Normalized Berkovich spaces and surface singularities
HTML articles powered by AMS MathViewer
- by Lorenzo Fantini PDF
- Trans. Amer. Math. Soc. 370 (2018), 7815-7859
Abstract:
We define normalized versions of Berkovich spaces over a trivially valued field $k$, obtained as quotients by the action of $\mathbb R_{>0}$ defined by rescaling semivaluations. We associate such a normalized space to any special formal $k$-scheme and prove an analogue of Raynaud’s theorem, characterizing categorically the spaces obtained in this way. This construction yields a locally ringed $G$-topological space, which we prove to be $G$-locally isomorphic to a Berkovich space over the field $k((t))$ with a $t$-adic valuation. These spaces can be interpreted as non-archimedean models for the links of the singularities of $k$-varieties, and allow us to study the birational geometry of $k$-varieties using techniques of non-archimedean geometry available only when working over a field with non-trivial valuation. In particular, we prove that the structure of the normalized non-archimedean links of surface singularities over an algebraically closed field $k$ is analogous to the structure of non-archimedean analytic curves over $k((t))$ and deduce characterizations of the essential and of the log essential valuations, i.e., those valuations whose center on every resolution (respectively log resolution) of the given surface is a divisor.References
- Shreeram Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic $p\ne 0$, Ann. of Math. (2) 63 (1956), 491–526. MR 78017, DOI 10.2307/1970014
- Michael Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496. MR 146182, DOI 10.2307/2372985
- M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 260747, DOI 10.2307/1970602
- M. Artin, Coverings of the rational double points in characteristic $p$, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 11–22. MR 0450263
- Matthew Baker, Sam Payne, and Joseph Rabinoff, On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, pp. 93–121. MR 3204269, DOI 10.1090/conm/605/12113
- Oren Ben-Bassat and Michael Temkin, Berkovich spaces and tubular descent, Adv. Math. 234 (2013), 217–238. MR 3003930, DOI 10.1016/j.aim.2012.10.016
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993), no. 78, 5–161. MR 1259429 (95c:14017)
- Vladimir G. Berkovich, Vanishing cycles for formal schemes, Invent. Math. 115 (1994), no. 3, 539–571. MR 1262943, DOI 10.1007/BF01231772
- Vladimir G. Berkovich, Vanishing cycles for formal schemes. II, Invent. Math. 125 (1996), no. 2, 367–390. MR 1395723, DOI 10.1007/s002220050078
- Pierre Berthelot, Cohomologie rigide et cohomologie rigide à support propre, prepublication 96-03, Institut de Recherche Mathématique Avancée, Rennes, 1996.
- Siegfried Bosch, Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume, Math. Ann. 229 (1977), no. 1, 25–45 (German). MR 447642, DOI 10.1007/BF01420535
- Siegfried Bosch and Werner Lütkebohmert, Stable reduction and uniformization of abelian varieties. I, Math. Ann. 270 (1985), no. 3, 349–379. MR 774362, DOI 10.1007/BF01473432
- Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, DOI 10.1007/BF01444889
- Siegfried Bosch, Lectures on formal and rigid geometry, Lecture Notes in Mathematics, vol. 2105, Springer, Cham, 2014. MR 3309387, DOI 10.1007/978-3-319-04417-0
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449–494. MR 2426355, DOI 10.2977/prims/1210167334
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation. MR 1727221
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
- Javier Fernández de Bobadilla and María Pe Pereira, The Nash problem for surfaces, Ann. of Math. (2) 176 (2012), no. 3, 2003–2029. MR 2979864, DOI 10.4007/annals.2012.176.3.11
- Tommaso de Fernex, Three-dimensional counter-examples to the Nash problem, Compos. Math. 149 (2013), no. 9, 1519–1534. MR 3109732, DOI 10.1112/S0010437X13007252
- Tommaso de Fernex and Roi Docampo, Terminal valuations and the Nash problem, Invent. Math. 203 (2016), no. 1, 303–331. MR 3437873, DOI 10.1007/s00222-015-0597-5
- Tommaso de Fernex, János Kollár, and Chenyang Xu, The dual complex of singularities, preprint, arXiv:1212.1675 (2012). To appear in Proceedings of the conference in honor of Yujiro Kawamata’s 60th birthday, Advanced Studies in Pure Mathematics.
- A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213
- Antoine Ducros, La structure des courbes analytiques, book in preparation. The numbering in the text refers to the preliminary version of 12/02/2014, available at http://webusers.imj-prg.fr/~antoine.ducros/livre.html.
