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CAPACITY OF THE RANGE OF RANDOM WALK ON Z
d

AMINE ASSELAH, BRUNO SCHAPIRA, AND PERLA SOUSI

Abstract. We study the capacity of the range of a transient simple random
walk on Z

d. Our main result is a central limit theorem for the capacity of the
range for d ≥ 6. We present a few open questions in lower dimensions.

1. Introduction

This paper is devoted to the study of the capacity of the range of a transient
random walk on Z

d. Let {Sk}k≥0 be a simple random walk in dimension d ≥ 3.
For any integers m and n, we define the range R[m,n] to be the set of visited sites
during the interval [m,n], i.e.,

R[m,n] = {Sm, . . . , Sn}.
We write simply Rn = R[0, n]. We recall that the capacity of a finite set A ⊆ Z

d

is defined to be
Cap (A) =

∑
x∈A

Px

(
T+
A = ∞

)
,

where T+
A = inf{t ≥ 1 : St ∈ A} is the first return time to A.

The capacity of the range of a walk has a long history. Jain and Orey [5] proved,
some fifty years ago, that Cap (Rn) satisfies a law of large numbers for all d ≥ 3,
i.e., almost surely

lim
n→∞

Cap (Rn)

n
= αd.

Moreover, they showed that αd > 0 if and only if d ≥ 5. In the eighties, Lawler
established estimates on intersection probabilities for random walks, which are rel-
evant tools for estimating the expected capacity of the range (see [7]). Recently,
the study of random interlacements by Sznitman [12] has given some momentum to
the study of the capacity of the union of the ranges of a collection of independent
walks. In order to obtain bounds on the capacity of such union of ranges, Ráth and
Sapozhnikov in [11] have obtained bounds on the capacity of the range of a simple
transient walk. The capacity of the range is a natural object to probe the geometry
of the walk under localisation constraints. For instance, the first two authors have
used the capacity of the range in [2] to characterise the walk conditioned on having
a small range.

In the present paper, we establish a central limit theorem for Cap (Rn) when
d ≥ 6.
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Theorem 1.1. For all d ≥ 6, there is a positive constant σd such that

Cap (Rn)− E[Cap (Rn)]√
n

=⇒ σdN (0, 1), as n → ∞,

where =⇒ denotes convergence in distribution, and N (0, 1) denotes a standard
normal random variable.

A key tool in the proof of Theorem 1.1 is the following inequality.

Proposition 1.2. Let A and B be finite subsets of Zd. Then,

(1.1) Cap (A ∪B) ≥ Cap (A) + Cap (B)− 2
∑
x∈A

∑
y∈B

G(x, y),

where G is Green’s kernel for a simple random walk in Z
d:

G(x, y) = Ex

[ ∞∑
t=0

1(Xt = y)

]
.

Note in comparison the well-known upper bound (see for instance [7, Proposition
2.2.1])

(1.2) Cap (A ∪B) ≤ Cap (A) + Cap (B)− Cap (A ∩B) .

In dimension 4, asymptotics of E[Cap (Rn)] can be obtained from Lawler’s es-
timates on non-intersection probabilities for three random walks, which we recall
here for convenience.

Theorem 1.3 ([7, Corollary 4.2.5]). Let R1,R2, and R3 be the ranges of three
independent random walks in Z

4 starting at 0. Then,

(1.3) lim
n→∞

log n× P
(
R1[1, n] ∩ (R2[0, n] ∪R3[0, n]) = ∅, 0 �∈ R3[1, n]

)
=

π2

8
,

and

(1.4) lim
n→∞

log n× P
(
R1[1,∞) ∩ (R2[0, n] ∪R3[0, n]) = ∅, 0 �∈ R3[1, n]

)
=

π2

8
.

Actually (1.4) is not stated exactly in this form in [7], but it can be proved using
exactly the same proof as for equation (4.11) in [7]. As mentioned, we deduce from
this result the following estimate for the mean of the capacity.

Corollary 1.4. Assume that d = 4. Then,

(1.5) lim
n→∞

log n

n
E[Cap (Rn)] =

π2

8
.

In dimension three, we use the following representation of capacity (see [6,
Lemma 2.3]):

(1.6) Cap (A) =
1

infν
∑

x∈A

∑
y∈A G(x, y)ν(x)ν(y)

,

where the infimum is taken over all probability measures ν supported on A. We
obtain the following bounds.

Proposition 1.5. Assume that d = 3. There are positive constants c and C such
that

(1.7) c
√
n ≤ E[Cap (Rn)] ≤ C

√
n.
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The rest of the paper is organised as follows. In Section 2 we present the de-
composition of the range, which is at the heart of our central limit theorem. The
capacity of the range is cut into a self-similar part and an error term that we
bound in Section 3. In Section 4 we check Lindeberg-Feller’s conditions. We deal
with dimensions 3 and 4 in Section 5. Finally, we present some open questions in
Section 6.

Notation. When 0 ≤ a ≤ b are real numbers, we write R[a, b] to denote R[[a], [b]],
where [x] stands for the integer part of x. We also write Ra for R[0, [a]] and Sn/2

for S[n/2].
For positive functions f, g we write f(n) � g(n) if there exists a constant c > 0

such that f(n) ≤ cg(n) for all n. We write f(n) � g(n) if g(n) � f(n). Finally, we
write f(n) 
 g(n) if both f(n) � g(n) and f(n) � g(n).

