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THE ROPER-SUFFRIDGE EXTENSION OPERATOR

AND ITS APPLICATIONS TO CONVEX MAPPINGS IN C2

JIANFEI WANG AND TAISHUN LIU

Dedicated to the memory of Professor Sheng Gong

Abstract. The purpose of this paper is twofold. The first is to investigate
the Roper-Suffridge extension operator which maps a biholomorhic function f
on D to a biholomorphic mapping F on

Ωn,p2,··· ,pn(D) =

⎧⎨
⎩(z1, z0) ∈ D × C

n−1 :
n∑

j=2

|zj |pj <
1

λD(z1)

⎫⎬
⎭ , pj ≥ 1,

where z0 = (z2, . . . , zn) and λD is the density of the Poincaré metric on a
simply connected domain D ⊂ C. We prove this Roper-Suffridge extension
operator preserves ε-starlike mapping: if f is ε-starlike, then so is F . As
a consequence, we solve a problem of Graham and Kohr in a new method.
By introducing the scaling method, the second part is to construct some new
convex mappings of domain Ω2,m = {(z1, z2) ∈ C2 : |z1|2 + |z2|m < 1} with
m ≥ 2, which can be applied to discuss the extremal point of convex mappings
on the domain. This scaling idea can be viewed as providing an alternative
approach to studying convex mappings on Ω2,m. Moreover, we propose some
problems.
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1. Introduction

In a pioneering work, Roper and Suffridge [25] introduced an extension operator.
This operator is defined for a locally biholomorphic function f on the unit disk U
by

Φn(f)(z) = (f(z1),
√
f ′(z1)z0),

where z = (z1, z0) belongs to the unit ball Bn in Cn, z0 = (z2, · · · , zn) ∈ Cn−1, and

the branch of the square root is chosen such that
√
f ′(0) = 1.

It is well known that the Roper-Suffridge extension operator has the following
remarkable properties:

(i) If f is a normalized convex function on U , then Φn(f) is a normalized convex
mapping on Bn.

(ii) If f is a normalized starlike function on U , then Φn(f) is a normalized starlike
mapping on Bn.

(iii) If f is a normalized Bloch function on U , then Φn(f) is a normalized Bloch
mapping on Bn.

Roper and Suffridge proved the result (i). In 2000, Graham and Kohr in [8] gave
a simplified proof of their theorem and proved the results (ii) and (iii). Further,
they proposed the following Problem [8, Open Problem 2.8].

Consider the “egg” domain

Ω2, p = {(z1, z2) ∈ C
2 : |z1|2 + |z2|p < 1},

where p ≥ 1. Does the operator

Φ2, 1
p
(f)(z) =

(
f(z1), (f

′(z1))
1/pz2

)
extend convex functions on U to convex mappings on Ω2, p?

In 2002, Gong and the second author [9] introduced the definition of ε-starlike
mapping, which is a unification of convex and starlike mapping. By using the
non-increasing property of Carathéodory metric under holomorphic mappings, they
proved the following.

Theorem 1.1. If f(z1) is a normalized biholomorphic ε-starlike function on the
unit disk U , then

Φn, 1
p
(f)(z) =

(
f(z1), (f

′(z1))
1/pz0

)
is a normalized biholomorphic ε-starlike mapping on

Ωn, p = {(z1, z0) ∈ C
n : |z1|2 +

n∑
j=2

|zj |p < 1},

where z = (z1, z0) ∈ Ωn, p, z0 = (z2, · · · , zn) ∈ Cn−1, p ≥ 1, and the branch is

chosen so that (f ′(z1))
1/p |z1=0= 1.

When ε = 1 and ε = 0, Φn, 1
p
maps convex function and starlike function on U

to convex mapping and starlike mapping on Ωn, p, respectively. Further, Gong and
Lin answered the above problem of Graham and Kohr. There has been an increase
of research interest in this extension operator; the reader is referred to Gong [10],
Graham and Kohr [7] for a general presentation of this subject. According to the
Roper-Suffridge extension operator, we may construct lots of concrete examples
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of convex and starlike mappings. This is one important reason why people are
interested in this extension operator.

It is well-known that the Riemann Mapping Theorem is one of the most re-
markable results in complex analysis. Namely, it states that a proper domain D of
C is biholomorphically equivalent to the unit disk U if and only if D is a simply
connected proper subdomain of C. Hence, it is natural to consider the following
question.

What is the behavior of the Roper-Suffridge extension operator for some domain
Ω(D) of Cn generated by a given simply connected proper subdomain D ⊂ C?

The purpose of this paper is to consider the above question and its applications
to convex mappings of several complex varialbes. When D is the unit disk U ,
we then give new convex construction for a modification of the Roper-Suffridge
extension operator via the scaling technique on domain Ω2,m. This scaling idea
seems entirely new to investigate convex mappings in higher dimensions.

