakian structures S1 =
(ξ1, η1,Φ1, g1) and S2 = (ξ2, η2,Φ2, g2) satisfying πi : Mi−−→Zi with dηi = π∗ωi.
Since the Kähler classes [ωi] are primitive and πorb

1 is the identity, the manifolds
Mi are simply connected. But also from equation (11) we have that, up to a gauge
transformation, η = l1η1 + l2η2. But then the Reeb vector fields are related by
equation (1) and the join construction follows. �

It should be clear that one can iterate this procedure.

Remark 3.11. In the case of an S3
w-join Ml1,l2,w = M�l1,l2S

3
w described in [BTF16],

we have the following uniqueness result. The admissible representatives of all rays in
the w-cone are ‘irreducible’ except that coming from the join construction, namely
the ray determined by v = w (see Lemma 6.4 of [BTF16]).

Next we give examples of reducible Sasakian structures that are indecomposable.

Example 3.12. We begin by constructing well-known ruled surfaces that are lo-
cally a product as Kähler manifolds, but not so globally. Consider D ×CP1 where
D ⊂ C is the unit disk, with the product Kähler form (metric) (ω1, ω2) which are
both Fubini-Study metrics. ω1 is hyperbolic with constant holomorphic sectional
curvature −1, ω2 has holomorphic sectional curvature +1. Let Σg be a Riemann
surface of genus g > 1 which we can represent as a quotient D/π1(Σg) where π1(Σg)
acts on D by deck transformations. Consider a projective unitary representation
ρ : π1(Σg)−−→PSU(2) and form the quotient

Σg ×ρ CP
1 = (D × CP1)/(π1(Σg), ρ(π1(Σg))).

This has a local product structure as Kähler manifolds which is a global product
as Kähler manifolds if only if ρ is the identity representation. Nevertheless, the
diffeomorphism type of Σg ×ρ CP1 is that of S2 × S2. In fact there is a two
parameter family of integral Kähler structures on Σg ×ρ CP

1 given by l1ω1 + l2ω2

with l1, l2 ∈ Z+. The total space Ml1,l2,ρ of the principal S1-bundle over Σg×ρCP
1

whose Euler class is l1[ω1] + l2[ω2] has a natural Sasakian structure Sl1,l2 with



REDUCIBILITY IN SASAKIAN GEOMETRY 6837

constant scalar curvature. Now by [GR85] the holomorphic tangent bundle to
Σg ×ρ CP1 splits as a sum of holomorphic line bundles. This implies that the
contact bundle D on Ml1,l2,ρ splits as D = D1 ⊕D2. It is then straightforward to
check that the Sasakian structure Sl1,l2 is reducible; however, it is decomposable
only if ρ is the identity representation.

Note that the representation space, up to equivalence under conjugation by
PSU(2) ≈ SO(3), is the character variety R(Σg) which has real dimension 6g − 6.
From [NS65] we know that the smooth locus of R(Σg), which is represented by the
irreducible unitary representations of π1(Σg), is the moduli space of stable rank
two holomorphic vector bundles on Σg; whereas, the singular locus consists of the
reducible representations which are realized by the polystable, but not stable, rank
two bundles.

Recall [BG08] that a Sasakian structure S is said to be of positive (negative) type
if its basic first Chern class1 c1(FS) can be represented by a positive (negative)
definite (1, 1) form. It is null if c1(FS) = 0 and indefinite otherwise. There are
certain cases where quasi-regularity must hold.

Lemma 3.13. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a compact
manifold M . Then S is quasi-regular if any of the following conditions hold:

(1) the leaves of both foliations E1 and E2 are compact;
(2) the leaves of one foliation, say E1, are compact and Aut(S1) has dimension

one;
(3) the leaves of one foliation, say E1, are compact and S1 is of negative, or

null type;
(4) S is of positive, negative, or null type.

Proof. For item (1) as noted in the proof of Lemma 2.2. of [HS15] the intersection
of the leaf L1 of E1 and L2 of E2 through a point p ∈ M is precisely the Reeb
orbit Op through p. So when the leaves are compact, so is Op. Thus, S is quasi-
regular. To prove (2) we simply note that since aut(S1) is one-dimensional and S1

has compact leaves, it must be quasi-regular. For (3) we note that if S1 is null or of
negative type with compact leaves, then aut(S1) is one-dimensional, so the result
follows from (2). For (4) we first note that if S is negative or null, then aut(S) is
one-dimensional, so it must be quasi-regular. For the positive case we note that
c1(FS) = c1(FS1

) + c1(FS2
), so S is positive if and only if each component Si is

positive. The result then follows from [HS15]. �

We can now ask under what conditions could a reducible irregular Sasakian
structure S exist on a compact manifold. First S must be indefinite.

3.2. Sasaki automorphisms. Here we study the automorphisms group Aut(S) of
a reducible Sasakian structure S = (ξ, η,Φ, g) on M . The Lie algebra of Aut(S)
is denoted aut(S). For the next lemma, we take the following point of view: tk

is the Lie algebra of an abstract compact torus Tk of dimension k. That is, tk

is simply a k-dimensional vector space and there is a faithful representation of
φ : Tk ↪→ Aut(S) and thus an injective Lie algebra morphism φ∗ : tk ↪→ aut(S).
We assume the image of φ is a maximal torus in Aut(S) and the Reeb vector field
ξ corresponds to a unique vector, still denoted ξ, in tk.

1Here to avoid future ambiguity we write the foliation as FS instead of Fξ as done in [BG08].
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Lemma 3.14. Let S be a reducible Sasakian structure. Then there exist two sub-
algebras g1, g2 ⊂ tk/Rξ such that

(12) tk/Rξ = g1 ⊕ g2.

Moreover, we have φ∗(p
−1(gi)) ⊂ Γ(Ei) where p : tk → tk/Rξ is the quotient map.

Proof. Take a cover of M by open subsets Uα and the submersions πα : Uα →
Vα ⊂ Cn. If the Sasaki structure is reducible in the sense of He–Sun, then we may
assume that we get a product Kähler structure h1

α⊕h2
α on each Vα = V 1

α ×V 2
α with

a local action of tk/Rξ on it. More precisely, πα is a quotient map with respect
to the orbits of Reeb vector field ξ. Thus, φ∗ descends as an injective Lie algebra
morphism, say φ̃α, from the vector space (or trivial Lie algebra) quotient tk/Rξ
with image in Γ(Vα, TVα). Because πα is a Riemannian submersion the image of

φ̃α is a space of Killing vector fields on Vα, that we will call hα.
The condition (3) of Definition 3.2 implies that the decomposition TVα =

(πα)∗(D1 ⊕D2) � (πα)∗D1 ⊕ (πα)∗D2 is integrable and closed for the Levi–Civita
connection. Hence, any such Killing vector field Kα ∈ hα on Vα can be written
uniquely as Kα = K1

α + K2
α (with Ki ∈ (πα)∗Di a Killing vector field for hi

α).
The condition that (πα)∗D1 and (πα)∗D2 are closed for the Levi–Civita connection
implies that K is Killing if and only if K1

α and K2
α are both Killing vector fields.

So hα splits as h1α ⊕ h2α which induces a splitting

φ̃−1
α (h1α ⊕ h2α) = g1 ⊕ g2 = tk/Rξ.

This decomposition does not depend on Vα because the lifts of these vector fields on
Uα∩Uβ satisfy X1

α+X2
α = X1

β+X2
β+aαβξ for some function aαβ ∈ C∞(Uα∩Uβ ,R).

This is equivalent to X1
α +X2

α ≡ X1
β +X2

β mod ΓUα∩Uβ
(Lξ). �

Corollary 3.15. There are two Abelian Lie subalgebras a1, a2 ⊂ aut(S) such that
aε are sections of Eε, respectively, (ε = 1, 2), a1 ∩ a2 is the one-dimensional Lie
algebra induced by the Reeb vector field ξ and a1 + a2 is the Abelian Lie algebra of
a maximal torus in Aut(S).

The rest of this subsection is devoted to a more geometric point of view about the
decomposition (12) and another way to derive it which emphasizes the multifoliate
nature [KS61] of reducible Sasakian structures.

The Sasakian structure S = (ξ, η,Φ, g) on M fixes an orthogonal splitting TM =
D⊕Lξ. Let X(M) denote the Lie algebra of vector fields on M . We wish to consider
certain vector fields on M modulo the sections (perhaps local) of Lξ. In particular,
we can restrict vector fields to any open subset U ⊂ M to obtain X(U). We also
consider the algebra of local sections ΓU (Lξ). Now any element X ∈ X(M) can be
written uniquely as X = XD + η(X)ξ.

Now on M there is the characteristic foliation Fξ and we let fol(Fξ) denote the
Lie algebra of foliate vector fields with respect to Fξ (that is, we recall, X ∈ fol(Fξ)
if and only if [X,Y ] ∈ Γ(Lξ) as soon as Y ∈ Γ(Lξ)). Note that Γ(Lξ) is a subalgebra
of fol(Fξ), in fact, by the definition of foliate it is an ideal. So we have a well-defined
quotient Lie algebra fol(Fξ)/Γ(Lξ). For any X ∈ fol(Fξ) we write X = XD+η(X)ξ,
and it is straightforward to check that both components are foliate. We let fol(Fξ)D
denote the foliate vector fields that are sections of D. So as vector spaces we have
the identification fol(Fξ)D ≈ fol(Fξ)/Γ(Lξ). Thus, we can give fol(Fξ)D a Lie
algebra structure. If X,Y ∈ fol(Fξ)D, then [X,Y ] ∈ fol(Fξ)D mod Γ(Lξ).



REDUCIBILITY IN SASAKIAN GEOMETRY 6839

Summarizing we have the following theorem.

Lemma 3.16. Let S = (ξ, η,Φ, g) be a Sasakian structure on M with contact
bundle D = ker η. Then the set of foliate sections fol(Fξ)D of D can be given the
structure of a Lie algebra.

Now we know that aut(S) is a Lie subalgebra of fol(Fξ). Let aut(S)D denote the
set of D components of elements of aut(S). Note that aut(S)D �⊂ aut(S) in general.
From Lemma 3.16 we have the following lemma.

Lemma 3.17. The set aut(S)D can be given the structure of a Lie algebra isomor-
phic to aut(S)/Rξ.

Proof. Clearly aut(S)D is a vector space since (X + Y )D = XD + Y D. If X,Y ∈
aut(S) and we write X = XD + η(X)ξ and Y = Y D + η(Y )ξ we have

[XD, Y D] = [X,Y ]− [X, η(Y )ξ] + [Y, η(X)ξ] + [η(X)ξ, η(Y )ξ]

which since elements of aut(S) are foliate implies [XD, Y D] ≡ [X,Y ] mod Γ(Lξ).
But the only elements of Γ(Lξ) that are in aut(S) are those in Rξ. This implies the
result. �

Let Tk be a maximal torus of Aut(S), where k is the dimension of Tk, and let
tk ⊂ aut(S) denote its Lie algebra of vector fields. Here we note that the Reeb
vector field ξ is an element of the Lie algebra tk, and that every X ∈ tk (in fact
in aut(S)) has a component of the form η(X)ξ which, of course, is a section of Lξ.
Thus, we have the following lemma.

Lemma 3.18. There is an Abelian Lie subalgebra abD of aut(S)D that is isomor-
phic to tk/Rξ.

Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a compact (connected)
2n + 1-dimensional manifold M with an underlying multifoliate structure Fr. We
now consider the automorphism group Aut(S) (and its Lie algebra aut(S)) of the
Sasakian structure S = (ξ, η,Φ, g) on the compact manifold M . In fact, we work
mainly with the Lie algebra aut(S). Now any element of Aut(S) must leave the
multifoliate structure invariant. Infinitesimally, this means that any element X ∈
aut(S) is a multifoliate vector field, that is, if V is a vector tangent to the leaves of Ei,
then [X,V ] is also tangent to the leaves of Ei. In local coordinates (x1, · · · , x2n+1)
a multifoliate vector field X ∈ aut(S) takes the form ([KS61, Definition 3.1]).

(13) X =

2n+1∑
j=1

Xj ∂

∂xj
with

∂Xj

∂xk
= 0 when k �� j.

In the case of the multifoliate structure F2 the coordinates along the leaves of E1

are (x1, · · · , x2n1 , x2n+1) and those along the leaves of E2 are (x
2n1+1, · · · , x2n1+2n2 ,

x2n+1). So our multifoliate vector fields satisfy

(14)
∂Xi

∂xj
= 0

when 2n1+1 ≤ i ≤ 2n1+2n2 and j ≤ 2n1, or i ≤ 2n1 and 2n1+1 ≤ j ≤ 2n1+2n2, or
i ≤ 2n1+2n2 and j = 2n+1. So any multifoliate section of E1 takes the form X1 =∑2n1

i=1 X
i∂xi +X2n+1∂x2n+1 where Xi depends only on the variables (x1, · · · , x2n1)

and X2n+1 can depend on all variables. Similarly, any multifoliate section of E2
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takes the form X2 =
∑2n1+2n2

i=2n1+1 X
i∂xi + X2n+1∂x2n+1 where Xi depends only on

the variables (x2n1+1, · · · , x2n1+2n2) and again X2n+1 can depend on all variables.
Consequently, any section of E1∩E2, and hence ξ takes the form ξ = f∂x2n+1 where
f can be a function of all variables. We have the following lemma.

