
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 11, November 2018, Pages 8135–8153
http://dx.doi.org/10.1090/tran/7432

Article electronically published on August 9, 2018

LIMITS OF FUNCTIONS ON GROUPS

BALÁZS SZEGEDY

Abstract. Our goal is to develop a limit approach for a class of problems
in additive combinatorics that is analogous to the limit theory of dense graph
sequences. We introduce a metric, convergence and limit objects for functions
on discrete groups and use it to study limits of measurable functions on com-
pact abelian groups. As an application we find exact minimizers for densities
of linear configurations of complexity 1.

1. Introduction

The so-called graph limit theory (see [10], [11], [2], [9]) gives an analytic approach
to a large class of problems in graph theory. A very active field of applications is
extremal graph theory where, roughly speaking, the goal is to find the maximal
(or minimal) possible value of a graph parameter in a given family of graphs and
to study the structure of graphs attaining the extremal value. A classical example
is Mantel’s theorem which implies that a triangle free graph H on 2n vertices
maximizes the number of edges if H is the complete bipartite graph with equal
color classes. Another example is given by the Chung-Graham-Wilson theorem [3].
If we wish to minimize the density of the four cycles in a graph H with edge density
1/2, then H has to be sufficiently quasi-random. However, the perfect minimum
of the problem (that is 1/16) cannot be attained by any finite graph but one can
get arbitrarily close to it. Such problems justify graph limit theory where in an
appropriate completion of the set of graphs the optimum can always be attained if
the extremal problem satisfies a certain continuity property. Furthermore, one can
use variational principles at the exact maximum or minimum bringing the tools of
differential calculus into graph theory.

Extremal graph (and hypergraph) theory has a close connection to additive com-
binatorics. It is well known that the triangle removal lemma by Szemerédi and
Ruzsa implies the qualitative version of Roth’s theorem on three term arithmetic
progressions. The proof relies on an encoding of an integer sequence (or a subset
in an abelian group) by a graph that is rather similar to a Cayley graph. Such rep-
resentations of additive problems in graph theory hint at a limit theory for subsets
in abelian groups that is closely connected to graph limit theory. This new limit
theory, that is actually a limit theory for functions on abelian groups, was initiated
by the author in [15], [16], and [13] in a rather general form.
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Motivated by Szemerédi’s theorem on arithmetic progressions Gowers initiated a
theory of higher order Fourier analysis in [6] (for a textbook on the topic see [18]).
He introduced a sequence of norms ‖.‖Uk

(called uniformity norms) for functions on
finite abelian groups. Roughly speaking, in k-th order Fourier analysis functions
with small Uk+1 norm are considered to be “random like”. Seperation of noise
and structure is a central topic in higher order Fourier analysis. The larger k
is, the more functions are considered to be structured and their description gets
increasingly harder. Correspondingly, there is a hierarchy of increasingly fine limit
notions related to k-th order Fourier analysis as k goes to infinity and the limit
objects get increasingly complex. The focus of this paper is the linear case k = 1
that was called “harmonic analytic limit” in [15]. This case is interesting in its own
right, covers numerous important questions, and is illustrative for the more general
limit concept.

We introduce metric, convergence and limit objects for subsets in abelian groups.
More generally, since subsets can be represented by their characteristic functions,
we study the convergence of functions on abelian groups. This extends the range of
possible applications of our approach to problems outside additive combinatorics.

In the first part of the paper we study a metric d̂ and a related convergence notion
for l2 functions on discrete (not necessarily commutative) groups. It is important

that the metric d̂ allows us to compare two functions defined on different groups.
In chapter 3 we introduce a distance d for measurable functions f ∈ L2(A1), g ∈
L2(A2) defined on compact abelian groups A1, A2 such that d(f, g) := d̂(f̂ , ĝ) where

f̂ and ĝ denote the Fourier transforms of f and g. In additive combinatorics, we
can use the distance d to compare subsets in finite abelian groups in the following
way. If S1 ⊆ A1 and S2 ⊆ A2 are subsets in finite abelian groups A1 and A2, then
their distance is d(1S1

, 1S2
). This allows us to talk about convergent sequences of

subsets in a sequence of abelian groups.
A crucial property of the metric d (see Theorem 3) is that it puts a compact

topology on the set of all pairs (f,A) where A is a compact abelian group and f is
a measurable function on A with values in a fixed compact convex set K ⊂ C. As
a consequence we have that any sequence of subsets {Si ⊆ Ai}∞i=1 in finite abelian
groups Ai has a convergent subsequence with limit object which is a measurable
function of the form f : A → [0, 1] where A is some compact abelian group. This
result is analogous to graph limit theory where graph sequences always have con-
vergent subsequences with limit object which is a symmetric measurable function
of the form W : [0, 1]2 → [0, 1].

The success of a limit theory depends on how many interesting parameters are
continuous with respect to the convergence notion. The parameters that are most
interesting in additive combinatorics are densities of linear configurations. A linear
configuration is given by a finite set of linear forms, i.e., homogeneous linear multi-
variate polynomials over Z. For example, a 3-term arithmetic progression is given
by the linear forms a, a + b, a + 2b. If f is a bounded measurable function on a
compact abelian group A, then we can compute the density of 3-term arithmetic
progressions in f as the expected value Ea,b∈A(f(a)f(a + b)f(a + 2b)) according
to the normalized Haar measure on A. This density concept can be generalized to
an arbitrary linear configuration L = {L1, L2, . . . , Lk} and the density of L in f is
denoted by t(L, f) (see formula (1) and the following sentence). Gowers and Wolf
introduced a complexity notion [7] for linear configurations called true complexity
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(see Definition 4.1 in this paper). A useful upper bound for the true complexity is
the so-called Cauchy-Schwarz complexity developed by Green and Tao in [8].

We prove the following fact (for precise formulation see Theorem 5).

Theorem 1. If L has true complexity at most 1, then the density function of L is
continuous in the metric d.

Examples for linear configurations of complexity 1 include the 3-term arithmetic
progression (this was shown in [8]), the parallelogram a, a + b, a + c, a + b + c,
and the system LH := {xi + xj : (i, j) ∈ E(H)} where H is an arbitrary finite
graph on {1, 2, . . . , n}. The last example gives a close connection with graph limit
theory. The density of LH in f ∈ L∞(A) is equal to the density of the graph H in
the symmetric kernel W : A × A → C defined by W (x, y) = f(x + y). Note that
if f has values in [0, 1], then W is a graphon in the graph limit language. We will
elaborate on this connection in chapter 10.

Let L be an arbitrary linear configuration. For 0 ≤ δ ≤ 1 and n ∈ N let
ρ(δ, n,L) denote the minimal possible density of L in subsets of Zn of size at least
δn. Let ρ(δ,L) := lim infp→∞ ρ(δ, p,L) where p runs through the prime numbers.
A result by Candela and Sisask [1] implies that the lim inf can be replaced by lim
in the definition of ρ(δ,L). Note that the qualitative version of Roth’s theorem is
equivalent with the fact that ρ(δ,L) > 0 if δ > 0 and L = {a, a+ b, a+ 2b}.

Theorem 2. Let L be a linear configuration of true complexity at most 1. For
every 0 ≤ δ ≤ 1 we have that

ρ(δ,L) = min
A,f

(t(L, f)),

where f runs through all measurable functions of the form f : A → [0, 1] with
E(f) = δ on compact abelian groups A with torsion-free Pontrjagin dual groups.

We emphasize that in Theorem 2 we obtain ρ(δ,L) as an actual minimum and
thus there is some function fδ,L realizing the value ρ(δ). If for example L = {a, a+
b, a+ 2b}, then it is not hard to deduce the qualitative version of Roth’s theorem
from Theorem 2 using Lebesgue’s density theorem. We sketch the proof at the end
of chapter 10. It would be very interesting to find the explicit form of a minimizer
fδ,L for every δ or even to obtain any information on fδ,L such as on which abelian
group it is defined.