2. Decomposition for capacities

Proof of Proposition 1.2. Note first that by definition,

Cap (A ∪B) = Cap (A) + Cap (B)−
∑

x∈A\B
Px

(
T+
A = ∞, T+

B < ∞
)

−
∑

x∈A∩B

Px

(
T+
A = ∞, T+

B < ∞
)
−
∑

x∈B\A
Px

(
T+
A < ∞, T+

B = ∞
)

−
∑

x∈A∩B

Px

(
T+
A < ∞, T+

B = ∞
)
−
∑

x∈A∩B

Px

(
T+
A = ∞, T+

B = ∞
)

≥ Cap (A) + Cap (B)−
∑

x∈A\B
Px

(
T+
B < ∞

)
−
∑

x∈B\A
Px

(
T+
A < ∞

)
− |A ∩B|.

For any finite set K and all x /∈ K by considering the last visit to K we get

Px

(
T+
K < ∞

)
=
∑
y∈K

G(x, y)Py

(
T+
K = ∞

)
.

This way we obtain ∑
x∈A\B

Px

(
T+
B < ∞

)
≤
∑

x∈A\B

∑
y∈B

G(x, y)

and ∑
x∈B\A

Px

(
T+
A < ∞

)
≤
∑

x∈B\A

∑
y∈A

G(x, y).

Hence we get

Cap (A ∪B) ≥ Cap (A) + Cap (B)− 2
∑
x∈A

∑
y∈B

G(x, y) +
∑

x∈A∩B

∑
y∈A

G(x, y)

+
∑

x∈A∩B

∑
y∈B

G(x, y)− |A ∩B|.

Since G(x, x) ≥ 1 for all x we get∑
x∈A∩B

∑
y∈A

G(x, y) ≥ |A ∩B|,

and this concludes the proof of the lower bound and also the proof of the lemma. �
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The decomposition of Cap (Rn) stated in the following corollary is crucial in the
rest of the paper.

Corollary 2.1. For all L and n, with 2L ≤ n, we have

2L∑
i=1

Cap
(
R(i)

n/2L+δi,L

)
− 2

L∑
�=1

2�−1∑
i=1

E(i)
� ≤ Cap (Rn) ≤

2L∑
i=1

Cap
(
R(i)

n/2L+δi,L

)
,

where (R(i), i = 1, . . . , 2L) are ranges of independent random walks and (δi,L)i,L are
deterministic numbers with δi,L ∈ {0, 1} for all i, L. For each � the random variables

(E(i)
� )i are independent and have the same law as

∑
x∈R

n/2�+δ

∑
y∈ ˜R

n/2�+˜δ
G(x, y),

with R̃ independent of R and δ, δ̃ ∈ {0, 1}.
Proof. Since we work on Z

d, the capacity is translation invariant, i.e., Cap (A) =
Cap (A+ x) for all x, and hence it follows that

Cap (Rn) = Cap
((
Rn/2 − Sn/2

)
∪
(
R[n/2, n]− Sn/2

))
.

The advantage of doing this is that now by the Markov property the random vari-

ables R(1)
n/2 = Rn/2 − Sn/2 and R(2)

n/2+δ = R[n/2, n] − Sn/2 are independent and δ

is such that n− [n/2] = [n/2] + δ. Moreover, by reversibility, each of them has the
same law as the range of a simple random walk started from 0 and run up to time
[n/2] and n− [n/2] respectively. Applying Proposition 1.2 we get

Cap (Rn) ≥ Cap
(
R(1)

n/2

)
+Cap

(
R(2)

n/2

)
− 2

∑
x∈R(1)

n/2

∑
y∈R(2)

n/2+δ

G(x, y).(2.1)

Applying the same subdivision to each of the terms R(1) and R(2) and iterating L
times, we obtain

Cap (Rn) ≥
2L∑
i=1

Cap
(
R(i)

n/2L+δi,L

)
− 2

L∑
�=1

2�−1∑
i=1

E(i)
� ,

where (R(i)

n/2L+δi,L
) and (E(i)

� ) are as in the statement of the corollary. Using (1.2)

for the upper bound on Cap (Rn) concludes the proof. �

3. Variance of Cap (Rn) and error term

As outlined in the Introduction, we want to apply the Lindeberg-Feller theorem
to obtain the central limit theorem. In order to do so, we need to control the
error term appearing in the decomposition of Cap (Rn) in Corollary 2.1. Moreover,
we need to show that the variance of Cap (Rn) /n converges to a strictly positive
constant as n tends to infinity. This is the goal of this section.

3.1. On the error term. We write Gn(x, y) for the Green kernel up to time n, i.e.,

Gn(x, y) = Ex

[
n−1∑
k=0

1(Sk = y)

]
.

We now recall a well-known bound (see for instance [8, Theorem 4.3.1])

G(0, x) ≤ C

1 + ‖x‖d−2
,(3.1)

where C is a positive constant. We start with a preliminary result.
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Lemma 3.1. For all a ∈ Z
d we have∑

x∈Zd

∑
y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y − a) ≤
∑
x∈Zd

∑
y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y).

Moreover, ∑
x∈Zd

∑
y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y) � fd(n),

where

(3.2) f5(n) =
√
n, f6(n) = log n, and fd(n) = 1 ∀d ≥ 7.

Proof. Let Sa =
∑

x,y Gn(0, x)p2k(x, y + a)Gn(0, y). Since

p2k(x, y − a) =
∑
z

pk(x, z)pk(z, y − a) =
∑
z

pk(z, x)pk(z, y − a),

letting Fa(z) =
∑

y Gn(0, y)pk(z, y + a) we have

Fa(z) =
∑
y

Gn(0, y)pk(z − a, y) and Sa =
∑
z

F0(z)Fa(z).(3.3)

By Cauchy-Schwartz, we obtain

S2
a ≤

∑
z

F 2
0 (z) ·

∑
z

F 2
a (z).

