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ON QUASI-INFINITELY DIVISIBLE DISTRIBUTIONS

ALEXANDER LINDNER, LEI PAN, AND KEN-ITI SATO

Abstract. A quasi-infinitely divisible distribution on R is a probability dis-
tribution whose characteristic function allows a Lévy–Khintchine type repre-
sentation with a “signed Lévy measure”, rather than a Lévy measure. Quasi-
infinitely divisible distributions appear naturally in the factorization of infin-
itely divisible distributions. Namely, a distribution μ is quasi-infinitely divis-
ible if and only if there are two infinitely divisible distributions μ1 and μ2

such that μ1 ∗ μ = μ2. The present paper studies certain properties of quasi-
infinitely divisible distributions in terms of their characteristic triplet, such as
properties of supports, finiteness of moments, continuity properties, and weak
convergence, with various examples constructed. In particular, it is shown that
the set of quasi-infinitely divisible distributions is dense in the set of all prob-
ability distributions with respect to weak convergence. Further, it is proved
that a distribution concentrated on the integers is quasi-infinitely divisible if
and only if its characteristic function does not have zeroes, with the use of the
Wiener–Lévy theorem on absolutely convergent Fourier series. A number of
fine properties of such distributions are proved based on this fact. A similar
characterization is not true for nonlattice probability distributions on the line.

1. Introduction

The class of infinitely divisible distributions on the real line is well studied and
completely characterized by the Lévy–Khintchine formula. The aim of this paper is
to obtain some results on quasi-infinitely divisible distributions, i.e., distributions
whose characteristic functions allow a Lévy–Khintchine type representation with
“signed Lévy measures” rather than Lévy measures. Such distributions have been
considered and have appeared before in various examples, particularly in connection
with the problem of the factorization of distributions, in [8, 18, 19] and others.

In Cuppens [8] and Linnik and Ostrovskĭi [19] such distributions are treated in
various contexts including the multidimensional case, but the systematic study
of their class is not made. Quasi-infinitely divisible distributions have recently
found applications in physics (Demni and Mouayn [9], Chhaiba et al. [4]) and
insurance mathematics (Zhang et al. [26]). The term “quasi-infinitely divisible
distribution” for such distributions has been introduced in [17]. It should be noted
that in the context of Poisson mixtures, Puri and Goldie [22] also introduced the
notion of quasi-infinitely divisible distributions, but this notion has nothing to do
with the notion of quasi-infinitely divisible as used in this paper.

To get the definitions right, recall that a distribution μ on R is infinitely divisible
if and only if for every n ∈ N there exists a distribution μn on R such that μ∗n

n = μ.
The characteristic function of an infinitely divisible distribution μ can be expressed
by the Lévy–Khintchine formula. To state it, by a representation function we mean
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a function c : R → R which is bounded, Borel measurable, and satisfies c(0) = 0
and

(1.1) lim
x→0

(c(x)− x)/x2 = 0.

In this paper c always denotes a representation function. Then the Lévy–Khintchine
formula states that, when we fix a representation function c, a probability measure
μ on R is infinitely divisible if and only if its characteristic function z �→ μ̂(z) =∫
R
eizx μ(dx) can be expressed in the form

(1.2) μ̂(z) = exp (Ψμ(z)) , z ∈ R,

where

(1.3) Ψμ(z) = iγz − 1

2
az2 +

∫
R

(
eizx − 1− izc(x)

)
ν(dx), z ∈ R,

with a ≥ 0, γ ∈ R, and ν being a measure on R satisfying

(1.4) ν({0}) = 0 and

∫
R

(1 ∧ x2)ν(dx) < ∞.

The triplet (a, ν, γ) is unique and is called the characteristic triplet with respect to
c, while the function Ψμ is called the characteristic exponent of μ and is the unique
continuous function satisfying Ψμ(0) = 0 and (1.2). The measure ν is called the
Lévy measure of μ and the constant a the Gaussian variance of μ; these two are
independent of the choice of c. The constant γ depends on the choice of c, and
thus γ is called c-location of μ. More precisely, if c1 and c2 are two representation
functions and γj is the cj-location of μ for j = 1, 2, then

(1.5) γ2 = γ1 +

∫
R

(
c2(x)− c1(x)

)
ν(dx).

Conversely, given a ≥ 0, γ ∈ R, a measure ν on R satisfying (1.4), and a represen-
tation function c, the function x �→ |eizx − 1− izc(x)| is integrable with respect to
ν for each z ∈ R, and the right-hand side of (1.2) together with (1.3) defines the
characteristic function of an infinitely divisible distribution. The function c is often
chosen as c(x) = x1[−1,1](x). All these facts are well known and can be found in
Sato [24, Sections 7, 8, and 56], for example. When working in one dimension as
we do here, it is often more convenient to combine ν and a into a single measure.
More precisely, let c be a representation function and define the function

(1.6) gc : R× R → C by gc(x, z) =

{
(eizx − 1− izc(x))/(1 ∧ x2), x �= 0,

−z2/2, x = 0.

Observe that gc(·, z) is bounded for each fixed z ∈ R, and it is continuous at 0,
which follows from (1.1). Now, if μ is infinitely divisible with characteristic triplet
(a, ν, γ) with respect to c, then μ̂ has the representation

(1.7) μ̂(z) = exp

(
iγz +

∫
R

gc(x, z) ζ(dx)

)
, z ∈ R,

where the measure ζ on R is finite and given by

(1.8) ζ(dx) = aδ0(dx) + (1 ∧ x2) ν(dx),

with δ0 denoting the Dirac measure at 0. Conversely, to any finite measure ζ on
R, we can define a and ν by a = ζ({0}) and ν(dx) = (1 ∧ x2)−11R\{0}(x)ζ(dx).
We shall hence speak of (ζ, γ) as the characteristic pair of μ with respect to c.
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The characteristic pair is obviously unique for given c, and ζ is independent of the
choice of c. With these preparations, we can now define quasi-infinitely divisible
distributions.

Definition 1.1. Let c be a fixed representation function. A distribution μ on R

is quasi-infinitely divisible, if its characteristic function admits the representation
(1.7) with some γ ∈ R and a finite signed measure ζ on R. The pair (ζ, γ) is then
called the characteristic pair of μ with respect to c, and Ψμ, defined by Ψμ(z) =
iγz +

∫
R
gc(x, z) ζ(dx), satisfies (1.2) and is called the characteristic exponent of μ.

Recall that a signed measure ζ on R is a function ζ : B → [−∞,∞] on the Borel
σ-algebra B such that ζ(∅) = 0, and ζ(

⋃∞
j=1 Aj) =

∑∞
j=1 ζ(Aj) for all sequences

(Aj)j∈N of pairwise disjoint sets in B, where the infinite series converges in [−∞,∞];
in particular, the value of the series does not depend on the order of the Aj , i.e.,
the series converges unconditionally. A signed measure ζ is finite, if ζ(A) ∈ R for
all A ∈ B. Similarly to infinitely divisible distributions, the characteristic exponent
Ψμ of μ is the unique continuous function satisfying Ψμ(0) = 0 and (1.2), and the
characteristic pair of a quasi-infinitely divisible distribution is unique for a fixed
function c; see, e.g., Linnik [18, Thm. 6.1.1], Cuppens [8, Thm. 4.3.3], or Sato
[24, Exercise 12.2]. Further, it is easy to see that if c1 and c2 are two representation
functions and (ζ1, γ1) and (ζ2, γ2) are the characteristic pairs with respect to c1 and
c2, respectively, then ζ1 = ζ2 and

γ2 = γ1 +

∫
R\{0}

(1 ∧ x2)−1(c2(x)− c1(x))ζ1(dx).

It is clear that not every pair (ζ, γ) with ζ being a finite signed measure which
is not positive gives rise to a quasi-infinitely divisible distribution. Otherwise,
with (ζ, γ) being the characteristic pair of a quasi-infinitely divisible distribution
μ, also (n−1ζ, n−1γ) would be the characteristic pair of a quasi-infinitely divisible
distribution μn for each n ∈ N, and μ∗n

n = μ, showing that μ is infinitely divisible,
hence ζ must be positive by the uniqueness of the characteristic pair, which is
absurd. The question which pair (ζ, γ) gives rise to a distribution is a difficult one,
and a very related question (when the associated quasi-Lévy type measure is finite)
was already posed by Cuppens [7, Section 5]. We do not provide an answer to this
question, but will give some examples of quasi-infinitely divisible distributions and
also study properties of the distribution in terms of the characteristic pair.

Quasi-infinitely divisible distributions arise naturally in the study of factorization
of probability distributions. To see that, observe that the difference of two finite
measures is a finite signed measure. Recall that for a signed measure ζ on R, the
total variation of ζ is the measure |ζ| : B → [0,∞] defined by

(1.9) |ζ|(A) = sup

∞∑
j=1

|ζ(Aj)|,

where the supremum is taken over all partitions {Aj} of A ∈ B. The total variation
|ζ| is finite if and only if ζ is finite. Further, by the Hahn–Jordan decomposition,
for a finite signed measure ζ, there exist disjoint Borel sets C+ and C− and finite
measures ζ+ and ζ− on B with ζ+(R \ C+) = ζ−(R \ C−) = 0 and ζ = ζ+ − ζ−,
and the measures ζ+ and ζ− are uniquely determined by ζ. It holds that

(1.10) ζ+ =
1

2
(|ζ|+ ζ), ζ− =

1

2
(|ζ| − ζ), |ζ| = ζ+ + ζ−.
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Now if μ is quasi-infinitely divisible with characteristic pair (ζ, γ) with respect
to a function c, define the infinitely divisible distributions μ+ and μ− to have
characteristic pairs (ζ+, γ) and (ζ−, 0), respectively. Since ζ + ζ− = ζ+, it fol-

lows that Ψμ+(z) = Ψμ(z) + Ψμ−(z), i.e., μ̂+(z) = μ̂(z)μ̂−(z). So if μ is quasi-
infinitely divisible, there exist two infinitely divisible distributions μ1 and μ2 such
that μ̂1(z) = μ̂2(z)μ̂(z), i.e., such that μ and μ2 factorize μ1. On the other hand, if a
distribution μ is such that two infinitely divisible distributions μ1 and μ2 with char-
acteristic pairs (ζ1, γ1) and (ζ2, γ2) exist with μ̂1(z) = μ̂2(z)μ̂(z), then μ̂2(z) �= 0
for all z ∈ R and

μ̂(z) =
μ̂1(z)

μ̂2(z)
= exp

(
i(γ1 − γ2)z +

∫
R

gc(x, z) (ζ1 − ζ2)(dx)

)
, z ∈ R,

showing that μ is quasi-infinitely divisible with characteristic pair (ζ1− ζ2, γ1−γ2).
Summing up, a distribution μ is quasi-infinitely divisible if and only if there exist
two infinitely divisible distributions μ1 and μ2 such that μ2 and μ factorize μ1, i.e.,
such that μ̂1(z) = μ̂(z)μ̂2(z). In terms of random variables, μ is quasi-infinitely
divisible if and only if there exist random variables X,Y, Z such that

(1.11) X + Y
d
= Z, X and Y independent,

and such that L(X) = μ and L(Y ) and L(Z) are infinitely divisible. The random
variables Y and Z can then be chosen to have characteristic pairs (ζ−, 0) and
(ζ+, γ), respectively, if (ζ, γ) is the characteristic pair of μ. This factorization
property explains the interest in quasi-infinitely divisible distributions.

Apart from the decomposition problem of probability measures, quasi-infinitely
divisible distributions appear in the study of several problems in probability theory.
Some of them are mentioned with references in Lindner and Sato [17] and in the
solution of Exercise 12.4 of [24]. In relation to stochastic processes, the stationary
distribution of a generalized Ornstein–Uhlenbeck process associated with a bivariate
Lévy process with three parameters can be infinitely divisible, noninfinitely divis-
ible, quasi-infinitely divisible, or non-quasi-infinitely divisible, which is thoroughly
analyzed in [17].

The goal of this paper is to study properties of quasi-infinitely divisible dis-
tributions in terms of their characteristic pairs or, equivalently, in terms of their
characteristic triplets. The quasi-Lévy measure and characteristic triplet will be
introduced in the next section, along with some preliminary remarks about quasi-
infinitely divisible distributions. Section 3 contains some examples of quasi-infinitely
divisible distributions. In section 4 we study convergence properties of a sequence of
quasi-infinitely divisible distributions in terms of the characteristic pairs. Sections
5, 6, and 7 are concerned with the supports, moments, and continuity properties
of quasi-infinitely divisible distributions, respectively. Finally, in section 8 we spe-
cialize in distributions concentrated on the integers, show that such a distribution
is quasi-infinitely divisible if and only if its characteristic function has no zeroes,
and derive sharper convergence and moment conditions for quasi-infinitely divisible
distributions concentrated on the integers.