Lemma 3.19. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure and let X ∈
aut(S). Then on a local multifoliate coordinate chart U we have

(1) X is the sum X = X1 +X2 where for i = 1, 2, Xi is a multifoliate section
of Ei restricted to U ;

(2) [ξ,Xi] ≡ 0 mod ΓU (Lξ);
(3) [X1, X2] ≡ 0 mod ΓU (Lξ);
(4) [ξ,X1] = −[ξ,X2].

Proof. The proof of both (1) and (2) can be seen easily from the discussion by
writing X and ξ out in local multifoliate coordinates, and (3) follows from the fact
that ξ lies in the center of aut(S).

By (14) any such multifoliate vector field can be written as

X =

2n1∑
i=1

Xi∂xi +

2n1+2n2∑
i=2n1+1

Xi∂xi +X2n+1∂x2n+1 ,

where for i = 1, · · · , 2n1, Xi depends only on the variables (x1, · · · , x2n1), for
i = 2n1+1, · · · , 2n1+2n2, X

i depends only on the variables (x2n1+1, · · · , x2n1+2n2),
and X2n+1 can depend on all variables. �

When S is reducible any X ∈ aut(S) is multifoliate, so we have an orthogonal
splitting

(15) aut(S)D = aut(S)D1
⊕ aut(S)D2

.

In particular, we have an orthogonal splitting of the maximal Abelian Lie algebra

(16) abD = abD1
⊕ abD2

.

So the isomorphism abD ≈ tk/Rξ gives the existence of Abelian subalgebras gi such
that

(17) tk/Rξ = g1 ⊕ g2.

3.3. The Sasaki cone, moment cone, and reducibility. Let Tk be a maximal
torus of Aut(S), where k is the dimension of Tk, and let tk ⊂ aut(S) denote its Lie
algebra. The (unreduced) Sasaki cone [BGS08] t+k of S is by definition the positive
cone in the Lie algebra t of a maximal torus in Aut(S), i.e.,
(18) t

+
k = t

+
k (S) = {b ∈ tk | η(Xb) > 0},

where Xb is the vector field on M corresponding to the Lie algebra element b. This
gives rise to a Sasakian structure Sb = (Xb, ηb,Φb, gb) where

ηb :=
1

η(Xb)
η

is a Tk-invariant contact form whose Reeb vector field is Xb. So one can think of the
cone t+k as parametrizing the set of Tk-invariant Reeb vector fields with underlying

CR structure (D, J). It is also convenient to think of the Sasaki cone t
+
k as the

family of Sasakian structures {Sb | b ∈ t
+
k } with underlying CR structure (D, J).
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Changing the CR structure by changing the complex structure J can give rise to
bouquets of Sasaki cones with the same underlying contact structure as described
in Section 4.4 of [Boy13].

We note that the Sasaki cone t
+
k is dual to the interior of the moment cone C

which is defined as the image of the moment map Υ : Do
+−−→t∗k, that is, C =

Υ(Do
+) ⊂ t∗k. Here Do is the annihilator of D in T ∗M which splits as Do

+∪Do
−. For

each ξ ∈ t
+
k there is a unique section η ofDo

+ such that ξ is the Reeb vector field of η.
The equation [BG00b] η(ξ) = 1 describes a hyperplane in t∗k. Its intersection with
the cone C is a polytope P which is the image of the moment map μη associated
to η. That is, we have

P = μη(M) = Υ ◦ η(M).

The moment cone C of a contact manifold is rational with respect to the lattice of
circle subgroups Λ ⊂ tk [Ler02b], and in the toric case, that is, when k = n+ 1, it
is even a good cone in the sense of Lerman [Ler02b]. Let us describe this explicitly.
We recall the following general definition.

Definition 3.20. A polytope (resp., a cone) in an affine (resp., linear) space is said
to be labelled if we fix, for each codimension one face, an inward normal vector.
It is called rational with respect to a given lattice if the inward normals are lying
in that lattice.2 More specifically, a rational cone C ⊂ t∗ is a polyhedral cone

{x ∈ t
∗
k | 〈x, li〉 ≥ 0, i = 1, . . . , d}

which is rational with respect to Λ � Zn+1, the lattice of circle subgroups in
t. The labels (i.e., inward normals) l1, . . . , ld ∈ t are then chosen (uniquely) by
requiring that they are all primitive in Λ. Moreover, the cone is good means that
for IF ⊂ {1, . . . , d} we have

Λ ∩ span
R
{li | i ∈ IF } = span

Z
{li | i ∈ IF }

whenever F = C
⋂(⋂

i∈IF
{x | 〈x, li〉 = 0

)
is a (nonempty) face of C.

Now given a strictly convex rational cone C and a Reeb vector b ∈ t, one can
consider the labelled polytope (Pb,nb) defined as follows:

• Pb = C ∩ {x ∈ t∗k | 〈x, b〉 = 1};
• nb = ([l1], · · · , [ld]) ∈ tk/Rb.

This is a labelled polytope in the affine space Ab := {x ∈ t∗k | 〈x, b〉 = 1} whose dual
is naturally identified with tk/Rb. We say that (Pb,nb) is a characteristic labelled
polytope of (C,Λ).

Whenever Rb ∩ Λ �= {0} and k > 1, the quotient map tk → tk/Rb sends Λ to a
lattice, say Λb in tk/Rb and (Pb,nb) is rational with respect to Λb.

The so-called toric case is when k = n + 1 and the picture described above
fits nicely with the Delzant–Lerman–Tolman correspondence. We can state this
concisely in the following summary of results.

Proposition 3.21 ([Ler02b,BG00b]). We give a compact, connected contact man-
ifold (M,D) endowed with the contact action of a torus Tk. Assume that there
exists b ∈ tk such that Xb is a Reeb vector field for (M,D) and η is the correspond-
ing Tk-invariant contact form. Then, the Reeb vector field Xb is quasi-regular iff
Rb ∩ Λ �= {0} and this happens iff (Pb,nb,Λb) is a rational labelled polytope. In

2To recover the original convention introduced by Lerman and Tolman in the rational case,
take mk ∈ Z such that 1

mk
uk is primitive in Λ so (P,m1, . . .md,Λ) is a rational labelled polytope.
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that case, (Pb,nb,Λb) is the moment rational labelled polytope associated to the
Hamiltonian compact T/S1

b -space (symplectic orbifold)

(M/S1
b , (dηb)D,T/S1

b ),

where S1
b = {exp(tb)} is the circle induced by b in T.

Remark 3.22. Proposition 3.21 in [BG00b] is proved in the toric case. This extends
to the general case k < n+ 1 using the work of Lerman in [Ler02b]. The condition
that there exists a Tk-invariant contact form (Reeb type condition) implies that 0 is
not in the image of the moment map on the symplectization of (M,D). Therefore,
we can use directly Theorem 1.2 of [Ler02b] (the condition on the dimension of Tk

is not relevant in our case, i.e., if dimTk = 1 the image of μ is just a point in a
line).

Now given a labelled polytope (P,n) with P ⊂ A and n = { �n1, . . . , �nd} a set of
inward normals one can wonder if (P,n) is a characteristic labelled polytope of a
good cone. The following result gives an answer.

Proposition 3.23 ([Leg11]). A labelled polytope (P,n), lying in an affine-linear
space A, is a characteristic labelled polytope of a cone if and only if the set of
defining affine functions of P

li(·) = 〈·, �ni〉 − λi

span a lattice, say Λ = span
Z
{li | i = 1, . . . , d}, in Aff(A,R) for which

CP = {x ∈ Aff(A,R)∗ | 〈x, li〉 ≥ 0 i = 1, . . . , d}
is a good cone.

Remark 3.24.

(i) For example, when (P,n) is a labelled simplex then the condition of Propo-
sition 3.23 is satisfied because the defining affine functions form a basis of
Aff(t∗k,R). Hence each labelled simplex is characteristic to a good rational
cone, which is associated via Lerman’s construction [Ler02a] to a sphere.

(ii) Another way to state the condition that span
Z
{li | i = 1, . . . , d} is a lattice

is that there exists d− k linearly independent vectors �k1, . . . ,�kd−k ∈ Zd in
the kernel of the map

Rd � x �→
d∑

i=1

xili.

The condition that (P,n) is a labelled rational polytope is that there exists
d − k + 1 linearly independent vectors �m1, . . . , �md−k+1 ∈ Zd in the kernel
of the map

π(x) :=
d∑

i=1

xi�ni

where again x ∈ Rd.
(iii) The homothety r �→ 1

r b for r > 0 corresponds to the homothety(
rP, {lri := 〈�ni, ·〉 − rλi}di=1

)
.

One can check (using item (iii) for example) that the condition of Proposi-
tion 3.23 holds either for all or for none of the homothetic labelled polytopes.
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In view of Remark 3.24 and Proposition 3.23, it is convenient to label polytopes
with their defining affine functions instead of the normals (or integers). We now
adopt this convention.

Definition 3.25. An affine space A is a product if there exists two nontrivial (i.e.,
of dimension greater than or equal to one) affine spaces A1 and A2, and a bijective
affine linear map φ : A1 × A2 → A. In that case, any pair of nontrivial polytopes
Pi ⊂ Ai defines a product polytope P1×P2 ⊂ A in an obvious way. Every polytope
in A which is affinely equivalent to such polytope is called a product polytope.

More generally, we say that a polytope P , lying in an arbitrary affine space B, is
a product polytope if there exists an injective affine linear map φ : A → B from
a product affine space A that maps a product polytope to P .

This definition applies equally well to labelled polytopes. We now have the
following proposition.

Proposition 3.26. Let (Pε, {lε,i}dε
i=1) for ε = 1, 2 be labelled polytopes. If the

product

(19) (P1 × P2, {l1,i}i=1,...,d1
∪ {l2,i}i=1,...,d2

)

is characteristic to a rational cone, then (Pε, {lε,i}dε
i=1) for ε = 1, 2, are both rational

labelled polytopes characteristic to rational cones. In particular, (19) is rational.

Proof. We introduce some notation, the polytope Pε lies in an affine-linear space
Aε � Rkε−1 of dimension kε − 1 where ε = 1, 2. So we must have kε ≥ 2. The
product P1 × P2 lies in A1 × A2 which has dimension k − 1, that is, k1 + k2 − 1.
Abusing the notation a little, we write l1,i(α, β) = l1,i(α) and l2,i(α, β) = l2,i(β)
where (α, β) ∈ A1 ×A2. That is, there are two injections

Aff(Aε,R) ↪→ Aff(A1 ×A2,R)

whose images overlap on the subspace of constant functions. The Z-submodules of
Aff(A1 ×A2,R), namely

Λ1 = span
Z
{l1,1, . . . , l1,d1

} and Λ2 = span
Z
{l2,1, . . . , l2,d2

},
are included in Λ, the Z-span of the labels of the cone CP1×P2

. Thanks to Proposi-
tion 3.23 and the hypothesis that the product labelled polytope (19) is characteristic
to a rational cone, we know that this span, Λ, is a lattice. In particular, Λ1 and Λ2

have no accumulation point and thus are both lattices in Aff(A1,R), and Aff(A2,R),
respectively. For dimensional reasons their ranks are, respectively, k1 and k2. We
get that both (P1, {l1,i}d1

i=1) and (P2, {l2,i}d2
i=1) are labelled polytopes characteristic

to rational cones.
Considering the second point of Remark 3.24, the kernel of the map

Rd1 × Rd2 � (x, y) �→
d1∑
i=1

xil1,i +

d2∑
j=1

yj l2,j

intersects Zd1 ×Zd2 in a Z-submodule of rank at least d1+ d2− k1− k2+1. Hence,
the fact that Λ1 +Λ2, Λ1 and Λ2 are lattices in their respective space of definition
implies that there exists (x, y) ∈ Zd1 × Zd2 such that

∑
i xil1,i +

∑
j yj l2,j ≡ 0

but none of the functions
∑

i xil1,i,
∑

j yj l2,j vanishes identically. Indeed, we have

rank(Zdε ∩ ker(t �→
∑

i tilε,i)) = dε − kε for ε = 1, 2.
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But
∑

i xil1,i(α) = −
∑

j yj l2,j(β) for all (α, β) ∈ A1 × A2 implies that it is

a (nonvanishing) constant. Therefore, if Λ1 + Λ2 is a lattice, then there exists
x ∈ Zd1 such that

∑
i xil1,i is a nonvanishing constant. This in turn implies that∑

i xi�n1,i = 0 and that x does not lie in the Z-module of rank d1−k1 that lies in the

kernel of Rd1 � t �→
∑

i til1,i which is included in the kernel of π(t) =
∑d1

i=1 ti�n1,i.
Hence, the rank of (kerπ)∩Zd1 is d1−k1+1 and thus (P1, �n1,1, . . . , �n1,d1

) is rational.
The argument is the same for (P2, �n2,1, . . . , �n2,d2

). �

Proposition 3.27. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a
compact connected manifold M such that in the decomposition of Lemma 3.14 none
of the summands are trivial. Then ξ is quasi-regular and if M is simply connected,
then S is the join of quasi-regular compact Sasaki manifolds.