The paper is organized as follows. In Section 2, we introduce some definitions
and two Lemmas. In Section 3, we will prove the Roper-Suffridge extension op-
erator preserves ε-starlike mapping. As a consequence, we answer the problem of
Graham and Kohr in a quite direct and new method. In Section 4, we will give
two applications for the Roper-Suffridge extension operator. The first is to es-
tablish the lower bound of distortion theorem of convex mappings associated with
the Roper-Suffridge extension operator in Theorem 4.1. The second is to con-
struct some new convex mappings on the Thullen domain Ω2,m in Theorem 4.4.
When m = 2, this result reduces to [21, Lemma 2.1] and [19, Theorem 3.1]. How-
ever, when m > 2, there appears a serious difficulty because we cannot proceed
in analogy with Muir and Suffridge’s idea of the ball. Our way to overcome this
obstacle is to introduce the scaling method, which applies to the bounded con-
vex domain Ω2,m produces a biholomorphism mapping Φ : H2,m → Ω2, m, where
H2,m = {(z, w) ∈ C2 : �z > |w|m} is unbounded. By characterizing exact convex-
ity mappings ofH2,m in Theorem 4.3, we obtain some new convex examples of Ω2,m

which play an important role to study the extremal points. Interestingly, Theorem
4.4 can be used to prove convex mapping generated by the Roper-Suffridge opera-
tor is not the extremal point of convex mappings, which is quite different from the
case in one complex variable. For the best of our knowledge, there seems to be no
other convex examples on Ω2,m except for the Roper-Suffridge construction when
m > 2. In Section 5, we consider some problems of convex mappings related to the
Roper-Suffridge extension operator.

2. Preliminaries

2.1. Simply connected domain and Poincaré metric. Let D be a simply
connected domain in the complex plane C with at least two boundary points, and
let f be a conformal mapping of the unit disk U = {z ∈ C : |z| < 1} onto D. The
Poincaré or hyperbolic metric of D is defined by

(2.1) λD(f(z))|f ′(z)| = λU (z) =
1

1− |z|2 , z ∈ U.

This metric is independent of the choice of conformal mapping. Hence, convenient
choices are available for us in this paper. Namely, let z ∈ D and choose the
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conformal mapping f obeying f(0) = z and f ′(0) > 0. Then

(2.2) λD(z) =
1

f ′(0)
.

The function λD(z) is real analytic on D, and the metric λD(z)|d(z)| has constant
Gaussian curvature −4, i.e., satisfying the equation

Δ log λD = 4λ2
D,

while it is sometimes preferable to use 2λD with curvature −1; see [6].
At this point we will use the following conformal invariance about the Poincaré

metric. Namely, if f is a conformal mapping of a domain D onto G, then

(2.3) λG(f(z))|f ′(z)| = λD(z), z ∈ D.

This follows easily from (2.1) and (2.2).
Accordingly, we give examples of simply connected domains and their Poincaré

metrics. The reader is referred to Beardon and Minda [2] for a good overview of
this subject.

Example 1. Note that f(z) = (1 + z)/(1− z) is a conformal map of the unit disk
U onto H = {z ∈ C : �z > 0}, so we have

λH(z)|dz| = |dz|
2�z .

Example 2. As f(z) = z/(1− z) is a conformal map of the unit disk U onto the
open half-plane K = {z ∈ C : �z > −1/2}, we have found that

λK(z)|dz| = |dz|
1 + 2�z .

Example 3. Because f(z) = 1
2 log

1+z
1−z is a conformal map of the unit disk U onto

the strip S = {z ∈ C : |�z| < π/4}, we get

λS(z)|dz| =
|dz|

cos2�z .

2.2. Some definitions. Let us make the following definitions living on C
n:

• Let Bn =
{
z ∈ Cn : |z| < 1

}
and Sn =

{
z ∈ Cn : |z| = 1

}
represent the

unit ball and the unit sphere of Cn under the inner product

〈z, w〉 =
n∑

k=1

zkwk, z = (z1, z2, · · · , zn) ∈ C
n, w = (w1, w2, · · · , wn) ∈ C

n

and norm |z| = 〈z, z〉
1
2 . In the case of one variable, B1 and S1 are always

denoted by U and T , respectively.
• A domain Ω ⊂ Cn is said to be starlike (with respect to the origin) if given
any z ∈ Ω, then (1− t)z ∈ Ω holds for all t ∈ [0, 1].

• A domain Ω ⊂ Cn is said to be convex if given any z1, z2 ∈ Ω, then
(1− t)z1 + tz2 ∈ Ω holds for all t ∈ [0, 1].