To fix notation (which partially has been already used), by a distribution on R we
mean a probability measure on (R,B), with B being the Borel σ-algebra on R, and
similarly, by a signed measure on R we mean it to be defined on (R,B). By a measure
on R we always mean a positive measure on (R,B), i.e., a [0,∞]-valued σ-additive
set-function on B that assigns the value 0 to the empty set. The Dirac measure at a
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point b ∈ R will be denoted by δb, the Gaussian distribution with mean a ∈ R and
variance b ≥ 0 by N(a, b). The support of a signed measure μ on R is defined to is
defined to be the smallest closed set whose complement has |μ|-measure zero. It is
denoted by supp(μ). Hence supp(μ) = supp(|μ|). The restriction of μ to a subclass
A ⊂ B is denoted by μ|A, and for C ∈ B we often write μ|C for μ|C∩B. Weak
convergence of signed measures μn to a signed measure μ (as defined in Section

4) will be denoted by μn
w→ μ. and the Fourier transform at z ∈ R of a finite

signed (or complex) measure μ on R will be denoted by μ̂(z) =
∫
R
eizx μ(dx). By

Lμ(u) =
∫
R
e−ux μ(dx) ∈ [0,∞], we denote the Laplace transform of a distribution

μ on R at u ≥ 0, irrelevant if μ is concentrated on [0,∞) or not. We say the Laplace
transform is finite if Lμ(u) < ∞ for all u ≥ 0, which is in particular the case when
the support of μ is bounded from below. The convolution of two finite signed (or
complex) measures μ1 and μ2 on R is defined by μ1 ∗μ2(B) =

∫
R
μ1(B−x)μ2(dx),

B ∈ B, where B − x = {y − x : y ∈ B}, and the n-fold convolution of μ1 with
itself is denoted by μ∗n

1 . See [8, Sect. 2.5] or Rudin [23, Exercise 8.5] for more
information on the convolution of finite signed or complex measures. The law of a
random variable X will be denoted by L(X), and equality in distribution will be

written as X
d
= Y . The expectation of a random variable X is denoted by EX,

its variance by Var(X). We write x ∧ y = min{x, y} and x ∨ y = max{x, y} for
x, y ∈ R. The real and imaginary part of a complex number w will be denoted
by 
(w) and �(w), respectively, and by i we denote the imaginary unit. We write
N = {1, 2, . . .}, N0 = N ∪ {0}, and Z, Q, R, and C for the set of integers, rational
numbers, real numbers, and complex numbers, respectively. The indicator function
of a set A ⊂ R is denoted by 1A.

2. Quasi-Lévy measures and first remarks

Our first goal is to define quasi-Lévy measures of quasi-infinitely divisible dis-
tributions. We can basically view them as the difference of the Lévy measures ν1
and ν2 of two infinitely divisible distributions μ1 and μ2. However, the difference
is not a signed measure if ν1 and ν2 are infinite; on the other hand, when ν1 and
ν2 are restricted to R \ (−r, r) for some r > 0, then the difference is a finite signed
measure. Hence we can formalize the following definition.

Definition 2.1. Let Br := {B ∈ B : B ∩ (−r, r) = ∅} for r > 0, and let B0 =⋃
r>0 Br be the class of all Borel sets that are bounded away from zero. Let ν :

B0 → R be a function such that ν|Br
is a finite signed measure for each r > 0,

and denote the total variation, positive, and negative part of ν|Br
by |ν|Br

|, ν+|Br
,

and ν−|Br
, respectively. Then the total variation |ν|, the positive part ν+, and the

negative part ν− of ν are defined to be the unique measures on (R,B) satisfying
|ν|({0}) = ν+({0}) = ν−({0}) = 0

and

|ν|(A) = |ν|Br
|(A), ν+(A) = (ν|Br

)+(A), ν−(A) = (ν|Br
)−(A)

for A ∈ Br for some r > 0.

Observe that when ν : B0 → R is such that ν|Br
is a finite signed measure for

each r > 0, then |ν|Br
|(A) = |ν|Bs

|(A) for all A ∈ Br with 0 < s ≤ r and similarly

for the positive and negative parts, so that |ν|, ν+, and ν− are well-defined and it
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is easy to see that these measures on (R,B) indeed exist and are necessarily unique
when the point 0 is assigned no mass. Observe that ν itself is defined on B0, which
is not a σ-algebra, hence ν is not a signed measure. It is not always possible to
extend the definition of ν to B such that ν will be a signed measure. However,
whenever it is possible, we will identify ν with its extension to B and speak of ν as
a signed measure. Then ν({0}) = 0 and the total variation, positive, and negative
parts of ν as defined in Definition 2.1 coincide with the corresponding notions from
(1.9) and (1.10) for the signed measure ν.

We can now define quasi-Lévy measures and quasi-Lévy type measures.

Definition 2.2.
(a) A quasi-Lévy type measure is a function ν : B0 → R satisfying the condition

in Definition 2.1 such that its total variation |ν| satisfies
∫
R
(1 ∧ x2) |ν|(dx) < ∞.

(b) Suppose that μ is a quasi-infinitely divisible distribution on R with charac-
teristic pair (ζ, γ) with respect to a representation function c. Then ν : B0 → R

defined by

(2.1) ν(B) =

∫
B

(1 ∧ x2)−1ζ(dx), B ∈ B0,

is called the quasi-Lévy measure of μ.

For the quasi-Lévy measure ν of a quasi-infinitely divisible distribution μ, we
have

∫
R
(1 ∧ x2)|ν|(dx) < ∞, where |ν| is the total variation of ν. Hence every

quasi-Lévy measure of some distribution is also a quasi-Lévy type measure, but
the converse is not true, as will be seen in Example 2.9. Observe that the notion
“quasi-Lévy measure” is used only when a quasi-infinitely divisible distribution is
described, while the notion “quasi-Lévy type measure” is not necessarily related to
a distribution.

We say that a function f : R → R is integrable with respect to a quasi-Lévy type
measure ν, if it is integrable with respect to |ν| (hence also with respect to ν+ and
ν−), and we then define∫

B

f(x) ν(dx) :=

∫
B

f(x) ν+(dx)−
∫
B

f(x) ν−(dx), B ∈ B,

although ν is not always a signed measure on R. For a representation function c,
the function x �→ eizx−1− izc(x) is integrable with respect to ν. Now we can speak
of characteristic triplets.

Definition 2.3. Let μ be a quasi-infinitely divisible distribution with characteristic
pair (ζ, γ) with respect to c. Then (a, ν, γ), where a := ζ({0}) and ν is the quasi-
Lévy measure of μ defined by Definition 2.2(b), is called the characteristic triplet
of μ with respect to c. It is necessarily unique and ζ is uniquely restored from a
and ν. We write μ ∼ q.i.d.(ζ, γ)c to μ ∼ q.i.d.(a, ν, γ)c to indicate that μ is quasi-
infinitely divisible with given characteristic pair or triplet. The constant a is called
the Gaussian variance of μ.

Notice that

(2.2) ζ(B) = aδ0(B) +

∫
B

(1 ∧ x2)ν(dx), B ∈ B.

The characteristic function of a quasi-infinitely divisible distribution μ satisfies (1.2)
where the characteristic exponent Ψμ of μ is given by (1.3) with a, γ ∈ R and ν
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is the quasi-Lévy measure of μ. The characteristic function of a quasi-infinitely
divisible distribution obviously cannot have zeroes.

Remark 2.4. As is explained in section 1, μ is a quasi-infinitely divisible distribution
on R if and only if there are two infinitely divisible distributions μ1, μ2 such that
μ̂(z) = μ̂1(z)/μ̂2(z). We can define quasi-infinitely divisible distributions on Rd by
this property. Alternatively, Definition 2.1 can be extended to Rd word by word
with B defined as the class of all Borel sets in Rd and Br as the class {B ∈ B : B ∩
{x : |x| < r} = ∅}. A quasi-infinitely divisible distribution on Rd can then be defined
as a distribution μ on Rd whose characteristic function μ̂(z) =

∫
Rd e

i〈z,x〉 μ(dx)
admits a representation

μ̂(z) = exp

(
i〈γ, z〉 − 1

2
〈Az, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, c(x)〉

)
ν(dx)

)
, z ∈ Rd,

for a fixed representation function c, where γ ∈ Rd, A is a symmetric d× d-matrix,
and ν is a function B0 → R such that ν|Br

is a finite signed measure for each r > 0

and
∫
Rd(1 ∧ |x|2)|ν|(dx) < ∞. Here, 〈z, x〉 denotes the standard inner product of

z, x ∈ Rd, and by a representation function we mean a bounded, Borel measurable
function c : Rd → Rd such that c(0) = 0 and |x|−2|c(x) − x| → 0 as x → 0 in Rd.
It is possible to show that (A, ν, γ) is unique (cf. Sato [24, Exercise 12.2]) and can
hence be called the characteristic triplet of μ. In this paper, mainly for simplicity,
we shall restrict ourselves to the one-dimensional case.

For the expression of the characteristic functions of quasi-infinitely divisible dis-
tributions, it is possible to replace representation functions by other functions as
long as the corresponding integral is defined. This is similar to the case of infinitely
divisible distributions. A particularly important replacement is by 0 or x:

Remark 2.5. Let μ ∼ q.i.d.(a, ν, γ)c for some c, where ν is such that∫
|x|<1

|x| |ν|(dx) < ∞.

Then eizx − 1 is integrable with respect to ν, and μ̂ can be represented as

μ̂(z) = exp

(
iγ0z − az2/2 +

∫
R

(eizx − 1) ν(dx)

)
for some γ0 ∈ R; more precisely, γ0 = γ −

∫
R
c(x) ν(dx). This representation

is unique, and γ0 is called the drift of μ. We also write μ ∼ q.i.d.(a, ν, γ0)0 or
μ ∼ q.i.d.(ζ, γ0)0 to indicate that

∫
|x|<1

|x| |ν|(dx) < ∞ and that μ has drift γ0.

Similarly, if ν is such that
∫
|x|>1

|x| |ν|(dx) < ∞, then eizx − 1 − izx is integrable

with respect to ν, and μ̂ can be represented as

μ̂(z) = exp

(
iγmz − az2/2 +

∫
R

(eizx − 1− izx) ν(dx)

)
for some γm ∈ R. The representation is unique, and γm is called the center of μ
and is related to γ by γm = γ +

∫
R
(x − c(x))ν(dx). We shall see in Theorem 6.2

that the center of a quasi-infinitely divisible distribution is equal to its mean.
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Remark 2.6.
(a) The class of quasi-infinitely divisible distributions is closed under convolution.

More precisely, if μ1 ∼ q.i.d.(a1, ν1, γ1)c ∼ q.i.d.(ζ1, γ1)c and μ2 ∼ q.i.d.(a2, ν2, γ2)c
∼ q.i.d.(ζ2, γ2)c, then

μ1 ∗ μ2 ∼ q.i.d.(a1 + a2, ν1 + ν2, γ1 + γ2)c ∼ q.i.d.(ζ1 + ζ2, γ1 + γ2)c.

Similarly, the drift or center of convolutions is the sum of the individual drifts or
centers, provided they exist.

(b) The class of quasi-infinitely divisible distributions is also closed under shifts
and dilation; i.e., if μ = L(X) for some random variable X is quasi-infinitely
divisible, then also L(mX + b) is quasi-infinitely divisible for m, b ∈ R with m �= 0.
More precisely, if L(X) ∼ q.i.d.(a, ν, γ)c, then

L(mX + b) ∼ q.i.d.(am2, ν, b+mγ +

∫
R

(c(mx)−mc(x)) ν(dx))c

with ν(B) := ν(m−1B), B ∈ B, as can be easily seen by considering the charac-
teristic function of mX + b. Similarly, if L(X) has finite drift γ0 or center γm,
then also mX + b has finite drift given by mγ0 + b, or center given by mγm + b,
respectively.

