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SILTING REDUCTION AND CALABI–YAU REDUCTION

OF TRIANGULATED CATEGORIES

OSAMU IYAMA AND DONG YANG

Abstract. We study two kinds of reduction processes of triangulated cate-
gories, that is, silting reduction and Calabi–Yau reduction. It is shown that
the silting reduction T /thickP of a triangulated category T with respect to a
presilting subcategory P can be realized as a certain subfactor category of T ,
and that there is a one-to-one correspondence between the set of (pre)silting
subcategories of T containing P and the set of (pre)silting subcategories of
T /thickP. This result is applied to show that the Amiot–Guo–Keller con-
struction of d-Calabi–Yau triangulated categories with d-cluster-tilting objects

takes silting reduction to Calabi–Yau reduction.
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1. Introduction

Derived categories and triangulated categories are ubiquitous in mathematics,
appearing in various areas such as representation theory, algebraic geometry, alge-
braic topology, and mathematical physics. One of the standard tools for studying
these categories is tilting theory, which enables us to control equivalences of tri-
angulated categories. Recently, cluster tilting theory, a certain analogue of tilting
theory in Calabi–Yau triangulated categories, played an important role in the cat-
egorification of cluster algebras of Fomin and Zelevinsky. Central notions in these
theories are silting objects and cluster tilting objects, which admit a categorical
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operation called mutation to construct a new object from a given one by replacing
a direct summand. It is known that the class of silting objects parametrizes other
important structures in a given triangulated category, including co-t-structures,
t-structures and simple-minded collections [13, 36, 41].

The aim of this paper is to develop further a certain aspect of tilting theory and
cluster tilting theory by focusing on two kinds of reduction processes of triangu-
lated categories which were studied in representation theory. One process is called
Calabi–Yau reduction, introduced in [27] (see also [25]). This is defined for a d-rigid
subcategory P of a d-Calabi–Yau triangulated category T as a certain subfactor
category U of T . In this case U is again a d-Calabi–Yau triangulated category, and
there is a natural bijection between d-cluster-tilting subcategories of T containing
P and d-cluster-tilting subcategories of U .

The other process is called silting reduction. This is defined for a presilting
subcategory P of a triangulated category T as the triangle quotient U = T /thickP.
Under certain mild assumptions (P1) and (P2) in section 3.1, our first main result
enables us to realize U inside of T as a certain subfactor category, which is much
easier to control than triangle quotients and analogous to Calabi–Yau reduction.

Theorem 1.1 (Theorems 3.1 and 3.6). Let T be a triangulated category, let P be a
presilting subcategory of T satisfying (P1) and (P2), and let U = T /thickP. Then
the additive quotient Z

[P] for Z = (⊥T P[>0])∩ (P[<0]⊥T ) has a natural structure of

a triangulated category (given in Theorem 2.1) and we have a triangle equivalence
Z
[P]

�−→ U .

We recover, as a special case of this realization, the well-known triangle equiva-
lence due to Buchweitz [14],

CMA
�−→ Db(modA)/Kb(projA),

for an Iwanaga–Gorenstein ring A (Theorem 3.10). Moreover, there is a natural
bijection between silting subcategories of T containing P and silting subcategories
of U (Theorem 3.7), which preserves a canonical partial order on the set of silting
subcategories (Corollary 3.8). A similar result was given in [2, Theorem 2.37]
under the strong restriction that thickP is functorially finite in T . We can drop
this assumption thanks to the realization of U as a subfactor category of T .

The second main result of this paper is to compare these two reduction processes
using Amiot and Guo’s construction [3,20] (based on Keller’s work [32,34]), which
is a direct passage from tilting theory to cluster tilting theory. Let T be a trian-
gulated category, let M be a subcategory of T , and let T fd ⊂ T be a triangulated
subcategory such that (T , T fd,M) is a (d + 1)-Calabi–Yau triple (see section 5.1
for the precise definition). We fix a functorially finite subcategory P of M. On
the one hand, applying the Amiot–Guo–Keller (AGK) construction, we obtain a
d-Calabi–Yau triangulated category C = T /T fd in which P becomes a d-rigid sub-
category. Then we form the Calabi–Yau reduction CP of C with respect to P, which
is d-Calabi–Yau and in which M becomes a d-cluster-tilting subcategory. On the
other hand, we first form the silting reduction U = T /thickP, which turns out to
be part of a relative (d+ 1)-Calabi–Yau triple (U ,U fd,M). Then the Amiot–Guo–
Keller construction yields a d-Calabi–Yau triangulated category U/U fd in which M
becomes a d-cluster-tilting subcategory. We prove that the two resulting d-Calabi–
Yau triangulated categories CP and U/U fd are triangle equivalent (Theorem 5.15).
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In this sense, the Amiot–Guo–Keller construction takes silting reduction to Calabi–
Yau reduction. This can be illustrated by the following commutative diagram of
operations.

T

U C = T /T fd

U/U fd � CP

AGK
construction

silting
reduction

AGK
construction

Calabi–Yau
reduction

�� ��
�� ��

�� ��
�� ��

�� ��
�� ��

��

��
����

����
����

����
����

��
��

��
��

��
��

��
��

��
��

��
�	
�	
�	
�	
�	
�	
�	
�	

The case when T is the perfect derived category of a Ginzburg differential graded
(dg) algebra was studied by Keller in [34, Section 7]. The diagram above induces a
commutative diagram of maps

silting subcategories of T containing
P as a subcategory

silting subcategories of U d-cluster-tilting subcategories of C con-
taining P as a subcategory

d-cluster-tilting subcategories of CP

�����
���

���
���

��

����
���

���
���

���

����
���

���
���

���
��

�����
���

���
���

���
�

where the two left-going maps are bijections due to respective properties of silting
reduction and Calabi–Yau reduction.

Moreover, if M has an additive generator, then the two right-going maps above
are surjections for d = 1 and for d = 2 (due to Keller–Nicolás [36] in the algebraic
setting) (Corollary 5.12).

To prove our results in section 5, we will prepare in section 4 some general obser-
vations on t-structures in triangulated categories, which have their own importance.
It is known that any silting subcategory M in a triangulated category T gives rise
to a co-t-structure (T≥0, T≤0) in T (see Proposition 2.8 for details). We study the
condition that there is a t-structure (X ,Y) in T satisfying X = T≤0. We prove that
this condition is invariant under a suitable change of the silting subcategory M
(Theorem 4.4). Moreover, under certain conditions, we prove that this condition is
equivalent to its dual; that is, there is a t-structure (X ′,Y ′) in T satisfying Y ′ = T≥0

(Theorem 4.9). This result is used to simplify the proofs of Amiot–Guo–Keller’s
fundamental results (Theorem 5.8).

We remark that more general versions of Theorem 1.1 have since been established
in [26, 42, 46, 53]. We refer to the work [28] of Jasso for a reduction of support τ -
tilting modules and its connection with our silting reduction.
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2. Preliminaries

In this section we fix some notation. We recall the triangle structure of an ad-
ditive quotient associated to a mutation pair. We recall the definitions of silting
subcategories, silting reduction, cluster-tilting subcategories, Calabi–Yau reduc-
tion, t-structures, and co-t-structures. We recall derived categories of differential
graded (dg) algebras and Keller’s Morita theorem for triangulated categories.

2.1. Some notation. For a ring R, we denote by modR the category of finitely
generated right R-modules, by projR the category of finitely generated projective
right R-modules, by Db(modR) the bounded derived category of modR, and by
Kb(projR) the bounded homotopy category of projR.

Let T be an additive category. For morphisms f : X → Y and g : Y → Z, we
denote by gf : X → Z the composition. We say that T is idempotent complete if
any idempotent morphism e : X → X has a kernel. Let S be a full subcategory of
T (for example, an object of T will often be considered as a full subcategory with
one object). For an object X of T , we say that a morphism f : S → X is a right
S-approximation of X if S ∈ S and HomT (S

′, f) is surjective for any S′ ∈ S. We
say that S is contravariantly finite if every object in T has a right S-approximation.
Dually, we define left S-approximations and covariantly finite subcategories. We
say that S is functorially finite if it is both contravariantly finite and covariantly
finite [8]. For example, if T satisfies the following finiteness condition (F), then
addX is a functorially finite subcategory of T for any X ∈ T .

(F) HomT (X,Y ) is finitely generated as an EndT (X)-module and as an
EndT (Y )op-module.

This condition (F) is satisfied if T is k-linear and Hom-finite for a commutative
ring k.

Denote by addT S (or simply addS) the smallest full subcategory of T which
contains S and which is closed under taking isomorphisms, finite direct sums, and
direct summands. Denote by [S] the ideal of T consisting of morphisms which
factor through an object of addT S, and denote by T

[S] the corresponding additive

quotient of T by S. Define full subcategories

⊥T S := {X ∈ T | HomT (X,S) = 0},
S⊥T := {X ∈ T | HomT (S, X) = 0}.

When it does not cause confusion, we will simply write ⊥S and S⊥.
Let T be a triangulated category. We will denote by [1] the shift functor of any

triangulated category unless otherwise stated. For two objects X and Y of T and
an integer n, by HomT (X,Y [>n]) = 0 (resp., HomT (X,Y [≥n]) = 0, HomT (X,Y [<
n]) = 0, HomT (X,Y [≤n]) = 0), we mean HomT (X,Y [i]) = 0 for all i > n (resp.,
for all i ≥ n, i < n, i ≤ n).

Let S be a full subcategory of T . We say that S is a thick subcategory of T if it
is a triangulated subcategory of T which is closed under taking direct summands.
In this case, we denote by T /S the triangle quotient of T by S. In general, we
denote by thickT S (or simply thickS) the smallest thick subcategory of T which
contains S.



SILTING REDUCTION AND CALABI–YAU REDUCTION 7865

Let S and S ′ be full subcategories of T . By HomT (S,S ′) = 0, we mean
HomT (S, S

′) = 0 for all S ∈ S and S′ ∈ S ′. Define

S ∗ S ′ = S ∗T S ′ :={X ∈ T | there is a triangle S → X → S′ → S[1]

with S ∈ S and S′ ∈ S ′}.

2.2. Mutation pairs and cluster-tilting subcategories. Let T be a triangu-
lated category. Let P be a full subcategory of T such that HomT (P,P[1]) = 0, and
let Z be an extension-closed full subcategory of T which contains P. Assume that
(Z,Z) forms a P-mutation pair in the sense of [27]; i.e., the following conditions
are satisfied.

• P ⊂ Z and HomT (P,Z[1]) = 0 = HomT (Z,P[1]).
• For any Z ∈ Z, there exist triangles Z → P ′ → Z ′ → Z[1] and Z ′′ →
P ′′ → Z → Z ′′[1] with P ′, P ′′ ∈ P and Z ′, Z ′′ ∈ Z.

Theorem 2.1 ([27, Theorem 4.2]). The category Z
[P] has the structure of a trian-

gulated category with respect to the following shift functor and triangles.

(a) For X ∈ Z, we take a triangle

X
ιX �� PX

�� X〈1〉 �� X[1]

with a (fixed) left P-approximation ιX . Then 〈1〉 gives a well-defined auto-
equivalence of Z

[P] , which is the shift functor of Z
[P] .

(b) For a triangle X
f−→ Y

g−→ Z
h−→ X[1] with X,Y, Z ∈ Z, take the following

commutative diagram of triangles.

(2.2.1) X
f �� Y

g ��

��

Z
h ��

a

��

X[1]

X
ιX �� PX

�� X〈1〉 �� X[1]

Then we have a complex X
f−→ Y

g−→ Z
a−→ X〈1〉. We define triangles in Z

[P]

as the complexes which are isomorphic to complexes obtained in this way.

Let k be a field, and let T be a k-linear triangulated category. Let d ≥ 1 be
an integer. Then T is said to be d-Calabi–Yau if T is Hom-finite, and there is a
bifunctorial isomorphism for any objects X and Y of T :

DHomT (X,Y ) � HomT (Y,X[d]),

where D = Homk(−, k) is the k-dual.
Assume that T is d-Calabi–Yau. A full subcategory P of T is d-rigid if

HomT (P,P[i]) = 0 for all 1 ≤ i ≤ d − 1. It is d-cluster-tilting if P is functori-
ally finite and the following equivalence holds for X ∈ T :

HomT (P, X[i]) = 0 for all 1 ≤ i ≤ d− 1 ⇐⇒ X ∈ addP.

By [27, Theorem 3.1(1)] a d-rigid subcategory P of T is d-cluster-tilting if and only
if T = P ∗P[1]∗ · · · ∗P[d−1] holds. An object P of T is d-rigid if addP is a d-rigid
subcategory, and it is d-cluster-tilting if addP is a d-cluster-tilting subcategory. We
point out that addP is always functorially finite.
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Let P be a functorially finite d-rigid subcategory of T . Let

Z := ⊥T (P[1] ∗ P[2] ∗ · · · ∗ P[d− 1]) and TP :=
Z

[addP]
.