Proof. Denote as before Tk, a maximal torus of the automorphisms of S and tk its
Lie algebra in which lies ξ. Let μ : M → t∗k be the usual η-momentum map defined
by 〈μ, a〉 = η(Xa). We will show that the image of μ, say P , is a product polytope.
We already know by Proposition 3.21 that P is a compact polytope, characteristic
to a rational cone.

Pick α ∈ t∗k such that 〈α, ξ〉 = 1 and put μo = μ− α. Note that Imμo = P − α,
in particular if Imμo is a product, P is a product. Observe also that Imμo ⊂ ξ0,
the annihilator of Rξ in t∗k. In general if H is a vector subspace of another E and
H0 is the annihilator of H in E∗, then (E/H)∗ = H0. Using this fact, on the
decomposition of Lemma 3.14, we get the identification

(20) ξ0 = (tk/Rξ)∗ = g∗1 ⊕ g∗2.

For i = 1, 2, denote hi = p−1(gi) so that

h1 ∩ h2 = Rξ, tk = h1 + h2,

gi = hi/Rξ, and g∗i is the annihilator of Rξ in h∗i . In particular, g∗i ⊂ h∗i . Denote
the inclusions ιi : hi → tk and consider the momentum maps μi → h∗i of the local
action of hi defined by

μi := ι∗i ◦ μo : M → h∗i .

The image Pi := Imμi is a compact polytope, say Pi, because
3 it is the image of

the compact polytope P − α by a linear map ι∗i . Moreover, by construction, the
polytope Pi lies in the annihilator of Rξ in h∗i , that is, in g∗i .

Up to an additive constant, μi coincides with the restriction of μ to hi. Indeed,
if ai ∈ hi ⊂ tk, we have

〈μ, ιi(ai)〉+ 〈α, ιi(ai)〉 = 〈μi, ai〉.
Using this, and the fact that D1 and D2 are g-orthogonal, we get that ∀(a, b) ∈
g1 × g2, the gradients of the functions 〈μ1, a〉 and 〈μ2, b〉 are g-orthogonal. In
particular, the image of (μ1, μ2) : M → g∗1 ⊕ g∗2 is a product, namely P1 × P2.

Now, for any a ∈ tk we can write a = a1 + a2 for ai ∈ hi. We have

d〈μo − (μ1, μ2), a〉 = d〈μo, a〉 − d〈μ1, a1〉 − d〈μ1, a2〉
= dη(Xa, ·)− dη(Xa1

, ·)− dη(Xa2
, ·)

= dη(Xa−a1−a2
, ·) ≡ 0.

(21)

3One can also prove that the image of μi is a compact polytope using the classical theory; see
[Ati82,Ler02a].
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The decomposition a = a1 + a2 is not unique but the values above are independent
of the decomposition since 〈μo, ξ〉 = 0, 〈μ1, ξ〉 = 0, 〈μ2, ξ〉 = 0, and dη(ξ, ·) = 0.
From (21), we get that up to an additive constant μo = (μ1, μ2), the equality makes
sense thanks to the decomposition (20). It follows that Imμo is a product polytope
and thus Imμ = Imμo + α is a product polytope characteristic to a rational cone.
By Proposition 3.26 both polytopes Pi are rational; hence, the product is rational
as well and, using Proposition 3.21, we get that ξ is quasi-regular. Thus, when M
is simply connected Proposition 3.10 implies that M is decomposable. �

Theorem 1.1 is an immediate consequence of Proposition 3.27.

3.4. Molino theory and Sasaki geometry. In this subsection we briefly review
some important invariants of Riemannian foliations due to Molino [Mol79,Mol81,
Mol82,Mol84,Mol88] and apply them to Sasakian structures. Recall that a trans-
verse oriented Riemannian structure is a reduction of the transverse frame group
to the special orthogonal group. It is well known that the characteristic foliation
Fξ of a compact connected Sasaki manifold M is a one-dimensional Riemannian
foliation, that is, a Riemannian flow. Actually in this case the transverse geometry
is Kähler. Moreover, as seen from Proposition 3.5 the foliations Ei are also trans-
versely Kählerian, hence, transversely Riemannian. Molino describes two invariants
associated to a Riemannian foliation (M,F ). The first is called the structural Lie al-
gebra [Mol81] and denoted g(M,F ). Its definition requires a transverse parallelism.
It is well known that frame bundles are parallelizable, so we can lift a Riemannian
foliation F to a foliation F 1 on the transverse orthonormal frame bundle4 E1

T of
(M,F ). Now the closure of the leaves of the lifted foliation (E1

T , F
1) are the fibers

of a locally trivial fibration π1
T : E1

T−−→W 1
T , called the basic fibration, such that

F 1 induces a foliation on the fibers N ≈ (π1
T )

−1(w) with w ∈ W 1
T whose leaves

are spanned by a finite-dimensional Lie algebra g(E1
T , F

1). Note that the leaves of
this induced foliation are dense in (π1

T )
−1(w) and the only basic functions of this

foliation are the constants. Moreover, Molino shows that g(E1
T , F

1) is independent
of the transverse Riemannian structure, so it only depends on the original foliation
(M,F ). Hence, we define g(M,F ) = g(E1

T , F
1) and note that it depends only on

the foliation (M,F ) independent of the transverse Riemannian metric. Applying
this to the characteristic foliation Fξ of a Sasakian structure, we see that it only
depends on the space S(Fξ) of Sasakian structures, not on a particular Sasakian
structure S ∈ S(Fξ). In particular, g(M,Fξ) is independent of the transverse Rie-

mannian metric and the transverse holomorphic structure. Now the closure Fξ

of leaves of Fξ is a singular Riemannian foliation whose leaves are tori T k with
1 ≤ k ≤ n+1 where the dimension of M is 2n+1. For the rest of this section T k is
the torus generated by the Reeb vector field, and not necessarily a maximal torus
in Aut(S) as previously.

Lemma 3.28. The structural Lie algebra g(M,Fξ) of the characteristic foliation
Fξ of a Sasaki manifold M is an Abelian Lie algebra of dimension k− 1 where k is
the dimension of the closure of a generic Reeb orbit.

Proof. As discussed by Molino and mentioned above, by passing to a component
of the transverse orthonormal frame bundle of Fξ we can assume the foliation is

4In the case that (M,F ) has a transverse orientation (which happens in our case), we need to
choose a connected component of E1

T .
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transversely parallelizable. Then by Lemma 4.2 of [Mol88] the induced foliation
(N,Fξ) is transversely parallelizable. Now the fibers N of the basic fibration are

the leaves of Fξ, that is, the tori T k, and since a Reeb orbit is dense in T k the
structure Lie algebra g(M,Fξ), as Molino shows, is precisely the transverse foliate
vector field which is, in this case, Abelian of dimension k − 1. �

Remark 3.29. Molino describes another invariant which is called the ‘faisceau trans-
verse central’ in [Mol79,Mol82] and the ‘commuting sheaf’ in [Mol88] and denoted
by C(M,F ). It is a locally constant sheaf of local transverse Killing vector fields
which is universal in the sense that it is independent of the transverse Riemannian
metric, depending only on the foliation F . However, in the case of the characteristic
foliation Fξ of a Sasaki manifold M , the leaves are geodesics, and it follows from
[MS85] that C(M,Fξ) is the constant sheaf. In this case elements of C(M,Fξ) are
central elements of the Lie algebra of transverse foliate vector fields on (M,Fξ).
So, as Molino shows, C(M,Fξ) actually coincides with the structural Lie algebra
g(M,Fξ). Thus, we can represent elements of g(M,Fξ) by transverse Killing vector
fields.

For a reducible Sasakian structure we consider the lattice of vector bundles P2 =
(TM,E1,E2, Lξ) with multifoliate structure F2. We are interested in invariants
of this multifoliate structure. First we consider the Lie algebras g(M,Ei) which
are invariants of the foliations FEi

. We also have the locally constant Lie algebra
sheaves C(M,Ei). When C(M,Ei) is a constant sheaf it is Abelian and coincides
with the structural Lie algebra g(M,Ei). We have the following proposition.

Proposition 3.30. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on the
compact manifold M with multifoliate structure F2 defined by the subbundles (E1,E2,
Lξ) of TM . Then the triple of Abelian Lie algebras

(
g(M,E1), g(M,E2), g(M,Fξ)

)
satisfying

g(M,Fξ) = g(M,E1)⊕ g(M,E2)

is an invariant depending only on the multifoliate structure F2. Moreover, g(M,Ei)
⊂ gi+1 where gi are the Abelian Lie algebras of equation (17) and i+ 1 is understood
to be taken mod 2.

Proof. The invariants of the multifoliate structure F2 are the invariants of the three
foliations Fξ,FE1

,FE2
together with any relations among them. We compute these

structural Lie algebras g(M,Ei) by considering their lifts to E1
T of the singular

foliations FEi
on M defined by the leaf closures of Ei. We denote the lifted foliation

to E1
T by F1

Ei
. The leaves of F1

Ei
are the fibers N of the basic fibration and the

foliation on N induced by F1
Ei

is spanned by the structural Lie algebra g(M,Ei).
Now following Molino we know (cf. Theorem 5.2 in [Mol88] and its proof) that the
closures of the leaves of FEi

are the orbits of the locally constant sheaf C(M,Ei).
The subsheaf of constant elements of C(M,Ei) coincide with g(M,Ei) and consists
of transversal Killing vector fields which lie in the center of the Lie algebra of
transverse foliate vector fields. It follows that g(M,Ei) are Abelian Lie algebras.

Now the transverse metric of E1 is gT2 and that of E2 is gT1 . Consider C(M,E1)
and recall that the elements of C(M,E1) are the transverse Killing fields of ev-
ery transverse metric gT2 of E1. By reducibility we have gT = gT1 ⊕ gT2 where
gT is the transverse metric for Fξ, and there exist local multifoliate coordinates
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(x1, · · · , x2n1 , x2n1+1, · · · , x2n1+2n2 , x2n+1) such that gT1 only depends on the co-
ordinates (x1, · · · , x2n1) and gT2 on the coordinates (x2n1+1, · · · , x2n1+2n2). More-
over, a Killing vector field that is transverse to the leaves of E1 takes the form∑2n1+2n2

j=2n1+1 X
j∂xj , that is, it is a section of D2 and so if it is a Killing vector field for

gT2 it is also a Killing vector field for gT . Similarly, a transverse Killing vector field
for gT1 is a section of D1 and is a Killing vector field for gT as well. This shows that
g(M,Ei) ⊂ g(M,Fξ) for i = 1, 2. Furthermore, any transverse Killing vector field
for the transverse metric gT of the Sasakian structure S splits according to equation
(15). Since the Lie algebra g(M,Fξ) is Abelian it must lie in a maximal Abelian
Lie algebra of autD(S) which splits according to equation (17). Furthermore, since
the elements of g(M,Ei) are sections of Di+1 we have g(M,Ei) ⊂ gi+1. This proves
the splitting and the proposition. �

Corollary 3.31. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a com-
pact manifold M with foliations E1 and E2. Suppose further that aut(S1) is one-
dimensional. Then the leaves of E2 are all compact.

Proof. Since aut(S1) is one-dimensional, the subalgebra g1 of equation (17) vanishes
which by Proposition 3.30 implies that g(M,E2) = 0. But this implies that the
leaves of E2 are compact (cf. Proposition 5.4 of [Mol88]). �

Corollary 3.31 allows us to handle the following cases.

Proposition 3.32. Let S = (ξ, η,Φ, g) be a reducible Sasakian structure on a
compact manifold M and suppose that aut(S1) is one-dimensional. Then S is quasi-
regular if either of the following two cases hold :

(1) The Sasakian structure S1 has positive transverse Ricci curvature.
(2) The transverse structure of S1 is flat.

Proof. If the metric gT1 that is transverse to the characteristic foliation Fξ of S1

has positive Ricci curvature, the leaves of E1 are compact by the Myers theorem as
pointed out in [HS15]. But by Corollary 3.31 the leaves of E2 are also compact, so
the result follows from Lemma 3.13. This proves case (1).