(c) We have already seen that not every pair (ζ, γ)c with ζ being a finite signed
measure gives rise to a quasi-infinitely divisible distribution via (1.7). Similarly, not
every triplet (a, ν, γ)c with ν being a quasi-Lévy type measure gives rise to a quasi-
infinitely divisible distribution via (1.3). Of course γ is irrelevant to this property,
which follows from (b). We can say that, if (ζ, γ)c is the characteristic pair of a
quasi-infinitely divisible distribution μ, then so is (ζ ′, γ′)c for some distribution μ′

whenever γ′ ∈ R and ζ ′ ≥ ζ in the sense that ζ ′(B) ≥ ζ(B) for all B ∈ B; similarly,
if (a, ν, γ)c is the characteristic triplet of a quasi-infinitely divisible distribution μ,
then so is (a′, ν′, γ′)c for μ′ whenever γ′ ∈ R, a′ ≥ a and ν′ ≥ ν in the sense
that ν′(B) ≥ ν(B) for all B ∈ B0. This is seen by letting μ′′ be an infinitely
divisible distribution with characteristic pair (ζ ′−ζ, γ′−γ)c, or characteristic triplet
(a′ − a, ν′ − ν, γ′ − γ)c, respectively, and observing that μ′ = μ ∗ μ′′.

We allowed also negative Gaussian variances a = ζ({0}) in the definition of quasi-
infinitely divisible distributions. The next lemma shows that necessarily a ≥ 0.

Lemma 2.7. Let μ ∼ q.i.d.(a, ν, γ)c ∼ q.i.d.(ζ, γ)c for some c. Then

a = ζ({0}) = −2 lim
|z|→∞

z−2Ψμ(z).

In particular, a ≥ 0.

Proof. We have

lim
|z|→∞

z−2

∫
R

(
eizx − 1− izc(x)

)
ν(dx)

= lim
|z|→∞

z−2

(∫
R

(
eizx − 1− izc(x)

)
ν+(dx)

−
∫
R

(
eizx − 1− izc(x)

)
ν−(dx)

)
= 0

by Sato [24, Lem. 43.11]. Hence lim|z|→∞ z−2Ψμ(z) = −a/2. Now if a were strictly
negative, then |μ̂(z)| = | exp(Ψμ(z))| would tend to ∞ as |z| → ∞, which is clearly
impossible for a characteristic function. Hence a ≥ 0. �
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As seen in (2.6) below, if the Gaussian variance in a quasi-infinitely divisible
distribution is zero, then the positive part of the quasi-Lévy measure must have at
least as much mass as the negative part. More generally, we have:

Lemma 2.8. Let μ ∼ q.i.d.(a, ν, γ)c for some c. Let σ be an arbitrary probability
distribution on R. Then

a

2
z2 +

∫
R

(1− cos zx)ν+(dx) ≥
∫
R

(1− cos zx)ν−(dx), ∀z ∈ R,(2.3)

a

2

∫
R

z2σ(dz) +

∫
R

(1− 
σ̂(x)) ν+(dx) ≥
∫
R

(1− 
σ̂(x)) ν−(dx), and(2.4)

a+

∫
R

x2

1 + x2
ν+(dx) ≥

∫
R

x2

1 + x2
ν−(dx).(2.5)

Further, if a = 0, then

ν+(R) ≥ ν−(R), and(2.6) ∫
R

(1 ∧ |x|)ν+(dx) ≥
∫
R

(1 ∧ |x|)ν−(dx).(2.7)

In particular, if a = 0 and ν+(R) is finite, then so is ν−(R).

Proof. Assertion (2.3) follows from

0 ≥ log |μ̂(z)| = 
(Ψμ(z)) = −a

2
z2 +

∫
R

(cos zx− 1)ν+(dx)−
∫
R

(cos zx− 1)ν−(dx).

Hence

a

2

∫
R

z2 σ(dz) +

∫
R

∫
R

(1− cos zx) ν+(dx) σ(dz) ≥
∫
R

∫
R

(1− cos zx) ν−(dx) σ(dz),

and an application of Fubini’s theorem gives (2.4). Assertion (2.5) follows from
(2.4) by choosing σ as the two-sided exponential distribution σ(dx) = 2−1e−|x| dx
for which σ̂(x) = 1/(1 + x2) and

∫
R
z2 σ(dz) = 2. Now let a = 0, and let σ be

an N(0, t) distribution with t > 0. Then σ̂(x) = e−tx2/2, and letting t → ∞ in
(2.4) (with σ = N(0, t)) gives (2.6) by monotone convergence. To see (2.7), letting
σ(dx) = π−1x−2(1− cosx)dx, we have σ̂(x) = (1−|x|)∨ 0 and 1−
σ̂(x) = 1∧ |x|;
see [12, p. 503]. �

Lemma 2.8 can be used to show that certain triplets do not lead to charac-
teristic triplets of quasi-infinitely divisible distributions via (1.3). For example,
(0, δ1 − 2δ3, γ)c is not the characteristic triplet of a quasi-infinitely divisible distri-
bution, since (2.6) is violated. Deeper results of this kind can be obtained using
the class I0.

Example 2.9. The class I0 consists of all infinitely divisible probability distribu-
tions μ such that each factor of μ is also infinitely divisible, i.e., such that μ = μ1∗μ2

with probability distributions μ1 and μ2, implies infinite divisibility of μ1 and μ2.
By Khintchine’s theorem (e.g., [18, Thm. 5.4.2] or [8, Thm. 4.6.1]) this is equiv-
alent to the more common definition that a probability distribution belongs to I0
if every factor of it is decomposable. Now if μ is in I0 with characteristic triplet
(a, ν, γ)c and if (a′, ν′, γ′)c is given with a′, γ′ ∈ R such that a′ ≤ a, (ν′)− �= 0 and
ν′ ≤ ν in the sense that ν′(B) ≤ ν(B) for all B ∈ B0, then (as also noted in Cup-
pens [8, Cor. 4.6.2]) (a′, ν′, γ′)c is not the characteristic triplet of a quasi-infinitely
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divisible distribution. For suppose it were, and denote it by μ′. Let μ′′ be the
infinitely divisible distribution with characteristic triplet (a − a′, ν − ν′, γ − γ′)c.
Then μ′ ∗ μ′′ = μ with μ′ not being infinitely divisible, contradicting μ ∈ I0. Suf-
ficient conditions for a distribution to be in I0 can be found in, e.g., Linnik [18] or
Cuppens [8]. For example, Gaussian distributions and Poisson distributions are in
I0; the convolution of a Gaussian and a Poisson is also in I0 ([18, Thms. 6.3.1, 6.6.1,
7.1.1]). Hence, if ν− �= 0 and if either ν+ = 0 or supp ν+ is a one-point set, then
(a, ν, γ)c is not the characteristic triplet of a quasi-infinitely divisible distribution
for any a and γ; in other words, in this case ν is a quasi-Lévy type measure, but
there is no distribution μ for which ν will be the quasi-Lévy measure. An infin-
itely divisible distribution with Gaussian variance 0 and Lévy measure of the form
ν =

∑n
k=1 bkδτk , where 0 < τ1 < · · · < τn, b1, . . . , bn > 0 and either τ1, . . . , τn

are linearly independent over Q or τn ≤ 2τ1, belongs to I0 by results of Raikov as
stated in [18, Thms. 12.3.2 and 12.3.3]. More generally, if an infinitely divisible dis-
tribution has Gaussian variance 0 and Lévy measure ν such that supp ν ⊂ (b, 2b)
for some b > 0, then it belongs to I0, cf. [8, Cor. 7.1.1]. Further examples of
distributions in I0 are given in [18, Thms. 9.0.1 and 10.0.1], [19], or [8].

3. Examples

Obviously, every infinitely divisible distribution on R is quasi-infinitely divisible,
and its Lévy measure and quasi-Lévy measure coincide. An important example of
quasi-infinitely divisible distributions has been established by Cuppens [7]. Namely,
a distribution which has an atom of mass > 1/2 is necessarily quasi-infinitely di-
visible. More precisely, the following holds.

Theorem 3.1 (Cuppens [7, Prop. 1], [8, Thm. 4.3.7]). Let μ be a nondegenerate
distribution such that there is λ ∈ R with p = μ({λ}) > 1/2, and define σ =
(1−p)−1(μ−pδλ). Then μ is quasi-infinitely divisible with finite quasi-Lévy measure
ν given by

ν =

( ∞∑
m=1

1

m
(−1)m+1

(
1− p

p

)m

(δ−λ ∗ σ)∗m
)

|R\{0}

,

drift λ, and Gaussian part a = 0, i.e., its characteristic function admits the repre-
sentation

μ̂(z) = exp

(
iλz +

∫
R

(eizx − 1) ν(dx)

)
, z ∈ R.

Theorem 3.1 gives rise to many examples of quasi-infinitely divisible distributions
that are not infinitely divisible. In particular, if μ has an atom of mass in (1/2, 1)
and has bounded support, then it is quasi-infinitely divisible without being infin-
itely divisible, since the only infinitely divisible distributions with bounded support
are the Dirac measures (cf. [24, Cor. 24.4]). Since convolutions of quasi-infinitely
divisible distributions are also quasi-infinitely divisible, this allows us to detect also
quasi-infinitely divisible distributions that have atoms with masses less than 1/2.

Example 3.2. It follows from Theorem 3.1 that a two-point distribution pδλ +
(1−p)δλ′ is quasi-infinitely divisible as long as p �= 1/2. In particular, the Bernoulli
distribution b(1, p) is quasi-infinitely divisible for p �= 1/2. Since convolutions of
quasi-infinitely divisible distributions are quasi-infinitely divisible, also the binomial
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distribution b(n, p) with parameters n ∈ N and p ∈ (0, 1) is quasi-infinitely divisible
as long as p �= 1/2.

The characteristic function of a quasi-infinitely distribution cannot have zeroes.
Hence, a two-point distribution of the form μ = (1/2)δλ + (1/2)δλ′ with λ �= λ′

is not quasi-infinitely divisible. Also, the characteristic function of the b(n, 1/2)-
distribution has zeroes, so b(n, 1/2) is not quasi-infinitely divisible. In particular,
for n ∈ N and p ∈ (0, 1) we see that b(n, p) is quasi-infinitely divisible if and only if
its characteristic function has no zeroes, and if and only if p �= 1/2.

It is natural to ask if every distribution whose characteristic function does not
have zeroes must be quasi-infinitely divisible. The following example shows that
this is not the case.

Example 3.3. Let ϕ : R → R be defined by

ϕ(z) =

{
(1/7) exp(1− z4), |z| ≥ 1,

(2/7)z2 − (8/7)|z|+ 1, |z| < 1.

Then ϕ is a real-valued, even, and continuous function with ϕ(0) = 1 and
limz→∞ ϕ(z) = 0. Further, ϕ is C2 on (0,∞) with strictly positive second de-
rivative there, hence ϕ is convex on (0,∞). It follows from Pólya’s theorem (e.g.,
Lukacs [20, Thm. 4.3.1] or Feller [12, XV.3, Ex. (b)]) that ϕ is the characteristic
function of an absolutely continuous distribution, μ say. Observe that ϕ(z) �= 0
for all z ∈ R, but that limz→∞ z−2 logϕ(z) = −∞. Hence μ is not quasi-infinitely
divisible by Lemma 2.7, although its characteristic function has no zeroes.

We have seen that not every probability measure whose characteristic function
is nonvanishing is quasi-infinitely divisible. However, for distributions concentrated
on the integers, this does not happen, as we shall see in section 8. In this section in
Theorem 3.9 we will prove a special case of this result for distributions concentrated
on {0, 1, . . . , n}; this is more elementary, the quasi-Lévy measure can be given more
explicitly, and the special case will be needed in the proof of the general result in
Theorem 8.1.

For the proof of Theorem 3.9, we will need a generalization of Cuppens’ theorem
stated above, which we do now for complex-valued measures rather than probability
distributions; this will be helpful later when factorizing the characteristic function
of a probability distribution on {0, 1, . . . , n}. Recall that a complex measure ρ on
R is a function ρ : B → C such that ρ(∅) = 0 and ρ(

⋃∞
j=1 Aj) =

∑∞
j=1 ρ(Aj) for

all sequences (Aj)j∈N of pairwise disjoint sets in B. This implies that the series
converges unconditionally, in particular absolutely for each partition. A complex
measure is automatically finite. Its total variation |ρ| is defined by formula (1.9).
This is a finite measure. The Fourier transform of a complex measure ρ is defined
by ρ̂(z) =

∫
R
eizx ρ(dx). It satisfies |ρ̂(z)| ≤ |ρ|(R) for all z ∈ R. We come now to

the aforementioned generalization of Cuppens’ result.

Proposition 3.4. Let α and β be two complex measures such that α̂(z) �= 0 for
all z ∈ R. Suppose there is a complex measure ρ with |ρ|(R) < 1 such that ρ̂(z) =

β̂(z)/α̂(z) for all z ∈ R. Define the complex measure ν̃ by

ν̃ =

( ∞∑
m=1

1

m
(−1)m+1ρ∗m

)
|R\{0}

.
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Then

(α+ β)̂ (z) =
α(R) + β(R)

α(R)
α̂(z) exp

(∫
R

(eixz − 1) ν̃(dx)

)
, z ∈ R.