Notice however that a change of variable and using (3.3) yield∑
z

F 2
a (z) =

∑
w

F 2
a (w − a) =

∑
w

F 2
0 (w),

and hence we deduce that
S2
a ≤ S2

0 ∀ a.
We now note that if X is a lazy simple random walk, then the sums in the statement
of the lemma will only be affected by a multiplicative constant. So it suffices
to prove the result for a lazy walk. It is a standard fact (see for instance [10,
Proposition 10.18]) that the transition matrix of a lazy chain can be written as
the square of another transition matrix. This now concludes the proof of the first
inequality.

To simplify notation we write Gn(x) = Gn(0, x) and G(x) = G(0, x).

For the second inequality we first note that if S and S̃ are independent simple
random walks, then∑

x

∑
y

Gn(x)Gn(y)G(x− y) = E

[
n∑

k=0

n∑
�=0

G(Sk − S̃�)

]

and E

[
G(Sk − S̃�)

]
= E[G(Sk+�)]. We now claim that for some constant C we have

for all k ≥ 0,

E[G(Sk)] ≤
C

(k + 1)
d−2
2

.(3.4)

Indeed, this follows immediately from (3.1) and the standard bound

pi(x) � e−c‖x‖2/i

id/2
1(‖x‖ ≤ i3/5) + 1(‖x‖ > i3/5)e−c‖x‖2/i,
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which in turn follows from the local CLT and Azuma-Hoeffding inequality. �

Lemma 3.2. For all n, let Rn and R̃n be the ranges up to time n of two indepen-
dent simple random walks in Z

d started from 0. For all k, n ∈ N we have

E

⎡⎢⎣
⎛⎝ ∑

x∈Rn

∑
y∈ ˜Rn

G(x, y)

⎞⎠k
⎤⎥⎦ ≤ C(k)(fd(n))

k,

where fd(n) is the function defined in the statement of Lemma 3.1 and C(k) =
Ck(k!)2 with C a universal constant.

Proof. Let L�(x) denote the local time at x up to time � for the random walk S,
i.e.,

L�(x) =

�−1∑
i=0

1(Si = x).

Let S̃ be an independent walk and let L̃ denote its local times. Then, we get∑
x∈Rn

∑
y∈ ˜Rn

G(x, y) ≤
∑
x∈Zd

∑
y∈Zd

Ln(x)L̃n(y)G(x, y).

So, for k = 1 by independence, we get using Lemma 3.1

E

⎡⎣ ∑
x∈Rn

∑
y∈ ˜Rn

G(x, y)

⎤⎦ ≤
∑
x∈Zd

∑
y∈Zd

Gn(0, x)Gn(0, y)G(0, x− y) � fd(n).

As in Lemma 3.1 to simplify notation we write Gn(x) = Gn(0, x).
For the k-th moment we have

E

⎡⎢⎣
⎛⎝ ∑

x∈Rn

∑
y∈ ˜Rn

G(x, y)

⎞⎠k
⎤⎥⎦(3.5)

≤
∑

x1,...,xk

∑
y1,...,yk

E

[
k∏

i=1

Ln(xi)

]
E

[
k∏

i=1

Ln(yi)

]
k∏

i=1

G(xi − yi).

For any k-tuples x1, . . . , xk and y1, . . . , yk, we have

E

[
k∏

i=1

Ln(xi)

]
≤

∑
σ: permutation of {1,...,k}

Gn(xσ(1))

k∏
i=2

Gn(xσ(i) − xσ(i−1)) and

E

[
k∏

i=1

Ln(yi)

]
≤

∑
π: permutation of {1,...,k}

Gn(yπ(1))

k∏
i=2

Gn(yπ(i) − yπ(i−1)).

Without loss of generality, we consider the term corresponding to the identity per-
mutation for x and a permutation π for y. Then, the right hand side of (3.5) is a
sum of terms of the form

Gn(x1)Gn(x2 − x1) . . . Gn(xk − xk−1)Gn(yπ(1))Gn(yπ(2) − yπ(1))

. . . Gn(yπ(k) − yπ(k−1))

k∏
i=1

G(xi − yi).
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Suppose now that the term yk appears in two terms in the above product, i.e.,

Gn(yk − yπ(i))Gn(yk − yπ(j)).

By the triangle inequality we have that one of the following two inequalities has to
be true:

‖yk − yπ(i)‖ ≥ 1

2
‖yπ(i) − yπ(j)‖ or ‖yk − yπ(j)‖ ≥ 1

2
‖yπ(i) − yπ(j)‖.

Since Green’s kernel is radially decreasing and satisfies G(x) 
 |x|2−d for ‖x‖ > 1
we get

Gn(yk−yπ(i))Gn(yk−yπ(j)) � Gn(yπ(j)−yπ(i))
(
Gn(yk − yπ(j)) +Gn(yk − yπ(i))

)
.

Plugging this upper bound into the product and summing only over xk and yk while
fixing the other terms, we obtain∑

xk,yk

Gn(xk − xk−1)Gn(yk − yπ(i))G(xk − yk)

=
∑
xk,yk

Gn(xk − xk−1)Gn(yk − yπ(i))G((xk − xk−1)− (yk − yπ(i)))

=
∑
x,y

Gn(x)Gn(y)G((x− y)− (xk−1 − yπ(i))) � fd(n),

where the last inequality follows from Lemma 3.1. Continuing by induction com-
pletes the proof. �

3.2. On the variance of Cap (Rn).

Lemma 3.3. For d ≥ 6 there exists a strictly positive constant γd so that

lim
n→∞

Var (Cap (Rn))

n
= γd > 0.

We split the proof of the lemma above into two parts. First we establish the
existence of the limit, and then we show it is strictly positive. For the existence,
we need to use Hammersley’s lemma [4], which we recall here.