• A domain Ω ⊂ Cn containing the origin is said to be ε-starlike if there
exists a positive number ε, 0 ≤ ε ≤ 1, such that given any z1, z2 ∈ Ω, then
(1 − t)z1 + εtz2 ∈ Ω holds for all t ∈ [0, 1]. Obviously, ε-starlike domain
reduces to convex and starlike when ε = 1 and ε = 0, respectively.
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• Let Ω ⊂ Cn be a domain containing the origin. A holomorphic mapping
f : Ω → Cn is said to be normalized if f(0) = 0 and Df(0) = In, where
In is the identity matrix. Let ‖Df(z)‖ denote the norm of the complex
Jacobian matrix of f at the point z ∈ Ω.

• Let Ω ⊂ Cn be a domain and let f be a biholomorphic mapping from Ω into
Cn. If f(Ω) is an ε-starlike domain, then f is called an ε-starlike mapping.

• Suppose that G ⊂ C is a domain including the origin and f and g are two
holomorphic functions on G. If there is a holomorphic function ϕ : G → G
such that ϕ(0) = 0 and f = g ◦ϕ, then f is subordinate to g and is denoted
by f ≺ g on G.

• The Minkowski functional ρ(z) of the Reinhardt domain

Ωn,p2,··· ,pn
=

{
z ∈ C

n : |z1|2 +
n∑

j=2

|zj |pj < 1

}
, pj ≥ 1, j = 2, · · · , n,

is defined as

ρ(z) = inf{t > 0,
z

t
∈ Ωn,p2,··· ,pn

}, z ∈ C
n.

Also, the Minkowski functional ρ(z) is a Banach norm of Cn, and Ωn,p2,··· ,pn

becomes the unit ball in the Banach space C
n with respect to this norm.

ρ(z) is C1 on Ω̄n,p2,··· ,pn
except for a lower dimensional manifold. When

z ∈ Ωn,p2,··· ,pn
, ρ(z) ≥ max{|z1|, |z2|, ..., |zn|} follows from the definition of

ρ(z).

2.3. Two lemmas. To prove Theorem 3.1, we need the following lemma, which
is even interesting in complex analysis and geometric function theory about the
Poincaré metric.

Lemma 2.1. Let D ⊂ C contain the origin. If D is an ε-starlike domain and D
is not the entire complex plane C, then given z1, z2 ∈ D,

1

λD((1− t)z1 + εtz2)
≥ 1− t

λD(z1)
+

εt

λD(z2)

holds for all t ∈ [0, 1].

Proof. By the Riemann Mapping Theorem, there exist two conformal mappings
fk : U → D so that fk(U) = D, fk(0) = zk, and f ′

k(0) > 0, where k = 1, 2. For
t ∈ [0, 1], let zt = (1 − t)z1 + εtz2. The condition D, an ε-starlike domain, yields
that zt ∈ D. Similarly, let g be a conformal mapping of U onto D so that g(0) = zt
and g′(0) > 0.

Since (1− t)f1 + εtf2 is holomorphic from U into D, we then see that

(1− t)f1 + εtf2 ≺ g.

Hence,
|(1− t)f ′

1(0) + εtf ′
2(0)| ≤ |g′(0)|,

that is,
(1− t)f ′

1(0) + εtf ′
2(0) ≤ g′(0).

From (2.2), we have

1− t

λD(z1)
+

εt

λD(z2)
≤ 1

λD((1− t)z1 + εtz2)
,

which thereby is proved. �
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Remark 1. When ε = 1, the domain D is convex. In this case, Lemma 2.1 is proved
by Gustafsson [11] using a coefficient inequality for convex univalent functions and
was later found by Kim and Minda [12] in a simplified proof.

The following lemma, which can be found in [15], plays an important role in
studying the Bloch constant of several complex variables; see e.g., [5]. For the
completeness of this note, we provide a self-contained proof.

Lemma 2.2. Suppose that A = (aij) is an n×n complex matrix. If ‖A‖ > 0, then
for any unit vector ξ ∈ Sn, the following inequality holds:

|Aξ| ≥ | detA|
||A||n−1

.

Proof. We need only consider the case | detA| �= 0. There are two n × n unitary
matrixes P and Q for which A has the polar decomposition

A = P

⎛
⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞
⎟⎟⎟⎠Q = PΛQ,

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and ‖A‖ = λ1. Then

| detA| = λ1λ2 · · ·λn.

Given any ξ ∈ Sn, since P and Q are unitary matrixes, we have η = Qξ ∈ Sn and

|Aξ| = |P−1AQ−1Qξ| = |Λη| ≥ λn =
| detA|

λ1 · · ·λn−1
≥ | detA|

||A||n−1
.

�

3. Roper-Suffridge extension operator and ε-starlike mapping

In this section we will generalize [9, Theorem 1] from the unit disk to an arbitrary
simply connected domain D in C containing 0. Moreover, our proof is different. In
particular, when D = U and n = 2, we answer the problem of Graham and Kohr
in an alternative proof.