Then the additive category TP , called the Calabi–Yau reduction of T with respect
to P in [27], carries a natural structure of a triangulated category by Theorem 2.1.
Moreover,

Theorem 2.2 ([27, Theorem 4.9]). The projection functor Z → TP induces a one-
to-one correspondence between the set of d-cluster-tilting subcategories of T which
contains P and the set of d-cluster-tilting subcategories of TP .

We will use the following cluster-Beilinson criterion for triangle equivalence due
to Keller–Reiten.

Proposition 2.3 ([38, Lemma 4.5]). Let T ′ be another d-Calabi–Yau triangulated
category, let P ⊂ T and P ′ ⊂ T ′ be d-cluster-tilting subcategories, and let F : T →
T ′ be a triangle functor. If F induces an equivalence P → P ′, then F is a triangle
equivalence.

2.3. Presilting and silting subcategories, t-structures, and co-t-structures.
Let T be a triangulated category.

A full subcategory P of T is presilting if HomT (P,P[i]) = 0 for any i > 0. It
is silting if in addition T = thickP. An object P of T is presilting if addP is a
presilting subcategory and silting if addP is a silting subcategory.

We denote by silt T (resp., presilt T ) the class of silting (resp., presilting) sub-
categories of T . As usual we identify two (pre)silting subcategories M and N
of T when addM = addN . The class silt T has a natural partial order: For
M,N ∈ silt T , we write

M ≥ N
if HomT (M,N [>0]) = 0. This gives a partial order ≥ on silt T ; see [2, Theorem
2.11].

Triangulated categories with silting subcategories satisfy the following property.

Lemma 2.4 ([2, Proposition 2.4]). Let T be a triangulated category with a silting
subcategory M.

(a) For any X,Y ∈ T , there exists i ∈ Z such that HomT (X,Y [≥i]) = 0.
(b) For any X ∈ T , there exist i, j ∈ Z such that HomT (M, X[≥i]) = 0 and

HomT (X,M[≥j]) = 0.

A torsion pair of T is a pair (X ,Y) of full subcategories of T such that

(T1) X = ⊥Y and Y = X⊥;
(T2) T = X ∗Y , namely, for each M ∈ T there is a triangle XM → M → YM →

X[1] in T with XM ∈ X and YM ∈ Y .

It is elementary that the condition (T1) can be replaced by the following condition:

(T1′) HomT (X ,Y) = 0, X = addX , and Y = addY .

A t-structure on T ([10]) is a pair (T ≤0, T ≥0) of full subcategories of T such
that T ≥1 ⊂ T ≥0 and (T ≤0, T ≥1) is a torsion pair. Here for an integer n we
denote T ≤n = T ≤0[−n] and T ≥n = T ≥0[−n]. In this case, the triangle in the
second condition above is unique up to a unique isomorphism, and the assignments
M �→ XM and M �→ YM define two functors σ≤0 : T → T ≤0 and σ≥1 : T → T ≥1,
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called the truncation functors. For an integer n the pair (T ≤n, T ≥n) is also a t-
structure, and we denote by σ≤n and σ≥n+1 the associated truncation functors. The
heart H := T ≤0 ∩ T ≥0 is always an abelian category. The t-structure (T ≤0, T ≥0)
is said to be bounded if ⋃

n∈Z

T ≤n = T =
⋃
n∈Z

T ≥n,

equivalently, if T = thickH.
A co-t-structure on T ([12,49]) is a pair (T≥0, T≤0) of full subcategories of T such

that T≥1 ⊂ T≥0 and (T≥1, T≤0) is a torsion pair. Here for an integer n we denote
T≥n = T≥0[−n] and T≤n = T≤0[−n]. The co-heart P := T≥0 ∩ T≤0 is a presilting
subcategory of T , but it is usually not an abelian category. The co-t-structure
(T≥0, T≤0) is said to be bounded if⋃

n∈Z

T≥n = T =
⋃
n∈Z

T≤n,

equivalently, if T = thickP. The co-heart of a bounded co-t-structure is a silting
subcategory of T .

2.4. Results on additive closures, co-t-structures, and idempotent com-
pleteness. Throughout this subsection, let T be an arbitrary triangulated cat-
egory. We give useful criterions for T to be idempotent complete, and also for
subcategories of T to be closed under direct summands.

We start with preparing some easy observations, which will be used later.

Lemma 2.5. If X ∈ add(S ∗ S ′) satisfies HomT (S, X) = 0, then X ∈ addS ′.

Proof. There exist Y ∈ T and a triangle

(2.4.1) S
a �� X ⊕ Y �� S′ �� S[1]

with S ∈ addS and S′ ∈ addS ′. Since HomT (S, X) = 0, we can write a =
(
0
b

)
for

b : S → Y . We extend b to a triangle S
b−→ Y

c→ Z → S[1]. Then we have a triangle

S
a=(0b) �� X ⊕ Y

(1X 0
0 c ) �� X ⊕ Z �� S[1].

Comparing this with (2.4.1), we have S′ � X ⊕ Z. Thus X ∈ addS ′. �
Note that if S = addS and S ′ = addS ′ hold, then S ∗ S ′ is closed under direct

sums, but not necessarily under direct summands. We have the following sufficient
condition for the equality S ∗ S ′ = add(S ∗ S ′) to hold (cf. [27, Proposition 2.1] for
the Krull–Schmidt case).

Lemma 2.6. Let S = addS and S ′ = addS ′ be subcategories of T satisfying
HomT (S,S ′) = 0 and S[1] ⊂ S ′.

(a) We have S ∗ S ′ = add(S ∗ S ′).
(b) If S and S ′ are idempotent complete, so is S ∗ S ′.

Proof. Since S and S ′ are closed under direct sums, it follows easily from definition
that S ∗ S ′ is also closed under direct sums. It remains to show that S ∗ S ′ is
closed under direct summands. Assume that X ⊕X ′ ∈ S ∗ S ′, that is, there exists
a triangle

(2.4.2) S
( a
a′) �� X ⊕X ′ (b b′) �� S′ �� S[1]
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with S ∈ S and S′ ∈ S ′. Now we extend a : S → X to a triangle

(2.4.3) S
a �� X

c �� Y �� S[1].

Since HomT (S, S′) = 0, the map HomT (S, S)
( a
a′)·−−−→ HomT (S, X ⊕X ′) is surjective

by the triangle (2.4.2). In particular, the map HomT (S, S) a·−→ HomT (S, X) is
also surjective. Thus we have HomT (S, Y ) = 0 by the triangle (2.4.3) and our
assumptions HomT (S,S ′) = 0 and S[1] ⊂ S ′.

Using the octahedron axiom, we have the following commutative diagram.

S

( a
a′)

��

S

��
S

(a0) �� X ⊕X ′
( c 0
0 1

X′)��

(b b′)

��

Y ⊕X ′ ��

��

S[1]

S �� S′ ��

��

Z ��

��

S[1]

S[1] S[1]

Since HomT (S, S
′) = 0, the lower horizontal triangle splits, and we have Z �

S′ ⊕ S[1] ∈ S ′. Thus the right vertical triangle shows Y ∈ add(S ∗ S ′). Since
HomT (S, Y ) = 0 holds, we have Y ∈ addS ′ = S ′ by Lemma 2.5. Therefore X ∈
S ∗ S ′.

(b) Let T ω be the idempotent completion of T . Then T ω has a natural triangle
structure such that T becomes a triangulated subcategory of T ω by [9]. Then
S ∗T S ′ = S ∗T ω S ′ since HomT (S ′,S[1]) = HomT ω (S ′,S[1]). Since S and S ′ are
idempotent complete, we have S = addT ωS and S ′ = addT ωS ′. So by Lemma 2.6(a)

S ∗T S ′ = S ∗T ω S ′ = addT ω (S ∗T ω S ′)

is idempotent complete. �

We often use the following observation in this paper.

Proposition 2.7. Let T be a triangulated category, let P = addP be a full sub-
category of T , and let n ≥ 0. Assume that HomT (P,P[i]) = 0 for any i with
1 ≤ i ≤ n.

(a) We have P ∗ P[1] ∗ · · · ∗ P[n] = add(P ∗ P[1] ∗ · · · ∗ P[n]).
(b) If P is idempotent complete, so is P ∗ P[1] ∗ · · · ∗ P[n].

Proof. (a) For n = 0, the assertion is the assumption P = addP. Assume that it
holds for n − 1. Then S := P and S ′ := P[1] ∗ P[2] ∗ · · · ∗ P[n] satisfies addS = S
and addS ′ = S ′. In particular, the assumptions in Lemma 2.6(a) are satisfied, and
hence S ∗ S ′ = P ∗ P[1] ∗ · · · ∗ P[n] satisfies S ∗ S ′ = add(S ∗ S ′).

(b) Similarly, this follows by induction on n by using Lemma 2.6(b). �

Now we show that any silting subcategory gives a co-t-structure on T . The
following proposition is well known, and it was proved as [43, Theorem 5.5]; see
also [2, Proposition 2.22], [12, proof of Theorem 4.3.2], and [36].
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Proposition 2.8. Let T be a triangulated category, and let M be a silting subcat-
egory of T with M = addM.

(a) Then (T≥0, T≤0) is a bounded co-t-structure on T , where

T≥0 :=
⋃
n≥0

M[−n] ∗ · · · ∗M[−1] ∗M and T≤0 :=
⋃
n≥0

M∗M[1] ∗ · · · ∗M[n].

(b) For any integers m and n, we have

T≥n ∩ T≤m =

{
M[−m] ∗M[1−m] ∗ · · · ∗M[−n] if n ≤ m,

0 if n > m.

Proof. (a) For the convenience of the reader, we give a simple direct proof. By
induction we obtain HomT (T≥1, T≤0) = 0. Since HomT (M,M[>0]) = 0, we have
T≥1 = addT≥1 and T≤0 = addT≤0 by Proposition 2.7. Thus the condition (T1′)
holds. On the other hand, there is the following equality

T =
⋃
n≥0

add(M[−n] ∗M[1− n] ∗ · · · ∗M[n− 1] ∗M[n])

by [2, Lemma 2.15(b)]. Applying Proposition 2.7 again, we have the condition (T2),

T =
⋃
n≥0

M[−n] ∗M[1− n] ∗ · · · ∗M[n− 1] ∗M[n] = T≥0 ∗ T<0.

(b) This can be shown easily by using Lemma 2.5. �

As a consequence of Propositions 2.8 and 2.7, we have

Theorem 2.9. If a triangulated category has an idempotent complete silting sub-
category (resp., d-cluster-tilting subcategory for some d ≥ 1), then it is idempotent
complete.

As a special case of Theorem 2.9 we recover the well-known result that the
bounded homotopy category of finitely generated projective modules over a ring
is idempotent complete. The silting part of Theorem 2.9 is [12, Lemma 5.2.1]. It
can be reformulated as follows. If T has a bounded co-t-structure with idempotent
complete co-heart, then T is idempotent complete. It can be considered as dual to
the fact that if T has a bounded t-structure, then T is idempotent complete (see
[15, Theorem]).

2.5. Derived categories of dg algebras. We follow [31, 33].
Let k be a field, and let A be a dg (k-)algebra, that is, a graded algebra endowed

with a compatible structure of a complex. A (right) dg A-module is a (right) graded
A-module endowed with a compatible structure of a complex. Let D(A) denote the
derived category of dg A-modules. This is a triangulated category whose shift
functor is the shift of complexes. Let per(A) = thick(AA), and let Dfd(A) denote
the full subcategory of D(A) consisting of dg A-modules whose total cohomology is
finite dimensional over k. These are two triangulated subcategories of D(A).

Let T be an algebraic triangulated category (over k); that is, T is triangle equiv-
alent to the stable category of a Frobenius category. Assume that T is idempotent
complete and M is an object of T such that T = thick(M). Then by [33, Theorem
3.8 b)], there is a dg algebra A together with a triangle equivalence T → per(A)
which takes M to AA. We briefly describe the construction of A and refer to the
proof of [31, Theorem 4.3] for more details. Let E be a Frobenius category such
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that the stable category of E is triangle equivalent to T . Let projE denote the full
subcategory of projective objects of E . Then Kac(projE), the homotopy category

of acyclic complexes on projE , is triangle equivalent to T . Let M̃ be a preimage

of M under this equivalence, and let A be the dg endomorphism algebra of M̃ .
Then there is a natural triangle functor Kac(projE) → per(A) which turns out to be

a triangle equivalence and takes M̃ to AA. Composing this equivalence with the
equivalence Kac(projE) → T , we obtain a triangle equivalence T → per(A) which
takes M to AA.

3. Silting reduction as subfactor category

A silting reduction of a triangulated category T was introduced in [2] as the
triangle quotient T /thickP of T by the thick subcategory thickP generated by a
presilting subcategory P of T . In this section we show that under mild conditions
the silting reduction of T can be realized as a certain subfactor category of T .
Moreover, we show that there is a bijection between silting subcategories of T
containing P and silting subcategories of the silting reduction T /thickP. We also
discuss various applications of this result.