It is important to mention that our convergence notion behaves quite differently
from usual convergence notions in functional analysis. There is an example for a
convergent sequence of functions, all of them defined on the circle (complex unit
circle with multiplication or equivalently the quotient group R/Z), but the limit
object exists only on the torus (see the example at the end of chapter 3).

In the proofs we will extensively use ultralimit methods. Ultralimit methods in
graph and hypergraph regularization and limit theory were first introduced in [4].
There are two different reasons to use these methods. One is that they seem to
help to get rid of a great deal of technical difficulties and provide cleaner proofs
for most of our statements. The other reason is that they point to an interesting
connection between ergodic theory and our limit theory. The ultraproduct A of
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compact abelian groups {Ai}∞i=1 behaves as a measure preserving system. Our limit
concept can easily be explained through a factor F(A) of A which is a variant of
the so-called Kronecker factor.

2. A limit notion for functions on discrete groups

For an arbitrary group G we denote by l2(G) the Hilbert space of all functions
f : G → C such that ‖f‖22 =

∑
g∈G |f(g)|2 < ∞. If f ∈ l2(G) and ε ≥ 0, then

we denote by suppε(f) the set {g : g ∈ G, |f(g)| > ε}. In particular, supp(f) :=
supp0(f) is the support of f . Note that if ε > 0, then | suppε(f)| ≤ ‖f‖22/ε2 and
supp(f) =

⋃∞
n=1 supp1/n(f) is a countable (potentially finite) set. We denote by

〈f〉 the subgroup of G generated by supp(f). It is clear that 〈f〉 is a countable
(potentially finite) group.

Two functions f1 ∈ l2(G1) and f2 ∈ l2(G2) are called isomorphic if there is a
group isomorphism α : 〈f1〉 → 〈f2〉 such that f1 = f2 ◦ α. Let us denote by M the
isomorphism classes of l2 functions on groups. Our goal is to define a metric space
structure on M. We will need the next definition.

Definition 2.1. Let G1 and G2 be groups. A partial isomorphism of weight n
is a bijection φ : S1 → S2 between two subsets S1 ⊆ G1, S2 ⊆ G2 such that
gα1
1 gα2

2 . . . gαn
n = 1 holds if and only if φ(g1)

α1φ(g2)
α2 . . . φ(gn)

αn = 1 for every
sequence gi ∈ S1, αi ∈ {−1, 0, 1} with 1 ≤ i ≤ n.

Definition 2.2. Let f1 ∈ l2(G1) and f2 ∈ l2(G2). An ε-isomorphism between f1
and f2 is a partial isomorphism φ : S1 → S2 of weight 
1/ε� between sets with
suppε(f1) ⊆ S1 ⊆ G1 and suppε(f2) ⊆ S2 ⊆ G2 such that |f1(g) − f2(φ(g))| ≤ ε

holds for every g ∈ S1. We define d̂(f1, f2) as the infimum of all ε’s such that there
is an ε-isomorphism between f1 and f2.

Note that both partial isomorphism and ε-isomorphism are symmetric notions
in the sense that if φ is a partial isomorphism (resp., ε-isomorphism), then φ−1 is
also a partial isomorphism (resp., ε-isomorphism).

Proposition 2.1. The function d̂ is a metric on M.

Proof. First we show that d̂(f1, f2) = 0 if and only if f1 and f2 are isomorphic. If f1
is isomorphic to f2, then it is clear that d(f1, f2) = 0. For the other direction assume
w.l.o.g. that ‖f2‖2 ≤ ‖f1‖2. Let αn : S1,n → S2,n be a 1/n-isomorphism between
f1 to f2 for every n. Clearly, for every element g ∈ supp(f1) there are finitely many
possible elements in the sequence {αn(g)}∞n=1 since limn→∞ f2(αn(g)) = f1(g) and
there are finitely many elements h in G2 on which |f2(h)| > |f1(g)|/2. Using that
the support of f1 is countable we obtain that there is a subsequence {βn} of {αn}
such that the sequences {βn(g)} stabilize (become constant) after finitely many
steps for every g with |f1(g)| > 0. This defines a map β = limβn from supp(f1) to
supp(f2). It is clear that β extends to an injective homomorphism from 〈f1〉 to 〈f2〉
and it satisfies f2(β(g)) = f1(g) for every g ∈ 〈f1〉. Using ‖f2‖2 ≤ ‖f1‖2 it follows
that every element in supp(f2) is in the image of β and so β is a value preserving
isomorphism between 〈f1〉 and 〈f2〉.

It remains to check the triangle inequality for the metric d. Assume that α :
S1 → S2 is an ε-isomorphism between f1 and f2 and assume that β : S′

2 → S3 is an
ε′-isomorphism between f2 and f3. Without loss of generality we can assume (by
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reversing arrows if necessary) that ε′ ≥ ε. We have the following inclusions:

β−1(suppε′+ε(f3)) ⊆ β−1(suppε′(f3)) ⊆ β−1(S3) = S′
2,

β−1(suppε′+ε(f3)) ⊆ suppε(f2) ⊆ S2,

α(suppε′+ε(f1)) ⊆ suppε′(f2) ⊆ S2 ∩ S′
2.

Let T2 = β−1(suppε′+ε(f3)) ∪ suppε′(f2) (observe that T2 ⊆ S2 ∩ S′
2) and let T1 =

α−1(T2), T3 = β(T2). We have that suppε′+ε(f1) ⊆ T1 and suppε′+ε(f3) ⊆ T3. Let
γ : T1 → T3 be the restriction of β ◦ α to T1. Using T2 ⊆ S2 ∩ S′

2 we get that
γ is a bijection. To complete the proof of the triangle inequality we show that
γ is an (ε′ + ε)-isomorphism. We have that γ is a bijection and that |f1(g1) −
f3(γ(g1))| ≤ ε′ + ε holds for every g ∈ T1. It remains to check that γ is a partial
isomorphism of weight 
1/(ε′+ ε)�. This follows from the fact that the composition
of a partial isomorphism of weight n and a partial isomorphism of weight m is
a partial isomorphism of weight min(n,m). However, the minimum of 
1/ε� and

1/ε′� is at least 
1/(ε′ + ε)�. �
Lemma 2.1. Assume that a sequence {fi}∞i=1 of l2 functions on abelian groups

converges in d̂ to f ∈ l2(G). Then 〈f〉 is also abelian.

Proof. Let g1, g2 ∈ supp(f) be two elements. Let ε = min(|f(g1)|/2, |f(g2)|/2, 1/4).
Then by convergence of fi there is an index i such that there is an ε-isomorphism
φ between f and fi. Since g1, g2 ∈ suppε f we have that φ is defined on g1, g2 and
φ(g1)φ(g2)φ(g1)

−1φ(g2)
−1 = 1 implies that g1g2g

−1
1 g−1

2 = 1 because ε < 1/4. �
For every real number a > 0 let Ma denote the subset of M consisting of

equivalence classes of functions f ∈ l2(G) with ‖f‖2 ≤ a.

Proposition 2.2. The metric space (Ma, d̂) is compact for every a > 0.

For the proof of Proposition 2.2 we will need the next lemma. Let Fr denote the
free group in r generators.

Lemma 2.2. Assume that {Gn}∞n=1 is a sequence of groups and for every n we
have a sequence of elements {gn,i}∞i=1 in Gn. Then there is a sequence of elements
{gi}∞i=1 in some group G and a set S ⊆ N such that for every r ∈ N and word
w ∈ Fr there is a natural number Nw such that if k ∈ S and k > Nw, then
w(gk,1, gk,2, . . . , gk,r) = 1 if and only if w(g1, g2, . . . , gr) = 1.