Theorem 3.1. Assume D ⊂ C is a simply connected domain containing 0 and D
is not the entire complex plane. If f(z1) is a biholomorphic ε-starlike function on
D, then

Φn, 1
p2

,··· , 1
pn

(f)(z) = F 1
p2

,··· , 1
pn

(z)

=
(
f(z1), (f

′(z1))
1/p2z2, · · · , (f ′(z1))

1/pnzn
)
pj ≥ 1

is a biholomorphic ε-starlike mapping on domain

Ωn,p2,··· ,pn
(D) = {(z1, z0) ∈ D × C

n−1 :
n∑

j=2

|zj |pj <
1

λD(z1)
},

where λD(z1) is the density of the Poincaré metric of D at z1, z0 = (z2, · · · , zn)
and the branch is chosen so that (f ′(z1))

1/pj |z1=0= 1 for j = 2, · · · , n.
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Proof. Let

(u1, u2, · · · , un) =
(
f(z1),

(
f ′(z1))

1/p2z2, · · · , (f ′(zn))
1/pnzn

)
.

Under this, for j = 2, · · · , n, we have{
u1 = f(z1),

uj = (f ′(z1))
1/pjzj .

This implies the relation {
z1 = f−1(u1),
zj =

uj

(f ′[f−1(u1)])
1/pj

.(3.1)

A short computation shows that the image of the mapping F 1
p2

,··· , 1
pn

is the set

(3.2)

Gn,p2,··· ,pn
(f,D) =

⎧⎨
⎩(u1, u2, . . . , un) ∈ C

n :

n∑
j=2

|uj |pj

|f ′[f−1(u1)]|
<

1

λD(f−1(u1))

⎫⎬
⎭ ,

which follows from the above relation (3.1) and the definition of

Ωn,p2,··· ,pn
(D) = {(z1, z0) ∈ D × C

n−1 :
n∑

j=2

|zj |pj <
1

λD(z1)
}.

Hence F 1
p2

,···, 1
pn

is an ε-starlike mapping on Ωn,p2,···,pn
if and only if Gn,p2,···,pn

(f,D)

is an ε-starlike domain in C
n. Namely, we need to prove that if given any t ∈ [0, 1],

u = (u1, · · · , un) ∈ Gn,p2,··· ,pn
(f,D), and v = (v1, · · · , vn) ∈ Gn,p2,··· ,pn

(f,D), then
(1− t)u+ εtv ∈ Gn,p2,··· ,pn

(f,D).

In fact, let D̃ = f(D). Then D̃ is an ε-starlike domain of C as f is ε-starlike. In
view of (2.3), we have

λD̃(f(z1))|f ′(z1)| = λD(z1), z1 ∈ D.

This yields that

(3.3) |f ′(z1)| = |f ′[f−1(u1)]| =
λD(f−1(u1))

λD̃(u1)
.

A combination of (3.2) and (3.3) gives that we must prove that

Gn,p2,··· ,pn
(f,D) =

⎧⎨
⎩(u1, u2, · · · , un) ∈ C

n :

n∑
j=2

|uj |pj − 1

λD̃(u1)
< 0

⎫⎬
⎭

is an ε-starlike domain of Cn.
By using Lemma 2.1, we have

(3.4) − 1

λD̃((1− t)u1 + εtv1)
≤ − 1− t

λD̃(u1)
− εt

λD̃(v1)
.
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Because pj ≥ 1 we have xpj is a real convex function on x ∈ [0,∞). Hence, for
j = 2, · · · , n, we have

|(1− t)uj + εtvj |pj

≤ ((1− t)|uj |+ εt|vj |)pj

≤ (1− t)|uj |pj + t|εvj |pj

≤ (1− t)|uj |pj + εpj t|vj |pj

≤ (1− t)|uj |pj + εt|vj |pj .

This means that

(3.5)
n∑

j=2

|(1− t)uj + εtvj |pj ≤
n∑

j=2

(1− t)|uj |pj + εt
n∑

j=2

|vj |pj .

According to (3.4) and (3.5), we obtain (1 − t)u + εtv ∈ Gn,p2,··· ,pn
(f,D). Hence,

this completes the proof of Theorem 3.1. �

Remark 2.
(i) When D = U and pj = p (j = 2, · · · , n), Theorem 3.1 reduces to Theorem

1.1 of Gong and the second author [9]. Although results of the Roper-Suffridge
operator are stated for the normalized convex (or starlike) univalent function in
the unit disk U , they are also valid for any convex (or starlike) univalent function
without the normalized condition, respectively.