Lemma 3.4 (Hammersley). Let (an), (bn), (cn) be three sequences of real numbers
satisfying for all n,m,

an + am − cn+m ≤ an+m ≤ an + am + bn+m.

If the sequences (bn), (cn) are positive and non-decreasing and additionally satisfy
∞∑
n=1

bn + cn
n(n+ 1)

< ∞,

then the limit as n → ∞ of an/n exists.

For a random variable X we will write X = X − E[X].

Lemma 3.5. For d ≥ 6, the limit as n tends to infinity of Var (Cap (Rn)) /n exists.

Proof. We follow closely the proof of Lemma 6.2 of Le Gall [9]. To simplify notation
we write Xn = Cap (Rn), and we set for all k ≥ 1,

ak = sup

{√
E

[
X

2

n

]
: 2k ≤ n < 2k+1

}
.
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For k ≥ 2, take n such that 2k ≤ n < 2k+1 and write � = [n/2] and m = n − �.
Then, from Corollary 2.1 for L = 1 we get

X
(1)
� +X(2)

m − 2E� ≤ Xn ≤ X
(1)
� +X(2)

m ,

where X(1) and X(2) are independent and E� has the same law as∑
x∈R�

∑
y∈ ˜Rm

G(x, y)

with R̃ an independent copy of R.
Taking expectations and subtracting we obtain

|Xn − (X
(1)

� +X
(2)

m )| ≤ 2max (E�,E[E�]) .

Since X
(1)

and X
(2)

are independent, we get∥∥∥X(1)

� +X
(2)

m

∥∥∥
2
=

(∥∥∥X(1)

�

∥∥∥2
2
+
∥∥∥X(2)

m

∥∥∥2
2

)1/2

.

By the triangle inequality we now obtain

‖Xn‖2 ≤ ‖X(1)

� +X
(2)

m ‖2 + ‖2max(E�,E[E�])‖2

≤
(∥∥∥X(1)

�

∥∥∥2
2
+
∥∥∥X(2)

m

∥∥∥2
2

)1/2

+ 2 (‖E�‖2 + E[E�])

≤
(∥∥∥X(1)

�

∥∥∥2
2
+
∥∥∥X(2)

m

∥∥∥2
2

)1/2

+ c1fd(n)

≤
(∥∥∥X(1)

�

∥∥∥2
2
+
∥∥∥X(2)

m

∥∥∥2
2

)1/2

+ c1 log n,

where c1 is a positive constant. The penultimate inequality follows from Lemma 3.2,
and for the last inequality we used that fd(n) ≤ log n for all d ≥ 6. From the
definition of ak, we deduce that

ak ≤ 21/2ak−1 + c2k,

for another positive constant c2. Setting bk = akk
−1 gives for all k that

bk ≤ 21/2bk−1 + c2,

and hence bk � 2k/2, which implies that ak � k · 2k/2 for all k. This gives that for
all n,

Var
(
Xn

)
� n(log n)2.(3.6)

Proposition 1.2 and (1.2) give that for all n,m,

X(1)
n +X(2)

m − 2E(n,m) ≤ Xn+m ≤ X(1)
n +X(2)

m ,

where again X(1) and X(2) are independent and

E(n,m) =
∑

x∈Rn

∑
y∈ ˜Rm

G(x, y) ≤
∑

x∈Rn+m

∑
y∈ ˜Rn+m

G(x, y)(3.7)

with R and R̃ independent. As above we get∣∣∣Xn+m −
(
X

(1)

n +X
(2)

m

)∣∣∣ ≤ 2max(E(n,m),E[E(n,m)])
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and by the triangle inequality again∣∣∣∥∥Xn+m

∥∥
2
−
∥∥∥X(1)

n +X
(2)

m

∥∥∥
2

∣∣∣ ≤ 4 ‖E(n,m)‖2 .

Taking the square of the above inequality and using that X
(1)

n and X
(2)

m are inde-
pendent we obtain∥∥Xn+m

∥∥2
2
≤
∥∥Xn

∥∥2
2
+
∥∥Xm

∥∥2
2
+ 8

√∥∥Xn

∥∥2
2
+
∥∥Xm

∥∥2
2
‖E(n,m)‖2

+ 16 ‖E(n,m)‖22
∥∥Xn

∥∥2
2
+
∥∥Xm

∥∥2
2
≤
∥∥Xn+m

∥∥2
2

+ 8
∥∥Xn+m

∥∥
2
‖E(n,m)‖2 + 16 ‖E(n,m)‖22 .

We set γn =
∥∥Xn

∥∥2
2
, dn = c1

√
n(log n)2, and d′n = c2

√
n(logn)2, where c1 and c2

are two positive constants. Using the bound from (3.6) together with (3.7) and
Lemma 3.2 in the inequalities above yields

γn + γm − d′n+m ≤ γn+m ≤ γn + γm + dn+m.

We can now apply Hammersley’s result, Lemma 3.4, to deduce that the limit γn/n
exists, i.e.,

lim
n→∞

Var
(
Xn

)
n

= γd ≥ 0,

and this finishes the proof of the existence of the limit. �

3.3. Non-degeneracy: γd > 0. To complete the proof of Lemma 3.3 we need to
show that the limit γ is strictly positive. We will achieve this by using the same trick
of not allowing double-backtracks at even times (defined below) as in [1, Section 4].

As in [1] we consider a walk with no double backtracks at even times. A walk

makes a double backtrack at time n if Sn−1 = Sn−3 and Sn = Sn−2. Let S̃ be a

walk with no double backtracks at even times constructed as follows: we set S̃0 = 0
and let S̃1 be a random neighbour of 0 and S̃2 a random neighbour of S̃1. Suppose

we have constructed S̃ for all times k ≤ 2n; then we let (S̃2n+1, S̃2n+2) be uniform
in the set

{(x, y) : ‖x− y‖ = ‖S̃2n − x‖ = 1 and (x, y) �= (S̃2n−1, S̃2n)}.