Proof. Let {wi}∞i=1 be an arbitrary ordering of the words in
⋃∞

r=1 Fr with wi ∈ Fri .
We construct a sequence of infinite subsets Si ⊆ N in a recursive way. Assume
that S0 = N. If Si−1 is already constructed, then we construct Si in a way that Si

is an infinite subset in Si−1 and either wi(gs,1, gs,2, . . . , gs,ri) = 1 holds for every
s ∈ Si or wi(gs,1, gs,2, . . . , gs,ri) �= 1 holds for every s ∈ Si. This can be clearly
achieved since Si−1 is infinite and thus at least one of the two options holds infinitely
many times for indices inside Si−1. We then choose a sequence {si}∞i=1 such that
si ∈ Si and si < sj hold for every pair i < j. We obtain for {si}∞i=1 that for every
r ∈ N and word w ∈ Fr either w(gsi,1, gsi,2, . . . , gsi,r) = 1 holds with finitely many
exceptions or wr(gsi,1, gsi,2, . . . , gsi,r) �= 1 holds with finitely many exceptions. Let
W denote the collection of words for which the first case holds. Let G be the group
with generators {gi}∞i=1 and relations {w(g1, g2, . . . , gr) = 1|r ∈ N, w ∈ Fr ∩ W}.
It is clear from the construction of W that every relation that G satisfies in its
generators is already listed in W . This follows from the fact that if a word w is
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not in W , then for an arbitrary finite subset W ′ in W there is a witness among the
groups Gsi in which w does not hold but all words in W ′ hold. Now we have that
S = {si}∞i=1 and G with {gi}∞i=1 satisfies the lemma. �
Proof of Proposition 2.2. Let {fn : Gn → C}∞n=1 be a sequence of functions of l2

norm at most a. For every n let {gn,i}∞i=1 be an ordering of the elements in supp(fn)
in such a way that |fn(gn,i)| ≥ |fn(gn,j)| whenever i < j. If supp(fn) is finite, then,
to make the list infinite, we add additional elements from outside supp(fn) to the
list. If the group Gn is finite, then we enlarge Gn to an infinite group containing
Gn (say Gn × Z) such that fn takes the value 0 on the new group elements and
then we can make the list infinite with elements from outside Gn.

Let S ⊆ N, G and {gi}∞i=1 be chosen for the sequences {gn,i}∞i=1 according to
Lemma 2.2. Let S′ ⊆ S be an infinite subset of S such that

ai := lim
n→∞,n∈S′

fn(gn,i)

exists for every i ∈ N. Now we define the function f : G → C such that f(gi) = ai
inside the set {gi}∞i=1 and f(g) = 0 for the rest of the elements. It is clear that f is
well defined since gn,i �= gn,j holds for every n if i �= j and thus gi �= gj . It is clear
that ‖f‖2 ≤ lim infn∈S′ ‖fn‖2 and thus ‖f‖2 ≤ a.

To create an ε-isomorphism between f and fn (if n ∈ S′ is large enough) we
consider the sets Tn = {gn,i : i ≤ a2/ε2} and the set T = {gi : i ≤ a2/ε2}. Let
αn : Tn → T be the bijection defined by αn(gn,i) = gi. It is clear that suppε(fn) ⊆
Tn holds for every n and that suppε(f) ⊆ S. The construction guarantees that
|fn(g) − f(αn(g)| ≤ ε holds if n ∈ S′ is large enough. Furthermore, the property
given by Lemma 2.2 shows that αn is a partial isomorphism of weight m for an
arbitrary m ∈ N if n ∈ S′ is large enough. This completes the proof. �

3. Convergence notions on compact abelian groups

In this chapter we deal with compact abelian groups, Haar measure, Fourier
transform, and Pontrjagin duality. The tools that we use are covered in the textbook
[17]. Compact abelian groups in this paper will be assumed to be second countable
and thus the Pontrjagin dual group is always countable. For a compact abelian
group G we denote by L2(G) the Hilbert space of Borel measurable complex valued
functions f on G with

∫
|f |2 dμ ≤ ∞ where μ is the normalized Haar measure.

If H ⊆ G is a closed subgroup of G, then we have that τH : G → G/H is
continuous and Haar measure preserving. Let L2

H(G) denote the Hilbert subspace
τH ◦L2(G/H) in L2(G). We have that L2

H1
(G)∩L2

H2
(G) = L2

〈H1,H2〉(G). It follows

that for f ∈ L2(G) there is a unique largest closed subgroup H(G, f) such that
f ∈ L2

H(G,f)(G). In other words H(G, f) is the largest closed subgroup of G such

that there is a unique function f ′ ∈ L2(G/H(G, f)) with f = τH(G,f)◦f ′. It is clear

that H(G/H(G, f), f ′) is trivial. We say that the function f ′ ∈ L2(G/H(G, f)) is
the economic representation of f ∈ L2(G).

The economic representation can also be described through Fourier transforms.

Let Ĝ denote the Pontrjagin dual of G and let f̂ ∈ l2(Ĝ) denote the Fourier trans-

form of f . For a closed subgroup H ⊆ G we have a natural embedding of Ĝ/H into

Ĝ. We have that f ∈ L2
H(G) if and only if Ĝ/H contains the support of f̂ inside Ĝ.

It follows that the economic representation f ′ of f is the Fourier transform of the

restriction of f to the group 〈supp(f̂)〉 generated by the support of f̂ . In particular,
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f ′ is defined on the dual group of 〈supp(f̂)〉 which is the factor group of G with

the subgroup H is the intersection of the kernels of the characters in 〈supp(f̂)〉.
Let f1 ∈ L2(G1) and f2 ∈ L2(G2) be functions on the compact abelian groups G1

and G2 with economic representations (f ′
1, G1/H(G1, f1)) and (f ′

2, G2/H(G2, f2)).
We say that f1 and f2 are isomorphic if and only if there is a continuous isomorphism
φ : G1/H(G1, f1) → G2/H(G2, f2) such that f ′

1 = φ◦f ′
2. It is clear that this notion

of isomorphism is an equivalence relation. Using the above dual description of

economic representations we have that f1 and f2 is isomorphic if and only if f̂1 is

isomorphic to f̂2 in the sense of chapter 2.
Note that f1, f2 are isomorphic if and only if there is a third function f3 ∈ L2(G3)

and continuous epimorphisms αi : Gi → G3 for i = 1, 2 such that f3(αi(g)) = fi(g)
holds for almost every g with respect to the Haar measure in Gi. This follows from
the fact that the economic representations of f1 and f2 must factor through α1

and α2.
Let H denote the set of isomorphism classes of Borel measurable L2 functions on

compact abelian groups. We introduce the distance d on H by d(f1, f2) := d̂(f̂1, f̂2).
The metric d induces a convergence notion on H. If we say {fi}∞i=1 is convergent,
then we mean convergence in d if not stated explicitly in which other meaning it
is convergent. Let Ha denote the set of functions in H with L2-norm at most a.
Using the fact that Fourier transform preserves the L2-norm we have by Lemma
2.1 and Proposition 2.2 the following statement.

Proposition 3.1. (Ha, d) is a compact metric space for every a > 0.

For a set K ⊆ C let H(K) denote the set of functions in H which take values in
K. We will prove the next theorem.

Theorem 3. If K ⊆ C is a compact convex set, then (H(K), d) is a compact metric
space.

Corollary 3.1. If {fi}∞i=1 is a sequence of {0, 1} valued functions in H converging
to f in the metric d, then the values of f are in the interval [0, 1].

Theorem 3 is somewhat surprising. The metric d is given in terms of Fourier
transforms, however, it is not trivial to relate the set of values of a function to the
properties of its Fourier transform. The condition that K is convex turns out to
be necessary in Theorem 3. Corollary 3.1 is useful when we study limits of sets in
abelian groups by the limits of their characteristic functions. We give the proof of
Theorem 3 in a later chapter.