(ii) To explain Theorem 3.1 clearly, we check that the mapping

F (z) =
( z

1− z
,

w

1− z

)
, z ∈ U,

is a convex mapping on B2 in some words. Indeed, let{
u = z

1−z ,

v = w
1−z

and let G be the image domain of F . Because the image domain of convex function
z/(1− z) is the set {u ∈ C : �u > −1/2}, by using Example 2, we then obtain that
the image domain G is equal to

G = {(u, v) ∈ C
2 : 1 + 2�u > |v|2},

which is obviously a convex domain in C
2. Similarly,

F (z) = (
1

2
log

1 + z1
1− z1

,
z2√
1− z21

, · · · , zn√
1− z21

)

is also convex in the unit ball Bn via Example 3, which is a simple explanation of
Roper-Suffridge convex mapping examples; see [25, pp. 334-335].

Also, applying the idea of Theorem 3.1 to the right-plane D = H = {z ∈ C :
�z > 0} and using the invariance of affine transformation of convex mappings, we
obtain the following corollary. To the best of our knowledge, there is no related
result about biholomorphic convex mappings on a generalized half-space of C

n,
which is obviously unbounded and is not circular. In this case, we do not need the
normalization condition.
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Corollary 3.2. Let F 1
p2

,··· , 1
pn

(z) be defined as above. If f(z1) is a biholomorphic

convex function on H = {z1 ∈ C : �z1 > 0}, then F 1
p2

,··· , 1
pn

(z) is a biholomorphic

convex mapping on domain

Hn,p2,··· ,pn
= {(z1, z0) ∈ H × C

n−1 : �z1 >
n∑

j=2

|zj |pj}.

4. Two applications

In this section, we give two applications of the Roper-Suffridge extension operator
in the geometric function theory of several complex variables. Let us begin with
the distortion theorem of convex mappings.

4.1. Distortion theorem on convex mappings. It is well known that, in the
case of several complex variables, there are many counterexamples to show that
the distortion theorem of normalized biholomorphic mappings does not hold unless
we restrict to certain subclasses of biholomorphic mappings; for instance see [10].
In 1933, H. Cartan [4] first suggested the study of convex mappings, starlike map-
pings, and some other subclasses of biholomorphic mappings in several complex
variables. In 1994, the first affirmative result on the estimate of distortion theorem
for biholomorphic convex mappings was due to Barnard, FitzGerald, and Gong [1].
Later, many authors made progress on the distortion theorem of convex mappings;
see e.g. [18, 24].

In this section, we will apply Theorem 3.1 and Lemma 2.2 to give the lower
bound distortion theorem of convex mappings associated with the Roper-Suffridge
operator. For simplicity, let Kn and Sn respectively represent the class of normal-
ized convex mappings and starlike mappings (with respect to the origin) defined on
the unit ball Bn.

For f ∈ K1, there holds the well-known distortion theorem

1

(1 + |z|)2 ≤ |f ′(z)| ≤ 1

(1− |z|)2 , z ∈ U,(4.1)

with equality for the univalent convex function K(z) = z/(1− eiθz), 0 ≤ θ < 2π.
For F ∈ Kn, Pfaltzgraff and Suffridge [24] proved the distortion theorem

1

(1 + |z|)2 ≤ ||DF (z)|| ≤ 1

(1− |z|)2 , z ∈ Bn,(4.2)

where ||DF (z)|| = sup{|DF (z)ξ| : ξ ∈ Bn}.
Also, they showed that the upper bound of the inequality (4.2) is sharp and

equality is obtained by k ∈ Kn defined as follows:

k(z) = z(1− z1)
−1, z = (z1, · · · , zn)′ ∈ Bn.

However, Liczberski and Starkov [13] in 2002 observed the lower bound (1+|z|)−2 of
the inequality (4.2) is not sharp when n ≥ 2. They conjectured that the sharp lower
bound may be (1+ |z|)−1, which is still an open problem. However, for the convex
mapping generated by the Roper-Suffridge operator, Liczberski and Starkov proved
that the sharp lower bound is (1+ |z|)−1 for z close to zero. In [14], Liczberski and
Starkov proved that the sharp lower bound (1 + |z|)−1 holds in whole ball Bn. In
the following, we give the lower bound of the distortion theorem of convex mapping
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associated with the Roper-Suffridge operator on domain Ωn,p2,··· ,pn
. Moreover, our

proof is different from the unit ball before.

Theorem 4.1. If f(z1) is a normalized biholomorphic convex function in the unit
disk U ⊂ C and F (z) is defined by

F 1
p2

,··· , 1
pn

(z) =
(
f(z1), (f

′(z1))
1/p2z2, · · · , (f ′(z1))

1/pnzn
)
, pj ≥ 1,

then

||DF (z)|| ≥ 1

(1 + ρ(z))
2

n−1

n∑

j=2

1
pj

for all z ∈ Ωn,p2,··· ,pn
, where ρ(z) is the Minkowski functional on Ωn,p2,··· ,pn

.