For (2) suppose that the transverse Kählerian structure to S1 is flat and that
there is a noncompact leaf L of E1. Then the argument in [HS15] shows that L/Fξ

is Hausdorff and a quotient of Cn1 by a Kähler isometry. By Lemma 2.3 of [HS15]
L/Fξ is noncompact. Then as the argument in the proof of Theorem 2.1 in [HS15]
the automorphism group of L/Fξ contains an element of the form z �→ z + c in
its noncompact factor which is Hamiltonian. But by Corollary 8.1.9 of [BG08] this
would then lift to an element of aut(S1) contradicting the one-dimensionality of
aut(S1). �

4. Cone reducibility

In this section we generalize the notion of reducibility to that where there is
some Sasakian structure in the Sasaki cone that is reducible.

Definition 4.1. A Sasakian structure S is called cone reducible (decompos-
able) if there is a reducible (decomposable) Sasakian structure in its Sasaki cone
t+(S). If there is no reducible (decomposable) element in t+(S) it is called cone
irreducible (indecomposable). We also say that the underlying CR structure
(D, J) is cone reducible (decomposable), etc.
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By Proposition 3.7 a cone decomposable Sasakian structure is cone reducible,
and a cone irreducible Sasakian structure is cone indecomposable. Reducibility is
a property of a ray of Sasakian structures, whereas, cone reducibility is a prop-
erty of the family of Sasakian structures belonging to the same Sasaki cone. Of
course, a reducible Sasakian structure is cone reducible and if a Sasaki cone is one-
dimensional, cone reducibility coincides with reducibility of the ray. An example
of a cone irreducible Sasakian structure with a large automorphism group, hence
a large Sasaki cone, is the standard Sasakian structure on the sphere S2n+1 which
clearly is a toric contact structure of Reeb type.

There are some easy topological consequences of cone reducibility. Since the
second Betti number of any compact quasi-regular Sasaki manifold M is one less
than the second Betti number of its base orbifold we have the following.

Proposition 4.2. If a compact manifold M admits a cone decomposable Sasakian
structure, then b2(M) ≥ 1.

Dimension five is of particular interest. First, the following result which is a
special case of Theorem 1.6 also follows from Lemmas 2.2 and 2.5 of [BP14].

Proposition 4.3. Every toric contact structure on an S3-bundle over S2 is cone
decomposable.

Furthermore, since the orbifold base of the reducible ray is a product of weighted
projective CP1s, the standard Sasakian structure on the join is extremal. In the
next section we show that for toric contact structures of Reeb type the converse is
also true. Here is an interesting example.

Example 4.4. In [GMSW04] the physicists introduced a sequence of Sasaki–
Einstein manifolds Y p,q depending on a pair of relatively prime positive integers p, q
satisfying 1 ≤ q < p which are diffeomorphic to S2×S3. Moreover, these structures
are toric and their geometry was studied further in [MS06]. The Sasaki cone for

the case Y 2,1 has a regular Reeb vector field that fibers over CP2#CP2, that is,
CP2 blown-up at a point. This is an irreducible Sasakian structure. However, as
seen in [BP14,BTF16] it is an element of the Sasaki cone of the join S3 �1,2 S

3
3,1

where here S3
w is the weighted 3-sphere [BG08] with w = (3, 1). Thus, Y 2,1 is cone

decomposable. This is the only Y p,q with a regular Reeb vector field in its Sasaki
cone.

Low dimensions put a constraint on decomposability. For example, in dimension
five we have the following.

Proposition 4.5. Let M be a five-dimensional compact simply connected Sasaki
manifold with H2(M,Q) ≥ 2. Then M is necessarily cone indecomposable.

Proof. Suppose to the contrary that there is a Sasakian structure in the Sasaki
cone of M that is decomposable. Then it is necessarily quasi-regular and an S1-
orbibundle over a product of one-dimensional algebraic orbifolds O1×O2. But since
M is simply connected, πorb

1 (O1×O2) = {id}. So by Kunneth H2(O1×O2,Q) ≈ Q2

which implies H2(M
5,Q) ≈ Q which is a contradiction. �

4.1. S3-bundles over compact Hodge manifolds. We now want to consider
contact manifolds M that are S3-bundles over a compact smooth projective alge-
braic variety N . A choice of integral Kähler form ωN on N is then called a Hodge
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manifold. Let D be a contact structure on M and let Con(M,D) denote the group
of contactomorphisms. If G is a Lie subgroup of Con(M,D), we say [BG08] that
an action A : G−−→Con(M,D) of G is of Reeb type if there is a contact 1-form
η such that D = ker η and an element ς in the Lie algebra g of G such that the
corresponding vector field Xς is the Reeb vector field of η. Hereafter, we often
identify such a vector field with the corresponding element of the Lie algebra. We
begin the proof of Theorem 1.4 with several lemmas.

Now as usual we let O(O∗) denote the sheaf of germs of holomorphic functions
(nowhere vanishing holomorphic functions) on N ; then the short exact exponential
sequence gives the exact cohomology sequence

0−−−→H1(N,O∗)/H1(N,O)
c1−−−→H2(N,Z)−−−→H2(N,O)−−−→· · · .

The group H1(N,O∗) is also written as Pic(N) and is called the Picard group of
holomorphic line bundles on N . The image of c1 in H2(N,Z) is called the Neron-
Severi group NS(N) and its rank is called the Picard number ρ(N) of N . It follows
from the Lefschetz theorem on (1, 1) classes that any integral Kähler class lies in
NS(N). Thus, for any integral Kähler form ωN there exists a complex line bundle
L1 ∈ Pic(N) such that c1(L1) = [ωN ]. The kernel of c1 is the Picard variety
Pic0(N) which is a complex torus of real dimension b1(N).

There is another complex torus associated to N , namely the Albanese variety of
N defined by

A(N) = H0(N,Ω1)∗/H1(N,Z).

It is the dual torus to Pic0(N). Moreover, there is a holomorphic map A(N)−−→N
which induces an isomorphism

H0(A(N),Ω1
A(N)) ≈ H0(N,Ω1

N ).

Lemma 4.6. If N = N ′ ×A(N) where N ′ is a compact connected Hodge manifold
with finite automorphism group and M is an S3-bundle over N with an effective
T2-action of Reeb type, then T2 acts trivially on N .

Proof. Assume the action of T2 on N is nontrivial; then it is nontrivial on A(N)
which is a torus. But by Theorem 9.3 in chapter IV of [Bre72] the only effective
action of a Lie group on a torus is a free action of a torus. Thus, there are two
cases to consider:

(1) T2 acts freely on A(N), or
(2) an S1-quotient acts freely on A(N).

In either case since the action is of Reeb type, by Proposition 8.4.30 of [BG08] there
is a T2-invariant K-contact structure S = (ξ, η,Φ, g) which must be Sasakian since
as in the case discussed above the tranverse almost couplex structure is integrable.
Moreover, by Theorem 7.1.10 of [BG08] we can take S to be quasi-regular, so that
the quotient generated by the Reeb vector field is a compact projective algebraic
orbifold S. Now from the fibration S3−−→M−−→N ′ × A(N) and the fact that
A(N) = T 2k is an Abelian variety, we see that π1(M) ≈ π1(N

′) × Z2k which
contains Z2k as a direct summand. But then since S is projective πorb

1 (S) must
contain Z2k as a direct summand. This implies that H1(S,R) also contains R2k as
a direct summand.

Now consider case (1). By a change of coordinates if necessary we can take the
T2-action on A(N) = T 2k to be translation in the first two coordinates of T 2k.
The corresponding vector field X̌ is not Hamiltonian with respect to the Kähler
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form ωN on N . So by Corollary 8.1.9 of [BG08] it does not lift to an infinitesimal
automorphism in aut(S). So it cannot give rise to an element in the Lie algebra t2

of T2, which is a contradiction.
In case (2) there are two subcases to consider whether or not the infinitesimal

generator X̌ of the S1-action is a projection of the Reeb vector field or not. If X̌ is
not a projection of the Reeb field, then a similar argument as in case (1) leads to a
contradiction. On the other hand if X̌ were the projection of the Reeb vector field
ξ, then since this action is free on A(N), the map ψ in the exact sequence

−−−→Z
ψ

−−−→π1(N
′)× Z2k−−−→S−−−→{id}

would inject into Z2k in which case S would not be Kähler, giving a contradiction.
�

Next we have the following lemma.

Lemma 4.7. Let M be an S3-bundle over a smooth compact algebraic variety N ,
and let D be a co-oriented contact structure on M with an effective T2-action of
Reeb type that acts trivially on N . Then

(1) each fiber Fx = S3 is a contact submanifold.
(2) The contact manifold (M,D) is of Sasaki type and any quasi-regular Reeb

vector field associated with the T2-action has an orbifold quotient of the
form (SL,Δ) where SL = P(� ⊕ L) where L is a holomorphic line bundle
on N and Δ is a branch divisor (possibly empty).

(3) (SL,Δ) admits a holomorphic Hamiltonian S1-action on its fibers.

Proof. Since the action of T2 is of Reeb type and D is co-oriented, there is a
contact 1-form η such that D = ker η and whose Reeb vector field ξ lies in the Lie
algebra t2 of T2. Moreover, since T2 acts nontrivially only on the fiber Fx ≈ S3, by
identifying elements of t2 with the vector fields on M induced by the T2-action, we
have a basis {ξ,X} for t2 that restricted to a fiber Fx is tangent at each point to Fx.
By Proposition 8.4.30 of [BG08] we can assume that the contact structure is a K-
contact structure (ξ, η,Φ, g) and that the T2-action leaves both the endomorphism
Φ and the metric g invariant. But then the vector ΦXx belongs to a transversely
holomorphic section ofD|F and satisfies dη(ΦXx, Xx) = g(Xx, Xx) �= 0 everywhere.
Thus, the restriction ηF of the 1-form η to Fx satisfies ηF ∧ dηF �= 0 for all points
of Fx. Thus, ηF defines a contact structure on Fx for every x ∈ N . This proves (1).

Since T2 acts nontrivially only on the fibers, by (1) the contact structure D

restricts to a contact structure with a T2-action of Reeb type on each fiber Fx ≈ S3

which is toric. By a theorem of Eliashberg [Eli92] any contact structure on S3

is either overtwisted or tight and there is a unique, up to oriented isotopy, tight
contact structure on S3, namely the standard contact structure Dst and only the
latter is of Reeb type [Ler02a,Boy13]. Hence, the contact structure on S3 is Dst and

S3−−→M
π

−−→N is a contact fiber bundle [Ler04] which has a natural fat connection
H whose curvature is dη|H×H. Now denoting the vertical bundle of the fibration
by V we have the following decompositions of vector bundles on M :

(22) TM = H + V, V = Dst + Lξ, D = H +Dst.

Now since the set of compatible almost complex structures on D is contractible, we
can choose the transverse almost complex structure to be an integrable transverse
complex structure consisting of the complex structure on N lifted to H then twisted
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with the standard T2-invariant transverse complex structure on each fiber Fx = S3.
Hence, we can take the K-contact structure S = (ξ, η,Φ, g) to be Sasakian, and
since T2 ⊂ Aut(S), there is a two-dimensional subcone t

+
2 of the unreduced Sasaki

cone of M giving a two-dimensional family of Sasakian structures on M . Since
the fibers Fx are contact manifolds the structure group of the S3-bundle reduces
to S1 ⊂ SO(3), so the T2-action commutes with the transition functions of the
S3-bundle. Furthermore, since the structure group is linear, the sphere bundle

S3−−→M
π

−−→N extends to a rank two holomorphic vector bundle E over N and
the T2-action on M extends to a complex linear action on the rank two holomorphic
vector bundle E. Choosing a quasi-regular Reeb vector field ξ in the Sasaki cone
t
+
2 , provides a splitting of E into a sum of eigenbundles E ≈ L1 ⊕ L2 for some
L1, L2 ∈ Pic(N), and taking an S1-quotient of M is equivalent to projectivizing
the bundle E. The S1-quotient that it produces is a CP1-orbibundle SL over N
which we can write in terms of a log pair (SL,Δ). This orbibundle SL can be
realized set theoretically as the projectivization

(23) M/S1
ξ = E/C∗

ξ = P(�⊕ L) = SL,

where L = L2 ⊗ L−1
1 ∈ Pic(N). Since the orbifold structure is on CP1 it can be

written as a log pair (SL,Δ) where Δ is a branch divisor which is possibly empty.
This proves (2).

The T2-action on M gives a residual S1-action on the orbifold (SL,Δ) which acts
only on the CP1-fibers over N and which is automatically Hamiltonian proving (3).

�

Now let ωN be a Kähler form on N such that its cohomology class [ωN ] is
primitive in H1,1(N,Z) = H2(N,Z) ∩H1,1(N,R). Define

(24) Pic(N, [ωN ]) = {L ∈ Pic(N) | c1(L) = k[ωN ] for some k ∈ Z}.
One easily checks that Pic(N, [ωN ]) is a subgroup of Pic(N). We have the following.