In general if {fi}∞i=1 converges to f (in the sense of this paper) it is not necessarily
true that {‖fi‖2}∞i=1 converges to ‖f‖2. We only have that lim supi→∞ ‖fi‖2 ≥
‖f‖2. This motivates the next definition. We say that a sequence {fi}∞i=1 in H is
tightly convergent if it converges in d and the limit f satisfies limi→∞ ‖fi‖2 = ‖f‖2.
Tight convergence can be metrized by the distance

d′(f1, f2) := d(f1, f2) + |‖f1‖2 − ‖f2‖2|.
Convergence in d′ is stronger than convergence in d and it has stronger conse-
quences. To formulate our result we need the following notation. For a measurable
function f on a compact abelian group A we denote by μf the probability distri-
bution of f(x) where x is chosen randomly from A according to the Haar measure.
The measure μf is a Borel probability distribution on C.



8142 BALÁZS SZEGEDY

Theorem 4. Let {fi}∞i=1 be a sequence of uniformly bounded functions in H con-
verging to f in d′. Then μfi converges to μf in the weak topology of measures.

Note that the above theorem is not true for convergence in d. A trivial example
for a tightly convergent sequence is an L2-convergent sequence of functions on a
fixed compact abelian group A. However, there are more interesting examples. We
finish this chapter with an example which shows that a sequence of L2 functions on
the circle group R/Z can have a limit (even in d′) which cannot be defined on the
circle group. The limit object exists on the torus. Let fn(x) = e2iπx + e2inπx be
defined on R/Z for n ∈ N. It is easy to see that fn is convergent and the limit is the
function f(x, y) = e2iπx + e2iπy on the torus R/Z × R/Z. Note that the sequence

fn is tightly convergent since ‖fn‖2 = ‖f‖2 =
√
2.

4. Densities of linear configurations in functions on abelian groups

In this chapter we state our main theorem regarding the convergence of the
densities of linear configurations of complexity 1. We will follow the language
introduced by Gowers and Wolf in [7]. Recall from the introduction that a linear
form is a homogeneous linear multivariate polynomial with coefficients in Z. If
L = λ1x1 + λ2x2 + · · · + λnxn is a linear form, then we can evaluate it in an
arbitrary abelian group A by giving values from A to the variables xi and thus it
becomes a function of the form L : An → A. A system L1, L2, . . . , Lk of linear forms
determines a type of linear configuration. An example for a linear configuration is
the 3-term arithmetic progression which is encoded by the linear forms x1, x1 +
x2, x1 + 2x2. Assume that A is a compact abelian group and F = {fi}ki=1 is
a system of bounded measurable functions in L∞(A). Assume furthermore that
L = {L1, L2, . . . , Lk} is a system of linear forms in Z(x1, x2, . . . , xn). Then it is
usual to define the density of the configuration L in F by the formula

(1) t(L,F) := Ex1,x2,...,xn∈A

k∏
i=1

fi(Li(x1, x2, . . . , xn)).

If fi = f for every 1 ≤ i ≤ k in the function system F , then we use the notation
t(L, f) for t(L,F).

In this chapter we address the following type of problem.
Assume that L = {L1, L2, . . . , Lk} is a linear configuration and A is a class

of compact abelian groups. Under what conditions on L and A is the function
f �→ t(L, f) continuous in the metric d when functions are assumed to be uniformly
bounded measurable functions on groups in A?

The role of the class A is to exclude certain degeneracies that occur for number
theoretic reasons. For example, the linear form 2x becomes degenerated on the
elementary abelian group (Z/2Z)m. We will need the following definition introduced
by Gowers and Wolf in a slightly different form in [7].

Definition 4.1. Let L = {L1, L2, . . . , Lk} be a linear configuration. The true
complexity of L in a class A of abelian groups is the smallest number m ∈ N with
the following property. For every ε > 0 there exists δ > 0 such that if A ∈ A is any
abelian group and F = {fi}ki=1 is a system of measurable functions with |fi| ≤ 1
and ‖fj‖Um+1

≤ δ for some j, then t(L,F) ≤ ε.

In the above definition ‖.‖Um+1
denotes Gowers’s m+1-th uniformity norm. Our

main theorem states the following.
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Theorem 5. Let a > 0. Let L be a linear configuration and let A be a family
of compact abelian groups such that L has true complexity at most 1 in A. Then
f → t(L, f) is continuous with respect to the metric d for measurable functions
f ∈ L∞(A) with A ∈ A and |f | ≤ a.

5. Ultraproducts and ultralimits

Let ω be a non-principal ultrafilter on the natural numbers. Let {Xi}∞i=1 be a
sequence of sets. For two elements x = (x1, x2, . . . ) and y = (y1, y2, . . . ) in the
product

∏∞
i=1 Xi we say that x ∼ω y if {i : xi = yi} ∈ ω. It is well known

that ∼ω is an equivalence relation. The set
∏

ω Xi :=
(∏∞

i=1 Xi

)
/ ∼ω is called the

ultraproduct of the sets Xi.
Let T be a compact Polish space and let {ti}∞i=1 be a sequence in T . The

ultralimit limω ti is the unique point t in T with the property that for every open
set U containing t the set {i : ti ∈ U} is in ω. (This definition implies that limω ti
is always an element of the closure of the set {ti : i ∈ N}.) Let {fi : Xi → T}∞i=1

be a sequence of functions. We define f = limω fi as the function on
∏

ω Xi whose
value on the equivalence class of (x1, x2, . . . ) is limω fi(xi).

Let {Xi, μi}∞i=1 be pairs where Xi is a compact Polish space and μi is a prob-
ability measure on the Borel sets of Xi. We denote by X the ultraproduct space∏

ω Xi. The space X has the following structures on it.

Strongly open sets: We call a subset of X strongly open if it is the ultraproduct of
open sets {Si ⊂ Xi}∞i=1.

Open sets: We say that S ⊂ X is open if it is a countable union of strongly open
sets. Open sets on X form a σ-topology. This is similar to a topology but it has
the weaker axiom that only countable unions of open sets are required to be open.

Lemma 5.1. X with the above σ-topology is countably compact. This means that
if X is covered by countably many open sets, then there is a finite subsystem which
covers X.

Proof. Since every open set is a countable union of strongly open sets it is clearly
enough to prove the statement for covering systems of X with strongly open sets.
Let {Oi}∞i=1 be such a system. Now each Oi is the ultraproduct of open sets
{Wk,i ⊆ Xk}∞k=1. Let Wk :=

⋃
i Wk,i. We have that

∏
ω Wk ⊇

⋃
i Oi = X and thus∏

ω Wk = X. It follows that K := {k : Wk = Xk} is in ω. For each k ∈ K let

f(k) denote the largest natural number such that
⋃f(k)

i=1 Wk,i �= Xk (if Wk,1 = Xk,
then f(k) is defined to be 0). By compactness of Xk we have that f(k) is finite.

Let us construct a sequence {xk}∞k=1 such that xk ∈ Xk \ (
⋃f(k)

i=1 Wk,i) if k ∈ K
and xk is arbitrary if k ∈ N \ K. The equivalence class of (x1, x2, . . . ) ∈ X is
covered by some element Ot from the covering system. It follows that the set
K ′ := {k : xk ∈ Wk,t} is in ω. This means that f(k) < t holds for every k ∈ K ∩K ′

and thus
⋃t

i=1 Wk,i = Xk holds for k ∈ K ′ ∩ K. Since K ∩K ′ ∈ ω we have that⋃t
i=1 Oi = X. �

Borel sets and measurable sets: A subset of X is called Borel if it is in the σ-algebra
generated by strongly open sets. A subset of X is called measurable if it is in the
the completion of the Borel σ-algebra.

Ultralimit measure: If S ⊆ X is a strongly open set of the form S =
∏

ω Si, then
we define μ(S) as limω μi(Si). It is a classical fact that μ extends as a probability
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measure to the σ-algebra of all measurable sets on X. If X is the ultraproduct of
finite sets, then the statement can be found in [4]. (See Proposition 2.2.) The proof
of the general case is not much different. A good exposition of the subject is Evan
Warner’s Ph.D. thesis [19] where the statement is discussed in its full generality.