3.1. The additive equivalence. Let T be a triangulated category. We fix a
presilting subcategory P of T . Let

S := thickT P and U := T /S.
We call U the silting reduction of T with respect to P (see [2]). We refer to [47] for
the standard description of morphisms in triangle quotient categories, which are
heavily used in this section and section 5. In the rest, we assume P = addP for
simplicity. For an integer �, there is a bounded co-t-structure (S≥�,S≤�) on S by
Proposition 2.8, where

S≥� = S>�−1 :=
⋃
i≥0

P[−�− i] ∗ · · · ∗ P[−�− 1] ∗ P[−�],

S≤� = S<�+1 :=
⋃
i≥0

P[−�] ∗ P[−�+ 1] ∗ · · · ∗ P[−�+ i].

We introduce a full subcategory Z of T by

Z := (⊥T S<0) ∩ (S>0
⊥T ) = (⊥T P[>0]) ∩ (P[<0]⊥T ).

Since P is presilting, we have P ⊂ Z.
Now we consider the following mild technical conditions.

(P1) P is covariantly finite in ⊥T S<0 and contravariantly finite in S>0
⊥T .

(P2) For any X ∈ T , we have HomT (X,P[�]) = 0 = HomT (P, X[�]) for � � 0.

For example, (P1) is satisfied when T is Hom-finite over a field and P = add(P )
for a presilting object P ; by Lemma 2.4, (P2) is satisfied when T admits a silting
subcategory which contains P.

The following result shows that we can realize the triangle quotient U = T /S as
a subfactor category of T . Let ρ : T → U be the canonical projection functor.

Theorem 3.1. Under the conditions (P1) and (P2), the composition Z ⊂ T ρ−→ U
of natural functors induces an equivalence of additive categories,

ρ̄ :
Z
[P]

�−→ U .
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The rest of this subsection is devoted to the proof of Theorem 3.1. Since ρ(P) =

0, the composition Z ⊂ T ρ−→ U induces a functor ρ̄ : Z
[P] → U . To prove that this

is an equivalence, we start with the following useful observation, which generalizes
Proposition 2.8.

Proposition 3.2. The following conditions are equivalent.

(a) The conditions (P1) and (P2) are satisfied.
(b) The two pairs (⊥T S<0,S≤0) and (S≥0,S>0

⊥T ) are co-t-structures on T .

In this case, the co-hearts of these co-t-structures are P.

Proof. First, we prove P = (⊥T S<0)∩S≤0 = S≥0∩(S>0
⊥T ). We only prove the first

equality since the second one is dual. It suffices to show that anyX ∈ (⊥T S<0)∩S≤0

belongs to P. Since S≤0 = P∗S<0, we getX ∈ addP = P by the dual of Lemma 2.5.
(a)⇒(b) We only prove that (⊥T S<0,S≤0) is a co-t-structure on T since the other

assertion can be shown similarly. This is equivalent to showing that (⊥T S<0,S<0)
is a torsion pair. Since ⊥T S<0 = add⊥T S<0 holds and S≤0 = addS≤0 holds by
Proposition 2.7, it is enough to show that any object X ∈ T belongs to (⊥T S<0) ∗
S<0. By our assumption (P2), there exists some integer � such that X ∈ ⊥T S<−�.
If � ≤ 0, then ⊥T S<−� ⊂ ⊥T S<0, and the assertion follows. Thus we assume � > 0
and induct on �. By our assumption (P1), there exists a triangle

Y �� X
f �� P [�] �� Y [1]

with a left P[�]-approximation f of X. Applying HomT (−,S<−�) and
HomT (−,P[�]), we have Y ∈ ⊥T S≤−�. By the induction hypothesis, we have
Y ∈ (⊥T S<0) ∗ S<0. Thus X ∈ Y ∗ P [�] ∈ (⊥T S<0) ∗ (S<0 ∗ P[�]) = (⊥T S<0) ∗ S<0

holds since S<0 is extension closed.

(b)⇒(a) For any X ∈ ⊥T S<0, take a triangle Y → X
a−→ X≤0 → Y [1] with

Y ∈ ⊥T S≤0 and X≤0 ∈ S≤0. Then X≤0 belongs to (⊥T S<0) ∗ (⊥T S<0) =
⊥T S<0

and hence to (⊥T S<0)∩S≤0 = P. Since HomT (Y,P) = 0, it follows that a is a left P-
approximation. Thus P is covariantly finite in ⊥T S<0. Dually, P is contravariantly
finite in S>0

⊥T .
By the definition of ⊥T S<0, we have HomT (

⊥T S<0,P[>0]) = 0. For any X in
S, HomT (X,P[�0]) = 0 holds. Since any X in T belongs to (⊥T S<0) ∗ S<0, we
have HomT (X,P[�0]) = 0. Dually, we have HomT (P, X[�0]) = 0. Thus (P2)
holds. �

Next we show that our functor in Theorem 3.1 is dense.

Lemma 3.3. For any X ∈ T , there exists Y ∈ Z satisfying X � Y in U . As a
consequence, the functor ρ̄ : Z

[P] → U in Theorem 3.1 is dense.

Proof. Let X ∈ U . By Proposition 3.2 we have a triangle

X ′ �� X �� S �� X ′[1] (X ′ ∈ ⊥T S<0, S ∈ S<0).

Then we have X � X ′ in U . Again by Proposition 3.2 we have a triangle

S′ �� X ′ �� Y �� S′[1] (S′ ∈ S>0, Y ∈ S>0
⊥T ).

Then we have X � X ′ � Y in U . Applying HomT (−,S<0), we see that

HomT (Y,S<0) � HomT (X
′,S<0)
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vanishes. Thus, Y belongs to (⊥T S<0)∩(S>0
⊥T ) = Z, and we have an isomorphism

X � Y in U . �

Finally, we show that our functor is fully faithful.

Lemma 3.4. The functor ρ : T → U induces the following bijective maps for any
M ∈ ⊥T S<0 and N ∈ S>0

⊥T :

Hom T
[P]

(M,N) −→ HomU (M,N),

HomT (M,N [�]) −→ HomU (M,N [�]) (� > 0).

As a consequence, the functor ρ̄ : Z
[P] → U in Theorem 3.1 is fully faithful.

Proof. We first show the surjectivity.
Let � ≥ 0. Any morphism in HomU (M,N [�]) has a representative of the form

M
f−→ X

s←− N [�], where f ∈ HomT (M,X) and s ∈ HomT (N [�], X), such that the
cone of s is in S. Take a triangle

N [�]
s �� X �� S

a �� N [�+ 1] (S ∈ S).

By Proposition 2.8, we can take a triangle

S≥0
b �� S �� S<0

�� S≥0[1] (S≥0 ∈ S≥0, S<0 ∈ S<0).

Since ab = 0 by S≥0 ∈ S≥0 and N [� + 1] ∈ S>−�−1
⊥T , we have the following

commutative diagram by the octahedral axiom.

S≥0

��

S≥0

b

��
N [�]

s �� X ��

c

��

S
a ��

��

N [�+ 1]

N [�]
cs �� X ′ d ��

��

S<0
��

��

N [�+ 1]

S≥0[1] S≥0[1]

Then we have dcf = 0 by M ∈ ⊥T S<0 and S<0 ∈ S<0. Thus there exists e ∈
HomT (M,N [�]) such that cf = cse. Now c(f − se) = 0 implies that f − se factors
through S≥0 ∈ S. Thus f = se and s−1f = e hold in U , and we have the assertion.

Next we show the injectivity.
Let � ≥ 0. Assume that a morphism f ∈ HomT (M,N [�]) is zero in U . Then it

factors through S (by, for example, [47, Lemma 2.1.26]), that is, there exist S ∈ S,
g ∈ HomT (M,S), and a ∈ HomT (S,N [�]) such that f = ag. Take a triangle

S>−�
b �� S

c �� S≤−�
�� S>−�[1] (S>−� ∈ S>−�, S≤−� ∈ S≤−�).
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Since ab=0 by S>−�∈S>−� and N [�]∈S>−�
⊥T , there exists d∈HomT (S≤−�, N [�])

such that a = dc.

S>−�
b �� S

c ��

a
���

��
��

��
� S≤−�

d

��
M

f
��

g

		���������
N [�]

First we assume � > 0. Then cg = 0 because M ∈ ⊥T S<0 and S≤−� ∈ S≤−� ⊂ S<0.
Thus we have f = dcg = 0.

Next we assume � = 0. Take a triangle

P �� S≤0
e �� S<0

�� P [1] (P ∈ P, S<0 ∈ S<0).

Then we have ecg = 0 by M ∈ ⊥T S<0 and S<0 ∈ S<0. Thus cg factors through P ,
and f = dcg = 0 in T

[P] . �

3.2. The triangle equivalence. Let T be a triangulated category, and let P
be a presilting subcategory of T satisfying (P1) and (P2). Keep the notation in
section 3.1. The aim of this subsection is to show that the additive category Z

[P] has

the structure of a triangulated category and that the equivalence given in Theorem
3.1 is a triangle equivalence.

Lemma 3.5. The pair (Z,Z) forms a P-mutation pair (see section 2.2). More
precisely, for T ∈ T , the following conditions are equivalent.

(a) T ∈ Z.

(b) There exists a triangle X
a−→ P → T → X[1] with X ∈ Z and a left

P-approximation a.

(c) There exists a triangle T → P ′ b−→ Y → T [1] with Y ∈ Z and a right
P-approximation b.

Proof. We only show the equivalence of (a) and (b) since the equivalence of (a) and
(c) can be shown dually.

(b)⇒(a) By applying HomT (P,−) to the triangle, we obtain HomT (P, T [>0]) =
0. Similarly, by applying HomT (−,P) to the triangle, we obtain HomT (T,P[>0]) =
0. Therefore T ∈ Z.

(a)⇒(b) By (P1) there exists a triangle X
a−→ P

b−→ T → X[1] with a
right P-approximation b. By applying HomT (P,−) to the triangle, we obtain
HomT (P, X[>0]) = 0. Similarly, by applying HomT (−,P) to the triangle we obtain
that HomT (X,P[>0]) = 0 holds and that a is a left P-approximation. Therefore
X ∈ Z. �

As a consequence of this lemma, the category Z
[P] has a natural structure of

a triangulated category, according to Theorem 2.1. Now we prove the following
result.

Theorem 3.6. The category Z
[P] has a structure of a triangulated category given

in Theorem 2.1 such that the functor ρ̄ : Z
[P] → U in Theorem 3.1 is a triangle

equivalence.

Proof. We need to show that the equivalence ρ̄ : Z
[P] → U is a triangle functor.
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Applying the triangle functor ρ to the triangle X → PX → X〈1〉 → X[1] in
Theorem 2.1(a), we have an isomorphism X〈1〉 → X[1] in U , which defines a
natural isomorphism ρ̄ ◦ 〈1〉 � [1] ◦ ρ̄.

Let

(3.2.1) X
f �� Y

g �� Z
a �� X〈1〉

be a triangle given in Theorem 2.1(b). Applying the triangle functor T → U to
(2.2.1), we have a commutative diagram

X
f �� Y

g ��

��

Z
h ��

a

��

X[1]

X �� 0 �� X〈1〉 ∼ �� X[1]

of triangles in U . Thus the image of (3.2.1) by the functor Z
[P] → U is a triangle. �

We remark that more general versions of Theorems 3.1 and 3.6 have since been
established in [26, 42, 46, 53].

3.3. The correspondence between silting subcategories. Let T be a trian-
gulated category. Recall that silt T (resp., presilt T ) is the class of silting (resp.,
presilting) subcategories of T , where we identify two (pre)silting subcategories M
and N of T when addM = addN .

Fix a presilting subcategory P of T and denote by siltP T (resp., presiltP T ) the
class of silting (resp., presilting) subcategories of T containing P. Assume further
that the conditions (P1) and (P2) are satisfied. Keep the notation in section 3.1.

Theorem 3.7. The natural functor ρ : T → U induces bijections siltP T → siltU
and presiltP T → presiltU .

Proof. (i) We will show that ρ induces a map presiltP T → presiltU .
Let M be a presilting subcategory of T containing P. Then we have M ⊂ Z.

By Lemma 3.4 we have

HomU (M,M[>0]) = HomT (M,M[>0]) = 0.

Thus ρ(M) is a presilting subcategory of U .
(ii) We will show that the map presiltP T → presiltU is bijective.
Since ρ induces an equivalence Z

[P] � U , the correspondence presiltP T →
presiltU is injective. We will show the surjectivity. For a presilting subcategory N
of U , we define a subcategory M of T by

M := {X ∈ Z | ρ(X) ∈ N}.
Then P ⊂ M and ρ(M) = N hold. Moreover, by Lemma 3.4, we have

HomT (M,M[>0]) = HomU (N ,N [>0]) = 0.