Proof. Theorem 3.1 implies that

F 1
p2

,··· , 1
pn

(z) =
(
f(z1), (f

′(z1))
1/p2z2, · · · , (f ′(z1))

1/pnzn
)

is a normalized biholomorphic convex mapping on Ωn,p2,··· ,pn
. It is easy to see that

DF 1
p2

,··· , 1
pn

(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f ′(z1) 0 · · · 0
f ′′(z1)

p2(f ′(z1))
1− 1

p2

z2 (f ′(z1))
1/p2 · · · 0

...
...

. . .
...

f ′′(z1)

pn(f ′(z1))
1− 1

pn

zn 0 · · · (f ′(z1))
1/pn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Obviously, f ′(z1) is an eigenvalue of DF 1
p2

,··· , 1
pn

(z) and

| detDF 1
p2

,··· , 1
pn

(z)| = |f ′(z1)|
1+

n∑

j=2

1
pj
.

Upon taking a unit eigenvector e1 = (1, 0, · · · , 0)′, we then get

DF 1
p2

,··· , 1
pn

(z)e1 = f ′(z1).

In view of Lemma 2.2, we have
(4.3)

|f ′(z1)| = |DF 1
p2

,··· , 1
pn

(z)e1| ≥
| detDF 1

p2
,··· , 1

pn
(z)|

||DF 1
p2

,··· , 1
pn

(z)||n−1
=

|f ′(z1)|
1+

n∑

j=2

1
pj

||DF 2
p2

,··· , 1
pn

(z)||n−1
.

Note that ρ(z) ≥ |z1|, and putting (4.1) and (4.3) together, we then get

||DF 1
p2

,··· , 1
pn

(z)|| ≥ |f ′(z1)|
1

n−1

n∑

j=2

1
pj ≥ 1

(1 + |z1|)
2

n−1

n∑

j=2

1
pj

≥ 1

(1 + ρ(z))
2

n−1

n∑

j=2

1
pj

.

�

In the case of the unit ball Bn, we have the following corollary.
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Corollary 4.2. Let f : Bn → Cn be a normalized biholomorphic convex mapping
and

F (z) = (f(z1),
√
f ′(z1)z0).

Then

||DF (z)|| ≥ 1

1 + |z|
for all z ∈ Bn.

4.2. New convex mappings on the Thullen domain. In 1999, Roper and
Suffridge [26, Example 7] proved that F (z, w) = (z + aw2, w) is a convex mapping
on B2 if and only if |a| ≤ 1/2. Using this result and the compact of the convex
mappings, Muir and Suffridge [21, Corollary 2.2] proved that the Roper-Suffridge
convex mapping

F (z, w) = (
z

1− z
,

w

1− z
)

is not the extremal point of convex mappings class on the unit ball B2. Hence, for
the general domain Ω2, m, it is very natural to consider the following problem:

What is the relation between the Roper-Suffridge convex mapping F (z, w) =
( z
1−z ,

w
(1−z)2/m

) and the extremal point of convex mappings on Ω2, m for m ≥ 2?

However, when m > 2, Suffridge’s idea of the unit ball seems not to work on
Ω2,m. Fortunately, we can overcome this difficulty via the scaling method and
answer the above problem. Let us first give the following result, and its proof is
also interesting.

Theorem 4.3. Let m ∈ N and let m ≥ 2. If F : H2, m = {(z, w) ∈ C
2 : �z >

|w|m} → C2 is defined by

F (z, w) = (z + awm, w)

for constant a ∈ C, then F is convex on H2, m if and only if |a| ≤ 1
m−1 .

Proof. It is easy to see that F is a biholomorphic mapping on H2,m. For conve-
nience, we may assume a ≥ 0. Otherwise, if a = reiθ, then we can replace F with
P−1 ◦ F ◦ P , where

P =

(
1 0

0 e−iθ/m

)
.

Let {
u = z + awm,
v = w.

Then {
z = u− avm,
w = v.

Since (z, w) ∈ H2,m, we have

�(u− avm) > |v|m

or

�u > |v|m + a�vm.

Define

Ga,m = {(u, v) ∈ C
2 : �u > Ma,m(v)},
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where

Ma,m(v) = |v|m + a�vm.

Since the image domain under the holomorphic mapping F is the set

Ga,m = {(u, v) ∈ C
2 : �u > |v|m + a�vm},

we then need to prove that Ga,m is a convex set if and only if a ≤ 1/(m−1) because
of a ≥ 0 mentioned before. Note that convexity is equivalent to meaning that both
eigenvalues of the real Hessian of Ma,m are all non-negative definite. Namely, it
is a question of determining the extent of constant a so that this real Hessian of
Ma,m(v) is non-negative definite. In this case, this condition can be written by
complex partial derivatives. Namely, at any point v ∈ C and for any λ ∈ C,

∂2h

∂v2
λ2 + 2

∂2h

∂v∂v̄
λλ̄+

∂2h

∂v̄2
λ̄2 ≥ 0,

where h = Ma,m. One needs to consider λ of modulus one, and varying λ then
implies that Ga,m is convex if and only if

(4.4)

∣∣∣∣∂2h

∂v2

∣∣∣∣ ≤ ∂2h

∂v∂v̄
.