Having constructed S̃ we can construct a simple random walk in Z
d by adding

a geometric number of double backtracks to S̃ at even times. More formally, let
(ξi)i=2,4,... be i.i.d. geometric random variables with mean p/(1− p) and

P(ξ = k) = (1− p)pk ∀ k ≥ 0,

where p = 1/(2d)2. Setting

Nk =
k∑

i=2
i even

ξi,

we construct S from S̃ as follows. First we set Si = S̃i for all i ≤ 2 and for all
k ≥ 1 we set Ik = [2k + 2N2(k−1) + 1, 2k + 2N2k]. If Ik �= ∅, then if i ∈ Ik is odd,

we set Si = S̃2k−1, while if i is even, we set Si = S̃2k. Afterwards, for the next two

time steps, we follow the path of S̃, i.e.,

S2k+2N2k+1 = S̃2k+1 and S2k+2N2k+2 = S̃2k+2.
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From this construction, it is immediate that S is a simple random walk on Z
d. Let

R̃ be the range of S̃. From the construction of S from S̃ we immediately get that

R̃n = Rn+2Nn
= Rn+2Nn−1

,(3.8)

where the second equality follows, since adding the double backtracks does not
change the range.

Lemma 3.6. Let S̃ be a random walk on Z
d starting from 0 with no double back-

tracks at even times. If R̃ stands for its range, then for any positive constants c
and c′ we have

P

⎛⎝ ∑
x∈ ˜R2n

∑
y∈ ˜R[2n,(2+c′)n]

G(x, y) ≥ c
√
n

⎞⎠→ 0 as n → ∞.

Proof. Let M be the number of double backtracks added during the interval [2n,
(2 + c′)n], i.e.,

M =

(2+c′)n∑
i=2n
i even

ξi.(3.9)

Then, we have that

R̃[2n, (2 + c′)n] ⊆ R[2n+ 2N2(n−1), (2 + c′)n+ 2N2(n−1) + 2M ].

Note that the inclusion above could be strict, since S̃ does not allow double back-
tracks, while S does so. We now can write

P

⎛⎝ ∑
x∈ ˜R2n

∑
y∈ ˜R[2n,(2+c′)n]

G(x, y) ≥ c
√
n

⎞⎠
≤ P

⎛⎝ ∑
x∈R[0,2n+2N2(n−1)]

∑
y∈R[2n+2N2(n−1),(2+c′)n+2N2(n−1)+2M ]

G(x, y) ≥ c
√
n

⎞⎠
≤ P

⎛⎝ ∑
x∈R[0,2n+2N2(n−1)]

∑
y∈R[2n+2N2(n−1),(2+2C+c′)n+2N2(n−1)]

G(x, y) ≥ c
√
n

⎞⎠
+ P(M ≥ Cn) .

By (3.9) and Chebyshev’s inequality we obtain that for some positive C, P(M ≥ Cn)
vanishes as n tends to infinity. Since G(x − a, y − a) = G(x, y) for all x, y, a, it
follows that

P

⎛⎝ ∑
x∈R[0,2n+2N2(n−1)]

∑
y∈R[2n+N2(n−1),(2+2C+c′)n+2N2(n−1)]

G(x, y) ≥ c
√
n

⎞⎠
= P

⎛⎝∑
x∈R1

∑
y∈R2

G(x, y) ≥ c
√
n

⎞⎠ ,

where R1 = R[0, 2n + 2N2(n−1)] − S2n+2N2(n−1)
and R2 = R[2n + 2N2(n−1),

(2+2C+ c′)n+2N2(n−1)]−S2n+2N2(n−1)
. The importance of considering R1 up to
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time 2n+ 2N2(n−1) and not up to time 2n+ 2N2n is in order to make R1 and R2

independent. Indeed, this follows since after time 2n+2N2(n−1) the walk S behaves

as a simple random walk in Z
d independent of the past. Hence we can replace R2

by R′
(2+2C+c′)n, where R′ is the range of a simple random walk independent of R1.

Therefore we obtain

P

⎛⎜⎝∑
x∈R1

∑
y∈R′

(2+2C+c′)n

G(x, y) ≥ c
√
n

⎞⎟⎠
≤ P

⎛⎜⎝ ∑
x∈R(2C′+2)n

∑
y∈R′

(2+2C+c′)n

G(x, y) ≥ c
√
n

⎞⎟⎠+ P
(
N2(n−1) ≥ C ′n

)
.

As before, by Chebyshev’s inequality for C ′ large enough P
(
N2(n−1) ≥ C ′n

)
→ 0

as n → ∞, and by Markov’s inequality and Lemma 3.1,

P

⎛⎜⎝ ∑
x∈R(2C′+2)n

∑
y∈R′

(2+2C+c′)n

G(x, y) ≥ c
√
n

⎞⎟⎠≤
E

[∑
x∈RC′n

∑
y∈R′

(2+2C+c′)n
G(x, y)

]
c
√
n

� log n√
n

,

and this concludes the proof. �

Claim 3.7. Let R̃ be the range of S̃. Then, almost surely

Cap
(
R̃[2k, 2k + n]

)
n

→ αd ·
(

p

1− p

)
as n → ∞.

Proof. As mentioned already in the Introduction, Jain and Orey [5] proved that

lim
n→∞

Cap (Rn)

n
= αd = inf

m

E[Cap (Rm)]

m
,(3.10)

with the limit αd being strictly positive for d ≥ 5.