Ultralimit functions: Let T be a compact Hausdorff topological space. Let
{fi : Xi → T}∞i=1 be a sequence of Borel measurable functions. We call functions of
the form f = limω fi ultralimit functions. It is easy to see that ultralimit functions
can always be modified on a 0 measure set such that they become measurable in
the Borel σ-algebra on X. This means that ultralimit functions are automatically
measurable in the completion of the Borel σ-algebra.

Measurable functions: It is an important fact (see proposition 5.1 in [4] and proposi-
tion 3.8 in [19]) that every bounded measurable function on X is almost everywhere
equal to some ultralimit function f = limω fi.

Continuity: A function f : X → T from X to a topological space T is called
continuous if f−1(U) is open in X for every open set in T . It follows from Lemma
5.1 that the image f(X) of a continuous function f : X → T in T is countably
compact with respect to the restriction of the topology of T to f(X). If T is
metrizable, then also f(X) is metrizable and thus countably compactness implies
compactness. We will need the next lemma.

Lemma 5.2. A continuous function f : X → Rn is the ultralimit of uniformly
bounded continuous functions fi : Xi → Rn.

Proof. Observe first that it is enough to prove the statement for functions of the
form f : X → R and the general statement follows by coordinate wise application.
We have that f(X) is a compact subset in R and thus f(X) ∈ (−a, a) for some
a ∈ R+. Let ε > 0 be fixed and let Ui = (−a−ε+iε/2,−a+iε/2) for i = 1, 2, . . . , t =

4a/ε�. It is clear that the intervals Ui cover (−a, a). For each 1 ≤ i ≤ t we have that
f−1(Ui) is the union of countably many strongly open sets {Qi,j}∞j=1. By

⋃
i,j Qi,j =⋃

i f
−1(Ui) = X and Lemma 5.1 we have that there is a finite subsystem {Sk}rk=1 of

{Qi,j}i,j which covers X. Let us choose points {xk ∈ Sk}rk=1. Let {Sk,j ∈ Xj}∞j=1

be sequences of open sets for every 1 ≤ k ≤ r such that
∏

ω Sk,j = Sk holds. Using
that {Sk}rk=1 covers X we have that T := {j :

⋃
k Sk,j = Xj} is in ω. For every

j ∈ T we can choose a partition of unity {ρk,j : Xj → [0, 1]}rk=1 subordinated to
the covering {Sk,j}rk=1. The functions ρk,j are continuous and their sum is the
constant 1 function. Furthermore ρk,j is supported on Sk,j . If j ∈ N \ T we define
ρk,j to be 0. Now let fj :=

∑r
k=1 ρk,jf(xk) for j ∈ N. Let f ′ := limω fj and

ρk := limω ρk,j . By the additivity of ultralimits we have that f ′ =
∑r

k=1 ρkf(xk)
and that

∑r
k=1 ρk = 1X. Now let x ∈ X be arbitrary. We have that whenever a

set f−1(Ui) contains x, then |f(x)− f(xi)| ≤ ε because f(Ui) has diameter at most
ε. since f ′(x) is a convex combination of the values {f(xi) : x ∈ Ui} we have that
|f ′(x)− f(x)| ≤ ε holds everywhere.

Now for an arbitrary ε > 0 we produced a sequence of continuous function
{fj}∞i=1 such that | limω fj − f |sup ≤ ε and that ‖fj‖sup ≤ ‖f‖sup holds for every
j ∈ N. Now we produce sequences for m ∈ N recursively. If m = 1, then let {f1

j }∞j=1

be a sequence which satisfies the above conditions with ε = 1/2 for f . In general
if {fm−1

j }∞j=1 is already produced, then we produce a new sequence {fm
j }∞j=1 with

ε = 1/2m for the function f−
∑m−1

l=1 limω fm
j . Note that if m > 1, then we have that
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‖fm
j ‖sup ≤ 1/2m−1 holds for every j. It follows that gj :=

∑∞
m=1 f

m
j is continuous.

It is also clear that limω gj = f . �

Lemma 5.3. Let T be a compact Polish space. Then the ultralimit of continuous
functions {fi : Xi → T} is continuous.

Proof. Let f = limω fi. Let U be an open set in T . We can choose a countable
family of open sets {Wj}∞j=1 such that U =

⋃
j Wj and W̄j ⊆ U . We claim that

f−1(U) =
⋃

j

∏
ω f−1

i (Wj). Let j be fixed and assume that x ∈
∏

ω f−1
i (Wj). It

follows from the basic properties of ultralimits that f(x) ∈ W̄j ⊆ U . This implies

that f−1(U) contains
∏

ω f−1
i (Wj) for every j. To see the other containment of the

claim let x ∈ f−1(U). We have that there is j such that f(x) ∈ Uj . Assume that
x is the equivalence class of (x1, x2, . . . ). We have by the properties of ultralimits
that {i : fi(xi) ∈ Uj} has to be in ω and thus x ∈

∏
ω f−1

i (Wj). �

6. The Fourier σ-algebra

If A is a compact abelian group, then linear characters are continuous homomor-
phisms of the form χ : A → C where C is the complex unit circle with multiplication
as the group operation. Note that on compact abelian groups we typically use +
as the group operation. However, if we think of C as a subset of C, then we are
forced to use multiplicativ notation. On the other hand, if we think of C as the
group R/Z, then we are basically forced to use additive notation.

Linear characters are forming the Fourier basis in L2(A). In particular, linear
characters generate the whole Borel σ-algebra on A. Assume now that A =

∏
ω Ai

is the ultraproduct of compact abelian groups. Linear characters of A can be
similarly defined as for compact abelian groups. In this case we require them to be
continuous in the σ-topology on A.

Proposition 6.1. A function χ ∈ L∞(A) is a linear character if and only if
χ = limω χi for some sequence {χi ∈ L∞(Ai)}∞i=1 of linear characters.

The proof of the proposition relies on a rigidity result saying that almost linear
characters on compact groups can be corrected to proper characters. For a function
f we denote by f∗ the pointwise complex conjugate of f .

Lemma 6.1. For every ε > 0 there is δ > 0 such that if f : A → C is a continuous
function on a compact abelian group A with the property that |f(x+a)f∗(x)−f(y+
a)f∗(y)| ≤ δ , ||f(x)| − 1| ≤ δ for every x, y, a ∈ A and |f(0) − 1| ≤ δ, then there
is a character χ of A such that |χ(x)− f(x)| ≤ ε holds for every x ∈ A.

Proof. As a tool we introduce group theoretic expected values of random variables
taking values in C. Let l denote the arc length metric on the circle group C � R/Z
normalized by the total length 2π. It is clear that the metric l is topologically
equivalent with the complex metric |x − y| on C. Assume that a random variable
X takes its values in an arc of the circle group of length 1/3. Then there is a
lift Y of X to R such that Y + Z = X and Y takes its values in an interval of
length 1/3. The lift Y with this property is unique up to an integer shift. Then
we define E(X) ∈ R/Z as E(Y ) + Z. Switching to multiplicative notation in C this
expected value satisfies E(X1X2) = E(X1)E(X2) where X1, X2 take values in an
arc of length 1/6.
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Let us define f2(x) = f(x)/|f(x)|. If δ < 1, then f(x) �= 0 on A and thus
f2 is defined on A. If δ > 0 is small enough, then for every fixed t the function
x �→ f(x + t)f∗(x) takes values in an arc of length at most 1/6. For every t ∈ A
let g(t) = Ex(f(x+ t)f∗(x)) where E is the group theoretic expected value. If δ is
small enough, then |g(t)− f(t)| ≤ ε holds for every t ∈ A because |f(x+ t)f∗(x)−
f(t)f∗(0)| ≤ δ and f(0) is close to 1. Using our multiplicativity property of E we
have for every pair a, b ∈ A that

g(a+ b)g∗(b) = Ex(f(x+ a+ b)f∗(x)f∗(x+ b)f(x))

= Ex(f(x+ a+ b)f∗(x+ b)) = Ex((x+ a)f∗(x)) = g(a).