Upon taking the condition of h(v) = |v|m + a�vm, we have the following relation:

(4.5)

{
∂2h
∂v2 = m(m−2)

4 |v|m−4v̄2 + m(m−1)a
2 vm−2,

∂2h
∂v∂v̄ = m2

4 |v|m−2.

Substituting (4.5) into (4.4), we get∣∣∣∣m(m− 1)a

2
vm−2 +

m(m− 2)

4
|v|m−4v̄2

∣∣∣∣ ≤ m2

4
|v|m−2.

Let λ = v/|v|. The condition m ≥ 2 and the above inequality yield that, for any
λ ∈ T ,

(4.6)
∣∣∣(m− 1)aλm−2 + (

m

2
− 1)λ̄2

∣∣∣ ≤ m

2
.

A simple calculation shows that the inequality (4.6) holds if and only if a ≤ 1
m−1 .

In fact, if we take λ = 1, then (4.6) implies that a ≤ 1
m−1 . On the other hand, if

a ≤ 1
m−1 , then∣∣∣(m− 1)aλm−2 + (

m

2
− 1)λ̄2

∣∣∣ ≤ (m− 1)a+ (
m

2
− 1) =

m

2
,

and we prove Theorem 4.3. �

Remark 3. By some computation, we get that the Levi form on the boundary of
H2,m is equal to

1

4
Δ(Ma,m)(v) = m2|v|m−2.

It follows that Ga,m is pseudoconvex for all a ∈ C. Thus, geometric convexity is
much stronger than pseudoconvex on this domain.

Now, we present our new construction of convex mappings on domain Ω2,m.
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Theorem 4.4. Let m ∈ N, m ≥ 2, and Ω2,m = {(z, w) ∈ C2 : |z|2 + |w|m < 1}. If
F : Ω2,m → C2 is defined by

F (z, w) = (
z

1− z
+ a

wm

(1− z)2
,

w

(1− z)2/m
)

for some a ∈ C, then F is convex on Ω2,m if and only if |a| ≤ 1
2(m−1) .

When m = 2, then Ω2, 2 becomes the unit ball B2. In this case, Theorem 4.4
reduces to Muir and Suffridge in [21, Lemma 2.1] and [19, Theorem 3.1], and our
proof is new. When m → ∞, then Ω2,m → U2 and a → 0. This is a special result
of Suffridge [27].

Proof. We begin by testifying that the Thullen domain

Ω2,m = {(z, w) ∈ C
2 : |z|2 + |w|m < 1}

is biholomorphic to

H2,m = {(z, w) ∈ C
2 : �z > |w|m}

under the biholomorphic mapping

Φ(z, w) = (
1 + z

1− z
,

w

(1− z)2/m
), (z, w) ∈ Ω2,m.

In fact, let

(4.7)

{
z̃ = 1+z

1−z ,

w̃ = w
(1−z)2/m

.

Then

�z̃ − |w̃|m =
1− |z|2 − |w|m

|1− z|2 ,

and {
z = z̃−1

z̃+1 ,

w = ( 2
(z̃+1) )

2/mw̃.

Hence Φ is a biholomorphic mapping from Ω2,m onto H2,m.
Theorem 4.3 is employed to derive that

(4.8) F (z̃, w̃) = (z̃ + aw̃m, w̃)

is convex on H2, m if and only if |a| ≤ 1
m−1 .

Substituting (4.7) into (4.8), we have that

G(z, w) = (
1 + z

1− z
+ a

wm

(1− z)2
,

w

(1− z)2/m
)

is convex on Ω2, m if and only if |a| ≤ 1
m−1 .

Since

G(0, 0) = (1, 0), DG(0, 0) =

(
2 0
0 1

)
,

we then normalize the mapping G given by

G̃(z, w) = (DF (0, 0))−1(G(z, w)−G(0, 0))′.

Hence,

G̃(z, w) = (
z

1− z
+

a

2

wm

(1− z)2
,

w

(1− z)2/m
)
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is a convex mapping on Ω2, m if and only if |a2 | ≤
1

2(m−1) . Therefore, we achieve

the proof of Theorem 4.4 only when we replace a/2 by a. �
Remark 4. Theorem 4.4 is somewhat surprising, because it seems very difficult to
show that F is convex if we use the characterization of convex mappings defined on
the domain Ω2,m for m > 2. However, Theorem 4.4 can be obtained by using the
scaling technique. As a consequence, we are able to construct many unbounded con-
vex mappings which cannot be obtained by the Roper-Suffridge extension operator
on Ω2,m.

Denote KΩ by the family of normalized biholomorphic convex mappings on Ω2,m.
Recall that a function of KΩ is called an extreme point of KΩ if it cannot be written
as a proper convex combination of two other members of KΩ. As an application of
Theorem 4.4, we have the following interesting result about the extremal points of
convex mappings of Ω2,m.