Thus M ∈ presiltP T holds, and the assertion follows.
(iii) We will show that ρ induces a bijective map siltP T → siltU .
Let M be a presilting subcategory of T containing P, and let N := ρ(M) be

the corresponding presilting subcategory of U . By (ii) it is enough to show that
thickT M = T holds if and only if thickUN = U holds. This follows from the fact
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that ρ induces a bijection between thick subcategories of T containing P and thick
subcategories of U ([52, Proposition 2.3.1 (c)bis (d)bis]). �

Moreover, the bijection above is compatible with the natural partial order defined
in section 2.3.

Corollary 3.8. The bijection siltP T → siltU in Theorem 3.7 is an isomorphism
of partially ordered sets.

Proof. Let M and N be silting subcategories of T containing P. Then M ⊂ Z
and N ⊂ Z hold. By Lemma 3.4, we have

HomT (M,N [>0]) � HomU (M,N [>0]).

Thus M ≥ N if and only if ρ(M) ≥ ρ(N ). �

Next we discuss the completion of almost complete presilting subcategories.
Let M be a silting subcategory of T containing P. Then M ⊂ Z and hence P

is functorially finite in M by (P1), and therefore each X ∈ M admits triangles

X
f �� P ′ �� YX

�� X[1] and ZX
�� P ′′ g �� X �� Z[1]

in T with a left P-approximation f of X and a right P-approximation g of X. It
was shown in [2, Theorem 2.31] that

μ−
P(M) := add(P ∪ {YX | X ∈ M}) and μ+

P(M) := add(P ∪ {ZX | X ∈ M})
are again silting subcategories of T , which we call the left mutation and the right
mutation of M at P, respectively. Moreover, the maps

μ−
P : siltP T → siltP T and μ+

P : siltP T → siltP T
are mutually inverse [2, Proposition 2.33].

The following result was shown in [2, Theorem 2.44] under the strong restriction
that thickP is functorially finite in T .

Corollary 3.9. Assume that T is Krull–Schmidt. Assume that there exists an
indecomposable object X0 ∈ T such that X0 /∈ P and M := add(P ∪ {X0}) is a
silting subcategory of T . Then we have

siltP T = {μ+i
P (M), M, μ−i

P (M) | i > 0}.

Proof. By construction there exists an indecomposable object Xi ∈ T for any i ∈ Z

such that μ+i
P (M) = add(P ∪ {Xi}) and μ−i

P (M) = add(P ∪ {X−i}) for any i > 0.
Then Xi = X0〈i〉 holds by our construction. By Theorem 3.7 we have a bijection
siltP T → siltU . In particular U has an indecomposable silting object X0. By
[2, Theorem 2.26] we have siltU = {X0〈i〉 | i ∈ Z}. Therefore siltP T has the
desired description. �

3.4. A theorem of Buchweitz. Recall that a noetherian ring A is called Iwanaga–
Gorenstein if A has finite injective dimension as an A-module and also as an Aop-
module (see, e.g., [18]). In this case we define the category of Cohen–Macaulay
A-modules (also often called modules of Gorenstein dimension zero, Gorenstein
projective modules, or totally reflexive modules) by

CMA := {X ∈ modA | ExtiA(X,A) = 0 for any i > 0}.
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This has a natural structure of a Frobenius category whose projective-injective ob-
jects are exactly the projective A-modules, and we denote by CMA its stable cat-
egory. We recover the following classical result due to Buchweitz as a consequence
of Theorem 3.6.

Theorem 3.10 ([14, Theorem 4.4.1(b)]). Let A be an Iwanaga–Gorenstein ring.
Then

CMA = {X ∈ Db(modA) | HomDb(modA)(X,A[>0]) = 0 = HomDb(modA)(A[<0], X)}
holds, and the embedding CMA → modA induces a triangle equivalence

CMA
�−→ Db(modA)/Kb(projA).

To prove this, we need the following duality (see [22] for the commutative case).

Lemma 3.11 ([45, Corollary 2.11]). Let A be an Iwanaga–Gorenstein ring. Then
we have a duality (−)∗ = RHomA(−, A) : Db(modA) → Db(modAop), which has a

quasi-inverse (−)∗ = RHomAop(−, A) : Db(modAop) → Db(modA).

Proof of Theorem 3.10. It suffices to prove the first equality. In fact, let T :=
Db(modA), P := projA, and S := Kb(projA). Then Z = (⊥T S<0) ∩ (S>0

⊥T ) is the
right-hand side of the desired equality. Thus Z

[P] = CMA holds, and by Theorem 3.6

we obtain the first triangle equivalence.
Let (D≤0(modB),D≥0(modB)) be the standard t-structure on Db(modB) for

B = A or Aop. Let T ′ := Db(modAop), P ′ := projAop, and S ′ := Kb(projAop).
Then we have
(3.4.1)

S>0
⊥T = A[<0]⊥T = D≤0(modA) and S ′

>0
⊥T ′ = A[<0]⊥T ′ = D≤0(modAop).

In particular, we have modA ⊂ S>0
⊥T and

modA ∩ Z = modA ∩ (⊥T S<0) = CMA.

It is enough to show Z ⊂ modA. By the duality in Lemma 3.11 we have S<0 =
(S ′

>0)
∗ and

⊥T S<0 = (S ′
>0

⊥T ′ )∗
(3.4.1)
= (D≤0(modAop))∗ ⊂ D≥0(modA).

Therefore, Z = (⊥T S<0)∩(S>0
⊥T ) ⊂ D≤0(modA)∩D≥0(modA) = modA holds. �

Another application of Theorem 3.1 is the following.

Corollary 3.12. Let k be a field, and let A be a finite-dimensional k-algebra.
Assume that P is a finitely generated projective A-module which has finite injective
dimension. Then the triangle quotient Db(modA)/thickP is Hom-finite and Krull–
Schmidt.

Proof. Let P = addP . Then (P1) is automatically satisfied. Thanks to the assump-
tion that P is projective of finite injective dimension, (P2) is also satisfied. Define
the full subcategory Z of Db(modA) as in section 3.1. Then Z is closed under direct
summands. Thus it is Hom-finite and Krull–Schmidt, so is the additive quotient
Z
[P] � Db(modA)/thickP . �

As an application of Corollary 3.12, it follows that for a finite-dimensional k-
algebra A which is right Iwanaga–Gorenstein, i.e., AA has finite injective dimension,
the singularity category Dsg(A) = Db(modA)/Kb(projA) is Hom-finite and Krull–
Schmidt.
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4. t-structures adjacent to silting subcategories

The aim of this section is to show that silting subcategories always yield co-t-
structures and under certain conditions they also yield t-structures. We refer to
[2,4,11,23,36,39,41,50] for related results on this subject. In particular, results in
this section will play an important role in section 5.

Let T be a triangulated category. For a silting subcategory M in T satisfying
M = addM, we have a co-t-structure (T≥0, T≤0) on T by Proposition 2.8, where

T≥0 =
⋃
n≥0

M[−n] ∗ · · · ∗M[−1] ∗M and T≤0 =
⋃
n≥0

M∗M[1] ∗ · · · ∗M[n].

Now we consider the pair (M[<0]⊥T ,M[>0]⊥T ), where

M[<0]⊥T = {X ∈ T | HomT (M[<0], X) = 0},
M[>0]⊥T = {X ∈ T | HomT (M[>0], X) = 0}.

We have the following immediate observations.

Lemma 4.1. We have M[<0]⊥T = T≤0 and HomT (M[<0]⊥T ,M[>0]⊥T [−1]) = 0.

Proof. By Proposition 2.8(a) we have M[<0]⊥T = T≥1
⊥T = T≤0. The vanishing of

Hom-spaces is then a direct consequence. �
Following Bondarko [12], we say that M has a right adjacent t-structure if

(M[< 0]⊥T ,M[> 0]⊥T ) forms a t-structure on T . By Lemma 4.1, this is equiv-
alent to that T = M[<0]⊥T ∗M[≥0]⊥T holds. Dually, we say that M has a left
adjacent t-structure if (⊥T M[<0],⊥T M[>0]) is a t-structure on T . Note that we
have dual version of Lemma 4.1.

Proposition 4.2. If M has a right (resp., left) adjacent t-structure, then it is a
contravariantly finite (resp., covariantly finite) subcategory of T .

Proof. We only prove the statement for right adjacent t-structures. Because
(M[<0]⊥T ,M[>0]⊥T ) is a t-structure, M[<0]⊥T is a contravariantly finite sub-
category of T . It is enough to show that any X ∈ M[< 0]⊥T has a right M-

approximation. There exists a triangle M
f−→ X → Y → M [1] with M ∈ M

and Y ∈ M[≤0]⊥T by Proposition 2.8(a), from which it follows that f is a right
M-approximation, giving the claim. �
4.1. Compatible silting subcategories. In this subsection, we prove that the
property of having an adjacent t-structure is invariant under a suitable change of
silting subcategories. We say that two silting subcategories M and N of T are
compatible if there exist integers �, �′ > 0 such that M[−�′] ≥ N ≥ M[�], or
equivalently, N [−�] ≥ M ≥ N [�′]. By Proposition 2.8(b) these two conditions are
equivalent to the following two conditions, respectively,

N ⊂ M[−�′] ∗M[1− �] ∗ · · · ∗M[�− 1] ∗M[�],

M ⊂ N [−�] ∗ N [1− �] ∗ · · · ∗ N [�− 1] ∗ N [�′].

Compatibility gives an equivalence relation on silt T .

Theorem 4.3. Let T be a triangulated category, and let M and N be contravari-
antly finite (resp., covariantly finite) silting subcategories of T which are compatible
with each other. Then M has a right (resp., left) adjacent t-structure if and only
if N has a right (resp., left) adjacent t-structure.
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Since all silting objects in T are compatible with each other, we obtain the
following special case.

Theorem 4.4. Let T be a triangulated category satisfying the condition (F) given
in section 2.1, and let M and N be silting objects of T . Then M has a right
(resp., left) adjacent t-structure if and only if N has a right (resp., left) adjacent
t-structure.

We start the proof of Theorem 4.3 with the following easy observations.

Lemma 4.5. Let T be a triangulated category.

(a) The opposite category T op of T has a natural structure of a triangulated
category.

(b) There is a bijection silt T → silt T op given by M �→ Mop.
(c) M has a left adjacent t-structure in T if and only if Mop has a right

adjacent t-structure in T op.

Proof of Theorem 4.3. By Lemma 4.5 we only have to prove the statement for right
adjacent t-structures. We will prove the “only if” part; that is, if M has a right
adjacent t-structure, then T = (N [<0]⊥T ) ∗ (N [≥0]⊥T ) holds.

Applying Lemma 4.1 to the silting subcategory N of T , we obtain

(4.1.1) N [<0]⊥T =
⋃
i≥0

N ∗ N [1] ∗ · · · ∗ N [i].

Since M and N are compatible, we may assume, up to shift, that

N ⊂ M∗M[1] ∗ · · · ∗M[n],(4.1.2)

M ⊂ N [−n] ∗ · · · ∗ N [−1] ∗ N ,(4.1.3)

for some integer n. With (4.1.1), (4.1.2), and (4.1.3) one can easily check that

(4.1.4) N [<0]⊥T =
⋃
i≥n

N ∗ · · · ∗ N [n− 1] ∗M[n] ∗ · · · ∗M[i]

holds. Now fix an integer � ≥ 2n− 2 and define subcategories X and Y of T by

X := N ∗ N [1] ∗ · · · ∗ N [�] and Y := X⊥T .

Since X ⊂ N [<0]⊥T , it follows from Lemma 4.6 below that

T = X ∗ Y ⊂ (N [<0]⊥T ) ∗ (N [<0]⊥T ) ∗ (N [≥0]⊥T ) = (N [<0]⊥T ) ∗ (N [≥0]⊥T ).

This completes the proof. �

Lemma 4.6. Let � be a nonnegative integer, and define subcategories X and Y of
T by

X := N ∗ N [1] ∗ · · · ∗ N [�] and Y := X⊥T .

(a) We have T = X ∗ Y.
(b) If � ≥ 2n− 2, then Y ⊂ (N [<0]⊥T ) ∗ (N [≥0]⊥T ).

In the case when T is Krull–Schmidt, part (a) is [27, Proposition 2.4].

Proof. (a) Fix any T0 ∈ T . Since N is a contravariantly finite subcategory of T ,
there exists a triangle

Ni[i]
fi �� Ti

�� Ti+1
�� Ni[i+ 1]



SILTING REDUCTION AND CALABI–YAU REDUCTION 7879

for each 0 ≤ i ≤ � with a right N [i]-approximation fi of Ti. Inductively, one can
check that HomT (N [j], Ti) = 0 holds for any 0 ≤ j < i. In particular, T�+1 ∈ Y
holds. Now, using Ti ∈ N [i] ∗ Ti+1 repeatedly, we have

T0 ∈ N ∗ T1 ⊂ N ∗ N [1] ∗ T2 ⊂ · · · ⊂ N ∗ N [1] ∗ · · · ∗ N [�] ∗ T�+1 ⊂ X ∗ Y ,

as desired.
(b) For any Y ∈ Y , we take the triangle associated to the t-structure (T ≤−�−1,

T ≥−�−1) := (M[<0]⊥T [�+ 1],M[>0]⊥T [�+ 1]),

(4.1.5) σ≤−�−1Y �� Y �� σ≥−�Y �� (σ≤−�−1Y )[1].