This implies that g is a linear character of A. �

Now we are ready to prove Proposition 6.1

Proof. The continuity of χ guarantees that χ = limω fi for some sequence of con-
tinuous functions fi on Ai (see Lemma 5.2). The fact that χ is a character implies
that there is a sequence δi such that fi satisfies the conditions of Lemma 6.1 with
δi for every i and limω δi = 0. It follows by Lemma 6.1 that there is a sequence of
linear characters χi on Ai such that limω max(|χi − fi|) = 0. Thus we have that
limω χi = limω fi = χ. �

Proposition 6.1 implies that the set of linear characters of A (also as a group) is

equal to
∏

ω Âi. We denote this set by Â. If f ∈ L2(A), then the Fourier transform

of f on A is the function f̂ ∈ l2(Â) defined by f̂(χ) = (f, χ). If f = limω fi, then

we have that f̂ = limω f̂i.
It was observed in [14] that linear characters of A no longer span L2(A). This

shows that in general we only have ‖f̂‖2 ≤ ‖f‖2 instead of equality. Furthermore,
the σ-algebra F(A) generated by linear characters on A is smaller than the whole
ultraproduct σ-algebra on A. (The only exception is the case when A is a finite
group. This can happen if the groups Ai are finite and there is a uniform bound
on their size.)

We call F(A) the Fourier σ-algebra on A. The fact that the Fourier σ-algebra
is not the complete σ-algebra on A gives rise to the interesting operation f �→
E(f |F(A)) that isolates the “Fourier part” of a function f ∈ L2(A). Using that
linear characters of A are closed with respect to multiplication we obtain that linear
characters are forming a basis in L2(F(A)). This implies that if f ∈ L2(A), then

f̂ = ĝ where g = E(f |F(A)). Thus we have that ‖f̂‖2 = ‖ĝ‖2 = ‖E(f |F(A))‖2. In
particular, ‖f‖2 = ‖f̂‖2 holds if and only if f is measurable in F(A).

The Fourier σ-algebra has an elegant description in terms of the second Gowers
norm U2. Recall that the U2-norm [5], [6] of a function f ∈ L∞(A) on a compact
abelian group A is defined by

(2) ‖f‖U2
=

(
Ex,a,b∈Af(x)f

∗(x+ a)f∗(x+ b)f(x+ a+ b)
)1/4

.

The next lemma gives a description of the U2-norm in terms of Fourier analysis.

Lemma 6.2. If f ∈ L∞(A), then ‖f‖U2
= ‖f̂‖4 and thus ‖f̂‖∞ ≤ ‖f‖U2

≤
(‖f‖2‖f̂‖∞)1/2.

One can define ‖f‖U2
by the formula (2) for functions on ultraproduct groups.

With this definition we have that ‖f‖U2
= limω ‖fi‖U2

whenever f = limω fi. The
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main difference from the compact case is that ‖.‖U2
is no longer a norm for functions

in L∞(A). It is only a semi-norm. However, the next lemma shows that ‖.‖U2
is

a norm when restricted to L∞(F(A)) and that F(A) is the largest σ-algebra with
this property.

Lemma 6.3. If g ∈ L∞(A), then ‖g‖U2
= 0 if and only if g is orthogonal to

L2(F(A)). A function f ∈ L∞(A) is measurable in F(A) if and only if f is
orthogonal to every function g ∈ L∞(A) with ‖g‖U2

= 0. In particular, we have
that ‖.‖U2

is a norm on L∞(F(A)).

Proof. We can assume that g = limω gi for some sequence of functions {gi ∈
L∞(Ai)}∞i=1 such that ‖gi‖∞ ≤ ‖g‖∞ holds for every i. Assume first that ‖g‖U2

= 0.
Let χ = limω χi be an ultralimit of linear characters. Using Lemma 6.2 we have
that |(gi, χi)| ≤ ‖ĝi‖∞ ≤ ‖gi‖U2

and thus

|(g, χ)| = lim
ω

|(gi, χi)| ≤ lim
ω

‖gi‖U2
= ‖g‖U2

= 0.

It follows that g is orthogonal to the space L2(F(A)) spanned by linear characters
of A. For the other direction assume that g �= 0 is orthogonal L2(F(A)). For every
i we choose a linear character χi on Ai such that |(gi, χi)| = ‖ĝi‖∞. We have by
Lemma 6.2 and by ‖gi‖2 ≤ ‖gi‖∞ ≤ ‖g‖∞ that |(gi, χi)| ≥ ‖gi‖2U2

‖g‖−1
∞ . Then

we have for χ = limω χi that 0 = |(g, χ)| ≥ (limω ‖gi‖2U2
)‖g‖−1

∞ . It follows that
‖g‖U2

= 0.
Now we prove the second part of the statement. If f ∈ L∞(F(A)), then by

the first part of the statement f has to be orthogonal to every g ∈ L∞(A) with
‖g‖U2

= 0. For the other direction assume that f ∈ L∞(A) is orthogonal to every
g ∈ L∞(A) with ‖g‖U2

= 0. Let h := f − E(f |F(A)) ∈ L∞(A). Note that since E
is an orthogonal projection it follows that (f, h) = ‖h‖22. From

E(h|F(A)) = E(f − E(f |F(A))|F(A)) = E(f |F(A))− E(f |F(A)) = 0

we have that h is orthogonal to the whole space L2(F(A)) and so by the first
statement it follows that ‖h‖U2

= 0. It implies by our assumption on f that
(f, h) = 0 and thus ‖h‖22 = 0. Now we have that h = 0 and f = E(f |F(A)) is
measurable in F(A). �

Let Q̂ : L2(A) → M be such that Q̂(f) is the isomorphism class of f̂ in M.
Let furthermore Q(f) denote the isomorphism class in H representing the Fourier

transform of Q̂(f). Note that Q(f) = Q(E(f |F(A))). We have that Q(f) can be
represented as a measurable function on some second countable compact abelian
group with ‖Q(f)‖2 ≤ ‖f‖2 which in some sense imitates f . However, it is not even
clear from this definition that if f is a bounded function, then Q(f) is also bounded.
The next theorem provides a structure theorem for functions in L∞(F(A)) and
describes Q(f).

Theorem 6. A function f ∈ L∞(A) is measurable in F(A) if and only if there
is a continuous, surjective, measure preserving homomorphism φ : A → A to some
second countable compact abelian group A and a function h ∈ L∞(A) such that
f = h◦φ (up to 0 measure change). Furthermore, d(h,Q(f)) = 0 implying that the
isomorphism class of h is Q(f).

Proof. Assume first that f = h ◦ φ for some homomorphism φ and function h as
in the statement. Let h =

∑∞
i=1 λiχi be the Fourier decomposition of h converging
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in L2(A) where χi is a sequence of linear characters of A. We have that χi ◦ φ is
a linear character of A for every i. The measure preserving property of φ implies
that f =

∑∞
i=1 λi(χi ◦ φ) and thus f is measurable in F(A).

For the other direction assume that f ∈ L∞(F(A)). Then f =
∑∞

i=1 aiχi for
some (distinct) linear characters {χi}∞i=1 of A where the convergence is in L2(A)
and ‖f‖22 =

∑∞
i=1 |ai|2. Let us consider the homomorphism φ : A → C∞ such that

the i-th coordinate of φ(x) = χi(x). (Recall that C is the group R/Z or equivalently
the complex unit circle with respect to multiplication. The group C∞ is a compact
abelian group.) Using the continuity of φ we have that the image A of φ is a closed
subgroup in C∞. Let ν denote the Borel measure on A satisfying ν(S) = μ(φ−1(S))
where μ is the ultralimit measure on A. The fact that φ is a homomorphism implies
that ν is a group invariant Borel probability measure on A and thus ν is equal to
the normalized Haar measure. In other words, φ is measure preserving with respect
to the Haar measure on A.

