Capacity of the range of random walk on
Authors:
Amine Asselah, Bruno Schapira and Perla Sousi
Journal:
Trans. Amer. Math. Soc. 370 (2018), 7627-7645
MSC (2010):
Primary 60F05, 60G50
DOI:
https://doi.org/10.1090/tran/7247
Published electronically:
April 25, 2018
MathSciNet review:
3852443
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study the capacity of the range of a transient simple random walk on . Our main result is a central limit theorem for the capacity of the range for
. We present a few open questions in lower dimensions.
- [1] Amine Asselah and Bruno Schapira, Boundary of the range of transient random walk, Probab. Theory Related Fields 168 (2017), no. 3-4, 691–719. MR 3663629, https://doi.org/10.1007/s00440-016-0722-4
- [2] Amine Asselah and Bruno Schapira, Moderate deviations for the range of a transient random walk: path concentration, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 3, 755–786 (English, with English and French summaries). MR 3665554, https://doi.org/10.24033/asens.2331
- [3] Rick Durrett, Probability: theory and examples, 4th ed., Cambridge Series in Statistical and Probabilistic Mathematics, vol. 31, Cambridge University Press, Cambridge, 2010. MR 2722836
- [4] J. M. Hammersley, Generalization of the fundamental theorem on sub-additive functions, Proc. Cambridge Philos. Soc. 58 (1962), 235–238. MR 137800, https://doi.org/10.1017/s030500410003646x
- [5] N. Jain and S. Orey, On the range of random walk, Israel J. Math. 6 (1968), 373–380 (1969). MR 243623, https://doi.org/10.1007/BF02771217
- [6] Naresh C. Jain and S. Orey, Some properties of random walk paths, J. Math. Anal. Appl. 43 (1973), 795–815. MR 359004, https://doi.org/10.1016/0022-247X(73)90293-X
- [7] Gregory F. Lawler, Intersections of random walks, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1117680
- [8] Gregory F. Lawler and Vlada Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010. MR 2677157
- [9] J.-F. Le Gall, Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection, Comm. Math. Phys. 104 (1986), no. 3, 471–507 (French, with English summary). MR 840748
- [10] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Markov chains and mixing times, American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson. MR 2466937
- [11] Balázs Ráth and Artëm Sapozhnikov, Connectivity properties of random interlacement and intersection of random walks, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), 67–83. MR 2889752
- [12] Alain-Sol Sznitman, Vacant set of random interlacements and percolation, Ann. of Math. (2) 171 (2010), no. 3, 2039–2087. MR 2680403, https://doi.org/10.4007/annals.2010.171.2039
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60F05, 60G50
Retrieve articles in all journals with MSC (2010): 60F05, 60G50
Additional Information
Amine Asselah
Affiliation:
Aix-Marseille Université – and – Université Paris-Est Créteil, Laboratoire d’Analyse et de Mathématiques Appliquées, Bât. P2, 94010 Créteil Cedex, France
Email:
amine.asselah@u-pec.fr
Bruno Schapira
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
Email:
bruno.schapira@univ-amu.fr
Perla Sousi
Affiliation:
University of Cambridge, Cambridge, Department of Pure Mathematics, CB3 OWB, United Kingdom
Email:
p.sousi@statslab.cam.ac.uk
DOI:
https://doi.org/10.1090/tran/7247
Keywords:
Capacity,
Green kernel,
Lindeberg-Feller central limit theorem.
Received by editor(s):
February 10, 2016
Received by editor(s) in revised form:
January 12, 2017
Published electronically:
April 25, 2018
Additional Notes:
We thank the Institute IMéRA in Marseille for its hospitality.
This work has been carried out thanks partially to the support of A$^{*}$MIDEX grant (ANR-11-IDEX-0001-02) funded by the French Government “Investissements d’Avenir” program.
Article copyright:
© Copyright 2018
American Mathematical Society