Proof. First observe that

(α+ β)̂ (z) = α̂(z)

(
1 +

β̂(z)

α̂(z)

)
= α̂(z) exp (log(1 + ρ̂(z))) , z ∈ R.

Since |ρ̂(z)| ≤ |ρ| < 1, we can use the logarithmic expansion

log(1 + w) =

∞∑
m=1

(−1)m+1m−1wm

for |w| < 1 and continue

log(1 + ρ̂(z))

=

∞∑
m=1

(−1)m+1m−1(ρ̂(z))m

=

( ∞∑
m=1

(−1)m+1m−1ρ∗m

)∧

(z)

=

∫
R

(eizx − 1)

( ∞∑
m=1

(−1)m+1m−1ρ∗m

)
(dx) +

∞∑
m=1

(−1)m+1m−1ρ∗m(R)

=

∫
R

(eizx − 1)ν̃(dx) + log(1 + ρ(R)),

where in the last line we used that (eizx − 1)|x=0 = 0, so that a point mass of the
measure at 0 is ignored in the integration. Since

exp (log(1 + ρ(R))) = 1 + ρ̂(0) =
α̂(0) + β̂(0)

α̂(0)
=

α(R) + β(R)

α(R)
,

this gives the claim. �

The above result can in particular be applied to convex combinations of proba-
bility measures.

Corollary 3.5. Let p > q > 0 with p+ q = 1, and let μ1 and μ2 be two probability
distributions on R such that μ1 is quasi-infinitely divisible with characteristic triplet
(a, ν, γ)c with respect to c. Suppose further that there exists a finite signed measure
σ on R with |σ|(R) < p/q and σ̂(z) = μ̂2(z)/μ̂1(z) for all z ∈ R. Define a finite
signed measure ν̃ by

ν̃ =

( ∞∑
m=1

1

m
(−1)m+1(q/p)mσ∗m

)
|R\{0}

.

Then pμ1 + qμ2 is quasi-infinitely divisible with the characteristic triplet
(a, ν + ν̃, γ +

∫
R
c(x)ν̃(dx))c. If additionally

∫
|x|<1

|x| |ν|(dx) < ∞ and μ1 has drift

λ, then also pμ1 + qμ2 has drift λ, i.e., it has characteristic triplet (a, ν + ν̃, λ)0.
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Proof. Define α = pμ1, β = qμ2, and ρ = (q/p)σ. Since μ1 is quasi-infinitely

divisible, we have μ̂1(z) �= 0 and ρ̂(z) = (q/p)σ̂(z) = β̂(z)/α̂(z). By Proposition 3.4
we then obtain

(pμ1 + qμ2)̂ (z) = α̂(z) + β̂(z) =
p+ q

p
pμ̂1(z) exp

(∫
R

(eizx − 1) ν̃(dx)

)
= exp

(
−az2/2 +

∫
R

(eizx − 1− izc(x)) ν(dx) + iγz +

∫
R

(eizx − 1) ν̃(dx)

)
.

This shows that pμ1 + qμ2 is quasi-infinitely divisible with characteristic triplet
(a, ν + ν̃, γ +

∫
R
c(x) ν̃(dx))c. The drift assertion follows in the same way. �

Corollary 3.5 contains Cuppens’ result (Theorem 3.1) as a special case.
To see this, let μ be a nondegenerate distribution that has an atom of mass
p = μ({λ}) > 1/2 at λ. Define μ1 = δλ and μ2 = (1 − p)−1(μ − pδλ). Then
μ1 is infinitely divisible and

μ̂2(z)

μ̂1(z)
= μ̂2(z) δ̂−λ(z) = (μ2 ∗ δ−λ)̂ (z).

Theorem 3.1 then follows from Corollary 3.5. Another example is the following.

Example 3.6. Let b > a > 0, μ1 = N(0, a), μ2 = N(0, b), p ∈ (1/2, 1), and
q = 1− p. Define σ = N(0, b− a). Then μ1 is infinitely divisible, and

μ̂2(z)

μ̂1(z)
=

e−bz2/2

e−az2/2
= σ̂(z).

Corollary 3.5 then implies that pμ1+qμ2 is quasi-infinitely divisible with character-
istic triplet (a, ν̃, 0)0 with ν̃ as given there. Observe that pμ1 + qμ2 is a particular
case of a variance mixture of normal distributions and, since the underlying mixing
distribution function has bounded support, it is known that pμ1 + qμ2 is not infin-
itely divisible; see Kelker [16, Thm. 2]. Another proof that pμ1+qμ2 is not infinitely
divisible follows from [24, Rem. 26.3], since the tail of pμ1 + qμ2 is asymptotically
equal to that of qμ2, but pμ1 + qμ2 is not Gaussian.

The previous example can be generalized.

Example 3.7. Let μ1 and μ2 be two quasi-infinitely divisible distributions with
μ1 ∼ q.i.d.(a1, ν1, γ1)c and μ2 ∼ q.i.d.(a2, ν2, γ2)c, where 0 ≤ a1 ≤ a2 and ν1 and
ν2 are finite quasi-Lévy measures such that ν2−ν1 is a positive measure (μ1 and μ2

could in particular be infinitely divisible). Then pμ1 + (1− p)μ2 is quasi-infinitely
divisible for p ∈ (1/2, 1). This can be seen from the fact that

μ̂2(z)

μ̂1(z)
= exp

(
i(γ2 − γ1)z − (a2 − a1)z

2/2 +

∫
R

(eizx − 1− izc(x)) (ν2 − ν1)(dx)

)
,

which is the characteristic function of an infinitely divisible distribution σ, and
hence Corollary 3.5 applies.

The following lemma exploits Proposition 3.4 in more detail and will be needed
in the proof of Theorem 3.9.

Lemma 3.8. Let ξ ∈ C with |ξ| �= 1. Then the characteristic function of the
complex measure μ = δ1 − ξδ0 satisfies

μ̂(z) =

{
(1− ξ) exp

(
iz +

∫
R
(eizx − 1)

(
−
∑∞

m=1 m
−1ξmδ−m

)
(dx)

)
if |ξ| < 1,

(1− ξ) exp
(∫

R
(eixz − 1)

(
−
∑∞

m=1 m
−1ξ−mδm

)
(dx)

)
if |ξ| > 1.
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Proof. Suppose first that |ξ| < 1. Define α = δ1, β = −ξδ0, and ρ = −ξδ−1. Then

α̂(z) = eiz �= 0, |ρ|(R) = |ξ| < 1, and ρ̂(z) = −ξe−iz = β̂(z)/α̂(z). The claim then
follows from Proposition 3.4, by observing that ρ∗m = (−1)mξmδ−m.

Now suppose that |ξ| > 1. Define α = −ξδ0, β = δ1, and ρ = −ξ−1δ1. Again,

α̂(z) = −ξ �= 0, |ρ|(R) = |ξ−1| < 1, and ρ̂(z) = −ξ−1eiz = β̂(z)/α̂(z), and the claim
follows from Proposition 3.4, since ρ∗m = (−1)mξ−mδm. �

We can now characterize when a distribution concentrated on {0, 1, . . . , n} is
quasi-infinitely divisible.

Theorem 3.9. Let μ be a discrete distribution concentrated on {0, 1, 2, . . . , n} for
some n ∈ N, i.e., μ =

∑n
j=0 ajδj, where a0, . . . , an−1 ≥ 0, an > 0, and a0 + · · · +

an = 1. Then the following are equivalent:

(i) μ is quasi-infinitely divisible.
(ii) The characteristic function of μ has no zeroes.
(iii) The polynomial w �→

∑n
j=0 ajw

j in the complex variable w has no roots on

the unit circle, i.e.,
∑n

j=0 ajw
j �= 0 for all w ∈ C with |w| = 1.

Further, if one of the equivalent conditions (i)–(iii) holds, then the quasi-Lévy mea-
sure of μ is finite and concentrated on Z, the drift lies in {0, 1 . . . , n}, and the
Gaussian variance of μ is 0. More precisely, if ξ1, . . . , ξn denote the n complex
roots of w �→

∑n
j=0 ajw

j, counted with multiplicity, then the quasi-Lévy measure of
μ is given by

(3.1) ν = −
∞∑

m=1

m−1

⎛⎝ ∑
j : |ξj |<1

ξmj

⎞⎠ δ−m −
∞∑

m=1

m−1

⎛⎝ ∑
j : |ξj |>1

ξ−m
j

⎞⎠ δm,

and the drift is equal to the number of those zeroes of this polynomial which lie
inside the unit circle (counted with multiplicity), i.e., have modulus less than 1.

Proof. Define the polynomial f in w by

f(w) := a0 + a1w + · · ·+ anw
n = an

(
wn +

an−1

an
wn−1 + · · ·+ a1

an
w +

a0
an

)
.

Denoting by ξ1, . . . , ξn the complex roots of f , counted with multiplicity, we can
write

f(w) = an

n∏
j=1

(w − ξj).

The characteristic function of μ can be expressed as

(3.2) μ̂(z) =

n∑
j=0

aje
ijz = f(eiz) = an

n∏
j=1

(
eiz − ξj

)
= an

n∏
j=1

(δ1 − ξjδ0)̂ (z).

Now assume that (iii) holds, i.e., that |ξj | �= 1 for all j ∈ {1, . . . , n}. Define the
complex measure ν by (3.1). Since f has real coefficients, the nonreal roots of f
appear as pairs of complex conjugates, from which it follows that ν is actually a
finite signed measure. Denote by λ the number of those indices j ∈ {1, . . . , n} for
which |ξj | < 1. From equation (3.2) and Lemma 3.8 we then obtain

μ̂(z) = an

⎛⎝ n∏
j=1

(1− ξj)

⎞⎠ exp

(
iλz +

∫
R

(eizx − 1) ν(dx)

)
,
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which shows that μ is quasi-infinitely divisible with finite quasi-Lévy measure ν
and drift λ, since

an

n∏
j=1

(1− ξj) = f(1) = a0 + · · ·+ an = 1.

We have shown that (iii) implies (i) and have given the specific form of the triplet.
That (i) implies (ii) is obvious, and that (ii) implies (iii) can be seen from (3.2),
since μ̂(z) �= 0 for all z ∈ R implies |ξj | �= 1 for all j ∈ {1, . . . , n}. �

Later in Theorem 8.1 we shall generalize Theorem 3.9 and show that a distri-
bution on the integers Z is quasi-infinitely divisible if and only if its characteristic
function has no zeroes. However, the proof of Theorem 8.1 is on the one hand more
complicated as it relies on a consequence of the Wiener–Lévy theorem for abso-
lutely summable Fourier series, and on the other hand it also needs the assertion of
Theorem 3.9 in order to show that the derived candidate for quasi-Lévy measure is
indeed real valued.

A simple consequence of Theorem 3.9 is the following.

Corollary 3.10. Let μ be a discrete distribution concentrated on a finite subset
of a lattice of the form r + hZ with r ∈ R and h > 0. Then μ is quasi-infinitely
divisible if and only if its characteristic function has no zeroes. In this case, the
quasi-Lévy measure of μ is finite and the Gaussian variance is 0.

Proof. If the characteristic function of μ has zeroes, it is clear that μ cannot be
quasi-infinitely divisible. Now suppose that μ̂ has no zeroes. Let X be a random
variable with distribution μ. We then can find k ∈ Z and n ∈ N such that Y =
h−1(X−r)+k is concentrated on {0, . . . , n}. Then the characteristic function of Y
has no zeroes, hence L(Y ) is quasi-infinitely divisible with Gaussian variance 0 and
finite quasi-Lévy measure by Theorem 3.9. The claim then follows from Remark
2.6(b). �

So far, for all quasi-infinitely divisible distributions we encountered, the negative
part ν− of the quasi-Lévy measure was finite. Next, we give an example of quasi-
infinitely divisible distributions with ν− being infinite.

Example 3.11. Let (Xk)k∈N be a sequence of independent and identically dis-
tributed random variables with common distribution (2/3)δ−1 + (1/3)δ2, and let
(bk)k∈N be a sequence of strictly positive real numbers such that

∑∞
k=1 b

2
k < ∞.

Since the Xk have expectation 0, the series Y :=
∑∞

k=1 bkXk converges almost
surely (e.g., Feller [12, Thm. VII.8.2]) and hence in distribution, regardless of
whether (bk)k∈N is summable or not. We claim that Y is quasi-infinitely divisi-
ble with Gaussian variance 0, center 0, and quasi-Lévy measure ν given by

(3.3) ν =

∞∑
k=1

∞∑
m=1

1

m
(−1)m+12−mδ3bkm.