Let us denote by αi the i-th coordinate function on A. It is clear that {αi}∞i=1

is a system of linear characters of A. Since φ is surjective it induces an injective

homomorphism φ̂ : Â → Â defined by φ̂(χ) = χ ◦φ with the property that φ̂(αi) =
χi holds for every i. We have that h =

∑∞
i=1 aiαi (which is defined up to a 0

measure set on A) is convergent in L2 and has the property that f = h ◦ φ (up

to a 0 measure set). The fact that φ̂ is an injective homomorphism implies that

d̂(ĥ, f̂) = 0 and thus d(h,Q(f)) = 0. �

If L is a system of linear forms and f ∈ L∞(A), then we can define t(L, f) by
the formula (1) using the ultralimit measure on A.

Proposition 6.2. Let f ∈ L∞(F(A)) and let L be a system of linear forms.
Then t(L, f) = t(L,Q(f)). Furthermore, if L has complexity 1 in a family A of
compact abelian groups, A is an ultraproduct of groups in A and f ∈ L∞(A), then
t(L, f) = t(L,Q(f)).

Proof. For the first part we use Theorem 6. We get that f = h ◦ φ for some
measure preserving homomorphsim φ : A → A. It follows that t(L, f) = t(L, h) =
t(L,Q(f)). For the second part let f = limω fi and g = E(f |F(A)) = limω gi for
some functions with ‖fi‖∞ ≤ ‖f‖∞ and ‖gi‖∞ ≤ ‖g‖∞. We have that

lim
ω

‖fi − gi‖U2
= ‖f − g‖U2

= 0.

Then using that L has complexity 1 we obtain t(L,Q(f)) = t(L,Q(g)) = t(L, g) =
limω t(L, gi) = limω t(L, fi) = t(L, f). �

7. The ultraproduct descriptions of d̂ and d convergence

We give a simple and useful description of d̂ convergence using ultrafilters. The
price that we pay for the simplicity is that we don’t get an explicit metric on M,
we only get the concept of convergence.

Theorem 7. Let a > 0. Assume that {fi}∞i=1 is a sequence in Ma that converges

to f in d̂; then f is isomorphic to limω fi for every (non-principal) ultrafilter ω.

Consequently a sequence {fi}∞i=1 in Ma is convergent in d̂ if and only if the iso-
morphism class of limω fi-limit doesn’t depend on the choice of the ultrafilter ω.
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Proof. For every i let αi : Ti → Si be an εi-isomorphism between fi and f with
Ti ⊆ Gi, Si ⊆ G such that limi→∞ εi = 0. Assume that {hi}∞i=1 represents an
element h in

∏
ω Gi that is in supp(g) where g = limω fi. We have for some

set S ∈ ω that |fi(hi)| > |g(h)|/2 and εi ≤ |g(h)|/4 for i ∈ S. It follows that
αi(hi) ∈ supp|g(h)|/4(f) holds for every i ∈ S. Since supp|g(h)|/4 is finite we have

that limω αi(hi) exists and it is an element in G that we denote by β(h). The map
β : supp(g) → supp(f) is a partial isomorphism of arbitrary high weight and so it
extends to an isomorphism from 〈g〉 to 〈f〉. It is clear that β is also an isomorphism
between f and g. �
Corollary 7.1. Let a > 0. Assume that {fi}∞i=1 is a sequence of functions with
fi ∈ L∞(Ai) and ‖fi‖∞ ≤ a for some sequence {Ai}∞i=1 of compact abelian groups.
If {fi}∞i=1 converges to f ∈ Ha in the metric d, then f = Q(limω fi) for an arbitrary
(non-principal) ultrafilter ω.

Proof. Since the Fourier transform of f ′ = limω fi is the ultralimit of the

Fourier transforms of fi we have by Theorem 7 that d̂(f̂ ′, f̂) = 0. It follows that
Q(f ′)=f . �
Corollary 7.2. Let a > 0. Assume that {fi}∞i=1 is a convergent sequence of func-
tions with fi ∈ L∞(Ai) and ‖fi‖∞ ≤ a for some sequence {Ai}∞i=1 of compact
abelian groups. Then the limit f of {fi}∞i=1 can be represented as a function on
some compact abelian group A such that the dual group of A is a subgroup in∏

ω Âi.

Proof. We have by Corollary 7.1 that f = Q(limω fi). This means that f̂ has

an injective embedding into Â where A =
∏

ω Ai. By Â =
∏

ω Âi the proof is
complete. �

Corollary 7.2 gives a useful restriction on the structure of the group on which
the limit function of a convergent seqence is defined. For example if Ai are growing
groups of prime order, then the limit function is defined on a compact group whose
dual group is torsion-free. On the other hand, if p is a fix prime and fi is defined
on Zi

p, then the limit function is defined on the compact group Z∞
p .

8. Proofs of Theorems 3, 4, 5

For the proofs of Theorem 3 and Theorem 4 assume that {fi}∞i=1 is a convergent
sequence in H(K) for some convex compact set K ⊆ C. Corollary 7.1 implies that
the limit is Q(f) where f = limω fi. Note that f takes its values in K. We have
that Q(f) = Q(g) where g = E(f |F(A)). It follows by Theorem 6 that g = h ◦ φ
for some measure preserving homomorphism φ : A → A and the isomorphism class
of h is Q(g). Since g is a projection of f to a σ-algebra we have that g (and thus
h) takes its values in K. This completes the proof of Theorem 3.

For the proof of Theorem 4 assume that fi is tightly convergent and K = {x :
x ∈ C, ‖x‖ ≤ a}. Then, using the above notation we have that ‖g‖2 = ‖h‖2 =
limi→∞ ‖fi‖2 = limω ‖fi‖2 = ‖f‖2 where we use tightness in the second equality.
This is only possible if f = g and thus μh = μf = limω μfi holds. Since this is true
for every ultrafilter ω we obtain that limi→∞ μfi = μh holds with respect to weak
convergence of measures.

To prove Theorem 5 assume that L has complexity 1 and fi is a d convergent
sequence as above. Using the above notation and Proposition 6.2 we have that
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limω t(L, fi) = t(L, f) = t(L,Q(f)) where (using Corollary 7.1) Q(f) is equal to
the d-limit of the sequence {fi}∞i=1. Since this is true for every ultrafilter ω the
proof is complete.

9. Proof of Theorem 2

For the proof of Theorem 2 we will need the next proposition which is interesting
in its own right.

Proposition 9.1. Let B be a compact abelian group with torsion-free dual group
and let f : B → [0, 1] be an arbitrary measurable function. Then there are subsets
Sp ⊆ Zp for every prime number p such that the functions 1Sp

converge to f .

Lemma 9.1. For every ε > 0 there is N(ε) such that if A is a finite abelian
group with |A| ≥ N(ε) and f : A → [0, 1] is a function, then there is a function
h : A → {0, 1} such that ‖f − h‖U2

≤ ε.