- Antoine Ducros, Parties semi-algébriques d’une variété algébrique $p$-adique, Manuscripta Math. 111 (2003), no. 4, 513–528 (French, with English summary). MR 2002825, DOI 10.1007/s00229-003-0382-4
- Antoine Ducros, Espaces de Berkovich, polytopes, squelettes et théorie des modèles, Confluentes Math. 4 (2012), no. 4, 1250007, 57 (French, with English summary). MR 3020334, DOI 10.1142/S1793744212500077
- Antoine Ducros, Toute forme modérément ramifiée d’un polydisque ouvert est triviale, Math. Z. 273 (2013), no. 1-2, 331–353 (French, with English summary). MR 3010163, DOI 10.1007/s00209-012-1007-y
- Lorenzo Fantini, Normalized non-Archimedean links and surface singularities, C. R. Math. Acad. Sci. Paris 352 (2014), no. 9, 719–723 (English, with English and French summaries). MR 3258263, DOI 10.1016/j.crma.2014.06.010
- Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722, DOI 10.1007/b100262
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Hans Grauert and Reinhold Remmert, Über die Methode der diskret bewerteten Ringe in der nicht-archimedischen Analysis, Invent. Math. 2 (1966), 87–133 (German). MR 206039, DOI 10.1007/BF01404548
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Deformation theory, Graduate Texts in Mathematics, vol. 257, Springer, New York, 2010. MR 2583634, DOI 10.1007/978-1-4419-1596-2
- Luc Illusie, Grothendieck’s existence theorem in formal geometry, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 179–233. With a letter (in French) of Jean-Pierre Serre. MR 2223409
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- Reinhardt Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256–273 (German). MR 210949, DOI 10.1007/BF01425404
- Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 206009, DOI 10.2307/1970447
- Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
- János Kollár, Links of complex analytic singularities, Surveys in differential geometry. Geometry and topology, Surv. Differ. Geom., vol. 18, Int. Press, Somerville, MA, 2013, pp. 157–193. MR 3087919, DOI 10.4310/SDG.2013.v18.n1.a4
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
- Qing Liu, Sur les espaces de Stein quasi-compacts en géométrie rigide, Tohoku Math. J. (2) 42 (1990), no. 3, 289–306 (French). MR 1066662, DOI 10.2748/tmj/1178227611
- Florent Martin, Analytic functions on tubes of nonarchimedean analytic spaces, Algebra Number Theory 11 (2017), no. 3, 657–683. With an appendix by Christian Kappen and Martin. MR 3649364, DOI 10.2140/ant.2017.11.657
- John F. Nash Jr., Arc structure of singularities, Duke Math. J. 81 (1995), no. 1, 31–38 (1996). A celebration of John F. Nash, Jr. MR 1381967, DOI 10.1215/S0012-7094-95-08103-4
- Johannes Nicaise, Formal and rigid geometry: an intuitive introduction and some applications, Enseign. Math. (2) 54 (2008), no. 3-4, 213–249. MR 2478086
- Johannes Nicaise, A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann. 343 (2009), no. 2, 285–349. MR 2461256, DOI 10.1007/s00208-008-0273-9
- Johannes Nicaise, Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology, J. Algebraic Geom. 20 (2011), no. 2, 199–237. MR 2762990, DOI 10.1090/S1056-3911-10-00526-6
- Sam Payne, Topology of nonarchimedean analytic spaces and relations to complex algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 223–247. MR 3312632, DOI 10.1090/S0273-0979-2014-01469-7
- Marta Pérez Rodríguez, Basic deformation theory of smooth formal schemes, J. Pure Appl. Algebra 212 (2008), no. 11, 2381–2388. MR 2440253, DOI 10.1016/j.jpaa.2008.03.003
- Michel Raynaud, Géométrie analytique rigide d’après Tate, Kiehl,$\cdots$, Table Ronde d’Analyse non archimédienne (Paris, 1972) Bull. Soc. Math. France, Mém. No. 39–40, Soc. Math. France, Paris, 1974, pp. 319–327 (French). MR 0470254, DOI 10.24033/msmf.170
- M. Temkin, A new proof of the Gerritzen-Grauert theorem, Math. Ann. 333 (2005), no. 2, 261–269. MR 2195115, DOI 10.1007/s00208-005-0660-4
- Michael Temkin, Introduction to Berkovich analytic spaces, Berkovich spaces and applications, Lecture Notes in Math., vol. 2119, Springer, Cham, 2015, pp. 3–66. MR 3330762, DOI 10.1007/978-3-319-11029-5_{1}
- Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381–451 (French, with English summary). MR 2320738, DOI 10.1007/s00229-007-0094-2
- Paolo Valabrega, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ. 15 (1975), no. 2, 387–395. MR 376677, DOI 10.1215/kjm/1250523070
- Paolo Valabrega, A few theorems on completion of excellent rings, Nagoya Math. J. 61 (1976), 127–133. MR 407007
- Michel Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 539–590 (French). MR 1748635
- Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639–689. MR 159, DOI 10.2307/1968949
Additional Information
- Lorenzo Fantini
- Affiliation: Institut Mathématique de Jussieu, Université Pierre et Marie Curie, 75252 Paris, France
- Address at time of publication: CNRS, Sorbonne Université, Université Paris Diderot, Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, F-75005 Paris, France
- Received by editor(s): April 17, 2015
- Received by editor(s) in revised form: October 2, 2016, February 5, 2017, and February 9, 2017
- Published electronically: May 9, 2018
- Additional Notes: During the preparation of this work, the author’s research was supported by the Fund for Scientific Research - Flanders (grant G.0415.10) and the European Research Council (Starting Grant project “Nonarcomp” no.307856).
- © Copyright 2018 by the author
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7815-7859
- MSC (2010): Primary 14E15, 14G22; Secondary 14J17
- DOI: https://doi.org/10.1090/tran/7209
- MathSciNet review: 3852450