Clearly the range of S̃ in [2k, 2k + n] satisfies

R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n] \ {S2k+2N2k−1+1, S2k+2N2k−1+2}

⊆ R̃[2k, 2k + n]R̃[2k, 2k + n] ⊆ R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n],

where N ′
n is the number of double backtracks added between times 2k and 2k+ n.

We now note that after time 2k + 2N2k−1 the walk S behaves as a simple random
walk in Z

d. Hence using (3.10) and the fact that N ′
n/n → p/(2(1− p)) as n → ∞

almost surely it follows that almost surely

lim
n→∞

Cap (R[2k + 2N2k−1, 2k + 2N2k−1 + 2N ′
n])

n
= αd ·

(
p

1− p

)
,

and this concludes the proof. �

Proof of Lemma 3.3. Let S̃ be a random walk with no double backtracks at even

times and let S be a simple random walk constructed from S̃ as described at the

beginning of Section 3.3. We thus have R̃n = Rn+2Nn
for all n. Let kn = [(1−p)n],

let in = [(1− p)(n+A
√
n)], and let �n = [(1− p)(n−A

√
n)] for a constant A to be



7638 AMINE ASSELAH, BRUNO SCHAPIRA, AND PERLA SOUSI

determined later. Then, by Claim 3.7 for all n sufficiently large so that kn and �n
are even numbers we have

P

(
Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
·
√
n

)
≥ 7

8
and(3.11)

P

⎛⎝ ∑
x∈ ˜R[0,kn]

∑
y∈ ˜R[kn,in]

G(x, y) ≤ 1

8
·
(
A · αd · p
1− p

)
·
√
n

⎞⎠ ≥ 7

8
(3.12)

and

P

(
Cap

(
R̃[�n, kn]

)
≥ 3

4
·
(
A · αd · p
1− p

)
·
√
n

)
≥ 7

8
and(3.13)

P

⎛⎝ ∑
x∈ ˜R[0,�n]

∑
y∈ ˜R[�n,kn]

G(x, y) ≤ 1

8
·
(
A · αd · p
1− p

)
·
√
n

⎞⎠ ≥ 7

8
.(3.14)

We now define the events

Bn =

{
2N�n − 2E[N�n ]√

n
∈ [A+ 1, A+ 2]

}
and

Dn =

{
2Nin − 2E[Nin ]√

n
∈ [1−A, 2−A]

}
.

Then, for all n sufficiently large we have for a constant cA > 0 that depends on A,

P(Bn) ≥ cA and P(Dn) ≥ cA.(3.15)

Since we have already showed the existence of the limit Var (Cap (Rn)) /n as
n tends to infinity, it suffices to prove that the limit is strictly positive along a
subsequence. So we are only going to take n such that kn is even. Take n sufficiently
large so that (3.11) holds and kn is even. We then consider two cases:

(i) P
(
Cap

(
R̃[0, kn]

)
≥ E[Cap (Rn)]

)
≥ 1

2
or

(ii) P
(
Cap

(
R̃[0, kn]

)
≤ E[Cap (Rn)]

)
≥ 1

2
.

We start with case (i). Using Proposition 1.2 we have

Cap
(
R̃[0, in]

)
≥ Cap

(
R̃[0, kn]

)
+Cap

(
R̃[kn, in]

)
− 2

∑
x∈ ˜R[0,kn]

∑
y∈ ˜R[kn,in]

G(x, y).

From this, we deduce that

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)√
n

)
≥ P

(
Cap

(
R̃[0, kn]

)
≥ E[Cap (R[0, n])] ,Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
·
√
n

)

−P

⎛⎝ ∑
x∈ ˜R[0,kn]

∑
y∈ ˜R[kn,in]

G(x, y) >
1

8
·
(
A · αd · p
1− p

)
·
√
n

⎞⎠ .

(3.16)
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The assumption of case (i) and (3.11) give that

P

(
Cap

(
R̃[0, kn]

)
≥ E[Cap(R[0, n])],Cap

(
R̃[kn, in]

)
≥ 3

4
·
(
A · αd · p
1− p

)
·
√
n

)
≥ 3

8
.

Plugging this lower bound together with (3.12) into (3.16) yields

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
·
√
n

)
≥ 1

4
.

Since N is independent of S̃, using (3.15) it follows that

P

(
Cap

(
R̃[0, in]

)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
·
√
n,Dn

)
≥ cA

4
.

It is not hard to see that on the event Dn we have in + 2Nin ∈ [n, n + 3
√
n].

Therefore, since R̃[0, k] = R[0, k + 2Nk] we deduce that

P

(
∃ m ≤ 3

√
n : Cap (R[0, n+m]) ≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
·
√
n

)
≥ cA

4
.

Since Cap (R[0, �]) is increasing in �, we obtain

P

(
Cap

(
R[0, n+ 3

√
n]
)
≥ E[Cap (Rn)] +

1

2
·
(
A · αd · p
1− p

)
·
√
n

)
≥ cA

4
.

Using now the deterministic bound Cap (R[0, n+ 3
√
n]) ≤ Cap (R[0, n]) + 3

√
n

gives

P

(
Cap (R[0, n]) ≥ E[Cap (Rn)] +

(
1

2
·
(
A · αd · p
1− p

)
− 3

)
·
√
n

)
≥ cA

4
,

and hence choosing A sufficiently large so that

1

2
·
(
A · αd · p
1− p

)
− 3 > 0

and using Chebyshev’s inequality shows in case (i) for a strictly positive constant
c that we have

Var (Cap (Rn)) ≥ c · n.
We now treat case (ii). We are only going to consider n so that �n is even. Using
Proposition 1.2 again we have

Cap
(
R̃[0, �n]

)
≤ Cap

(
R̃[0, kn]

)
− Cap

(
R̃[�n, kn]

)
+ 2

∑
x∈ ˜R[0,�n]

∑
y∈ ˜R[�n,kn]

G(x, y).