Proof. Let us fix ε > 0. Let f : A → [0, 1] be a function on a finite abelian group.
Let h be the random function on A whose distribution is uniquely determined by
the following properties: 1.) h is {0, 1}-valued, 2.) {h(a) | a ∈ A} is an independent
system of random variables, and 3.) E(h(a)) = f(a) holds for every a ∈ A. We
claim that with a large probability the function h − f has U2-norm at most ε if
|A| is large enough. Obsereve that Xa := h(a) − f(a) is a random variable for
each a ∈ A with 0 expectation and ‖Xa‖∞ ≤ 1. The random variables Xa are all
independent. Let χ : A → C be a linear character. Then we have that (h− f, χ) =
|A|−1

∑
a∈A Xaχ(a). By Chernoff’s bound we have that P(|(h − f, χ)| ≥ ε2) is

exponentially small in |A|. This implies that if |A| is large enough, then with

probability close to 1 we have that ‖ĥ− ĝ‖∞ ≤ ε2 and thus by Lemma 6.2 we get
‖h− g‖U2

≤ ε holds in these cases. �
Proof of Proposition 9.1. For a number n let a(n) denote the minimum of d(1S , f)
where S is a subset in Zn. The statement of the proposition is equivalent with
limp→∞ a(n) = 0 where p runs through the prime numbers. Assume by contradic-
tion that there is ε > 0 and a growing infinite sequence {pi}∞i=1 of prime numbers

with a(pi) > ε. Let Ai = Zpi
and A =

∏
ω Ai. We have that Â =

∏
ω Âi �∏

ω Ai = A. Since A is not only an abelian group but a field of 0 characteristic

with uncountably many elements we have that A (and thus Â) as an abelian group
is isomorphic to an infinite direct sum of Q+. It follows that the torsion-free group

B̂ has an embedding φ̂ : B̂ → Â into Â. This embedding induces a continuous
homomorphsim φ : A → B in the way that φ(x) denotes the unique element in B

such that χ(φ(x)) = φ̂(χ)(x) holds for every χ ∈ B̂.
Let g = f ◦ φ. We have that g : A → [0, 1] is a measurable function and thus

g = limω gi for a system of functions {gi : Ai → [0, 1]}∞i=1. By Lemma 9.1 for every i
we can find a 0−1 valued function g′i such that limi→∞ ‖g′i−gi‖U2

= 0. By choosing
a subsequence we can assume that both {g′i}∞i=1 and {gi}∞i=1 are d-convergent. Let
g′ = limω g′i. We have that ‖g − g′‖U2

= 0 and thus since g is measurable in
F(A) we have that g = E(g′|F(A)). By Corollary 7.1 we obtain that the d limit
of {g′i}∞i=1 is f . This implies that 0 = lim d(g′i, f) ≥ lim inf a(pi) ≥ ε which is a
contradiction. �

Now we are ready to prove Theorem 2. First observe that in Proposition 9.1
we can assume with no additional cost that the sets Sp have density at least E(f).
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This follows from the fact that their densities converge to E(f) and so it is enough
to set a few values to 1 (with density tending to 0). This observation together with
Proposition 9.1 and Theorem 1 imply that if f : A → [0, 1] is a measurable function
with E(f) = δ on an abelian group with torsion-free dual, then ρ(δ,L) ≤ t(L, f).
It remains to find a function where equality holds. For every p prime let Sp ⊆ Zp

be such that |Sp|/p ≥ δ and that t(L, 1Sp
) is minimal possible. We can choose a

d-convergent subsequence {fi}∞i=1 from 1Sp
such that limi→∞ t(L, fi) = ρ(δ,L). Let

f be the limit of {fi}∞i=1. By Theorem 1 we have that t(L, f) = limi→∞ t(L, fi) =
ρ(δ,L). Corollary 7.2 guarantees that f is defined on a group whose dual is torsion-
free.

10. Connection to dense graph limit theory and concluding remarks

Let H and G be finite graphs. The density of H in G is the probability that a
random map from V (H) to V (G) takes edges to edges. We denote this quantity by
t(H,G). One can generalize this notion of density for the case when G is replaced
by a symmetric bounded measurable function W : Ω2 → C where (Ω, μ) is a
probability space. Then t(H,W ) is defined by

t(H,W ) :=

∫
x1,x2,...,xn∈Ω

∏
(i,j)∈E(H)

W (xi, xj) dμ
n,

where the vertices of H are indexed by {1, 2, . . . , n}. It is easy to check that if
Ω = V (G) , μ is the uniform distribution on V (G) and W : V (G)2 → {0, 1} is the
adjacency matrix of G, then t(H,G) = t(H,W ).

In the framework of dense graph limit theory, a sequence of graphs {Gi}∞i=1 is
called convergent if for every fixed graph H the sequence {t(H,Gi)}∞i=1 is conver-
gent. It was proved in [10] that for a convergent graph sequence {Gi}∞i=1 there is a
limit object of the form of a symmetric measurable function W : Ω2 → [0, 1] (called
a graphon) such that for every graph H we have limi→∞ t(H,Gi) = t(H,W ).

In the above theorem Ω can be chosen to be [0, 1] with the uniform measure,
however, in many cases it is more natural to use other probability spaces. We
investigate the case when (Ω, μ) is a compact abelian group A with the normalized
Haar measure. Let f : A → C be a bounded measurable function and letWf : A2 →
C be defined by Wf (x, y) := f(x + y). As it was pointed out in the introduction,
for a finite graph H the density t(H,Wf ) is equal to t(L, f) where LH := {xi +
xj : (i, j) ∈ E(H)}. Using this correspondence and our results in this paper we
get the following theorem on graph limits.

Theorem 8. Let {fi : Ai → K}∞i=1 be a sequence of measurable functions on
compact abelian groups with values in a compact convex set K ⊆ C. Assume that
limi→∞ t(H,Wfi) exists for every graph H. Then there is a measurable function
f : A → K on a compact abelian group A such that limi→∞ t(H,Wfi) = t(H,Wf )
holds for every graph H.

Proof. By choosing a subsequence we can assume by Theorem 3 that {fi}∞i=1 is
convergent in d with limit f : A → K. Then by Theorem 1 we obtain that
limi→∞ t(LH , fi) = t(LH , f) holds for every graphH. This completes the proof. �

Theorem 8 is closely related to the results in [12]. Let f : G → [0, 1] be a
measurable function on a compact but not necessarily commutative group. Assume
that the technical condition f(g) = f(g−1) holds for every g ∈ G. Then the
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function W : G2 → [0, 1] defined by W (x, y) = f(xy−1) is symmetric. We call
graphons of this type Cayley graphons. It was proved in [12] that limits of Cayley
graphons are also Cayley graphons. This theorem implies that one can talk about
limits of functions on compact topological groups and the limit objects are also
functions on compact topological groups. Another direction of generalization in
the commutative setting is when we consider densities of linear configurations of
higher complexity. As it was shown in [13], this refinement of the limit concept leads
to more complicated limit objects that are measurable functions on nilmanifolds
and nilspaces.

As we promised in the introduction we finish the paper by showing that Theo-
rem 2 implies the qualitative version of Roth’s theorem. Assume by contradiction
that ρ(δ,L) = 0 holds for some δ > 0. Then there is a function f : A → [0, 1]
such that t(L, f) = 0 with E(f) = δ. It is easy to see that if S is the support of f ,
then t(L, 1S) = 0 also holds and E(1S) ≥ δ. Since A is the inverse limit of finite
dimensional torus groups we have that there is a factor map τ : A → Tn to a finite
dimensional torus such that E(1S|τ ) > 3/4 holds on a positive measure set τ−1(Q)
where Q ⊆ Tn is Borel measurable. We have that

0 = t(L, 1S) ≥ t(L, 1S1τ−1(Q)) ≥ t(L, 1τ−1(Q))/4 = t(L, 1Q)/4,

where the only nontrivial inequality is the second one. To see this observe that for
almost every 3-term arithmetic progression inside τ−1(Q) a random translate with
some element from ker(τ ) is with probability at least 1/4 inside τ−1(Q)∩S. This is
true because E(1S1τ−1(Q)) > 3/4 holds inside τ−1(Q). It remains to show that on
Tn there is no positive density set Q with 0 density copies of L. By the Lebesgue
density theorem we can find intervals I1, I2, . . . , In ⊆ T1 for every ε > 0 such that
Q intersects C := ×n

i=1Ii in a way that it has density at least 1− ε in C. It is easy
to see that if ε is small enough, then C ∩ Q must contain positive density copies
of L.
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