To see this, observe first that∫
R

(1 ∧ x2) |ν|(dx) ≤
∫
R

x2 |ν|(dx) ≤
∞∑
k=1

∞∑
m=1

1

m
2−m9b2km

2 < ∞.
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Since |eixz − 1− ixz| ≤ x2z2/2 and since∫
R

x2
∞∑

k=n

∞∑
m=1

1

m
2−mδ3bkm(dx) ≤ 9

∞∑
k=n

b2k

∞∑
m=1

m2−m → 0 as n → ∞,

it follows that for each z ∈ R,

exp

(∫
R

(
eixz − 1− ixz

) n∑
k=1

∞∑
m=1

m−1(−1)m+12−mδ3bkm(dx)

)
(3.4)

→ exp

(∫
R

(
eizx − 1− ixz

)
ν(dx)

)
as n → ∞.

By Theorem 3.1, L(bkXk) = (2/3)δ−bk + (1/3)δ2bk is quasi-infinitely divisible with
Gaussian variance 0, quasi-Lévy measure νbk =

∑∞
m=1m

−1(−1)m+12−mδ3bkm, and
drift −bk. Since

∫
R
x νbk(dx) = bk, this implies that the center of bkXk is 0 (alterna-

tively, one can use Theorem 6.2, which will be proved later). Hence, the left-hand
side of (3.4) is the characteristic function of

∑n
k=1 bkXk. It follows that the right-

hand side of (3.4) is the characteristic function of Y , and that Y is quasi-infinitely
divisible with center 0, Gaussian variance 0, and quasi-Lévy measure ν.

Now suppose that the sequence (bk)k∈N is additionally linearly independent over
Q. Then there are no cancellations in the representation (3.3) of ν and ν− =∑

k∈N

∑
m∈N,m even m

−12−mδ3bkm. Then obviously ν−(R)=∞ and
∫∞
0

x2ν−(dx)<

∞. For α ∈ (0, 2], we have
∫
(0,1)

xα ν−(dx) < ∞ if and only if
∑

k∈N
bαk < ∞.

This gives various examples of quasi-infinitely divisible distributions with infinite
negative part of the quasi-Lévy measure and prescribed integrability conditions of
the quasi-Lévy measure around 0.

So far we have identified various quasi-infinitely divisible distributions and given
examples of distributions that are not quasi-infinitely divisible. Cuppens [8, Thm.
4.3.4] shows that (0, ν, γ)c, where ν is a finite quasi-Lévy type measure, is the char-
acteristic triplet of a quasi-infinitely divisible distribution if and only if exp(ν) :=∑∞

n=0(1/n!)ν
∗n is a measure. However, it is in general difficult to check whether

the exponential of a finite signed measure is a measure. In [7, Sect. 5] Cuppens
raised the question of characterizing all quasi-infinitely divisible distributions with
Gaussian variance zero and finite quasi-Lévy measure. We do not provide an answer
to this question, but at least we characterize in Theorem 8.6 (in combination with
Theorem 8.1) all quasi-infinitely divisible distributions with zero Gaussian variance
and quasi-Lévy measure being concentrated on Z.

Finally, we mention that, using Pólya’s theorem employed in Example 3.3, we
can construct further (symmetric) quasi-infinitely divisible distributions:

Example 3.12. Let ν1 : B0 → R be a quasi-Lévy type measure such that∫
R
(x2 ∨ |x|) |ν1|(dx) < ∞. Suppose that ν1 is symmetric (i.e., ν1(B) = ν1(−B) for

∀B ∈ B0). Let ν2(dx) = π−1x−2 dx, the Lévy measure of the standard Cauchy
distribution, and let c(x) = x1[−1,1](x). We claim that then (a, ν1 + λν2, γ)c is the
characteristic triplet of some quasi-infinitely divisible distribution whenever a ≥ 0,
γ ∈ R, and λ > 0 is sufficiently large. To see this, it is obviously sufficient to
consider the case γ = 0. Let

h(z) =

∫
R

(eixz − 1− ixz1[−1,1](x)) ν1(dx), z ∈ R.
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By symmetry of ν1, h is real valued, even, continuous, and h(0) = 0. Using domi-
nated convergence and the integrability condition on |ν1|, h is twice differentiable
with derivatives

h′(z) =

∫
R

ix(eixz − 1[−1,1](x)) ν1(dx) and h′′(z) = −
∫
R

x2 eixz ν1(dx), z ∈ R,

so that h′ and h′′ are bounded. Further, h(z) = O(z) as z → ∞ by [24, Lemma
43.11(ii)], applied to ν+1 and ν−1 separately. Let

ϕλ(z) = exp(−λ|z|+ h(z)).

An application of Pólya’s theorem in the form of [21, Cor. 2 to Thm. 1.2.2] shows
that ϕλ(z) is the characteristic function of a probability distribution for sufficiently
large λ > 0. Hence

exp

(
−az2/2 +

∫
R

(eixz − 1− ixz1[−1,1](x)) (ν1 + λν2)(dx)

)
= e−az2/2ϕλ(z)

is the characteristic function of a probability distribution for large enough λ. This
example shows in particular that for every symmetric and singular (with respect
to Lebesgue measure) measure ρ on R with

∫
R
(x2 ∨ |x|) ρ(dx) < ∞, there exists

a quasi-infinitely divisible distribution with Gaussian variance 0 and quasi-Lévy
measure ν such that ν− = ρ.

4. Convergence of quasi-infinitely divisible distributions

In this section we study weak convergence of a sequence of quasi-infinitely di-
visible distributions. Recall that a sequence (μn)n∈N of probability measures on R

converges weakly to a probability measure μ, if

(4.1) lim
n→∞

∫
R

f(x)μn(dx) =

∫
R

f(x)μ(dx), ∀ f ∈ Cb(R;R),

where Cb(R;R) denotes the class of real-valued bounded continuous functions on
R. Recall that the class of infinitely divisible distributions is closed under weak
convergence; see, e.g., [24, Lem. 7.8]. In contrast, it is easy to see that the class
of quasi-infinitely divisible distributions is not closed under weak convergence. For
example, b(1, p) is quasi-infinitely divisible if and only if p �= 1/2 by Example
3.2, and by letting p → 1/2, we can represent the non-quasi-infinitely divisible
distribution b(1, 1/2) as a weak limit of quasi-infinitely divisible distributions. By
applying Corollary 3.10, we can show even more, namely that the class of quasi-
infinitely divisible distributions is dense in the class of distributions.

Theorem 4.1. The class of quasi-infinitely divisible distributions on R with finite
quasi-Lévy measure and zero Gaussian variance is dense in the class of probability
distributions on R with respect to weak convergence.

Proof. Let μ be a probability distribution. For n ∈ N, let bj,n = −n + j/n,
j ∈ {0, . . . , 2n2} and define the discrete distribution μn, concentrated on the lattice
{b0,n, b1,n, . . . , b2n2,n} by

μn({bj,n}) =

⎧⎪⎨⎪⎩
μ((−∞, b0,n]), j = 0,

μ(bj−1,n, bj,n]), j = 1, . . . , 2n2 − 1,

μ((b2n2−1,n,∞)), j = 2n2.
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Then

μn((−∞, bj,n]) = μ((−∞, bj,n]), j ∈ {0, . . . , 2n2 − 1},

and from this it follows easily that μn((−∞, x]) converges to μ((−∞, x]) as n → ∞
at every continuity point x of the distribution function of μ. Hence μn

w→ μ as
n → ∞. Hence, it suffices to show that every distribution μn is a weak limit of
quasi-infinitely divisible distributions with finite quasi-Lévy measure and Gauss-
ian variance 0. To see this, observe first that every distribution concentrated on
{b0,n, . . . , b2n2,n} can arbitrarily well be approximated by distributions σ concen-
trated on {b0,n, . . . , b2n2,n} such that σ({bj,n}) > 0 for all j ∈ {0, . . . , 2n2}. Hence,
we may restrict our attention to such distributions σ. If the characteristic function
of σ has no zeroes, then σ will be quasi-infinitely divisible with finite quasi-Lévy
measure by Corollary 3.10, and we are done. So suppose that σ̂ has zeroes. Let
X be a random variable with distribution σ and define Y = nX + n2. Then Y is
concentrated on {0, 1, . . . , 2n2} with masses aj = P (Y = j) > 0 for j = 0, . . . , 2n2,

and its characteristic function has zeroes. Then the polynomial f(w) =
∑2n2

j=0 ajw
j

has zeroes on the unit circle. Factorizing, we can write f(w) = a2n2

∏2n2

j=1(w − ξj).
Now let

(4.2) fh(w) = a2n2

2n2∏
j=1

(w − ξj − h), w ∈ C,

for h > 0. Then fh will not have zeroes on the unit circle for small enough h, and
since the nonreal zeroes of f appear in pairs of complex conjugates, fh is a poly-

nomial with real coefficients, say fh(w) =
∑2n2

j=0 αh,jw
j with αh,j ∈ R. For small

enough h, αh,j will be close to aj which is strictly positive, hence also αh,j > 0. Now

let Zh be a random variable with distribution σh =
(∑2n2

j=0 αh,j

)−1 ∑2n2

j=0 αh,jδj ,

and define Xh = n−1(Zh − n2). Then the characteristic function of Xh has no ze-
roes for small enough h, and Xh converges in distribution to X as h ↓ 0. Since Xh

is quasi-infinitely divisible with finite quasi-Lévy measure and Gaussian variance 0
by Corollary 3.10, the claim follows. �

Since the class of quasi-infinitely divisible distributions is not closed but dense, a
handy characterization of weak convergence of quasi-infinitely divisible distributions
in terms of the characteristic triplet seems hard. Nevertheless, we aim at giving
some easy sufficient and some necessary conditions in terms of the characteristic
pair. We say that a sequence (μn)n∈N of finite signed measures on R converges
weakly to a finite signed measure μ on R if (4.1) holds, and we denote this by

μn
w→ μ. Observe that also other (nonequivalent) definitions of weak convergence

of signed measures can be found in the literature (see, e.g., Section 2.6 in Cuppens
[8]), but we use this notion as done for example in Bogachev [2, Def. 8.1.1]. The
sequence (μn)n∈N of finite signed measures is uniformly bounded, if (|μn|)n∈N is
uniformly bounded; i.e., if

sup
n∈N

|μn|(R) < ∞.
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Finally, (μn)n∈N is tight if (|μn|)n∈N is tight; i.e., if for every ε > 0 there exists
some compact set K ⊂ R such that

sup
n∈N

|μn|(R \K) ≤ ε.

A weakly convergent sequence of finite signed measures must necessarily be uni-
formly bounded and tight; see Bogachev [2, Thm. 8.6.2].

Weak convergence of infinitely divisible distributions can be described by con-
vergence properties of characteristic triplets as in [24, Thm. 8.7], but in dimension
1 it is often easier to work with characteristic pairs. The following result, originally
due to Gnedenko, is found in Gnedenko and Kolmogorov [13, Section 19, Thm. 1].

Theorem 4.2. Let c : R → R be a fixed representation function that additionally
is continuous, so that gc(·, z) defined by (1.6) is continuous for each fixed z. Let
(μn)n∈N be a sequence of infinitely divisible distributions with characteristic pairs
(ζn, γn)c. Then (μn)n∈N converges weakly if and only if (ζn)n∈N converges weakly
to some finite measure ζ and γn converges to some γ ∈ R. In that case, the weak
limit μ is infinitely divisible and has characteristic pair (ζ, γ)c.

As already mentioned, a similarly neat characterization of weak convergence of
quasi-infinitely divisible distributions is not to be expected, but at least we have
the following result.

Theorem 4.3. Let c be a continuous representation function, and let (μn)n∈N be a
sequence of quasi-infinitely divisible distributions with characteristic pairs (ζn, γn)c.

(a) Suppose that γn converges to some γ ∈ R and that ζn converges weakly to
some finite signed measure ζ as n → ∞. Then μn converges weakly to a
quasi-infinitely divisible distribution μ with characteristic pair (ζ, γ)c.

(b) Suppose that μn converges weakly to some distribution μ as n → ∞ and
that (ζ−n )n∈N is tight and uniformly bounded. Then μ is quasi-infinitely
divisible, and if (ζ, γ)c denotes the characteristic pair of μ, then γn → γ

and ζn
w→ ζ as n → ∞.