Theorem 4.8. Let M be an S3-bundle over a smooth compact algebraic variety N ,
and let D be a co-oriented contact structure on M with an effective T2-action of
Reeb type that acts trivially on N . Suppose also that the holomorphic line bundle
L of Lemma 4.7 lies in the subgroup Pic(N, [ωN ]) where the Kähler form ωN is
chosen to satisfy π∗ωN = adη|H×H for some a ∈ R+. Then (M,D) has an almost
regular Sasaki structure whose Kähler quotient is an orbifold represented as the log
pair (SL,Δ) where Δ is a branch divisor of the form

Δ = (1− 1

m
)(D0 +D∞)

with ramification index m where the divisors D0(D∞) denote the 0 and infinity
sections of L, respectively. Moreover, there is a choice of underlying CR struc-
ture (D, J) which is cone decomposable. In particular, there are positive integers
l1, l2, w1, w2 with gcd(l2, l1wi) = gcd(w1, w2) = 1 such that M is diffeomorphic to
the smooth manifold arising from the join M ′ �l1,l2 S

3
w where w = (w1, w2) and M ′

is the Sasaki manifold corresponding to the principal S1-bundle over N with Kähler
form ωN .

Proof. Now we know by Lemma 4.7 that M is a nontrivial principal circle orbibun-
dle over the ruled orbifold (SL,Δ). By hypothesis the Kähler class [ωN ] is fixed
and c1(L) = n[ωN ] for some n ∈ Z. As in Section 2.3 of [BTF16] if n > 0 we have
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a Kähler structure given by nωN , whereas, if n < 0 the Kähler structure is −nωN .
If n = 0 we can choose the complex structure in the proof of Lemma 4.7 such that
the quotient SL is the product N × CP1 in which case the Sasakian structure is
decomposable. So we can restrict ourselves to the case that n > 0. If we let D0

denote the zero section of the line bundle L, then by the Leray–Hirsch theorem the
cohomology class corresponding to the S1-bundle M must take the form α + k2h,
where α is a Kähler class pulled back from N and h is the Poincaré dual to D.
Since the Kähler class ωN on N is chosen such that π∗ωN = adη|H×H, we realize
that α must be a multiple of the pullback of [ωN ] and so the cohomology class
corresponding to the S1-bundle M takes the form k1π

∗
S [ωN ]+k2h with k1, k2 ∈ Z+

and we have a commutative diagram

(25)

M
↘ πL⏐⏐⏐� π SL.

↙ πS

N

Now since the T2-action on M is the standard action on the fibers Fx = S3, we
see that writing S3 as |z1|2 + |z2|2 = 1 the action on the dense subset defined by
z1z2 �= 0 is free for all x ∈ N . Consider the endpoints z2 = 0 and z1 = 0 which
correspond to the divisors D0 and D∞, respectively. The isotropy subgroups are
denoted by G0 and G∞, respectively. Note that G0 and G∞ both contain an S1 that
is complementary to S1

ξ ⊂ T2, and they may also contain a finite cyclic subgroup of

S1
ξ . So generally we have G0 ≈ S1×Zm0

and G∞ ≈ S1×Zm∞ where m0,m∞ ∈ Z+.

However, if we choose the Reeb vector field ξv defined by v = (1, 1) which is regular
on each fiber, the quotient is invariant under the interchange of D0 and D∞. It
follows that the ramification indices are equal, that is, m0 = m∞ =: m. But this is
the definition of an almost regular Reeb vector field [BTF16]. In this case the fibers
of SL are developable orbifolds of the form CP1/Zm. Now we claim that since M
is an S3-bundle over N the constraint gcd(n,m) = 1 holds. To see this suppose
n and m have a greatest common factor k > 1. Then there exists a holomorphic
line bundle L on N such that Lk = L. Setting n = kn′ and m = km′, we have
the projective orbifold (SL,Δm′) where SL = P(� ⊕ L) and c1(L) = n′[ωN ]. The
log pair (SL,Δm′) is a k-fold cover of the log pair (SL,Δm). The corresponding
primitive S1-bundle over (SL,Δm′) is thus a k-fold cover of the primitive S1-bundle
over (SL,Δm). This holds fiber-wise and since gcd(n′,m′) = 1 we have the universal
cover S3 in this case. It follows that when M is an S3-bundle over N the integers
n and m must be relatively prime.

Now consider the join M ′ �l1,l2 S3
w as constructed in Section 3.2 of [BTF14,

BTF16] where M ′ is the unique positive primitive S1-bundle over the Hodge man-
ifold (N,ωN ). So by principal bundle theory there is a choice of the relatively
prime pair (l1, l2) and weight vector w such that M and M ′ �l1,l2 S

3
w are isomor-

phic as principal S1-bundles over SL as long as the Reeb vector field on the join
M ′ �l1,l2 S3

w giving rise to the quotient structure on SL is almost regular. So if
we can identify the S1-orbibundle from the construction in diagram (25) with an
appropriate S1-orbibundle in the join, the corresponding orbifold Boothby–Wang
constructions will identify the Sasakian structures up to a gauge transformation.



REDUCIBILITY IN SASAKIAN GEOMETRY 6853

The join depends on parameters l1, l2, w1, w2, whereas M depends on parameters
k1, k2,m, n. So we need to describe the relation between the two sets of parameters.
This was essentially done in [BTF16] at the end of Section 3. Specializing to the
almost regular case we have k1 = ml1w2 and k2 = l2 with n = l1(w1 − w2) and
m = gcd(k1, k2). As in [BTF16] this determines l1, l2, w1, w2 uniquely. Moreover,
since we know that gcd(n,m) = 1, Proposition 4.22 below guarantees us that the
identification of the parameters truly corresponds to identifying M (with the chosen
almost regular Reeb vector field) with the join M ′ �l1,l2 S

3
w (with its almost regular

Reeb vector field). This completes the proof of the theorem. �

Remark 4.9. We chose to work with the almost regular Reeb vector field in the
proof above, but we could have used any quasi-regular Reeb vector field (from the
effective T2-action).

Remark 4.10. In analogy to the choice of complex structure for the Sasakian struc-
ture in the case of n = 0 in the above proof, in general there is also a choice of
Sasaki CR structure in the n �= 0 case that gives rise exactly to the join in its Sasaki
cone and not a potentially twisted (in the complex structure sense) version of the
join (making it only cone reducible). This twisted version arises from projective
unitary reducible representations of π1(N), since Pic0(N) acts on the set of line
bundles of degree n. In the case where M is simply connected this is a nonissue
since the long exact homotopy sequence implies that N is also simply connected.

Proof of Theorem 1.4. If the Picard number ρ(N) = 1, the subgroup Pic(N, [ωN ]) is
all of Pic(N), so Theorem 1.4 follows directly from Lemma 4.6 and Theorem 4.8. �

Proof of Theorem 1.5. By Theorem 4.8 there is an almost regular Sasakian struc-
ture such that its S1-quotient is the log pair (SL,Δ) with the branch divisor Δ
given in Theorem 4.8 and with a holomorphic Hamiltonian action of S1 for some
line bundle L ∈ Pic(Σg). As in the beginning of the proof of Theorem 4.8 there are
essentially two cases n = 0 and n > 0. If the degree n of the line bundle is zero, for
each fixed complex structure τ on Σg there is the Jacobian Pic0(Σg) = T 2g’s worth
of complex structures. For g > 1 these are parameterized by the singular part
R(Σg)

sing of the character variety R(Σg), that is, the reducible projective unitary
representations ρ of π1(Σg) in which case SL = Σg ×ρ CP

1 is a local product struc-
ture. Thus, the corresponding Sasakian structure on M is reducible as described
in Example 3.12.

If n �= 0 by Theorem 4.8 for each complex structure τ on Σg there is a choice of
CR structure (D, J) on M such that (D, J) is cone decomposable. This corresponds
to a choice of line bundle L ∈ Pic(Σg) of degree n, and a choice of splitting of the
exact sequence

0−−−→Pic0(Σg)−−−→Pic(Σg)
c1−−−→Z−−−→0.

Since Pic0(Σg) acts transitively on the set of line bundles of degree n, any other line

bundle L′ ∈ Pic(Σg) of degree n is obtained from L by an element ρ ∈ Pic0(Σg).
Now we know from the proof of Theorem 4.8 that with n = b2 − b1 our choice of
line bundle gives b = l1(w1−w2) which corresponds to the decomposable Sasakian
structure over the quotient Σg×CP1(w). Moreover, since changing n to−n does not
change the quotient orbifold nor the Sasaki CR structure, we restrict ourselves to
the case n > 0. Thus, when g > 1 for any ρ ∈ Pic0(Σg) ≈ T 2g as in Example 3.12 we
can construct the twisted quotients Σg ×ρ CP

1(w). Since these are local products,
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the orbifold Boothby–Wang construction gives reducible Sasakian structures on the
corresponding S3-bundle over Σg that are decomposable only if ρ = {id}.

In the g = 1 case we use the results of Suwa [Suw69,BTF13]. When n = 0 the
discussion on pages 294-295 of [Suw69] implies that there are precisely a CP1’s worth
of complex structures for each complex structure on Σg. Moreover, as the g > 1
case these give rise to local product structures, so the Sasaki CR structure is cone
reducible with the one corresponding to the trivial line bundle being decomposable.
However, when n �= 0 it follows from Lemma 1 of [Suw69] that any reducible
Sasakian structure is equivalent to a decomposable Sasakian structure, since the
Jacobian of a Σ1 is equivalent to Σ1 itself. �

Remark 4.11. The general case of the S3
w-join treated in [BTF16] gives three-

dimensional lens space bundles over N . So it is natural to ask whether Theorem
1.4 would hold in this more general setting. Unfortunately, there is no analogue of
Eliashberg’s uniqueness of tight contact structure for general lens spaces. In fact,
there are many tight contact structures on lens spaces even those that lift to a
tight contact structure on the universal cover S3 [Hon00,Gir00] and they can have
a toric structure [Ler02a]. There is, however, a unique tight contact structure on
the lens space L(2, q, 1) [Etn00], which is diffeomorphic to RP3, and it must be the
standard structure, so Theorem 1.4 will hold for this case which corresponds to the
join M �1,2 S

3
q,1 with q odd.

Remark 4.12. The fact that ωS is a Kähler form can put restrictions on the integers
n, l1, w1, w2 as we shall see with the example below.

The above proof shows that in the genus one Riemann surface case the hypoth-
esis that the toral action be of Reeb type is needed. It is not needed in the genus
zero case since it is known that all toric contact structures on an S3-bundle over S2

are of Reeb type [BP14]. However, in the case of a T2-action on S3-bundles over
Riemann surfaces of genus greater than one, it is not known. For example, there
are the well-known overtwisted contact structures Dot on S3 due to Eliashberg
[Eli89]. There is a unique overtwisted contact structure Dot on S3 with vanishing
Hopf invariant. Using contact cuts Lerman [Ler01] constructed an infinite sequence
of toric overtwisted contact structures on S3 with vanishing Hopf invariant that
are T2 equivariantly inequivalent which by Eliashberg are contact equivalent. It
follows that (S3,Dot) has an infinite number of toric contact structures and that
Con(S3,Dot) has an infinite number of conjugacy classes of maximal tori (see also
Example 7.14 in [Boy13]). However, we do not know whether these contact struc-
tures on the fiber S3 can extend to a contact structure on the whole S3-bundle over
Σg, that is, T2 invariant. It is known from Lerman’s classification [Ler02a] that
this type of extension cannot happen in the toric case.

In [BTF14] it is shown that there are a countable infinity of contact structures
Dk with k ∈ Z+ of Sasaki type on both Σg × S3 and Σg×̃S3 for g > 0 essentially
labelled by the first Chern class of the contact bundle. For each such k there
are k two-dimensional Sasaki cones with a unique ray of constant scalar curvature
Sasaki metrics. Moreover, in the case of the trivial bundle Σg × S3 it is shown
using the work of Buşe [Buş10] on equivariant Gromov-Witten invariants that the
k Sasaki cones belong to inequivalent T2-equivariant contact structures that are
contact equivalent, and so the Sasaki cones form a bouquet of Sasaki cones [Boy13].
Moreover, for g ≥ 2 one can twist the transverse complex structures with reducible
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representations of the fundamental group π1(Σg) giving the k+1-bouquetBk+1(Dk)
described by Theorem 4.5 of [BTF14]. Theorem 1.4 implies that Bk+1(Dk) is a
complete bouquet for Dk. We note that the topology of this bouquet is non-
Hausdorff.

4.2. Examples of cone indecomposability. Here we give some examples of cone
indecomposable Sasakian structures using a construction of Yamazaki [Yam99]. We
have the following proposition.