Then, similarly as before using (3.13), (3.14), and (3.15) we obtain

P

(
Cap

(
R̃[0, �n]

)
≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
·
√
n, Bn

)
≥ cA

4
.

Since on Bn we have �n + 2N�n ∈ [n, n+ 3
√
n], it follows that

P

(
∃ m ≤ 3

√
n : Cap (R[0, n+m]) ≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
·
√
n

)
≥ cA

4
.
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Using the monotonicity property of Cap (Rl) in � we finally conclude that

P

(
Cap (R[0, n]) ≤ E[Cap (Rn)]−

1

2
·
(
A · αd · p
1− p

)
·
√
n

)
≥ cA

4
,

and hence Chebyshev’s inequality again finishes the proof in case (ii). �

4. Central limit theorem

We start this section by recalling the Lindeberg-Feller theorem. Then, we give
the proof of Theorem 1.1.

Theorem 4.1 (Lindeberg-Feller). For each n let (Xn,i : 1 ≤ i ≤ n) be a collection
of independent random variables with zero mean. Suppose that the following two
conditions are satisfied:

(i)
∑n

i=1 E
[
X2

n,i

]
→ σ2 > 0 as n → ∞ and

(ii)
∑n

i=1 E
[
(Xn,i)

21(|Xn,i| > ε)
]
→ 0 as n → ∞ for all ε > 0.

Then, Sn = Xn,1 + · · ·+Xn,n =⇒ σN (0, 1) as n → ∞.

For a proof we refer the reader to [3, Theorem 3.4.5].

Before proving Theorem 1.1, we upper bound the fourth moment of Cap (Rn).
Recall that for a random variable X we write X = X − E[X].

Lemma 4.2. For all d ≥ 6 and for all n we have

E

[
(Cap (Rn))

4
]

� n2.

Proof. This proof is similar to the proof of Lemma 3.5. We only emphasise the
points where they differ. Again we write Xn = Cap (Rn) and we set for all k ≥ 1,

ak = sup

{(
E

[
X

4

n

])1/4
: 2k ≤ n < 2k+1

}
.

For k ≥ 2 take n such that 2k ≤ n < 2k+1 and write n1 = [n/2] and n2 = n − �.
Then, Corollary 2.1 and the triangle inequality give

‖Xn‖4 ≤ ‖Xn1
+Xn2

‖4 + 4‖E(n1, n2)‖4

≤
(
E

[
X

4

n1

]
+ E

[
X

4

n2

]
+ 6E

[
X

2

n1

]
E

[
X

2

n2

])1/4
+ c1 log n,

where the last inequality follows from Lemma 3.2 and the fact that Xn1
and Xn2

are independent. Using Lemma 3.3 we get that

E

[
X

2

n1

]
E

[
X

2

n2

]

 n2.

Also using the obvious inequality for a, b > 0 that (a+b)1/4 ≤ a1/4+b1/4 we obtain

‖Xn‖4 ≤
(
E

[
X

4

n1

]
+ E

[
X

4

n2

])1/4
+ c2

√
n.

We deduce that

ak ≤ 21/4ak−1 + c32
k/2.

Setting bk = 2−k/2ak we get

bk ≤ 1

21/4
bk−1 + c3.
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This implies that (bk, k ∈ N) is a bounded sequence, and hence ak ≤ C2k/2 for a
positive constant C or, in other words,(

E

[
X

4

n

])1/4
�

√
n,

and this concludes the proof. �

Proof of Theorem 1.1. With the notation of Corollary 2.1 we set

Xn = Cap (Rn) and Xi,L = Cap
(
R(i)

n/2L+δi,L

)
.

Corollary 2.1 reads

2L∑
i=1

Xi,L − 2

L∑
�=1

2�−1∑
i=1

E(i)
� ≤ Xn ≤

2L∑
i=1

Xi,L.(4.1)

We now let

E(n) =
2L∑
i=1

Xi,L −Xn.

Using inequality (4.1) we get

E[|E(n)|] ≤ 4E

⎡⎣ L∑
�=1

2�−1∑
i=1

E(i)
�

⎤⎦ �
L∑

�=1

2� log n � 2L log n,

where the penultimate inequality follows from Lemma 3.2 for k = 1 and the fact
that fd(n) ≤ log n for all d ≥ 6.

Choosing L so that 2L = n1/4 gives E[|E(n)|] /√n → 0 as n → ∞. We can thus
reduce the problem of showing that Xn/

√
n converges in distribution to showing

that
∑2L

i=1 Xi,L/
√
n converges to a normal random variable.

We now focus on proving that∑2L

i=1 Xi,L√
n

=⇒ σN (0, 1) as n → ∞.(4.2)

We do so by invoking Lindeberg-Feller’s Theorem 4.1. From Lemma 3.3 we imme-
diately get that as n tends to infinity,

2L∑
i=1

1

n
·Var

(
Xi,L

)
∼ 2L

n
· γd ·

n

2L
= γd > 0,

which means that the first condition of Lindeberg-Feller is satisfied. It remains to
check the second one, i.e.,

lim
n→∞

2L∑
i=1

1

n
· E
[
X

2

i,L1(|Xi,L| > ε
√
n)
]
= 0.

By Cauchy-Schwartz, we have

E

[
X

2

i,L1(|Xi,L| > ε
√
n)
]
≤
√
E
[
(Xi,L)4

]
P
(
|Xi,L| > ε

√
n
)
.
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By Chebyshev’s inequality and using that Var
(
Xi,L

)
∼ γd · n/2L from Lemma 3.3

we get

P
(
|Xi,L| > ε

√
n
)
≤ 1

ε22L
.