(c) If (μn)n∈N is tight and (ζ−n )n∈N is tight and uniformly bounded, then (γn)n∈N

is bounded and (ζ+n )n∈N as well as (|ζn|)n∈N are tight and uniformly bounded.
(d) If (γn)n∈N is bounded and (ζn)n∈N is tight and uniformly bounded, then

(μn)n∈N is tight.

Proof. (a) Suppose that ζn
w→ ζ and γn → γ as n → ∞. Observe that

μ̂n(z) = exp

(
iγnz +

∫
R

gc(x, z) ζn(dx)

)
.

Since gc(·, z) is continuous and bounded, we have

μ̂n(z) → exp

(
iγz +

∫
R

gc(x, z) ζ(dx)

)
.

The right-hand side of this equation is continuous in z and takes the value 1 at
z = 0. By Lévy’s continuity theorem, it is the characteristic function of some

probability distribution μ, and μn
w→ μ as n → ∞. Then clearly μ ∼ q.i.d.(ζ, γc)c.

(c) Let (n′) be an arbitrary subsequence of (n). Since (μn′) is tight and (ζ−n′) is
tight and uniformly bounded, there exists a further subsequence (n′′) of (n′) such
that μn′′ and (ζ−n′′) converge weakly; cf. [2, Thm. 8.6.2]. Denote the limits by μ and
ξ, respectively. Let ρn′′ be an infinitely divisible distribution with characteristic
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pair (ζ−n′′ , 0)c. By Theorem 4.2 (ρn′′) converges weakly to some infinitely divisible
distribution ρ with characteristic pair (ξ, 0)c. Hence also μn′′ ∗ρn′′ converges weakly
to μ∗ρ, and since μn′′ ∗ρn′′ is infinitely divisible with characteristic pair (ζ+n′′ , γn′′)c,

it follows from Theorem 4.2 that ζ+n′′ converges weakly and that γn′′ converges.
We have shown that every subsequence (n′) of (n) contains a further subsequence

(n′′) such that ζ+n′′ converges weakly and such that γn′′ converges. It follows that
(γn)n∈N must be bounded, and that (ζ+n )n∈N is tight and uniformly bounded, the
latter by [2, Thm. 8.6.2]. It follows from (1.10) that also (|ζn|)n∈N is then tight and
uniformly bounded.

(b) Suppose that (μn)n∈N converges weakly to μ and that (ζ−n )n∈N is tight and
uniformly bounded. Then (μn)n∈N is also tight, and it follows from the already
proved part (c) that (γn)n∈N is bounded and that (ζ+n )n∈N as well as (|ζn|)n∈N are
tight and uniformly bounded. We claim that (γn)n∈N converges to some constant
γ and that (ζn)n∈N converges weakly to some finite signed measure ζ. For if this
was not the case, then by tightness and (uniform) boundedness, we could find two

subsequences (ζnk,1
, γnk,1

)k∈N and (ζnk,2
, γnk,2

)k∈N such that ζnk,1

w→ ζ1, ζnk,2

w→
ζ2, γnk,1

→ γ1, and γnk,2
→ γ2 as k → ∞, but such that ζ1 �= ζ2 or γ1 �=

γ2. It then follows from part (a) that μnk,1
and μnk,2

converge to q.i.d.(ζ1, γ1)c
and q.i.d.(ζ2, γ2)c, respectively, which must be different by the uniqueness of the
characteristic pair. This contradicts that (μn)n∈N is weakly convergent, and it

follows that ζn
w→ ζ and γn → γ as n → ∞ for some finite signed measure ζ and

some γ ∈ R. Hence μ is quasi-infinitely divisible with characteristic pair (ζ, γ)c by
part (a).

(d) Let (n′) be a subsequence of (n). By tightness and (uniform) boundedness,
there exists a subsequence (n′′) such that ζn′′ converges weakly to some finite signed
measure ζ (cf. [2, Thm. 8.6.2]) and γn′′ converges to some γ ∈ R. By part (a), this
shows that μn′′ converges weakly. Hence, every subsequence of (μn) has a weakly
convergent subsequence, so that (μn)n∈N is tight (e.g., [2, Thm. 8.6.2]). �

We have already seen that the sequence of quasi-infinitely divisible Bernoulli
distributions b(1, 1/2 + 1/n) converges weakly to the non-quasi-infinitely divisible
Bernoulli distribution b(1, 1/2) as n → ∞; from Theorem 3.1 we also see that

b(1, 1/2+1/n) has the quasi-Lévy measure
∑∞

m=1 m
−1(−1)m+1

(
n−2
n+2

)m

δ−m. The

signed measure ζn in the characteristic pair of b(1, 1/2 + 1/n) coincides with the
quasi-Lévy measure, and it is easy to see that (ζ−n )n∈N and hence (|ζn|)n∈N are
neither uniformly bounded nor tight. As the limit is not quasi-infinitely divisible,
this is not surprising. It is natural to ask whether convergence of μn to a quasi-
infinitely divisible distribution implies uniform boundedness or tightness of the
signed measures in the characteristic pair. That this is not the case, even if the
limit is infinitely divisible, is shown in the next example.

Example 4.4. Let σ(dx) = (1/2) e−|x| dx, a symmetric two-sided exponential dis-
tribution, and let μ = (1/2) δ0 + (1/2) σ. It is known that σ is infinitely divisible
with

σ̂(z) =
1

1 + z2
= exp

(∫ ∞

−∞

(
eixz − 1

)
|x|−1e−|x| dx

)
, z ∈ R;
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cf. Steutel and van Harn [25, Ex. IV.29, IV.4.8] or [24, Ex. 15.14]. Hence

μ̂(z) =
1

2

(
1 +

1

1 + z2

)
=

1 +
(
z/

√
2
)2

1 + z2
=

σ̂(z)

σ̂(z/
√
2)

= exp

(∫ ∞

−∞

(
eixz − 1

) e−|x|

|x| dx−
∫ ∞

−∞

(
eiyz − 1

) e−√
2|y|

√
2|y|

√
2 dy

)

= exp

(∫ ∞

−∞

(
eixz − 1

) e−|x| − e−
√
2|x|

|x| dx

)
, z ∈ R,

which shows that μ is infinitely divisible with drift 0, Gaussian variance 0, and finite

Lévy measure |x|−1(e−|x| − e−
√
2|x|) dx. We will now approximate μ by a sequence

of quasi-infinitely divisible distributions whose signed measures in the characteristic
pairs are neither tight nor uniformly bounded. To do so, we choose for each n ∈ N

a finite sequence bn,1 < bn,2 < · · · < bn,m(n) such that

|bn,1 − (−n)| < 1/n, |bn,m(n) − n| < 1/n, |bn,j+1 − bn,j | < 1/n,

∀j ∈ {1, . . . ,m(n)− 1},

and such that {bn,1, . . . , bn,m(n)} is linearly independent over Q, i.e., such that∑m(n)
j=1 ljbn,j = 0 with l1, . . . , lm(n) ∈ Q implies l1 = · · · = lm(n) = 0; this is

obviously possible, since every nontrivial subinterval of R is uncountable. Now
define

an,1 := σ((−∞, bn,1]), an,m(n) := σ((bn,m(n)−1,∞)),

an,j := σ((bn,j−1, bn,j ]) for j ∈ {2, . . . , n(m)− 1},

and

σn :=

m(n)∑
j=1

an,jδbn,j
, μn :=

(
1

2
+

1

n

)
δ0 +

(
1

2
− 1

n

)
σn, n ≥ 3.

Then σn
w→ σ and hence μn

w→ μ as n → ∞. Observe that by Theorem 3.1, μn

is quasi-infinitely divisible with Gaussian variance 0, drift 0, and finite quasi-Lévy
measure νn given by

νn :=
∞∑
j=1

j−1(−1)j+1

(
n− 2

n+ 2

)j

σ∗j
n .

Next, observe that σn is concentrated on Λn,1 := {bn,1, . . . , bn,m(n)}, hence σ∗j
n is

concentrated on Λn,j := {bn,r1 + bn,r2 + · · · + bn,rj : r1, . . . , rj ∈ {1, . . . ,m(n)}}.
From the linear independence over Q of Λn,1 it then follows that Λn,j and Λn,j′ are
disjoint for j �= j′. Hence

ν+n =

∞∑
j=1

1

2j − 1

(
n− 2

n+ 2

)2j−1

σ∗(2j−1)
n and ν−n =

∞∑
j=1

1

2j

(
n− 2

n+ 2

)2j

σ∗(2j)
n .

Let K ∈ N. To show that limn→∞ ν−n (R \ [−K,K]) = +∞, let Xn,1, . . . , Xn,j ,
Yn,1, . . . , Yn,j be independent and identically distributed random variables with
distribution σn. Since P (Xn,1 ≤ 1/2) ≥ 1/2 and P (Xn,1 ≥ −1/2) ≥ 1/2, it follows
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from the symmetrization inequalities in [12, Lemmas V.5.1, V.5.2] that for every
j ∈ N and n ≥ 2K + 1, we have

σ∗j
n (R \ [−K,K]) = P (|Xn,1 + · · ·+Xn,j | > K)

≥ 1

2
P (|(Xn,1 − Yn,1) + · · ·+ (Xn,j − Yn,j)| > 2K)

≥ 1

4
P (|Xn,1 − Yn,1| > 2K)

≥ 1

8
P

(
|Xn,1| > 2K +

1

2

)
≥ 1

8

∫ ∞

2K+1

e−x dx.

Hence

(4.3) ν−n (R \ [−K,K]) ≥ 1

8

∫ ∞

2K+1

e−x dx

∞∑
j=1

1

2j

(
n− 2

n+ 2

)2j

→ +∞ as n → ∞.

Defining ζn := (1 ∧ x2) νn(dx), it follows that ζ−n (R \ [−K,K]) → ∞ as n → ∞.
In particular, (ζ−n )n∈N is neither uniformly bounded nor tight, hence also (ζn)n∈N

is neither uniformly bounded nor tight. This also shows that ζn does not converge
weakly, since every weakly convergent sequence of finite signed measures must be
uniformly bounded (cf. [2, Thm. 8.6.2]). In particular, ζn does not weakly converge

to (1 ∧ x2)|x|−1(e−|x| − e−
√
2|x|)dx, although μn

w→ μ and μ is infinitely divisible.

When restricting attention to quasi-infinitely divisible distributions concentrated
on the integers Z, phenomena as in Example 4.4 do not occur and a complete
characterization of weak convergence in terms of the characteristic pair is possible.
This will be treated in Theorem 8.5.

5. Support properties of quasi-infinitely divisible distributions

A striking difference between infinitely divisible distributions and quasi-infinitely
divisible distributions is that a nondegenerate infinitely divisible distribution must
necessarily have unbounded support (cf. [24, Cor. 24.4]), while there are many
nondegenerate quasi-infinitely divisible distributions with bounded support, as can
be seen from Theorem 3.9.

For infinitely divisible distributions, many properties of the support can be de-
scribed in terms of the characteristic triplet. For instance, an infinitely divisible
distribution μ with characteristic triplet (a, ν, γ)c is bounded from below if and

only if a = 0, supp ν ⊂ [0,∞) and
∫ 1

0
x ν(dx) < ∞ (cf. [24, Thm. 24.7]). Such a

characterization cannot hold for quasi-infinitely divisible distributions, as can be
seen, e.g., by considering the binomial distribution b(1, p) with p �= 1/2, which is
quasi-infinitely divisible, concentrated on {0, 1}, and hence has bounded support.
On the other hand, when p ∈ (0, 1/2), then the quasi-Lévy measure ν is concen-
trated on N, and when p ∈ (1/2, 1), then ν is concentrated on −N, as follows from
Theorem 3.1. However, we can give at least the following result regarding the in-
terplay between the supports of μ, ν−, and ν+. Recall the definition of the Laplace
transform Lμ(u) =

∫
R
e−ux μ(dx) for u ≥ 0.
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Proposition 5.1. Let μ be a quasi-infinitely divisible distribution with character-
istic triplet (a, ν, γ)c. Then the following are equivalent:

(i) μ is bounded from below, supp ν− ⊂ [0,∞), and
∫
(0,1)

x ν−(dx) < ∞.

(ii) a = 0, supp ν+ ⊂ [0,∞), and
∫
(0,1)

x ν+(dx) < ∞.

If one (hence both) of the above conditions is satisfied, denote by γ0 the drift of μ.
Then the Laplace transform Lμ of μ is given by

(5.1) Lμ(u) = exp

(
−γ0u−

∫ ∞

0

(1− e−ux) ν(dx)

)
, u ≥ 0,

and we have
γ0 = inf(supp μ).