Proposition 4.13. Let N be a smooth compact projective algebraic variety with
Picard number ρ(N) > 1. There is an S3-bundle M over N with a co-oriented
contact structure D and an effective T2-action of Reeb type that acts trivially on N
and with an induced Sasakian structure on M that is cone indecomposable.

Proof. First there is a construction due to Yamazaki [Yam99] for constructing such
Sasaki manifolds. We begin with the projective algebraic variety5 N . Since ρ(N) >
1, the Kähler cone has dimension at least two. Let [ωj ] be two primitive integral
Kähler classes with j = 1, 2 which are not multiples of each other. Let Mj be
the principal S1-bundles over N whose Euler class is bj [ωj ] for some bj ∈ Z+.
Then it is straightforward to see that Mj are regular Sasaki manifolds. Now let
Lj be holomorphic line bundles associated to Mj . Then Yamazaki’s ‘fiber join’
M1 ∗f M2 is the unit sphere bundle M = S(L1 ⊕ L2) which as Yamazaki shows
has a co-oriented contact structure D with an effective T2-action of Reeb type that
acts trivially on N . Thus, we have an S3-bundle over N with a two-dimensional
Sasaki cone t

+
2 . Now choose the unique almost regular Reeb vector field in t

+
2 and

consider the quotient SL. It must take the form SL = P(L1 ⊕L2) = P(�⊕L) with
L = L2L

−1
1 . We have

c1(L) = c1(L2)− c1(L1) = b2[ω2]− b1[ω1]

which cannot be ±(Kähler class) for all b1, b2 ∈ Z+. Such a choice gives M .
We now show that M is cone indecomposable. Assume to the contrary that M

is equivalent to a join M ′ �l1,l2 S3
w for some choice of quasi-regular Reeb vector

field. First we note that an equivalence of Sasakian structures implies, in the
(quasi)-regular case, an equivalence of the projective algebraic quotients. Then
since M is the join M ′ �l1,l2 S

3
w, Equation (33) of [BTF16] (with the order of z1, z2

reversed) implies that the CP1-bundle SL is an associated bundle to the principal
S1-bundle M ′ over N . Thus, c1(L

∗) = n[ωN ] for some n ∈ Z \ {0}. This gives a
contradiction. �
Example 4.14. As an explicit example of Proposition 4.13 we take N to be a
product of Riemann surfaces with genera g1, g2, respectively, i.e., N = Σg1 × Σg2 .
Let ωi be the standard Kähler form on Σgi , and consider the Kähler forms on
Σg1 × Σg2 given by c1ω1 + ω2 and ω1 + c2ω2 with c1, c2 ∈ Z+. Then the principal
S1-bundles M1 and M2 over Σg1 × Σg2 with Kähler forms c1ω1 + ω2 and ω1 +
c2ω2, respectively, have distinct natural Sasakian structures. Let L1, L2 denote the
associated complex line bundles to the principal bundles M1,M2, respectively, and
set L = L2 ⊗ L−1

1 . Then Proposition 4.13 says that the fiber join M1 ∗f M2 has
a Sasakian structure with c1(L

∗) = −(c1 − 1)[ω1] + (c2 − 1)[ω2] which is not a
Kähler class for any pair (c1, c2) ∈ (Z+)2 \ {(1, 1)}. So this gives infinitely many

5Yamazaki actually works in the symplectic and K-contact categories, but it is straightforward
to see that under the correct circumstances his construction easily adapts to the Sasaki category.
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cone irreducible Sasakian structures. The pair (c1, c2) = (1, 1) is cone reducible. In
particular, taking g1 = g2 = 0 we get infinitely many cone irreducible toric contact
structures on S3-bundles over S2 × S2.

The next example shows Theorem 1.5 does not hold in the genus g = 0 case. In
fact there are infinitely many inequivalent contact structures6 of Reeb type with a
two-dimensional Sasaki cone on S2 × S3 which we show are cone irreducible.

Example 4.15. Consider the Brieskorn-Pham link L(2, 2, 2, 2k) of degree 2k de-
fined by

L(2, 2, 2, 2k) = {z20 + z21 + z22 + z2k3 = 0} ∩ S7.

For all positive integers k the link L(2, 2, 2, 2k) is diffeomorphic to S2 × S3. Con-
cerning reducibility we have the following.

Proposition 4.16. The link L(2, 2, 2, 2k) is cone irreducible for all k ≥ 2.

Proof. First we note that the link L(2, 2, 2, 2k) has a two-dimensional Sasaki cone
t
+
2 . So suppose that M = L(2, 2, 2, 2k) is cone reducible. Then there is a quasi-
regular Reeb vector field ξ1 in t

+
2 whose quotient Z is a local product of one-

dimensional complex orbifolds. However, since L(2, 2, 2, 2k) is simply connected we
must have πorb

1 (Z) = {id} by the long exact homotopy sequence. Thus, by Lemma
3.9 the orbifold Z is a product Z = O1×O2 of one-dimensional complex orbifolds Oi

for i = 1, 2 with πorb
1 (Oi) = {id}; hence, M is cone decomposable. Since πorb

1 (Oi) =
{id}, the orbifold Oi is not developable (good in Thurston’s terminology [Thu79]). It
follows that Z is a product of weighted projective CP1’s, i.e., Z = CP1(u)×CP1(v)
with u �= (1, 1),v �= (1, 1). But then both orbifolds Oi have an S1 Hamiltonian
symmetry, so the Sasaki cone of M would have dimension three, not two. This
gives a contradiction. �

Let us examine a bit closer what the quotient orbifolds might look like. It is
important here that reducibility means that one has a product of one-dimensional
complex orbifolds. The link L(2, 2, 2, 2k) has degree 2k with weight vector w =
(k, k, k, 1). So as projective algebraic varieties we have an embedding of the zero
locus of the weighted homogeneous polynomial z20 + z21 + z22 + z2k3 in the non-
well-formed weighted projective space CP3[k, k, k, 1]. So the divisor z3 = 0 is a
branch divisor with ramification index k. Furthermore, the map (z0, z1, z2, z3) �→
(z0, z1, z2, z

k
3 ) gives an isomorphism of projective algebraic varieties CP3[k, k, k, 1] ≈

CP3 and the zero locus of z20 + z21 + z22 + z2k3 with the zero locus of the quadric
z20+z21+z22+z23 . The quadric in CP3 is isomorphic to CP1×CP1 by the well-known
Segre embedding

([x0, x1], [y0, y1]) �→ [x0y0, x0y1, x1y0, x1y1] = [u0, u1, u2, u3].

The image of CP1 ×CP1 in CP3 is given by the quadric u0u3 = u1u2. So we make
the change of variables

u0 = z0 + iz1, u3 = z0 − iz1, u1 = iz2 + z3, u2 = iz2 − z3,

6The fact that the contact structures L(2, 2, 2, 2k) are inequivalent for different k has recently
been proven by Uebele [Ueb16] using the plus part of nonequivariant symplectic homology on
a convenient filling which Uebele shows is a contact invariant in this case. Interestingly, these
contact structures cannot be distinguished by their mean Euler characteristic nor the plus part of
the S1-equivariant symplectic homology which are known contact invariants [KvK16,BMvK16].



REDUCIBILITY IN SASAKIAN GEOMETRY 6857

so that u0u3−u1u2 = z20+z21+z22+z23 and the divisor z3 = 0 becomes u1 = u2. The
latter is equivalent to [y0, y1] = [x0, x1]. Thus, the quotient of the link L(2, 2, 2, 2k)
is isomorphic to the log pair

(26) (CP1 × CP1, (1− 1

k
)Δ),

where the divisor Δ is the diagonal embedding CP1−−→CP1×CP1. This shows that
although the quotient of L(2, 2, 2, 2k) by the S1-action generated by the standard
Reeb vector field ξw is a product of algebraic varieties, it is not a product of orbifolds
if k ≥ 2, so it cannot arise from a join.

The connected component of the Sasaki automorphism group is SO(3) × U(1)
where the U(1) is generated by the Reeb vector field. So we can choose a T2

subgroup as the U(1) × SO(2) where the SO(2) can be taken to be real rotations
in the z0, z1-plane, that is, by the matrix(

cos θ sin θ
− sin θ cos θ

)
.

The SO(2)-action on CP1 × CP1 is then given by

([x0, x1], [y0, y1]) �→ ([e−i θ2 x0, e
i θ
2 x1], [e

−i θ
2 y0, e

i θ
2 y1]).

Thus, T2 acts on both the base and the fiber.
We remark that in the case k = 1 the orbifold structure is trivial and we obtain

the well-known homogeneous Sasaki–Einstein structure on S2×S3 which is indeed
decomposable and toric.

Finally we mention that for k ≥ 2 it is well known that the link L(2, 2, 2, 2k) with
its standard Reeb vector field ξw where w = (k, k, k, 1) does not admit a Sasaki–
Einstein metric by the Lichnerowicz obstruction [GMSY07,BG08]. But since in this
case the Lie algebra h0 (see [BGS08] for the definition) is the simple Lie algebra
so(3,C), the Sasaki–Futaki invariant F vanishes identically. So this link does not
admit any extremal Sasaki metric as well. It is still an open question7 whether
there are extremal Sasaki metrics in the Sasaki cone t

+
2 , but there are no Sasaki

metrics of constant scalar curvature in t
+
2 by [MSY08] in the quasi-regular case and

[He14] in the irregular case.

4.3. Proof of Theorem 1.6. There is a one-to-one correspondence between toric
contact manifolds (M2n+1,D,T) and good rational cones C in t∗ = (LieT)∗ �
Rn+1 as established in [BM93, BG00b, Ler02a]. Recall from Subsection 3.3 that
the moment cone C is the image of the (order two homogenous) moment map
Υ : Do

+ → t∗ of the symplectization of (M2n+1,D,T) where the action of T is the
natural lift by pull-back and commutes with the R+-action of the cone. Note that
the cone C does not contain the origin but its closure does.

The existence of a compatible toric Sasaki structure, and more particularly the
existence of a Reeb vector field commuting with the action of T, implies that the
moment cone is strictly convex, equivalently its dual cone

C∗ = {y ∈ Rn+1 | 〈x, y〉 > 0 ∀x ∈ C}
has a nonempty interior, namely the Sasaki cone t+. This is very explicit, the cone
C∗ parametrizes the set of toric (i.e., T-invariant) Reeb vector fields. Indeed, recall

7Note added: this question has been recently answered in the negative in [BvC16].
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that each b ∈ t+ ⊂ C∗ ⊂ t = LieT, induces a vector fieldXb onM via the action and
given any T-invariant contact form η on (M,D), the function η(Xb) = 〈μη, b〉 > 0
is positive and the 1-form

ηb :=
1

η(Xb)
η

is a T-invariant contact form whose Reeb vector field is Xb.
In view of Remark 3.24 and Proposition 3.23, it is convenient to label polytopes

with their defining affine functions instead of the normals (or integers). We adopt
this convention in this section.

The standard n-simplex is Δn := {x = (x1, . . . , xn) ∈ Rn |xi ≥ 0,
∑n

i=1 xi ≤ 1}
and an n-simplex is any polytope affinely equivalent to Δn. Two polytopes have
the same combinatorial type if there is a bijection between their faces that preserves
the relation of inclusion. Observe that this is the case of any two compact polytopes
characteristic (or transversal) to the same polyhedral cone. In particular, it makes
sense to speak about the combinatorial type of a cone (without vertex) and compare
it to that of a polytope.

Lemma 4.17. Let (Cn1+n2+1,Λ) be a strictly convex good polyhedral cone such
that its characteristic polytopes have the combinatorial type of Δn1

× Δn2
. Then

there exists b ∈ Λ ∩ C∗ such that C ∩ {x | 〈x, b〉 = 1} is a product of two simplices
P1 × P2.

From this lemma we easily get the following statement from which Theorem 1.6
is extracted.

Corollary 4.18. Let (M,D, T ) be a toric contact manifold of Reeb type whose
moment cone has the combinatorial type of a product of n1 and n2-dimensional
simplices. Then (M,D) is cone reducible and there exists a Reeb vector field X
for which (M,D, X) is obtained as the join construction of two weighted projective
spaces of complex dimension n1 and n2, respectively.

We will need the following lemma, the proof of which is nearly trivial.

Lemma 4.19. A labelled polytope (P, u) is a product if and only if one can split

the set of normals in two disjoint subsets u = {ui}d1
i=1 ∪ {ui}d=d1+d2

i=d1+1 such that

d∑
i=1

xiui = 0 =⇒
d1∑
i=1

xiui = 0 and

d1+d2∑
i=d1+1

xiui = 0.

Proof of Lemma 4.17. The hypothesis implies that we can split the set of normal
inward vectors of C in two groups

(27) l10, . . . , l
1
n1

and l20, . . . , l
2
n2

such that there is no edge of C on which every vector of one group vanishes (i.e.,
it would correspond to a vertex lying in every facet of a simplex).