It suffices to show σ≤−�−1Y ∈ N [<0]⊥T and σ≥−�Y ∈ N [≥0]⊥T .
We have that σ≤−�−1Y belongs to T ≤−�−1, which by (4.1.4) is a subcategory of

N [<0]⊥T . The first assertion follows.
To prove the second assertion, we need to show HomT (N [<0]⊥T , σ≥−�Y ) = 0.

By (4.1.4) it suffices to show the following since n− 1 ≤ �− n+ 1:

(i) HomT (M[i], σ≥−�Y ) = 0 for any i with �+ 1 ≤ i;
(ii) HomT (M[i], σ≥−�Y ) = 0 for any i with n ≤ i ≤ �;
(iii) HomT (N [i], σ≥−�Y ) = 0 for any i with 0 ≤ i ≤ �− n+ 1.

The statement (i) holds since σ≥−�Y ∈ T ≥−�.
We show (ii). Since (σ≤−�−1Y )[1]∈T ≤−�−2, we have HomT (M[i], (σ≤−�−1Y )[1])

= 0 for any i ≤ � + 1. Since Y ∈ Y and M[i] ∈ X = N ∗ N [1] ∗ · · · ∗ N [�] for any
n ≤ i ≤ � by (4.1.3), we have HomT (M[i], Y ) = 0 for any n ≤ i ≤ �. Thus the
statement follows from the triangle (4.1.5).

We show (iii). Since Y ∈ Y , we have HomT (N [i], Y ) = 0 for any 0 ≤ i ≤ �.
Since (σ≤−�−1Y )[1] ∈ T ≤−�−2 = T≥−�−1

⊥T and N ⊂ T≥−n, we have
HomT (N [i], (σ≤−�−1Y )[1]) = 0 for any 0 ≤ i ≤ � − n + 1. The statement fol-
lows from the triangle (4.1.5). �

4.2. Hearts of adjacent t-structures. In this subsection, we describe the heart
of a t-structure right adjacent to a silting subcategory. We first prepare some
notions. For an additive category M, an M-module is a contravariant additive
functor from M to the category of abelian groups. We say that an M-module F
is finitely presented if there exists a sequence of natural transformations

HomM(−,M ′) �� HomM(−,M) �� F �� 0

with M,M ′ ∈ M which is objectwise exact. We denote by modM the category
of finitely presented M-module. Although modM is in general not an abelian
category, we have the following sufficient condition.

Lemma 4.7. Let T be a triangulated category, and let M be a contravariantly
(resp., covariantly) finite subcategory of T . Then modM (resp., modMop) forms
an abelian category.

Proof. Our assumptions imply that any morphism f : M → N in M has a pseudo-

kernel, that is, a morphism g : M ′ → M such that the sequence HomM(−,M ′)
g·−→

HomM(−,M)
f ·−→ HomM(−, N) is exact. Thus the assertion follows from the

general result [5, Chapter III, Section 2, the second Proposition]. �
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Now we have the following description of the heart of a t-structure right adjacent
to a silting subcategory (cf. [23, Theorem 1.3(c)], [11, Chapter IV, Theorem 3.4]
and [50, Corollary 4.7]).

Proposition 4.8. Let T be a triangulated category.

(a) If M is a silting subcategory of T and admits a right adjacent t-strucutre
(M[<0]⊥T ,M[>0]⊥T ), then the functor HomT (M,−) : T → modM re-
stricts to an equivalence from the heart H to modM.

(b) If M is a silting subcategory of T and admits a left adjacent t-structure
(⊥T M[< 0],⊥T M[> 0]), then the functor HomT (−,M) : T → modMop

restricts to an anti-equivalence from the heart H to modMop.

Proof. We only prove (a) since (b) follows dually. Let (T ≤0, T ≥0) := (M[<0]⊥T ,
M[>0]⊥T ). For any M ∈ M, consider the triangle

M≤−1 �� M �� M0 �� M≤−1[1] (M≤−1 ∈ T ≤−1 and M0 ∈ H).

Let M0 := {M0 | M ∈ M}. Then a direct diagram chase shows that the functor
(−)0 : M → M0 is an equivalence. We have Hom(M≤−1,H) = 0, and hence we
have a commutative diagram

H

HomT (M0,−)
��

HomT (M,−)



��
���

���
���

���
�

modM0

(−)0

� �� modM.

So, by Morita’s theorem, it suffices to show that objects of M0 form a class of
projective generators of H.

Let M ∈ M. For any X ∈ H, applying HomT (−, X) to the triangle associated
to M as in the beginning of the proof, we obtain an exact sequence

0 = HomT (M
≤−1, X) �� HomT (M

0, X[1]) �� HomT (M,X[1]) = 0.

Thus Ext1H(M0, X) � HomT (M
0, X[1]) = 0. This shows that M0 is projective in

H, so objects of M0 are projective in H.
For X ∈ H, take a right M-approximation MX → X and form a triangle

NX �� MX �� X �� NX [1].

Applying HomT (M,−) to this triangle, we obtain long exact sequences

HomT (M,MX [i− 1]) → HomT (M, X[i− 1])

→ HomT (M, NX [i]) → HomT (M,MX [i]).

We claim that HomT (M, NX [i]) = 0 for i ≥ 1, hence NX ∈ T ≤0. Indeed,
HomT (M,MX [i]) vanishes for all i ≥ 1. If i = 1, then the left morphism is
surjective; if i > 1, then HomT (M, X[i − 1]) = 0. The claim follows immediately.
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Now taking the 0th cohomology associated to the t-structure (T ≤0, T ≥0), we obtain
an exact sequence in H

H0(MX) �� H0(X) �� H0(NX [1]),

(MX)0 X 0

showing that M0 consists of a class of projective generators of H. �

4.3. Right and left adjacent t-structures. In this subsection, under certain
assumptions, we show that a silting subcategory has a right adjacent t-structure if
and only if it has a left adjacent t-structures.

Let k be a field, and let D = Homk(−, k) denote the k-dual. We consider the
following conditions.

(RS1) T is a k-linear Hom-finite triangulated category and T fd is a thick subcat-
egory of T .

(RS2) T fd has an auto-equivalence S such that a relative Serre duality holds in
the sense that there exists a functorial isomorphism for any X ∈ T fd and
Y ∈ T ,

DHomT (X,Y ) � HomT (Y, SX).

In this case, we prove the following.

Theorem 4.9. Under the assumptions (RS1) and (RS2) let M be a silting object
of T . The following conditions are equivalent.

(a) M has a right adjacent t-structure (M [<0]⊥T ,M [>0]⊥T ) with M [>0]⊥T ⊂
T fd.

(b) M has a left adjacent t-structure (⊥T M [<0],⊥T M [>0]) with ⊥T M [<0] ⊂
T fd.

In this case, we have S(⊥T M [<0]) ⊂ M [<0]⊥T and ⊥T M [>0] ⊃ S−1(M [>0]⊥T ),
and S restricts to an equivalence S : ⊥T M [<0]∩⊥T M [>0] → M [<0]⊥T ∩M [>0]⊥T

of hearts.

In fact we will prove a more general result for silting subcategories. Let M be
a k-linear Hom-finite additive category. Then any M-module F can be naturally
regarded as a contravariant k-linear functorM → Modk. We define anMop-module
DF as the composition

DF := (M F−→ Modk
D−→ Modk).

We say that M is a dualizing k-variety [6] if the following conditions are satisfied.

• For any F ∈ modM, the functor DF belongs to modMop.
• For any F ∈ modMop, the functor DF belongs to modM.

In this case, we have anti-equivalences D : modM ↔ modMop, and modM has
enough projective objects projM and injective objects injM. We have an equiva-
lence

ν : projM �−→ injM given by ν(HomM(−,M)) := DHomM(M,−)

for M ∈ M, which we call the Nakayama functor.
Since any k-linear Hom-finite category which has an additive generator is a

dualizing k-variety, Theorem 4.9 follows from the following result.
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Theorem 4.10. Under the assumptions (RS1) and (RS2) let M be a silting sub-
category of T , and assume that M is a dualizing k-variety. Then the following
conditions are equivalent.

(a) M has a right adjacent t-structure (M[<0]⊥T ,M[>0]⊥T ) with M[>0]⊥T ⊂
T fd.

(b) M has a left adjacent t-structure (⊥T M[<0],⊥T M[>0]) with ⊥T M[<0] ⊂
T fd.

In this case, we have S(⊥T M[<0]) ⊂ M[<0]⊥T and ⊥T M[>0] ⊃ S−1(M[>0]⊥T ),
and S restricts to an equivalence S : ⊥T M[<0]∩⊥T M[>0] → M[<0]⊥T ∩M[>0]⊥T

of hearts; moreover, M is a functorially finite subcategory of T .

Before proving Theorem 4.10, we give the following characterization of the sub-
category T fd of T , which justifies the notation.

Lemma 4.11. Let M be a silting subcategory of T , and let X be an object of T .
Consider the following conditions:

(a) X belongs to T fd;
(b) the space HomT (M, X[i]) vanishes for almost all i ∈ Z;
(c) the space HomT (X[i],M) vanishes for almost all i ∈ Z.

Then (a) implies (b) and (c). If M[>0]⊥T ⊂ T fd, then (a) and (b) are equivalent;
if ⊥T M[<0] ⊂ T fd, then (a) and (c) are equivalent.

Proof. (a)⇒(b): Let X ∈ T fd. Then we have HomT (M, X[i]) = 0 and

HomT (M, X[−i]) � DHomT (S
−1X,M[i]) = 0

for i � 0 by Lemma 2.4.
(b)⇒(a): Assume M[>0]⊥T ⊂ T fd. If (b) holds, then there exists an integer

i such that HomT (M, X[<i]) = 0, i.e., X ∈ M[>−i]⊥T . Since M[>−i]⊥T =
M[>0]⊥T [−i] is contained in T fd, it follows that X belongs to T fd .

(a)⇒(c) and (c)⇒(a): Dual to (a)⇒(b) and (b)⇒(a), respectively. �

The “moreover” part of Theorem 4.10 is a consequence of Proposition 4.2. In
the rest of this section, we prove that (a) implies (b). Then the converse follows
by Lemma 4.5. Let (T≥0, T≤0) be the co-t-structure associated to M. We denote
by H the heart of the t-structure (T ≤0, T ≥0) := (M[< 0]⊥T ,M[> 0]⊥T ). We
denote by σ≤i and σ≥i+1 the truncation functors associated with the t-structures
(T ≤i, T ≥i) := (T ≤0[−i], T ≥0[−i]). Then, for any X ∈ T ≤0 = T≤0, there exists a
triangle

L[−1] �� Y �� X �� L

in T with L = σ≥0X ∈ H and Y = σ≤−1X ∈ T ≤−1 = T≤−1.
The following dual statement is a crucial step to prove that (⊥T M[< 0],

⊥T M[>0]) forms a t-structure on T . It was inspired by Guo’s result [20, Lemma
2.9].

Proposition 4.12. For any X ∈ T≥0, there exists a triangle

S−1(L) �� X �� Y �� S−1(L)[1]

in T with L ∈ H and Y ∈ T≥1. In particular, we have T≥0 = S−1(H) ∗ T≥1.
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Proof. It suffices to prove the first assertion. In fact, it implies T≥0 ⊂ S−1(H)∗T≥1.
Then the equality holds since S−1(H) ⊂ ⊥T M[>0] = T≥0 holds by the relative Serre
duality.

Fix X ∈ T≥0. Take a triangle

(4.3.1) X≥2
�� X �� W [−1] �� X≥2[1]

with X≥2 ∈ T≥2 and W ∈ M ∗M[1]. Then there exists a triangle

(4.3.2) M1
f �� M0

�� W �� M1[1]

with M0,M1 ∈ M. By Proposition 4.8 the functor F := HomT (M,−) : T →
modM induces an equivalence

F : H �−→ modM.

Since M is a dualizing k-variety by our assumption, we have the Nakayama functor

ν : projM �−→ injM. We define L ∈ H by the exact sequence in modM:

(4.3.3) 0 �� F (L) �� νF (M1)
νF (f) �� νF (M0) .

(This means that F (L) is the Auslander–Reiten translation of F (W ) unless W has
direct summands in M[1].) To continue the proof, we need the following lemma.

Lemma 4.13. There exists a morphism g ∈ HomT (S
−1(L), X) which induces a

functorial isomorphism for U ∈ T ≤0:

HomT (g, U) : HomT (X,U)
�−→ HomT (S

−1(L), U).

Proof. We first show that there are the following functorial isomorphisms:

(i) HomT (X,U) � HomT (W [−1], U);
(ii) HomT (W [−1], U) � DHomM(F (U), F (L));
(iii) DHomM(F (U), F (L)) � HomT (S

−1(L), U).