Proof. Let X,Y, Z be random variables with L(X) = μ, L(Y ) ∼ q.i.d.(0, ν−, 0)c,
L(Z) ∼ q.i.d.(a, ν+, γ)c and such thatX and Y are independent. Then (1.11) holds.
From the above-mentioned characterization of the support of infinitely divisible
distributions, we then have

(i) ⇐⇒ X and Y bounded from below ⇐⇒ Z bounded from below ⇐⇒ (ii).

If (i) and (ii) are satisfied, then μ has drift γ0 and μ ∼ q.i.d.(0, ν, γ0)0. Choosing
Y and Z as above with respect to c(x) = 0, i.e., L(Y ) ∼ q.i.d.(0, ν−, 0)0 and
L(Z) ∼ q.i.d.(0, ν+, γ0)0, the Laplace transforms of Y and Z are given by Ee−uY =
exp

(
−
∫∞
0

(1− e−ux) ν−(dx)
)
and Ee−uZ = exp

(
−γ0u−

∫∞
0

(1− e−ux) ν+(dx)
)
,

respectively (e.g., [24, Th. 24.11]). This gives (5.1) since Ee−uX Ee−uY = Ee−uZ .
Finally, we have inf supp L(Y ) = 0 and inf supp L(X) = γ0 by [24, Cor. 24.8], so
that inf(supp μ) = γ0 by [24, Lem. 24.1]. �

Infinite divisibility of a distribution concentrated on [0,∞) can be characterized
by the form of the Laplace transform (e.g., [24, before Thm. 51.1]). Under extra
conditions, a characterization in this vein can also be obtained for quasi-infinitely
divisible distributions:

Proposition 5.2. Let γ0 ∈ R and ν : B0 → R be a quasi-Lévy type measure with
supp ν ⊂ [0,∞) and

∫
(0,1)

x|ν|(dx) < ∞. Let μ be a distribution on R. Then the

following are equivalent:

(i) μ is bounded from below and is quasi-infinitely divisible with characteristic
triplet (0, ν, γ0)0.

(ii) The Laplace transform of μ is finite for u ≥ 0 and has the representation
(5.1).

Proof. That (i) implies (ii) follows from Proposition 5.1. To prove the converse,
suppose that Lμ(u) =

∫
R
e−ux μ(dx) < ∞ for u ≥ 0. Then g, defined by

g(u+ iv) =

∫
R

e−(u+iv)x μ(dx),

exists in C for u ≥ 0 and v ∈ R, we have g(u) = Lμ(u) for u ≥ 0, and by
standard theorems on parameter dependent integrals (e.g., [11, IV §5 Section 4]),
g is continuous on {w ∈ C : 
(w) ≥ 0} and holomorphic on {w ∈ C : 
(w) > 0}.
Similarly, since

∫∞
0

(1 ∧ x) |ν|(dx) < ∞,

f(u+ iv) = exp

(
−γ0(u+ iv)−

∫ ∞

0

(1− e−(u+iv)x) ν(dx)

)
, u, v ∈ R, u ≥ 0,
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defines a continuous function on {w ∈ C : 
(w) ≥ 0} that is holomorphic on {w ∈
C : 
(w) > 0}. Since f and g agree on {w ∈ C : 
(w) ≥ 0,�(w) = 0}, they agree
on {w ∈ C : 
(w) > 0} (e.g., [5, Cor. IV.3.8]) and, by continuity, then also on the
imaginary axis. Hence μ̂(v) = g(−iv) = f(−iv) = exp

(
iγ0v +

∫∞
0

(eivx − 1) ν(dx)
)

for v ∈ R, showing that μ is quasi-infinitely divisible with characteristic triplet
(0, ν, γ0)0. By Proposition 5.1, μ is then also bounded from below. �

Quasi-infinitely divisible distributions supported on [0,∞) with some additional
properties can be characterized in a similar way as infinitely divisible distributions
supported on [0,∞). The following theorem hence is an analogue of Theorem 51.1
in [24] for infinitely divisible distributions.

Theorem 5.3. Let μ be a distribution with supp μ ⊂ [0,∞). Then the following
are equivalent:

(i) μ is quasi-infinitely divisible with supp ν− ⊂ [0,∞) and
∫
(0,1)

x ν−(dx) <

∞, where ν denotes the quasi-Lévy measure of μ.
(ii) μ is quasi-infinitely divisible with a = 0, supp ν+ ⊂ [0,∞), and∫

(0,1)
x ν+(dx) < ∞, where ν denotes the quasi-Lévy measure of μ and

a its Gaussian variance.
(iii) There exists a constant γ0 ≥ 0 and a quasi-Lévy type measure σ with

supp σ ⊂ [0,∞) and
∫
(0,1)

x |σ|(dx) < ∞ such that

(5.2)

∫
[0,x]

y μ(dy) =

∫
(0,x]

μ([0, x− y])y σ(dy) + γ0 μ([0, x]), ∀ x > 0.

If some and hence all of the above equivalent conditions are satisfied, then σ = ν,
and γ0 is the drift of μ.

Proof. The equivalence of (i) and (ii) is Proposition 5.1, and that (i) and (ii) imply
(iii) with σ = ν and γ0 the drift follows in complete analogy to the corresponding
proof for infinitely divisible distributions as given in [24, Thm. 51.1] by observing
that the convolution theorem also holds for finite signed measures (e.g., Cuppens
[8, Thm. 2.5.4] and a similar reasoning as in the proof of Proposition 5.2 to switch
from Laplace transforms of finite signed measures to their Fourier transforms).

To show that (iii) implies (i), denote σ̃(dy) := γ0δ0(dy) + yσ(dy). Then

(5.3)

∫
R

f(y)y μ(dy) =

∫
R

∫
R

f(y + z) σ̃(dy)μ(dz)

for all functions f of the form f = α01[0,t1] +
∑n

i=1 αi1(ti,ti+1] with αi ∈ R and 0 <
t1 < · · · < tn+1; for n = 0 this follows from (5.2), and for n > 0 by linearity. Since
for each u > 0 the function fu defined by fu(x) = e−ux1[0,∞)(x) can be represented

as an increasing limit of functions of the form α01[0,t1]+
∑n

i=1 αi1(ti,ti+1], and since

both
∫
R
fu(y)|y|μ(dy) and

∫
R

∫
R
fu(y+z)|σ̂|(dy)μ(dz) are finite, equation (5.3) also

holds for fu by dominated convergence. Considering Lμ(u) =
∫
[0,∞)

e−ux μ(dx),

u ≥ 0, (5.3) for u > 0 gives

− d

du
Lμ(u) = Lμ(u)

∫
[0,∞)

e−yu σ̃(dy),

hence
d

du
logLμ(u) = −

∫
[0,∞)

e−yu σ̃(dy) = −γ0 −
∫
(0,∞)

y e−uy σ(dy).
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Since logLμ is continuous on [0,∞) with logLμ(0) = 0, we obtain

logLμ(u) = −γ0u−
∫ u

0

∫ ∞

0

ye−ty σ(dy) dt = −γ0u−
∫ ∞

0

(1−e−uy) σ(dy), u ≥ 0,

showing that μ is quasi-infinitely divisible with characteristic triplet (0, σ, γ0)0 by
Proposition 5.2. �

A characterization in terms of the characteristic triplet for a quasi-infinitely
divisible distribution to be concentrated on the integers will be given in Theorem
8.6 below.

6. Moments

Recall that a function h : R → R is submultiplicative if it is nonnegative and
there is a constant B > 0 such that

(6.1) h(x+ y) ≤ Bh(x)h(y), ∀ x, y ∈ R.

Examples of submultiplicative functions can be found in [24, Prop. 25.4], we only
note that x �→ (|x| ∨ 1)α for α > 0, x �→ exp(α|x|β) for α > 0 and β ∈ (0, 1],
x �→ eαx for x ∈ R and x �→ log(|x| ∨ e) are submultiplicative functions. We expect
the following lemma to be well known, but we were unable to find a ready reference
and hence give a proof.

Lemma 6.1. Let h : R → [0,∞) be submultiplicative, and let X and Y be two
real-valued independent random variables. Then Eh(X + Y ) is finite if and only if
both Eh(X) and Eh(Y ) are finite.

Proof. If Eh(X) < ∞ and Eh(Y ) < ∞, then Eh(X +Y ) ≤ BEh(X)Eh(Y ) < ∞ by
(6.1) and independence. Conversely, suppose that Eh(X + Y ) < ∞. If h is equal
to the zero-function, we have nothing to prove, so suppose that there is x0 ∈ R

with h(x0) > 0. From (6.1) we then conclude Bh(x)h(x0 − x) ≥ h(x0) > 0 so that
h(x) > 0 for all x ∈ R. Further, for x, y ∈ R, we have h(x) = h(x + y − y) ≤
Bh(x + y)h(−y) so that h(x)/h(−y) ≤ Bh(x + y). Hence Eh(X)E(1/h(−Y )) ≤
BEh(X + Y ) < ∞ so that Eh(X) < ∞ and similarly Eh(Y ) < ∞. �

For infinitely divisible distributions and submultiplicative functions, finiteness of
h-moments can be characterized by the corresponding property of the Lévy measure
restricted to {x ∈ R : |x| > 1} (cf. [24, Thm. 25.3]). This is not true in complete
generality for quasi-infinitely divisible distributions and arbitrary submultiplicative
functions, as will be shown for exponential moments in Example 6.3, but at least
one direction holds, and we have the following result.

Theorem 6.2. Let μ be a quasi-infinitely divisible distribution on R with charac-
teristic triplet (a, ν, γ)c with respect to the representation function c(x) = x1{|x|≤1}.

(a) Let h : R → [0,∞) be a submultiplicative function. Then the following are
equivalent:
(i) μ and (ν−)|{x∈R : |x|>1} have finite h-moments, i.e.,

∫
R
h(x)μ(dx) < ∞

and
∫
|x|>1

h(x) ν−(dx) < ∞.

(ii) (ν+)|{x∈R : |x|>1} has finite h-moment, i.e.,
∫
|x|>1

h(x) ν+(dx) < ∞.

In particular, finiteness of the h-moment of (ν+)|{x∈R : |x|>1} implies finite-

ness of the h-moment of (ν−)|{x∈R : |x|>1}.
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(b) Let X be a random variable with distribution μ, and let α ∈ R. We then
have

E(X) = γ +

∫
|x|>1

x ν(dx) = γm provided

∫
|x|>1

|x| ν+(dx) < ∞,

Var(X) = a+

∫
R

x2 ν(dx) provided

∫
|x|>1

x2 ν+(dx) < ∞, and

E(eαX) = exp

(
α2a/2 +

∫
R

(eαx − 1− αx1{|x|≤1}) ν(dx) + αγ

)
provided

∫
|x|>1

eαx ν+(dx) < ∞.

Observe that γm is the center of μ as defined in Remark 2.5.

Proof. As before, let X,Y, Z be random variables with L(X) = μ, L(Y ) ∼
q.i.d.(0, ν−, 0)c, L(Z) ∼ q.i.d.(a, ν+, γ)c and such that X and Y are independent.

Then (1.11) holds, i.e., X + Y
d
= Z.

To prove (a), recall that an infinitely divisible distribution has finite h-moment
if and only if the Lévy measure restricted to {x ∈ R : |x| > 1} has finite h-moment
(e.g., [24, Thm. 25.3]). Hence

(i) ⇐⇒ Eh(X) < ∞ and Eh(Y ) < ∞ ⇐⇒ Eh(X + Y ) < ∞ ⇐⇒ (ii),

where the equivalence in the middle follows from Lemma 6.1.
The proof of (b) follows from (a), the fact that EX + EY = EZ, Var(X) +

Var(Y ) = Var(Z), EeαX EeαY = EeαZ , and the corresponding formulas for expec-
tation, variance, and exponential moments of the infinitely divisible distributions
Y and Z given in [24, Ex. 25.12 and Thm. 25.17]. �

Finiteness of an exponential moment of a quasi-infinitely divisible distribution
does not imply finiteness of the corresponding exponential moment of the total
variation of the restricted quasi-Lévy measure. This is shown in the following
example.

Example 6.3. Let (bn)n∈N be a sequence of real numbers that is linearly indepen-
dent over Q and satisfies bn ∈ (2 + n− 1/4, 2 + n) for each n ∈ N; such a sequence
obviously exists, since every nondegenerate interval is uncountable. Define the
probability distribution

σ =
11

12
δb1 +

∞∑
n=2

4−nδbn .

Let λ =
∫
R
ex σ(dx). Then (since eb1 ≥ e2.75 > 12)

1 < λ =
11

12
eb1 +

∞∑
n=2

ebn4−n < ∞.