To prove the lemma it suffices to find a Reeb vector b lying in Λ and that is a
linear combination of the {l1i }n1

i=0 and a linear combination of the {l2i }n2
i=0. Indeed,

in the quotient space t/Rb the set of vectors {[l10], . . . , [l1n1
]} is linearly dependent

as well as the set {[l20], . . . , [l2n2
]}. Consequently, by a dimensional argument (this

is where the simplices assumption comes in) the characteristic labelled polytope of
(C,Λ) at b satisfies Lemma 4.19 and is thus a product.
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We introduce some notation. Let F ε
i denote the facet of C corresponding to the

zero locus (in C) of lεi for ε ∈ {1, 2} and i ∈ Iε = {0, . . . , nε}. Edges of C are
parametrized by (i, j) ∈ I1 × I2 so that the corresponding edge is

E(i,j) =

⎛
⎝ ⋂

k∈I1\{i}
F 1
k

⎞
⎠ ∩

⎛
⎝ ⋂

k∈I2\{j}
F 2
k

⎞
⎠ .

First, we will prove that the open positive cones generated by each set of nor-
mals (27) have to meet in the cone C∗. Indeed, these cones

C∗
1 = span

R>0
{l10, . . . , l1n1

} and C∗
2 = span

R>0
{l20, . . . , l2n2

}
are, respectively, of dimension n1 + 1 and n2 + 1 in a space of dimension n1 +
n2 + 1. Hence the linear subspaces they generate meet in a line (at least) which
contain a nontrivial vector, say b. That is, there exists for each ε ∈ {1, 2} a vector
(aε0, . . . a

ε
nε
) ∈ Rnε+1\{0} such that

b =

nε∑
i=0

aεi l
ε
i .

Now pick a point x lying in the edge E(i,j) and evaluate b on it. We have

〈b, x〉 = a1i 〈l1i , x〉 = a2j 〈l2j , x〉

but 〈l1i , x〉 and 〈l2j , x〉 are both positive so that a1i and a2j have the same sign or
both vanish. Since we can do the same argument for all (i, j) ∈ I1 × I2 then b or
−b lies in C∗

1 ∩ C∗
2 ⊂ C∗.

To conclude the proof we need to prove that we can pick b ∈ Λ ∩ C∗
1 ∩ C∗

2 , so
that the characteristic labelled polytope associated to b is rational. The vectors
above (aε0, . . . a

ε
nε
) ∈ Rnε+1 satisfy a1i /a

2
j ∈ Q for each pair (i, j) ∈ I1 × I2. This

relation is a consequence of the hypothesis that (C,Λ) is good. Indeed, E(i,j) ∩ Λ

is then nonempty and for x ∈ E(i,j) ∩Λ we have a1i /a
2
j = 〈l2j , x〉/〈l1i , x〉 ∈ Q. Hence,

a1i /a
1
j ∈ Q for i, j ∈ I1 and then, up to an overall factor (aε0, . . . a

ε
nε
) ∈ Znε+1. �

4.4. Reversing the quotient of a join. It was shown in [BTF16] how one be-
gins with a certain product of projective algebraic orbifolds and constructs cone
reducible Sasakian structures such that any quasi-regular Sasaki structure in the
w-cone is an orbibundle over a log pair (Sn,Δ) consisting of a ruled manifold
Sn = P(� ⊕ Ln) together with a certain branch divisor Δ. It is the purpose of
this section to invert this procedure. In the following we assume that a Kähler
form ωN with primitive Kähler class [ωN ] has been fixed on a compact Kählerian
manifold N . Then by Sn we mean the total space of P(� ⊕ Ln), where Ln → N
is a holomorphic vector bundle such that c1(Ln) = n[ωN ]. Likewise, an S3

w-join
Ml1,l2,w is assumed to use the chosen ωN .

For the special case where l2 = 1, Theorem 3.8 in [BTF16] tells us that the
quotient of the S3

w-join Ml1,1,w by the flow of the Reeb vector field ξv, determined
by co-prime v1, v2 ∈ Z+, in the w-cone is the log pair (Sn,Δ) where Δ denotes the
branch divisor

Δ = (1− 1/v1)D1 + (1− 1/v2)D2,

where D1, D2 are the zero, infinity sections of Sn, respectively, and

n = l1(w1v2 − w2v1).
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For convenience we will introduce the notation (Sn,Δv1,v2). It is natural to ask if
all such log pairs may arise as such a quotient. In the following we will not make
the assumption w1 ≥ w2. This is a practical assumption made in [BTF16], but it is
not being used in the arguments leading up to Theorem 3.8 in [BTF16]. The only
reason for making this assumption in [BTF16] was to avoid redundancy and it just
parallels the fact that (Sn,Δv1,v2)

∼= (S−n,Δv2,v1).

Proposition 4.20. For any choice of n ∈ Z and co-prime v1, v2 ∈ Z+, there is a
choice of co-prime w1, w2 ∈ Z+ such that the quotient of M|n|,1,w by the flow of the
Reeb vector field ξv, determined by co-prime (v1, v2), in the w-cone is the log pair
(Sn,Δv1,v2).

Proof. In the case where n = 0 is trivial, we assume that n ∈ Z \ {0}. The
proof is simply using the fact (following from Bézout’s Identity) that for co-prime
v1, v2 ∈ Z+ we can always find co-prime a, b ∈ Z+ such that

av2 + bv1 =
n

|n|
and since v1, v2 ∈ Z+, we realize that the integers a and b must have opposite
signs. Indeed we may assume that b < 0 (by adding kv1 to a and −kv2 to b for a
sufficiently large k ∈ Z). If we now let w1 = a, and w2 = −b, then with l1 = |n|,
we have l1(w1v2 − w2v1) = n and thus the result follows. �

Remark 4.21. As is clear from the proof above, w = (w1, w2) are by no means
unique. Indeed we have (at least) a countable infinite set of choices (wi

1, w
i
2), i =

1, 2, . . . , where lim
i→+∞

wi
2 = +∞. From Lemma 3.11 of [BTF16] (with k2 = 1,

m1 = v1, and l1 = |n|) we have the corresponding primitive Kähler classes induced
on (Sn,Δv1,v2):

Ω = |n|v1wi
2p

∗
v[ωN ] + PD(D1).

Here pv denotes the projection from (Sn,Δv1,v2) to N and PD denotes the Poincaré
dual.

Clearly no two distinct viable choices of (w1, w2) in Proposition 4.20 will result
in the same Kähler class.

More generally, let

Ω = k1p
∗
v[ωN ] + k2PD(D1)

denote a specific (so-called admissible) primitive Kähler class on (Sn,Δm1,m2
),

where

(28) Δm1,m2
= (1− 1/m1)D1 + (1− 1/m2)D2

(with gcd(m1,m2) = m not necessarily equal to one), and k1, k2 ∈ Z+ such
that k1/k2 > −n. Then we have a natural Sasaki structure given by the orb-
ifold Boothby–Wang construction. This Sasaki manifold is an S1-orbibundle over
(Sn,Δm1,m2

) which may or may not be a smooth manifold. A more subtle ques-
tion to consider is the following: When does such a Sasaki structure correspond
to a ray in the w-cone of an S3

w-join? In other words, we ask when do we have
an S3

w-join which can be obtained from the orbifold Boothby–Wang construction
using (Sn,Δm1,m2

) and Ω = k1p
∗
v[ωΣ] + k2PD(D1)? As we will see below, given a

natural assumption, the answer is always.
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Using Theorem 3.8 and Lemma 3.11 in [BTF16] we have the following algorithm
for determining the necessary values of (w1, w2, l1, l2):

(1) Let r be such that n(1−r)
2r = k1

k2
. Note 0 < |r| < 1 and r has the same

sign as n. Now w = (w1, w2) is the unique positive, integer, and co-prime
solution of

r =
w1m2 − w2m1

w1m2 + w2m1
.

(2) Using these w1 and w2, the pair (l1, l2) has to be the unique positive inte-
gers, and co-prime solution of

l2n = l1(w1m2 − w2m1).

Using w1, w2, l1, l2 from this algorithm, we then have that the Sasaki structure
corresponds to a ray in the Sw-cone of the (possibly nonsmooth) S3

w-join Ml1,l2,w

if and only if

(29) l2 = gcd(ml2, |w1m2 − w2m1|).

In that case, Ml1,l2,w is a smooth manifold if and only if

(30) gcd(w1, l2) = gcd(w2, l2) = 1.

Proposition 4.22. For any choice of n ∈ Z, m1,m2 ∈ Z+ such that n = 0 or
gcd(m1,m2, n) = 1, and primitive Kähler class on (Sn,Δm1,m2

) of the form

Ω = k1p
∗
v[ωN ] + k2PD(D1),

there is a unique choice of co-prime w1, w2 ∈ Z+ and co-prime l1, l2 ∈ Z+ such
that, when we form the S3

w-join Ml1,l2,w, the quotient of Ml1,l2,w by the flow of the
Reeb vector field ξv, determined by ( m1

gcd(m1,m2)
, m2

gcd(m1,m2)
) in the w-cone, is the

log pair (Sn,Δm1,m2
) with induced Kähler class Ω. This join is smooth if and only

if (30) holds. In particular, the join is smooth if m1 = m2 = 1.

Proof. In the case where n = 0 is trivial, we let n ∈ Z\{0} and m1,m2, k1, k2 ∈ Z+

be given so that k1/k2 > −n and gcd(n,m) = 1, where m = gcd(m1,m2). We
define vi = mi/m for i = 1, 2. Suppose we have determined w1, w2, l1, l2 following
the algorithm above. We want to prove that (29) holds.

Let p = gcd(n, |w1v2 −w2v1|). Since gcd(n,m) = 1 we know that gcd(p,m) = 1.
Further w1v2−w2v1 = pq for some q∈Z satisfying that gcd(|q|, n) = gcd(|q|, n

p ) = 1.

From step (2) in the algorithm we know that co-primes l1 and l2 satisfy that

l2n = l1mpq

and hence

l2
n

p
= l1mq.

Using the observations above, this tells us that l1 = |n|
p and l2 = m |q|.

Now, since gcd(p,m) = 1,

gcd(ml2, |w1m2 − w2m1|) = gcd(m2 |q|,mp|q|) = m|q|,

and so (29) is satisfied.
The smooth case of m1 = m2 = 1 is straightforward to verify. �
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Remark 4.23. To see that the assumption gcd(m1,m2, n) = 1 in the case where n �=
0 is not trivial one may for instance work out the algorithm for n = m1 = m2 = 2,
k1 = 4, and k2 = 1. This gives us r = 1/5, w1 = 3, w2 = 2, and l1 = l2 = 1. It is
easy to see that this does not satisfy (29).

Remark 4.24. Recall that Proposition 4.13 and Example 4.14 show that there are
ruled manifolds SL = P(�⊕ L) with Sasakian S1-bundles that do not arise from a
join.

5. A splitting theorem for extremal Sasakian structures

As in the Kähler case, the problem of finding an extremal toric Sasakian structure
can be translated to finding an extremal symplectic potential which is a convex
function on a certain polytope satisfying some boundary condition and a fourth
order nonlinear PDE. We now recall briefly the details of this correspondence.

5.1. Extremal symplectic potential. Recall from Subsection 3.3 that to any
compact connected contact manifold (M2n+1,D) endowed with the contact action

of a torus T̂ = Tk and a fixed Reeb vector field b ∈ t̂ = Lie T̂, is associated a
labelled polytope

(P,n) = (Pb,nb).

The toric case, as we assume it is for the rest of this secton, is when dim T̂ = n+1
and, in that case, the η-momentum map μη : M → P is a quotient map. Con-

sequently, any T̂-invariant tensor on M can be read off a corresponding tensor
on P . This is explicit and very well understood for toric Sasaki metrics so that
they correspond to symplectic potentials via the Hessian of the latter; see [MS06]
and also [Leg11]. This correspondence has first been developed in the context of
Kähler geometry by the work of Guillemin [Gui94], Abreu [Abr01], and Apostolov,
Calderbank, Gauduchon, and Tønnesen-Friedman [ACGTF04]. To give more de-
tails, recall that we denote P = {x ∈ A | li(x) ≥ 0} where A is an n-dimensional
affine space often identified with Rn and the defining affine functions, uniquely
determined by P and n, are

li(·) = 〈·, �ni〉 − λi

for i = 1, . . . , d where d is the number of facets of P . A symplectic potential on
(P,n) can be written uf = u0 + f ∈ C0(P̄ ) where f ∈ C∞(P̄ ) and

u0 =
1

2

d∑
i=1

li log li,

satisfy the following Guillemin boundary conditions:

• uf is a smooth, strictly convex function on the interior of P ;
• when restricting to the interior of each face of P , uf is also a smooth,
strictly convex function.