By the triangle (4.3.1), we have an exact sequence

HomT (X≥2[1],−) �� HomT (W [−1],−) �� HomT (X,−) �� HomT (X≥2,−).

Evaluated at U , this gives the functorial isomorphism (i), since

HomT (X≥2[≤1], U) = 0.

The triangle (4.3.2) and the exact sequence (4.3.3) yield a commutative diagram
with exact rows:

0 �� DHomT (W,U [1]) �� DHomT (M1, U)
D(·f) ��

��

DHomT (M0, U)

��
0 �� HomM(F (U), F (L)) �� HomM(F (U), νF (M1))

νF (f)· �� HomM(F (U), νF (M0)).

Here we used the vanishing of DHomT (M0, U [1]). The vertical arrows are the
functorial isomorphism for M ∈ M,

HomT (M,U) � HomM(F (M), F (U)) � DHomM(F (U), νF (M)).

As a consequence, the diagram gives us the functorial isomorphism (ii).
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Since σ≥0U ∈ H and F (U) � F (σ≥0U), we have functorial isomorphisms

HomM(F (U), F (L)) � HomM(F (σ≥0U), F (L))

� HomT (σ
≥0U,L) � HomT (U,L).

Using the relative Serre duality, we obtain the functorial isomorphism (iii).
Composing (i), (ii), and (iii), we have a functorial isomorphism

HomT (X,U) � HomT (S
−1(L), U)

for U ∈ T ≤0. Using the relative Serre duality, we have a functorial isomorphism

HomT (−, S−1(L)) � HomT (−, X)

on S−1(T ≤0 ∩ T fd). This is induced by a morphism g ∈ HomT (S
−1(L), X) by

Yoneda’s lemma since S−1(L) belongs to S−1(T ≤0 ∩ T fd). �

Now we continue the proof of Proposition 4.12. We extend the morphism g given
in Lemma 4.13 to a triangle

(4.3.4) Y [−1] �� S−1(L)
g �� X �� Y.

It suffices to prove Y ∈ T≥1, that is, HomT (Y,M[≥ 0]) = 0. Since
HomT (X,M[≥ 1]) = 0 and HomT (S

−1(L),M[�=0]) = DHomT (M, L[�=0]) = 0
by L ∈ H, it follows that HomT (Y,M[≥ 2]) = 0. Moreover, we have an exact
sequence

0=HomT (S
−1(L),M[−1]) →HomT (Y,M)→HomT (X,M)

·g−→HomT (S
−1(L),M)

→HomT (Y,M[1])→HomT (X,M[1])=0.

By Lemma 4.13 the map g is bijective, and hence HomT (Y,M)=0=HomT (Y,M[1]).
So Y ∈ T≥1, and the proof is complete. �

Now we are ready to prove Theorem 4.10.

Proof of Theorem 4.10. We only show that (a) implies (b). The converse follows
by Lemma 4.5.

Since ⊥T M[≤0] = ⊥T T≥0 and ⊥T M[>0] = T≥0 hold,

HomT (
⊥T M[≤0],⊥T M[>0]) = 0

holds. To prove that (⊥T M[<0],⊥T M[>0]) is a t-structure, it is enough to show
T = (⊥T T≥0) ∗ T≥0. Since T =

⋃
�≥0 T≥−�, it is enough to show T≥−� ⊂ (⊥T T≥0) ∗

T≥0. Using Proposition 4.12 repeatedly, we have

T≥−� ⊂ S−1(H[�]) ∗ T≥1−� ⊂ S−1(H[�]) ∗ S−1(H)[�− 1] ∗ T≥2−� ⊂ · · · ,
and hence

(4.3.5) T≥−� ⊂ S−1(H)[�] ∗ S−1(H)[�− 1] ∗ · · · ∗ S−1(H)[1] ∗ T≥0.

This shows the desired equality (⊥T T≥0) ∗ T≥0 = T since by the relative Serre
duality S−1(H)[�] ∗ · · · ∗ S−1(H)[1] ⊆ ⊥T T≥0 holds. Thus (⊥T M[<0],⊥T M[>0]) is
a t-structure.

Now we show ⊥T T≥0 ⊂ T fd. For any X ∈ ⊥T T≥0, we take � � 0 such that
X ∈ T≥−�. Applying Lemma 2.5 to (4.3.5), we have X ∈ thickS−1(H) ⊂ T fd.

The remaining statements follow immediately from the relative Serre duality. �
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5. Silting reduction versus Calabi–Yau reduction

In Theorems 3.1 and 3.6, we realize silting reduction as subfactor categories.
This is analogous to the Calabi–Yau reduction introduced by Yoshino and Iyama
in [27]. In this section we relate these two constructions using the results in the
preceding sections. We will show that silting reduction of Calabi–Yau triangulated
categories induces Calabi–Yau reduction (Theorem 5.15).

Throughout this section let k be a field, and let D = Homk(−, k) denote the
k-dual. Let d ≥ 1 be an integer.

5.1. Calabi–Yau triples. Let T be k-linear triangulated category, let M be a
subcategory of T , and let T fd be a triangulated subcategory of T . We say that
(T , T fd,M) is a (d+ 1)-Calabi–Yau triple if the following conditions are satisfied.

(CY1) The category T is Hom-finite and Krull–Schmidt.
(CY2) The pair (T , T fd) is relative (d + 1)-Calabi–Yau in the sense that there

exists a bifunctorial isomorphism for any X ∈ T fd and Y ∈ T :

DHomT (X,Y ) � HomT (Y,X[d+ 1]).

(CY3) The subcategory M is a silting subcategory of T and admits a right ad-
jacent t-structure (T ≤0, T ≥0) := (M[<0]⊥T ,M[>0]⊥T ) with T ≥0 ⊂ T fd.
Moreover, M is a dualizing k-variety.

It follows from Theorem 4.10 that M is a functorially finite subcategory of T .
We remark that the condition that M is a dualizing k-variety will not be used in
this section and section 5.2 but will be crucial in sections 5.3 and 5.4. We remind
the reader that if M = addM is the additive closure of a silting object M , then M
is automatically a dualizing k-variety. By Theorem 4.10 again, (CY3) is equivalent
to its dual:

(CY3
op
) The subcategory M is a silting subcategory of T and admits a left adja-
cent t-structure (⊥T M[<0],⊥T M[>0]) with ⊥T M[<0] ⊂ T fd. Moreover,
M is a dualizing k-variety.

Note that the condition (CY3) is independent of the choice of M in the following
sense:

Remark 5.1. Let M and N be silting subcategories of T which are dualizing k-
varieties and compatible with each other. Then (T , T fd,M) is a (d+1)-Calabi–Yau
triple if and only if (T , T fd,N ) is a (d+ 1)-Calabi–Yau triple.

Proof. We will show the “only if” part. By Theorem 4.3 N admits a right adjacent
t-structure (N [<0]⊥T ,N [>0]⊥T ). Take � � 0 such that M ⊂ N [−�] ∗ N [1 − �] ∗
· · · ∗ N [� − 1] ∗ N [�]. Then N [>0]⊥T ⊂ M[>�]⊥T ⊂ T fd. Thus (T , T fd,N ) is a
(d+ 1)-Calabi–Yau triple. �

In the rest of this subsection, let (T , T fd,M) be a (d+1)-Calabi–Yau triple. For
simplicity we assume M = addM. Put

T≤0 :=
⋃
i≥0

M∗M[1] ∗ · · · ∗M[i],

T≥0 :=
⋃
i≥0

M[−i] ∗ · · · ∗M[−1] ∗M.
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Then (T≥0, T≤0) is a bounded co-t-structure on T with co-heart M by Proposi-
tion 2.8. As a consequence T≤0 = T≥0[−1]⊥T = M[<0]⊥T = T ≤0. Moreover, since
T fd is closed under shifts, we have T ≥i ⊂ T fd for any i ∈ Z.

Now we show that the t-structure (T ≤0, T ≥0) restricts to a t-structure on T fd.

Lemma 5.2. The pair (T fd ∩ T ≤0, T ≥0) is a bounded t-structure on T fd. It has
the same heart H as (T ≤0, T ≥0). Consequently, T fd is the smallest triangulated
subcategory of T containing H.

Proof. For X ∈ T fd, there is a triangle

σ≤0X �� X �� σ≥1X �� (σ≤0X)[1].

Since both X and σ≥1X belong to the triangulated subcategory T fd of T , it follows
that σ≤0X belongs to T fd and hence to T fd∩T ≤0. This shows that (T fd∩T ≤0, T ≥0)
is a t-structure on T fd.

Let X be any object of T fd. By Lemma 4.11 there exist integers i ≤ j such
that HomT (M, X[<i]) = 0 and HomT (M, X[>j]) = 0. Namely, X belongs to
T fd ∩ T ≤j ∩ T ≥i. By definition the t-structure (T fd ∩ T ≤0, T ≥0) is bounded.

The second statement holds true because T ≥0 ⊂ T fd. �

Remark 5.3. Assume further that T is algebraic and M = addM is the additive
closure of a silting object M . Then there is a dg algebra A such that there is a
triangle equivalence T → per(A) which takes M to A; see section 2.5. It follows
that Hi(A) � Homper(A)(A,A[i]) � HomT (M,M [i]) = 0 for i > 0 and H0(A) �
Endper(A)(A) � EndT (M) is finite dimensional over k. Let

H := {X ∈ per(A) | Hi(X) = 0 for all i �= 0}.

By Proposition 4.8 we have an equivalence

H0 = Homper(A)(A,−) : H → modH0(A).

Therefore, we have an equality

H = {X ∈ D(A) | Hi(X) = 0 for any i �= 0, H0(X) ∈ modH0(A)},

which implies per(A) ⊃ Dfd(A), since Dfd(A) is the smallest triangulated subcate-
gory of D(A) containing H; see for example [29, Proposition 2.5(b)]. Comparing
this with Lemma 5.2, we obtain that the equivalence T → per(A) restricts to a
triangle equivalence T fd → Dfd(A). Thus the dg algebra A satisfies the following
conditions:

(1) Hi(A) = 0 for i > 0;
(2) H0(A) is finite dimensional over k;
(3) per(A) ⊃ Dfd(A);
(4) there is a bifunctorial isomorphism for X ∈ Dfd(A) and Y ∈ per(A),

DHomper(A)(X,Y ) � Homper(A)(Y,X[d+ 1]).

This is very close to the original setting of Amiot in [3, Section 2] and of Guo in
[20, Section 1].
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5.2. The silting reduction of a Calabi–Yau triple. Let (T , T fd,M) be a
(d + 1)-Calabi–Yau triple, as in section 5.1. Let P be a functorially finite sub-
category of M. Then P is a presilting subcategory of T satisfying the conditions
(P1) and (P2) in section 3.1. Let

S := thickP, U := T /S.
Let ρ : T → U be the canonical projection functor. By abuse of notation, we will
write M for ρ(M). By the relative (d + 1)-Calabi–Yau property (CY2), we have
T fd ∩ S⊥T = T fd ∩ ⊥T S, which will be denoted by U fd, i.e.,

U fd := T fd ∩ S⊥T = T fd ∩ ⊥T S.
This category can be considered as a full subcategory of U (by, for example, [47,
Lemma 9.1.5]).

Theorem 5.4. The triple (U ,U fd,M) is a (d+ 1)-Calabi–Yau triple. Namely,

(a) U is Hom-finite and Krull–Schmidt.
(b) The pair (U ,U fd) is relative (d+ 1)-Calabi–Yau.
(c) The subcategory M of U is a dualizing k-variety. It is a silting subcategory

of U and admits a right adjacent t-structure (M[<0]⊥U ,M[>0]⊥U ) with
M[>0]⊥U ⊂ U fd.

In the proof of this theorem a crucial role is played by the following description
of U obtained in Section 3: Let

(5.2.1) Z := (⊥T S<0) ∩ (S>0
⊥T ).

Then we have a triangle equivalence (Theorems 3.1 and 3.6)

G :
Z
[P]

�−→ U .

Our strategy is to show that under G the triple (U ,U fd,M) is equivalent to
( Z
[P] , T fd ∩ Z, M

[P] ) and then to prove Theorem 5.4 for ( Z
[P] , T fd ∩ Z, M

[P] ). We need

some further preparation.

Lemma 5.5. We have an equality U fd = T fd ∩ Z of subcategories of T .

Proof. Let X ∈ T fd. Then X ∈ Z if and only if HomT (X,S<0) = 0 and
HomT (S>0, X) = 0. By the relative (d + 1)-Calabi–Yau property, this amounts
to HomT (S<d+1, X) = 0 and HomT (S>0, X) = 0, which, by S = S>0 ∗S≤0 (Propo-
sition 2.8), is equivalent to X ∈ S⊥T . �

For X ∈ T , we have a triangle

(5.2.2) σ≤0X
aX �� X

bX �� σ≥1X
cX �� (σ≤0X)[1]

in T such that σ≤0X ∈ T ≤0 and σ≥1X ∈ T ≥1 ⊂ T fd.