Corollary 4.5. Let F : Ω2,m → C2 be defined as

F (z, w) =
( z

1− z
+ a

wm

(1− z)2
,

w

(1− z)2/m
)
, (z, w) ∈ C

2.

If |a| < 1/(2m− 2), then the mapping F is not an extreme point of KΩ. That is, if
F is the extreme point, then |a| = 1/(2m− 2).

Proof. For simplicity, we need only to consider the case a = 0, because the general
case can be proved by the argument of [19, Theorem 3.2].

Let

R(z, w) = (
z

1− z
+

1

(2m− 2)

wm

(1− z)2
,

w

(1− z)2/m
)

and

S(z, w) = (
z

1− z
− 1

(2m− 2)

wm

(1− z)2
,

w

(1− z)2/m
).

Then R and S are both convex mapping from Theorem 4.4. Obviously, F = R+S
2

when a = 0. Hence, F is not an extreme point of KΩ. �
In 1971, Brickman and MacGregor [3] proved that the extreme points of convex

mappings on the unit disk comprise the Koebe function K(z1) = z1/(1 − eiθz1),
0 ≤ θ < 2π. Corollary 4.5 tells us that this does not hold in dimension n ≥ 2. It
shows that the higher order terms wm will also play an important role.

Remark. Owing to the work in [27], [22], and [16], we have found the theory of
biholomorphic convex mappings on bounded symmetric domains is well known for
cases of rank at least two, and so it is meaningful only on the unit ball of Cn under
bounded symmetric domains. In view of Theorems 3.1 and 4.4, we think it is also
meaningful to investigate convex mappings on Ω2, m. This domain has non-compact
automorphism group and is not holomorphically equivalent to the unit ball B2 of
C2 when m > 2.

5. Some problems

Finally, we would like to mention some problems that are naturally suggested
from the results in this note.

The first obvious problem is to ask whether the mapping F defined in Theorem
4.4 comprises the extremal points of KΩ if and only if |a| = 1

2(m−1) . Although we



THE ROPER-SUFFRIDGE EXTENSION OPERATOR 7757

do not currently determine the extremal points of convex mappings KΩ, we believe
this will be true.

The proof of Theorem 4.4 is a little surprising because the convex mapping F
of the unbounded domain H2,m plays an important role. However, our results in
Section 4 are only concerned with the complex dimension n = 2, so the second
natural problem is how to generalize Theorem 4.4 to dimension n > 2.

In [23, Theorem 3.1], Muir proved the following interesting result for a modifica-
tion of the Roper-Suffridge operator on the unit ball Bn. Here, we state the result
in B2.

Theorem 5.1. Let

F (z, w) =
(
f(z) + af ′(z)w2,

√
f ′(z)w

)
.

If f(z) is a normalized biholomorphic convex mapping on the unit disk U , then
F (z, w) is a convex mapping on B2 if and only if |a| ≤ 1/2.

Inspired by Theorems 4.4 and 5.1, we will propose the following conjecture.

Conjecture 1. Let m ∈ N, m ≥ 2, and Ω2, m = {(z, w) ∈ C2 : |z|2 + |w|m < 1}. If
f(z) is a normalized biholomorphic convex mapping, then

F (z, w) =
(
f(z) + af ′(z)wm, (f ′(z))1/mw

)
is convex on Ω2,m if and only if |a| ≤ 1/2(m− 1).

As for the p-ball Bp = {(z1, z2, · · · , zn) ∈ Cn :
n∑

j=1

|zj |p < 1}, Liu and Zhang [17]

proved the following interesting result in 1997.

Theorem 5.2. If f : Bp → C
n is a normalized biholomorphic convex mapping and

k is the natural number such that 2 ≤ k < p < k + 1, then

f(z) =

⎛
⎜⎜⎜⎝
z1
z2
...
zn

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝
a12z

2
1

a22z
2
2

...
an2z

2
n

⎞
⎟⎟⎟⎠+ · · ·+

⎛
⎜⎜⎜⎝
a1kz

k
1

a2kz
k
2

...
ankz

k
n

⎞
⎟⎟⎟⎠+O(|z|k+1),

where |aij | ≤ 1 for 1 ≤ i ≤ n, 2 ≤ j ≤ k.

By Theorem 5.2, we obtain that Φn, 1
p
defined by Theorem 1.1 is not convex

mapping on Bp when 2 < p < ∞. In [20], Muir and Suffridge gave some bounded
convex mappings construction on Bp. Until now, we have not found any unbounded
convex mapping on Bp, so it is natural to ask the following question, which was
first considered in [20].

Problem 1. Do there exist some unbounded convex mappings on Bp when 2 <
p < ∞? If they do not exist, then all convex mappings on Bp must be bounded.
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