We denote the set of all relative symplectic potentials as

HS = {f ∈ C∞(P̄ ) | uf = u0 + f and uf satisfies the

Guillemin boundary conditions}.
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As recalled in Proposition 3.21, whenever the Reeb vector field is quasi-regular
then (P,n) is rational, see Definition 3.20, and is associated to a toric symplectic
orbifold

(N,ω,T) = (M/Sb, dηb, T̂/Sb)

via the Delzant–Lerman–Tolman [LT97] correspondence which happens to be the
quotient by Sb � S1 induced by the Reeb vector field. The set of compatible toric
Kähler metrics on this symplectic orbifold is parametrized by HS as well.

On the other hand, suppose ω is a Kähler form invariant under the torus action
Tn. Then the set of all Tn-invariant relative Kähler potentials is

HK = {ϕ ∈ C∞
T (N) | ωϕ = ω +

√
−1∂∂̄ϕ > 0.},

where C∞
T (N) is the set of all smooth, Tn-invariant functions on N . Thus HS is in

one-to-one correspondence to HK through the Legendre transformation.
Let us consider N0 = μ−1(P ). In fact, N0 = (C∗)n = Rn × Tn. For any

Tn-invariant Kähler metric ω, we can express ω on N0 as

ω =
√
−1ψijdz

i ∧ dz̄j ,

where zi = ξi + ti, ξi ∈ Rn and ti ∈ Tn; ψ is a smooth, strictly convex function on

Rn and ψij =
∂2ψ
∂ξiξj

. The scalar curvature Rω on N0 can be expressed as

Rω(z) = −ψij(log det(D2ψ))ij(ξ).

The Legendre transformation gives the dual coordinate x = ∇ψ(ξ) on P and the
symplectic potential

u(x) =

n∑
i=1

xiξi − ψ(ξ).

By Abreu’s formula, we have

Rω = Ru = −
∑
ij

uij
ij .

By definition ω is an extremal (see Subsection 2.2) Kähler metric if ∇Rω is a
holomorphic vector field. It implies that Ru is an affine function on P . In such a
case, we call u an extremal symplectic potential.

There is an important integral formula discovered by Donaldson [Don02] on
toric manifolds, which is a particular case of an observation by Futaki and Mabuchi
[FM95], which can be extended to labelled polytopes.

Proposition 5.1. Let u ∈ HS and f ∈ C∞(P̄ ); then∫
P

Ruf dμ = 2

∫
∂P

f dσ −
∫
P

uijfij dμ,

where dμ is the standard Lebesgue measure on Rn and dσ is a multiple of the
standard Lebesgue measure on each facet Pi such that �ni ∧ dσ = −dμ.

For a synplectic toric orbifold (N,ω,Tn), we can define the extremal affine func-
tion RE on P as follows: for any affine function f on P , we have∫

P

fRE dμ = 2

∫
∂P

f dσ.
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By Proposition 5.1, it is easy to verify that uf is associated to an extremal Kähler
metric on N if and only if

(31) Rf ≡ RE .

Then, an extremal symplectic potential is a symplectic potential uf with f ∈ HS

solving the fourth order PDE (31). Note that everything said in this subsection
makes sense for transversal Kähler geometry with labelled polytopes, therefore it
extends to irregular toric Sasaki manifolds; see [Leg11].

5.2. Splitting. Let (N1, [ω1],T
n1) and (N2, [ω2],T

n2) be two toric orbifolds. Let
Pi ⊂ Rni , i = 1, 2, be the rational Delzant polytope of the moment map μi.
Then the product (N = N1 × N2, [ω = ω1 + ω2],T

n = Tn1 × Tn2) is also a toric
orbifold whose rational Delzant polytope is P = P1 × P2 ⊂ Rn = Rn1+n2 . And
the new moment map on N is μ = μ1 × μ2. Let u1, u2 be symplectic potentials on
P1, P2, respectively. Then u = u1 + u2 is a symplectic potential on P . We denote
the set of relative symplectic potentials of N1, N2, N by HS(N1),HS(N2),HS(N),
respectively,

HS(N1) = {f ∈ C∞(P̄1) | uf = u1 + f and uf satisfies the

Guillemin boundary conditions}.

HS(N2) = {f ∈ C∞(P̄2) | uf = u2 + f and uf satisfies the

Guillemin boundary conditions}.

HS(N) = {f ∈ C∞(P̄ ) | uf = u+ f and uf satisfies the

Guillemin boundary conditions}.

Lemma 5.2. For any f ∈ HS(N) let x = (x1, . . . , xn1
) be a coordinate system on

P1 and let y = (y1, . . . , yn2
) be a coordinate system on P2. Then

f1(x) =
1

V ol(P2)

∫
P2

f(x, y) dy, f2(y) =
1

V ol(P1)

∫
P1

f(x, y) dx,

are relative symplectic potentials on P1, P2, respectively.

Proof. Without loss of generality, we only need to show that f1(x) ∈ HS(N1), i.e.,
uf1 = u1 + f1 satisfies

• uf1 is a smooth, strictly convex function on P1.
• When restricting to each face of P1, uf1 is still a smooth, strictly convex
function.

Without loss of generality, we only show that uf1 is a smooth, strictly convex
function on P1. It is easy to see that uf1 is a smooth function. Also for any x ∈ P
and any nonzero vector �v,

(D2uf1(x))(�v,�v) =
1

V ol(P2)

∫
P2

D2(u1(x) + f(x, y))(�v,�v) dy.

Since for any y ∈ P2, D
2(u1(x) + f(x, y))(�v,�v) > 0, we conclude that

(D2uf1(x))(�v,�v) > 0. �

Next we define a subspace of HS(N1), denoted by G(f1) as follows:

G(f1) := {g1 ∈ HS(N1) |
∫
P1

f1 dx =

∫
P1

g1 dx}.
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Similarly, we define a subspace of HS(N2) as follows:

G(f2) := {g2 ∈ HS(N2) |
∫
P2

f2 dy =

∫
P2

g2 dy}.

Lemma 5.3. Let f ∈ HS(N). We obtain f1 ∈ HS(N1), f2 ∈ HS(N2) as in
Lemma 5.2. Then∫

P

(f(x, y)− f1(x)− f2(y))
2 dx dy ≤

∫
P

(f(x, y)− g1(x)− g2(y))
2 dx dy

for any g1(x) ∈ G(f1), g2(x) ∈ G(f2). Moreover, the equality holds iff f1(x) ≡ g1(x)
and f2(y) ≡ g2(y).

Proof. It is equivalent to prove that

∫
P

−2f(x, y)(f1(x) + f2(y)) + f2
1 (x) + f2

2 (y) dx dy

≤
∫
P

−2f(x, y)(g1(x) + g2(y)) + g21(x) + g22(y) dx dy

⇔

− (V ol(P2)

∫
P1

f2
1 (x) dx+ V ol(P1)

∫
P2

f2
2 (y) dy)

≤ V ol(P2)

∫
P1

−2f1(x)g1(x) + g21(x) dx

+ V ol(P1)

∫
P2

−2f2(y)g2(y) + g22(y) dy

⇔

0 ≤ V ol(P2)

∫
P1

(f1(x)− g1(x))
2 dx+ V ol(P1)

∫
P2

(f2(y)− g2(y))
2 dy.

Thus we obtain the desired inequality, and it is clear that the equality holds iff
f1(x) ≡ g1(x) and f2(y) ≡ g2(y). �

Let f ∈ HS(N) be a relative symplectic potential such that uf = u + f is
an extremal symplectic potential. By Lemma 5.2, we obtain relative symplectic
potentials f1(x), f2(y). Moreover, we have the following.

Proposition 5.4. uf1 = u1 + f1, uf2 = u2 + f2 are extremal symplectic potentials
on P1, P2, respectively.

Proof. Let Rf1(x) be the scalar curvature of uf1(x) and let RE,1(x) be the extremal
affine function on P1. Similarly, we let Rf2(y) be the scalar curvature of uf2(y) and
we let RE,2(y) be the extremal affine function on P2. Notice that Rf (x, y) =
RE,1(x) +RE,2(y). Then there exists an ε > 0 such that for any t ∈ [0, ε), we have

f1(t, x) := f1 − t(Rf1 −RE,1) ∈ G(f1), f2(t, y) := f2 − t(Rf2 −RE,2) ∈ G(f2).
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Then by Lemma 5.3 and Proposition 5.1, we have

0 ≤ ∂

∂t

∣∣∣∣
t=0

∫
P

(f(x, y)− f1(t, x)− f2(t, y))
2 dx dy

=2

∫
P

(f(x, y)− f1(x)− f2(y))(Rf(x, y)− Rf1(x)−Rf2(y)) dx dy

=− 2

∫
P

(fij − f1,ij − f2,ij)(u
ij
f − uij

f1
− uij

f2
) dx dy

=− 2

∫
P

(uf,ij − uf1,ij − uf2,ij)(u
ij
f − uij

f1
− uij

f2
) dx dy.

Let v(x, y) = uf1(x) + uf2(y); then∫
P

(uf,ij − uf1,ij − uf2,ij)(u
ij
f − uij

f1
− uij

f2
) dx dy

=

∫
P

(uf,ij − vij)(u
ij
f − vij) dx dy

≤ 0.

The last inequality uses the fact that for any positive constant a, (1 − a)(1 −
a−1) ≤ 0. Moreover, the equality holds iff (uf,ij) ≡ (vij). Thus we conclude that
f(x, y) = f1(x) + f2(y) + l1(x) + l2(y), where l1(x), l2(y) are affine functions on
P1, P2, respectively. Hence uf1 , uf2 are extremal symplectic potentials on P1, P2,
respectively. �

Proof of Theorem 1.8. Here we adapt the arguments in [Hua13]. Let (M2n1+1
1 ,

S1,T
n1), (M2n1+1

2 , S2,T
n2) be two quasi-regular Sasaki toric manifolds with mo-

ment maps μ1, μ2, respectively. Then we obtain two rational Delzant polytopes
P1, P2, respectively. M3 = M1 �l1,l2 M2 is also a toric Sasaki manifold with a toric
action Tn3 = Tn1×Tn2 . Its rational Delzant polytope P3 = l1P1×l2P2. By hypoth-
esis, there exists a transversally extremal Kähler metric in the transverse Kähler
class of M3. This implies that there exists an extremal symplectic potential uf on
P3. By Proposition 5.4, we conclude that there exists extremal potentials uf1 , uf2

on l1P1, l2P2, respectively. One can easily verify that 1
l1
uf1(x/l1),

1
l2
uf2(x/l2) are

extremal potentials on P1, P2, respectively. Thus, both M1,M2 admit extremal
Sasaki structures. �

Acknowledgments

We would like to thank Vestislav Apostolov, David Calderbank, and Tristan
Collins for helpful communications and discussions. Part of the research was
done while the authors were visiting the Mathematical Sciences Research Institute
(MSRI), Berkeley, CA. They would like to thank MSRI for its hospitality.

References

[Abr01] Miguel Abreu, Kähler metrics on toric orbifolds, J. Differential Geom. 58 (2001),
no. 1, 151–187. MR1895351

[ACGTF04] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W.
Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. II. Global classifica-
tion, J. Differential Geom. 68 (2004), no. 2, 277–345. MR2144249

[AH15] Vestislav Apostolov and Hongnian Huang, A splitting theorem for extremal Kähler
metrics, J. Geom. Anal. 25 (2015), no. 1, 149–170. MR3299273

http://www.ams.org/mathscinet-getitem?mr=1895351
http://www.ams.org/mathscinet-getitem?mr=2144249
http://www.ams.org/mathscinet-getitem?mr=3299273


REDUCIBILITY IN SASAKIAN GEOMETRY 6867

[Ati82] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14
(1982), no. 1, 1–15. MR642416

[BG00a] Charles P. Boyer and Krzysztof Galicki, On Sasakian–Einstein geometry, Internat.
J. Math. 11 (2000), no. 7, 873–909. MR1792957

[BG00b] Charles P. Boyer and Krzysztof Galicki, A note on toric contact geometry, J. Geom.
Phys. 35 (2000), no. 4, 288–298. MR1780757

[BG08] Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical

Monographs, Oxford University Press, Oxford, 2008. MR2382957
[BGO07] Charles P. Boyer, Krzysztof Galicki, and Liviu Ornea, Constructions in Sasakian

geometry, Math. Z. 257 (2007), no. 4, 907–924. MR2342558
[BGS08] Charles P. Boyer, Krzysztof Galicki, and Santiago R. Simanca, Canonical Sasakian

metrics, Comm. Math. Phys. 279 (2008), no. 3, 705–733. MR2386725
[BHLTF17] Charles P. Boyer, Hongnian Huang, Eveline Legendre, and Christina W. Tønnesen–

Friedman, The Einstein–Hilbert functional and the Sasaki–Futaki invariant, Int.
Math. Res. Not. IMRN 7 (2017), 1942–1974. MR3658189
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