Lemma 5.6. Let X ∈ Z. Then σ≥1X ∈ T fd ∩ Z and σ≤0X ∈ Z.

Proof. Since P ⊂ M, we have by the definition of T ≥1 that

HomT (P, (σ≥1X)[i]) = 0 for any i ≤ 0,(5.2.3)

and by the definition of T ≤0 that

HomT (P, (σ≤0X)[i]) = 0 for any i ≥ 1.(5.2.4)
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Applying HomT (P,−) to the triangle (5.2.2), we obtain an exact sequence

HomT (P, X[i]) → HomT (P, (σ≥1X)[i]) → HomT (P, (σ≤0X)[i+ 1]).

Assume i ≥ 1. Then the left term vanishes because X ∈ Z and the right term
vanishes due to (5.2.4). Thus we have HomT (P, (σ≥1X)[i]) = 0 for any i ≥ 1.
Combined with (5.2.3), this yields σ≥1X ∈ T fd ∩ S⊥T = U fd. By Lemma 5.5,
σ≥1X ∈ T fd ∩ Z.

Moreover, (σ≥1X)[−1] belongs to U fd = T fd ∩Z. Since Z is closed under exten-
sions and X ∈ Z, the triangle (5.2.2) shows σ≤0X ∈ Z. �

Proof of Theorem 5.4. By Lemma 5.5 the category T fd ∩ Z is left and right or-
thogonal to P, thus it can be viewed as a full subcategory of Z

[P] . Moreover, it

follows from Lemma 5.5 that on T fd ∩ Z there is a natural isomorphism 〈1〉 � [1].
Therefore, T fd ∩ Z is naturally a triangulated subcategory of Z

[P] . Thanks to the

equivalence G, to prove the theorem it suffices to show that the statements (a), (b),
and (c) hold for the triple ( Z

[P] , T fd ∩ Z, M
[P] ).

(a) The category Z is a full subcategory of T which is closed under direct sum-
mands. Thus it is a Hom-finite and Krull–Schmidt, so is the additive quotient
Z
[P] .

(b) Since on T fd ∩Z there is a natural isomorphism 〈1〉 � [1], it follows that for
X ∈ T fd ∩ Z and Y ∈ Z

[P] we have HomT (X,P) � DHomT (P, X[d+ 1]) = 0 and

HomT (P, X[d+ 1]) = 0. Therefore, we have bifunctorial isomorphisms

DHom Z
[P]

(X,Y ) = DHomZ(X,Y ) � HomZ(Y,X[d+ 1]) = Hom Z
[P]

(Y,X[d+ 1])

� Hom Z
[P]

(Y,X〈d+ 1〉).

(c) By Theorem 3.7 M
[P] ⊂

Z
[P] is a silting subcategory. By Lemma 4.1 to prove

that (M
[P] 〈<0〉

⊥ Z
[P] , M

[P]〈>0〉
⊥ Z

[P] ) = (M〈<0〉
⊥ Z

[P] ,M〈>0〉
⊥ Z

[P] ) is a t-structure, it

suffices to prove Z
[P] = (M〈< 0〉

⊥ Z
[P] ) ∗ (M〈≥ 0〉

⊥ Z
[P] ). Let X ∈ Z. By Theo-

rem 2.1(b) the triangle (5.2.2) induces a triangle in Z
[P] ,

(5.2.5) σ≤0X
aX �� X

bX �� σ≥1X �� σ≤0X〈1〉 .

We only have to show that σ≤0X ∈ M〈<0〉
⊥ Z

[P] and σ≥1X ∈ M〈≥0〉
⊥ Z

[P] . We
know that σ≥1X ∈ T fd ∩ Z and σ≤0X ∈ Z hold by Lemma 5.6.

Fix i ≥ 0. Then we have M〈i〉 ∈ P ∗ · · · ∗ P[i− 1] ∗M[i] by the construction of
〈i〉. This implies HomT (M〈i〉, T ≥1) = 0. Hence T ≥1 ∩ Z � σ≥1X is contained in

M〈≥0〉
⊥ Z

[P] .
Fix i > 0. Then we have M〈1−i〉 ∈ M[1−i]∗P[2−i]∗· · ·∗P by the construction

of 〈1− i〉. This implies HomT (M〈1− i〉[−1], T ≤0) = 0. Further, for any M ∈ M,
we have a triangle

M〈1− i〉[−1] �� M〈−i〉 b �� P
a �� M〈1− i〉

with a right P-approximation a. Applying HomT (−, T ≤0) to this triangle, we
have that the map HomT (P, T ≤0) → HomT (M〈−i〉, T ≤0) is surjective. Hence

Hom Z
[P]

(M〈−i〉, T ≤0 ∩ Z) = 0, and T ≤0 ∩ Z � σ≤0X is contained in M〈<0〉
⊥ Z

[P] .
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Consequently, (M〈<0〉
⊥ Z

[P] ,M〈>0〉
⊥ Z

[P] ) forms a t-structure on Z
[P] . Finally, if

X ∈ M〈≥0〉
⊥ Z

[P] , the triangle (5.2.5) shows that X is isomorphic to σ≥1X and

hence lies in U fd = T fd ∩ Z. Consequently, M〈> 0〉
⊥ Z

[P] = (M〈≥ 0〉
⊥ Z

[P] )〈1〉 is
contained in U fd.

Finally, that M
[P] is a dualizing k-variety follows from the following elementary

observation. This completes the proof. �

Proposition 5.7. Let M be a dualizing k-variety, and let P be a functorially finite
subcategory of M. Then M

[P] is again a dualizing k-variety.

Proof. Since P is a functorially finite subcategory of M, it follows that the repre-
sentable functors of M

[P] (resp., (
M
[P] )

op) are finitely presented as M-modules (resp.,

as Mop-modules). One checks that an M
[P] -module (resp., (M

[P] )
op-module) is finitely

presented as an M
[P] -module (resp., (M

[P] )
op-module) if and only if it is finitely pre-

sented as an M-module (resp., Mop-module). Therefore, we have a commutative
diagram

modM
[P]

��

�� D �� mod(M
[P] )

op

��
modM �� D �� modMop

showing that M
[P] is a dualizing k-variety. �

5.3. The Amiot–Guo–Keller cluster category of a Calabi–Yau triple. As-
sume that (T , T fd,M) is a (d + 1)-Calabi–Yau triple. We keep the notation in
section 5.1. Consider the triangle quotient

C := T /T fd,

which we call the Amiot–Guo–Keller (AGK ) cluster category of T . Let π : T → C
denote the canonical projection functor. We define a full subcategory F of T by

F := T≥1−d ∩ T≤0
Prop.2.8(b)

= M∗M[1] ∗ · · · ∗M[d− 1].

Now we give the following generalization of fundamental results due to Amiot
and Guo [3,20] to our setting of (d+1)-Calabi–Yau triples. In particular Theorem
5.8(b) says that F is a fundamental domain of C in T . We observe that a hidden key
point of the proofs in [3, 20] is the existence of right and left adjacent t-structures
in (CY3) and (CY3op). This motivates our study in section 4 and enables us to
make the generalization.

Theorem 5.8.

(a) The category C is a d-Calabi–Yau triangulated category.
(b) The functor π : T → C restricts to an equivalence F → C of additive cate-

gories.
(c) π(M) is a d-cluster-tilting subcaegory of C, and π : M → π(M) is an

equivalence.

The following proposition will play an important role in the proof of Theorems 5.8
and 5.15.
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Proposition 5.9. The functor π : T → C induces a bijection (resp., injection)
HomT (U, V ) → HomC(U, V ) for any U ∈ T≤0 and V ∈ T≥1−d (resp., V ∈ T≥−d).
Consequently, it restricts to a fully faithful functor F → C.

In particular for M,N ∈ M, we have isomorphisms HomT (M,N [i]) �
HomC(M,N [i]) for all i ≤ d − 1. To prove this proposition we need the follow-
ing lemma.

Lemma 5.10. Let X ∈ T≤0 and Y ∈ T . Then any morphism in HomC(X,Y )

has a representative of the form X
s←− Z

f−→ Y such that the cone of s belongs to
T≤0 ∩ T fd.

Proof. Any morphism X → Y in C can be written as X
s←− Z

f−→ Y such that there
exists a triangle

Z
s �� X

t �� W �� Z[1]

with W ∈ T fd. Recall that T≤0 = T ≤0. Thus t factors through σ≤0W → W since
HomT (X, σ≥1W ) = 0. We obtain the following commutative diagram of triangles.

σ≥1W

Z
s �� X

t �� W ��

��

Z[1]

Z ′ sh ��

h

��

X �� σ≤0W ��

��

Z ′[1]

��

Because the cone σ≤0W of sh belongs to T≤0 ∩ T fd by Lemma 5.2, the morphism

X
s←− Z

f−→ Y is equivalent to X
sh←− Z ′ fh−−→ Y , so the assertion follows. �

Proof of Proposition 5.9. Let U ∈ T≤0 and V ∈ T≥−d.
First we show that HomT (U, V ) → HomC(U, V ) is injective. Assume that f ∈

HomT (U, V ) becomes zero in C. Then it factors through some W ∈ T fd (by, for
example, [47, Lemma 2.1.26]), and further through σ≤0W because U ∈ T≤0. By
the relative (d+ 1)-Calabi–Yau property, we have

HomT (σ
≤0W,V ) � DHomT (V, (σ

≤0W )[d+ 1]) = 0

as V ∈ T≥−d. Thus, f must be zero.
Next we show that HomT (U, V ) → HomC(U, V ) is surjective if V ∈ T≥1−d.

By Lemma 5.10, a morphism in HomC(U, V ) has a representative of the form

U
s←− Y

f−→ V such that the cone W of s belongs to T≤0 ∩ T fd. We have an
exact sequence

HomT (U, V )
s−→ HomT (Y, V ) → HomT (W [−1], V ).

As W [−1] ∈ T fd, we can apply the relative (d+ 1)-Calabi–Yau property to obtain

HomT (W [−1], V ) � DHomT (V,W [d]) = 0.

The last equality holds because V ∈ T≥1−d and W [d] ∈ T≤−d. So there exists

g ∈ HomT (U, V ) such that f = gs, and hence U
s←− Y

f−→ V is equivalent to

U
g−→ V . It follows that HomT (U, V ) → HomC(U, V ) is surjective. �
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We also need the following observation.

Lemma 5.11. We have σ≤0(T≥1−d) ⊂ F .

Proof. We need to show σ≤0X ∈ T≥1−d, that is, HomT (σ
≤0X,M[≥d]) = 0. Con-

sider the triangle

σ≤0X �� X �� σ≥1X �� (σ≤0X)[1].

Applying HomT (−,M[≥d]), we have an exact sequence

HomT (X,M[≥d]) → HomT (σ
≤0X,M[≥d]) → HomT ((σ

≥1X)[−1],M[≥d]).

Since X ∈ T≥1−d, we have HomT (X,M[≥d]) = 0. Moreover,

HomT ((σ
≥1X)[−1],M[≥d]) � DHomT (M, (σ≥1X)[≤0]) = 0.

Thus, the assertion follows. �

Now we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. (b) The functor F → C is fully faithful by Proposition 5.9.
It remains to show that it is dense. Let X be any object of C and view it as an
object of T . By (CY3) and (CY3op) we have t-structures (M[<0]⊥T ,M[>0]⊥T )
and (⊥T M[<d],⊥T M[>d]) on T satisfying M[>0]⊥T ⊂ T fd and ⊥T M[<d] ⊂ T fd.
The second t-structure gives a triangle

Y �� X �� Z �� Y [1]

with Y ∈ ⊥T M[≤d] and Z ∈ ⊥T M[>d] = T≥1−d. The first t-structure gives a
triangle

σ≤0Z �� Z �� σ≥1Z �� (σ≤0Z)[1]

with σ≤0Z ∈ M[<0]⊥T and σ≥1Z ∈ M[≥0]⊥T . Then σ≤0Z ∈ σ≤0(T≥1−d) ⊂ F
holds by Lemma 5.11. Since both Y and σ≥1Z belong to T fd, we have X � Z �
σ≤0Z ∈ F in C. Thus, the assertion follows.

(a) First, by (b) the category C is Hom-finite.
Second, we show that C is d-Calabi–Yau. Let X and Y be objects of T . Recall

that (T≥0, T≤0) is a bounded co-t-structure on T . It follows that there exists an
integer i such that Y belongs to T≥i. Now consider the triangle

σ≤i−1X �� X �� σ≥iX �� (σ≤i−1X)[1].

Because σ≤i−1X ∈ T ≤i−1 = T≤i−1, we have HomT (Y, σ
≤i−1X) = 0. It follows

that the induced homomorphism HomT (Y,X) → HomT (Y, σ
≥iX) is injective. So

the morphism X → σ≥iX is a local T fd-envelope of X relative to Y in the sense of
[3, Definition 1.2]. Therefore by [3, Lemma 1.1, Theorem 1.3, and Proposition 1.4]
we see that C is d-Calabi–Yau.