Using Lemma 4.2 we now get

2L∑
i=1

1

n
· E
[
X

2

i,L1(|Xi,L| > ε
√
n)
]

�
2L∑
i=1

1

n
· n

2L
1

ε2L/2
=

1

ε2L/2
→ 0,

since L = log n/4. Therefore, the second condition of Lindeberg-Feller Theorem 4.1
is satisfied, and this finishes the proof. �

5. Rough estimates in d = 4 and d = 3

Proof of Corollary 1.4. In order to use Lawler’s Theorem 1.3, we introduce a ran-

dom walk S̃ starting at the origin and independent from S, with distribution de-

noted by P̃. Then, as noticed already by Jain and Orey [5, Section 2], the capacity
of the range reads (with the convention R−1 = ∅)

(5.1) Cap (Rn) =

n∑
k=0

1(Sk /∈ Rk−1)× P̃Sk

(
(Sk + R̃∞) ∩Rn = ∅

)
,

where R̃∞ = R̃[1,∞).
Thus, for k fixed we can consider three independent walks. The first is S1 :

[0, k] → Z
d with S1

i = Sk − Sk−i, the second is S2 : [0, n − k] → Z
d with S2

i :=

Sk+i − Sk, and the third is S3 ≡ S̃. With these symbols, equality (5.1) reads

Cap (Rn) =

n∑
k=0

1(0 /∈ R1[1, k])× P̃
(
R3[1,∞) ∩ (R1[0, k] ∪R2[0, n− k]) = ∅

)
.

Then, taking expectation with respect to S1, S2, and S3, we get
(5.2)

E[Cap (Rn)] =

n∑
k=0

P
(
0 �∈ R1[1, k], R3[1,∞) ∩ (R1[0, k] ∪R2[0, n− k]) = ∅

)
.

Now, ε ∈ (0, 1/2) being fixed, we define εn := εn/ log n and divide the above sum
into two subsets: when k is smaller than εn or larger than n− εn, and when k is in
between. The terms in the first subset can be bounded just by one, and we obtain
this way the following upper bound:

E[Cap (Rn)] ≤ 2εn + nP
(
0 �∈ R1[1, εn], R3[1, εn] ∩ (R1[0, εn] ∪R2[0, εn]) = ∅

)
.

Since this holds for any ε > 0, and log εn ∼ log n, we conclude using (1.3) that

(5.3) lim sup
n→∞

log n

n
× E[Cap (Rn)] ≤ π2

8
.

For the lower bound, we first observe that (5.2) gives

E[Cap (Rn)] ≥ nP
(
0 �∈ R1[1, n], R3[1,∞] ∩ (R1[0, n] ∪R2[0, n]) = ∅

)
,

and we conclude the proof using (1.3). �
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Proof of Proposition 1.5. We recall Ln(x) is the local time at x, i.e.,

Ln(x) =

n−1∑
i=0

1(Si = x).

The lower bound is obtained using the representation (1.6), as we choose ν(x) =
Ln(x)/n. This gives

(5.4) Cap (Rn) ≥
n

1
n

∑
x,y∈Zd G(x, y)Ln(x)Ln(y)

,

and using Jensen’s inequality, we deduce that

(5.5) E[Cap (Rn)] ≥
n

1
n

∑
x,y∈Zd G(x, y)E[Ln(x)Ln(y)]

.

Note that

(5.6)
∑

x,y∈Zd

G(x, y)E[Ln(x)Ln(y)] =
∑

0≤k≤n

∑
0≤k′≤n

E[G(Sk, Sk′)] .

We now obtain, using (3.4),∑
0≤k≤n

∑
0≤k′≤n

E[G(Sk, Sk′)] =
∑

0≤k≤n

∑
0≤k′≤n

E
[
G(0, S|k′−k|)

]
�
∑

0≤k≤n

∑
0≤k′≤n

E

[
1

1 + ‖S|k′−k|‖

]
� n

√
n

and this gives the desired lower bound. For the upper bound one can use that in
dimension 3,

Cap (A) � rad(A),

where rad(A) = supx∈A ‖x‖ (see [7, Proposition 2.2.1(a) and (2.16)]). Therefore
Doob’s inequality gives

E[Cap (Rn)] � E

[
sup
k≤n

‖Sk‖
]

�
√
n,

and this completes the proof. �

6. Open questions

We focus on open questions concerning the typical behaviour of the capacity of
the range.

Our main inequality (1.1) is reminiscent of the equality for the range

(6.1) |R[0, 2n]| = |R[0, n]|+ |R[n, 2n]| − |R[0, n] ∩R[n, 2n]|.
However, the intersection term |R[0, n] ∩ R[n, 2n]| has a different asymptotics for
d ≥ 3:

(6.2) E[|R[0, n] ∩R[n, 2n]|] 
 fd+2(n).

This leads us to add two dimensions when comparing the volume of the range with
respect to the capacity of the range. It is striking that the volume of the range in
d = 1 is typically of order

√
n as the capacity of the range in d = 3. The fact that

the volume of the range in d = 2 is typically of order n/ log n like the capacity of
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the range in d = 4 is as striking. Thus, based on these analogies, we conjecture
that the variance in dimension 5 behaves as follows:

(6.3) Var (Cap (Rn)) 
 n logn.

Note that an upper bound with a similar nature as (1.1) is lacking and that (1.2)
is of a different order of magnitude. Indeed,

E[Cap (R[0, n] ∩R[n, 2n])] ≤ E[|R[0, n] ∩R[n, 2n]|] � fd+2(n).

Another question would be to show a concentration result in dimension 4, i.e.,

(6.4)
Cap (Rn)

E[Cap (Rn)]

(P)−→ 1.

We do not expect (6.4) to hold in dimension 3, but rather that the limit would be
random.
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