(c) As all M[i], 0 ≤ i ≤ d − 1 belong to F , we have by Proposition 5.9 that
π : M → π(M) is an equivalence, and HomC(M,M[i]) � HomT (M,M[i]) = 0 for
1 ≤ i ≤ d− 1, i.e., M is d-rigid. Since F = M∗M[1] ∗ · · · ∗M[d− 1] by definition
and π : F → C is dense, we have C = π(M) ∗ π(M)[1] ∗ · · · ∗ π(M)[d − 1]. Thus,
π(M) is a d-cluster-tilting subcategory of C. �
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We end this subsection with the observation below, where the d = 2 case of part
(b) is due to Keller and Nicolás [36] in the algebraic case; see also [13, Theorem
4.5]. Let

siltF T := {N ∈ silt T | N ⊂ F}.
Let d-ctilt C be the class of d-cluster-tilting subcategories of C, where we identify
two d-cluster-tilting subcategories N and N ′ of C when addN = addN ′.

Corollary 5.12. If M = addM for some silting object M of T , then the following
statements hold.

(a) The functor π : T → C gives a map π : silt T → d-ctilt C.
(b) The map in (a) restricts to an injection π : siltF T → d-ctilt C, which is a

bijection if d = 1 or d = 2.

Proof. For any N ∈ silt T , it follows from Remark 5.1 that (T , T fd,N ) is a (d+1)-
Calabi–Yau triple. Thus, by Theorem 5.8, π(N ) is a d-cluster-tilting subcategory
of C. In this way, we obtain a map π : silt T → d-ctilt C. Since π : F → C is fully

faithful by Proposition 5.9, the induced map π : siltF T → d-ctilt C is injective.
We show that it is surjective for d = 1 and d = 2. For d = 1, this is true

since we have siltF T = {M} and d-ctilt C = {π(M)}. Next assume d = 2. For
a subcategory N of F , assume that π(N ) is a 2-cluster-tilting subcategory of C.
Then N is a presilting subcategory of T since HomT (N ,N [≥2]) = 0 by N ⊂ F and
HomT (N ,N [1]) → HomC(N ,N [1]) is injective by Proposition 5.9. Using Bongartz

completion [24, Proposition 4.2], there exists N ′ ∈ siltF T containing N . Since
π(N ′) is a 2-cluster-tilting subcategory of C containing π(N ), we have π(N ) =
π(N ′). Therefore, N = N ′ holds. �

Remark 5.13. Assume d = 2, let M be a silting object in T , and let Λ := EndT (M).
It is shown in [1] that we have a bijection 2-silt Λ → 2-ctilt C, where 2-silt Λ de-

notes the set of 2-term silting objects in Kb(projΛ). Thus there is a bijective map

siltF T → 2-silt Λ making the following diagram of bijective maps commutative.

siltF T ��

π

		
		

			
			

2-silt Λ

��















2-ctilt C

Under the assumption that T is an algebraic triangulated category, this is given in
[13]. Note, however, that in this case there is a triangle functor T → Kb(projΛ),

which induces a bijective map siltF T → 2-silt Λ making the above diagram com-
mutative; see [13, Proposition A.3] (and Theorem A.7 of the arXiv version of [13]).
In the general setting the triangle functor T → Kb(projΛ) and the direct definition

of the map siltF T → 2-silt Λ are not available.

We do not know if the map π : siltF T → d-ctilt C in Corollary 5.12(b) is bijective
for d > 2. We conjecture that this is the case.

Conjecture 5.14. The map π : siltF T → d-ctilt C in Corollary 5.12(b) is bijective
for all d ≥ 1.
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5.4. Silting reduction induces Calabi–Yau reduction. Let (T , T fd,M) be a
(d+1)-Calabi–Yau triple, as in section 5.1. Let P be a functorially finite subcategory
of M.

By Theorem 5.8 C = T /T fd is a d-Calabi–Yau triangulated category and π(M)
is a d-cluster-tilting object of C. In particular, π(P) is d-rigid. Here π : T → C is
the canonical projection functor. By abuse of notation, we will write M and P for
π(M) and π(P).

Analogous to (5.2.1), we define a subcategory of C by

Z ′ := ⊥C (π(P)[1] ∗ π(P)[2] ∗ · · · ∗ π(P)[d− 1]).

Thus, we can form the Calabi–Yau reduction as explained in section 2.2:

CP :=
Z ′

[π(P)]
.

By Theorem 2.2, the subcategory π(M)
[π(P)] in CP is d-cluster-tilting, and by Proposi-

tion 5.9 we have an equivalence

(5.4.1)
π(M)

[π(P)]
� M

[P]
.

On the other hand, let S := thickP, U := T /S, and ρ : T → U be the canonical
projections. We consider U fd := T fd ∩ S⊥T as a full subcategory of U . Then
(U ,U fd, ρ(M)) is a relative (d + 1)-Calabi–Yau triple by Theorem 5.4, and the
triangle quotient

U/U fd

is a d-Calabi–Yau triangulated category by Theorem 5.8. Let πU : U → U/U fd be the
canonial projection. Then the subcategory πU (ρ(M)) in U/U fd is d-cluster-tilting,
and by Proposition 5.9 and Theorem 3.1, we have equivalences

(5.4.2) πU (ρ(M)) � ρ(M) � M
[P]

.

Therefore, we obtain two (d + 1)-Calabi–Yau triangulated categories, CP and
U/U fd, and they have d-cluster-tilting subcategories, which are equivalent to each
other. The following main result asserts that these two triangulated categories are
equivalent.

Theorem 5.15. The two categories CP and U/U fd are triangle equivalent.

In this sense, we say that the AGK cluster category construction Theorem 5.8
takes the silting reduction of T with respect to P to the Calabi–Yau reduction of
C with respect to π(P).

Remark 5.16. Let (Q,W ) be a quiver with potential, and let Γ = Γ(Q,W ) be
its complete Ginzburg dg algebra; see [16, 19, 40]. Assume that H0(Γ) is finite
dimensional. Then the triple (per(Γ),Dfd(Γ),Γ) is a 3-Calabi–Yau triple. The
triangle quotient

C(Q,W ) = per(Γ)/Dfd(Γ)

is called the cluster category of (Q,W ). Let i be a vertex of Q, let e = ei be the
trivial path at i, and let (Q′,W ′) be the quiver with potential obtained from (Q,W )
by deleting the vertex i. It is stated in [34, Theorem 7.4] that there is a triangle
equivalence between the Calabi–Yau reduction of C(Q,W ) with respect to eiΓ and
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the cluster category C(Q′,W ′) of (Q′,W ′). In conjunction with [34, Corollary 7.3]
our Theorem 5.15 provides an alternative proof to this statement.

We start the proof of Theorem 5.15 with two lemmas.

Lemma 5.17. For any X ∈ Z and for i ≤ d− 1, the map

(5.4.3) HomT (X,P[i]) → HomC(X,P[i])

is bijective. In particular, HomC(X,P[i]) = 0 for 1 ≤ i ≤ d− 1.

Proof. Consider the triangle (5.2.2), which induces a commutative diagram for
i ≤ d− 1,

HomT (X,P[i])
aX ��

��

HomT (σ
≤0X,P[i])

��
HomC(X,P[i])

aX �� HomC(σ
≤0X,P[i]).

The upper map is bijective since σ≥1X ∈ U fd ⊂ ⊥T S holds by Lemma 5.6 and
Lemma 5.5, and the lower map is bijective since aX : σ≤0X → X becomes an
isomorphism in C. Further, since σ≤0X ∈ T ≤0 = T≤0 and P[i] ⊂ T≥1−d, the
right map is bijective by Proposition 5.9. The bijectivity of the left map follows
immediately.

As X ∈ Z, we have HomT (X,P[>0]) = 0. In conjunction with the first state-
ment, this implies the second statement. �

Lemma 5.18. The functor π : T → C induces a dense functor Z → Z ′.

Proof. By Lemma 5.17, π gives a functor Z → Z ′. We need to show that this is
dense.

Fix any Y ∈ Z ′. By Theorem 5.8(b), there existsX ∈ F = T≥1−d∩T≤0 such that
π(X) � Y . Since P ⊂ M, we have HomT (P, X[≥1]) = 0 and HomT (X,P[≥d]) = 0.
By Proposition 5.9, we have HomT (X,P[i]) � HomC(Y,P[i]) = 0 for 1 ≤ i ≤ d− 1.
Thus, X ∈ Z and the assertion follows. �

Therefore, the functor π : T → C induces additive functors Z → Z ′ and P →
π(P), and further induces an additive functor

(5.4.4) π̃ : U � Z
[P]

−→ CP =
Z ′

[π(P)]
.

We observed in sections 3.2 and 2.2 that both categories Z
[P] and

Z′

[π(P)] have struc-

tures of triangulated categories. Now we show the following.

Proposition 5.19. The functor π̃ : U → CP is a triangle functor which is dense.

Proof. By Lemma 5.17, the image of a left P-approximation in Z gives a left π(P)-
approximation in Z ′. Thus the functor commutes with shifts.

Next we show that the functor sends triangles to triangles. The triangles in
Z
[P] are defined by the commutative diagram (2.2.1) in Theorem 2.1. The im-

age of (2.2.1) in C is also a commutative diagram of triangles with a left π(P)-

approximation ιX by Lemma 5.17. Thus X
f−→ Y

g−→ Z
a−→ X〈1〉 is a triangle in

Z′

[π(P)] . Thus the assertion follows.

The functor π̃ : U → CP is dense by Lemma 5.18. �
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Now we are ready to prove Theorem 5.15.

Proof of Theorem 5.15. Since π(T fd) = 0 and U fd ⊂ T fd, we have π̃(U fd) = 0.
Therefore π̃ induces a triangle functor π′ : U/U fd → CP . It remains to show that
π′ is an equivalence. Tracing the construction of π′, we see that π′ sends the d-
cluster-tilting subcategory πU (ρ(M)) of U/U fd to the d-cluster-tilting subcategory
π(M)
[π(P)] of CP . Moreover, we have equivalences of categories

πU (ρ(M))
(5.4.2)
� M

[P]

(5.4.1)
� π(M)

[π(P)]
,

whose composition is induced by π′. Thus the triangle functor π′ : U/U fd → CP is
an equivalence by Proposition 2.3. �

6. Conjectures of Auslander–Reiten and Tachikawa

In this section, we discuss the relationship between silting theory and the con-
jecture of Tachikawa and that of Auslander–Reiten.

Let k be a field, let A be a finite-dimensional k-algebra, and let n be the number
of pairwise nonisomorphic simple A-modules. Motivated by Tachikawa’s study [51]
on the famous Nakayama conjecture, Auslander and Reiten proposed the following
conjecture:

The Auslander–Reiten conjecture [7]. If X ∈modA satisfies ExtiA(X,X⊕A)
= 0 for all i > 0, then X is a projective A-module.

Now we pose the following conjectures in the context of silting theory.

Conjecture 6.1. Db(modA) has no presilting object X such that addX contains
projA as a proper subcategory.

Conjecture 6.2. There does not exist a thick subcategory T of Db(modA) con-
taining Kb(projA) such that the Grothendieck group K0(T ) is a free abelian group
with rank strictly bigger than n.

We have the following observation (see also [21, section 4]).

Theorem 6.3. Conjecture 6.2 ⇒ Conjecture 6.1 ⇒ the Auslander–Reiten conjec-
ture.

Proof. To prove the first implication, assume that a nonprojective A-module X
satisfies ExtiA(X,X ⊕ A) = 0 for all i > 0. Then T := thick(X ⊕ A) is a thick
subcategory of Db(modA) containing Kb(projA), and X⊕A is a silting object in T .
It is shown in [2, Theorem 2.27] that the Grothendieck group K0(T ) is a free abelian
group and the rank is equal to the number of nonisomorphic indecomposable direct
summands of X ⊕A. Thus the assertion follows.

To obtain the second implication, it suffices to observe that if X ∈ modA is
not projective and satisfies ExtiA(X,X ⊕ A) = 0 for all i > 0, then X ⊕ A is a
presilting object of Db(modA) such that add(X ⊕ A) contains projA as a proper
subcategory. �

When A is self-injective, the Auslander–Reiten conjecture takes the following
form due to Tachikawa.



7896 OSAMU IYAMA AND DONG YANG

The Tachikawa conjecture [51]. Assume that A is self-injective. If X ∈ modA
satisfies ExtiA(X,X) = 0 for all i > 0, then X is a projective module.

Formulated in terms of presilting objects, it has the following form.

Conjecture 6.4. Assume that A is self-injective. Then the stable category modA
has no nontrivial presilting objects.

By Theorems 3.7 and 3.10, this is equivalent to Conjecture 6.1 for self-injective
algebras. What we know is the following.

Proposition 6.5 ([2, Example 2.5]). Assume that A is self-injective. Then the
stable category modA has no silting objects unless A is semisimple.
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