Let p ∈ (1/2, 1) such that (1 − p)/p ≥ 1/λ, which is possible since λ > 1. Define
the probability distribution μ by

μ = pδ0 + (1− p)σ.

By Theorem 3.1 μ is quasi-infinitely divisible with finite quasi-Lévy measure
ν =

∑∞
m=1 m

−1(−1)m+1 ((1− p)/p)
m
σ∗m. Since σ has finite exponential moment∫

R
ex σ(dx), so has μ. However,

∫
x>1

exν+(dx) = ∞, as we will now show: As in the
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proof of Example 4.4, by the linear independence over Q of (bn)n∈N, the supports
of σ∗m are disjoint for different m ∈ N, hence

ν+ =
∑

m∈N,m odd

m−1

(
1− p

p

)m

σ∗m.

Since
∫
R
exσ∗m(dx) =

(∫
R
exσ(dx)

)m
= λm, and since supp σ∗m ⊂ (1,∞), this

gives ∫
{x>1}

ex ν+(dx) =
∑

m∈N,m odd

m−1

(
1− p

p

)m

λm = ∞

since λ(1−p)/p ≥ 1. Hence
∫
{x>1} e

xν+(dx) = ∞ (and similarly
∫
{x>1} e

x ν−(dx) =

∞) although
∫
R
ex μ(dx) < ∞ and the function x �→ ex is submultiplicative.

For a quasi-infinitely divisible distribution concentrated on the integers, it will
be shown in Theorem 8.11 that finiteness of its h-moment can be characterized by
finiteness of the h-moment of the total variation of its quasi-Lévy measure, provided
the function h satisfies an additional condition, the GRS-condition defined in (8.7)
below. Observe that exponential functions do not satisfy the GRS-condition.

7. Continuity properties

In this section we shall give some sufficient conditions in terms of the character-
istic triplet for a quasi-infinitely divisible distribution to have a Lebesgue density or
to be continuous. The following result ensures densities and is in line with the cor-
responding results for infinitely divisible distributions by Orey, cf. [24, Prop. 28.3].

Theorem 7.1. Let μ be a quasi-infinitely divisible distribution with characteristic
triplet (a, ν, γ)c with respect to some c. Suppose further that a > 0 or

lim inf
r↓0

r−β

∫
[−r,r]

x2 ν+(dx)(7.1)

> lim sup
r↓0

r−β

∫
[−r,r]

x2 ν−(dx) = 0 for some β ∈ (0, 2).

Then μ has an infinitely often differentiable density whose derivatives tend to zero
as |x| → ∞.

Observe that the condition “a > 0 or (7.1)” can be summarized as

(7.2) lim inf
r↓0

r−βζ+([−r, r]) > lim sup
r↓0

r−βζ−([−r, r]) = 0 for some β ∈ [0, 2),

where ζ denotes the signed measure in the characteristic pair. Also observe that
property (7.1) roughly states that, appropriately scaled,

∫
[−r,r]

x2 ν+(dx) dominates∫
[−r,r]

x2 ν−(dx), which is in the spirit of the results of Lemma 2.8.

Proof. If a > 0, then the characteristic exponent Ψμ of μ satisfies

lim
|z|→∞

z−2Ψμ(z) = −a/2 < 0

by Lemma 2.7. Hence, there is K > 0 such that

(7.3) |μ̂(z)| = e�(Ψμ(z)) ≤ e−z2a/4 ∀ z ∈ R with |z| ≥ K.

It follows that
∫
R
|μ̂(z)| |z|n dz < ∞ for all n ∈ N, so that μ has an infinitely often

differentiable density on R with derivatives tending to 0 (e.g., [24, Prop. 28.1]).
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Now suppose that a = 0 and that (7.1) holds. Since limr→0 r
−2(cos r−1) = −1/2,

there are C1, C2 > 0 and b > 0 such that

C1r
2 ≤ 1− cos r ≤ C2r

2 ∀ r ∈ [−b, b].

We then conclude for z ∈ R that


(Ψμ(z)) =

∫
R

(cos(xz)− 1) ν+(dx) +

∫
R

(1− cos(xz)) ν−(dx)

≤
∫
|x|≤b/|z|

(cos(xz)− 1) ν+(dx)

+

∫
|x|≤b/|z|

(1− cos(xz)) ν−(dx) +

∫
|x|>b/|z|

(1− cos(xz)) ν−(dx)

≤ −C1z
2

∫
|x|≤b/|z|

x2 ν+(dx)

+C2z
2

∫
|x|≤b/|z|

x2 ν−(dx) + 2 ν−({x : |x| > b/|z|}).

Denoting the lim inf in (7.1) by D1, we obtain∫
|x|≤b/|z|

x2 ν+(dx) ≥ D1

2
bβ |z|−β and

∫
|x|≤b/|z|

x2 ν−(dx) ≤ C1D1

4C2
bβ|z|−β

for large enough |z|, so that

(7.4) 
(Ψμ(z)) ≤ −C1D1

4
bβ |z|2−β + 2ν−({x : |x| > b/|z|}), |z| large.

To tackle the last term, write G(r) :=
∫
|x|≤r

x2 ν−(dx) for r > 0. Using partial

integration, we can write

ν−({x : b/|z| < |x| ≤ 1}) =

∫
(b/|z|,1]

x−2G(dx)

= G(1)− b−2z2G(b/|z|)−
∫ 1

b/|z|
G(x) dx−2.

By (7.1) for every ε > 0, we can find K(ε) > 0 such that the above can be bounded
from above by

G(1) +

∫ 1

b/|z|
(εxβ)2x−3 dx = G(1)− 2ε

2− β
+

2ε

2− β
bβ−2|z|2−β ∀ |z| ≥ K(ε).

Together with (7.4) this implies that there is K > 0 such that

|μ̂(z)| = exp(
(Ψμ(z))) ≤ exp

(
−C1D1

8
bβ |z|2−β

)
∀ |z| ≥ K.

As in the case a > 0, this implies that
∫
R
|μ̂(z)| |z|n dz < ∞ for all n ∈ N, giving

the claim. �
Turning to continuity, recall that an infinitely divisible distribution is continuous

if and only if the Gaussian variance is nonzero or the Lévy measure is infinite (e.g.,
[24, Thm. 27.4]). This leads to the following open question.

Open Question 7.2. Let μ be a quasi-infinitely divisible distribution on R with
characteristic triplet (a, ν, γ)c. Is it true that μ is continuous if and only if either
a �= 0 or |ν|(R) = ∞?
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We do not know the answer to Open Question 7.2, but at least we have the
following result.

Proposition 7.3. Let μ be a quasi-infinitely divisible distribution with character-
istic triplet (a, ν, γ)c with respect to some c.

(a) If a = 0 and ν+(R) < ∞, then ν−(R) < ∞ and μ is not continuous.
(b) Conversely, if μ is not continuous, then a = 0, and if additionally ν−(R) <

∞, then ν+(R) < ∞.

Proof. Let X, Y , and Z be random variables such that L(X) = μ, such that
L(Y ) and L(Z) are infinitely divisible with characteristic triplets (0, ν−, 0)c and
(a, ν+, γ)c, respectively, and such that X and Y are independent. Then (1.11)
holds.

(a) If a = 0 and ν+(R) < ∞, then L(Z) is not continuous by [24, Thm. 27.4].
It follows that neither L(X) nor L(Y ) can be continuous (e.g., [24, Lemma 27.1]),
and hence ν−(R) < ∞ (again, [24, Thm. 27.4]).

(b) If μ = L(X) is not continuous, then a = 0 by Theorem 7.1. If additionally
ν−(R) < ∞, then L(Y ) is not continuous; hence, L(Z) is also not continuous, which
implies that ν+(R) < ∞. �

The fact that a = 0 together with ν+(R) < ∞ implies ν−(R) < ∞ was already
observed in Lemma 2.8 (together with the sharper estimate (2.6)), but here we gave
a different proof of this fact.

8. Distributions concentrated on the integers

In this section we show in Theorem 8.1 that a distribution concentrated on Z

(i.e., with support being a subset of Z) is quasi-infinitely divisible if and only if its
characteristic function has no zeroes, thus generalizing Theorem 3.9. Unlike the
proof of Theorem 3.9, which followed in a somewhat elementary way, the proof of
Theorem 8.1 is more complicated and uses the Wiener–Lévy theorem on absolutely
summable Fourier series, as well as Theorem 3.9. We shall further characterize
weak convergence, moment, and support conditions for distributions concentrated
on the integers in terms of the characteristic triplet, and obtain sharper results than
the general results in sections 4–6.

Recall that to every continuous function f : R → C with f(z) �= 0 for all z ∈ R

and f(0) = 1, there exists a unique continuous function g with g(0) = 0 and
exp(g(z)) = f(z) for all z ∈ R, called the distinguished logarithm of f (e.g., [24, Lem.
7.6]). For a 2π-periodic locally Lebesgue-integrable function f : R → C, we denote
its nth Fourier coefficient by

bn(f) =
1

2π

∫ 2π

0

e−inzf(z) dz, n ∈ Z,

and its Fourier series by
∑

n∈Z
bn(f)e

inz. When the Fourier coefficients of f are
absolutely summable, then the Fourier series will converge uniformly to f , hence
f must necessarily be continuous in that case. The set of all 2π-periodic contin-
uous functions f : R → C with

∑
n∈Z

|bn(f)| < ∞ forms a commutative Banach
algebra with a unit, the so-called Wiener algebra A(T), where the norm is given
by ‖f‖A(T) =

∑
n∈Z

|bn(f)|, the multiplication is the pointwise multiplication of
functions, and the unit is the function 1R (e.g., Gröchenig [14, Lem. 5.4]). We now
have the following.
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Theorem 8.1. Let μ =
∑

n∈Z
anδn be a distribution concentrated on Z. Then μ

is quasi-infinitely divisible if and only if its characteristic function does not have
zeroes. In that case, the Gaussian variance of μ is zero, the quasi-Lévy measure ν of
μ is finite and concentrated on Z, and the drift lies in Z. More precisely, if g : R → C

is the distinguished logarithm of μ̂, then the drift of μ is k = (2πi)−1g(2π) ∈ Z, the
function g̃ : R → C defined by g̃(z) = g(z)− ikz is 2π-periodic, and the quasi-Lévy
measure of μ is given by ν =

∑
n∈Z,n�=0 bnδn, where

(8.1) bn = bn(g̃) =
k

n
+

1

2π

∫ 2π

0

e−inzg(z) dz ∈ R, n ∈ Z \ {0},

is the nth Fourier coefficient of g̃.

Proof. It is clear that the characteristic function of a quasi-infinitely divisible distri-
bution cannot have zeroes; hence, we only need to show the converse. Suppose that
μ̂ has no zeroes. Denote by g : R → C the distinguished logarithm of μ̂. Observe
that μ̂(z) =

∑
n∈Z

ane
inz is 2π-periodic. Hence eg(2π) = μ̂(2π) = μ̂(0) = 1 so that

g(2π) ∈ 2πiZ. Define

k = (2πi)−1g(2π) ∈ Z

and g̃ : R → C by g̃(z) = g(z)− ikz. Then g̃ is continuous, g̃(0) = 0, and

exp(g̃(z)) = exp(g(z)) exp(−ikz) = μ̂(z) δ̂−k(z) = (μ ∗ δ−k )̂ (z).

If follows that g̃ is the distinguished logarithm of the characteristic function of the
discrete distribution μ̃ = μ ∗ δ−k =

∑
n∈Z

anδn−k. Define a 2π-periodic function
h : R → C by h(z) = g̃(z) for z ∈ [0, 2π). Since g̃(2π) = 0 = g̃(0), the function h

is continuous. Since ̂̃μ is 2π-periodic, and eh(z) = eg̃(z) = ̂̃μ(z) for z ∈ [0, 2π) we

also have eh(z) = ̂̃μ(z) for all z ∈ R. Hence h is also a distinguished logarithm of̂̃μ, and the uniqueness of the distinguished logarithm gives h = g̃, consequently g̃

is 2π-periodic. Since g̃ is a logarithm of ̂̃μ, the fact that g̃(2π) = g̃(0) means that

(̂̃μ(z))z∈[0,2π] has index 0 (see [10, Def. 3.1] for the notion of the index). Denote by
bn = bn(g̃), n ∈ Z, the Fourier coefficients of g̃, which may be complex. Since the

Fourier coefficients of eg̃ = ̂̃μ are absolutely summable (themth Fourier coefficient is

am+k), and since (̂̃μ(z))z∈[0,2π] has index 0, it now follows that also
∑

n∈Z
|bn| < ∞;

this is a consequence of the Wiener–Lévy theorem for holomorphic transformations
of functions in the Wiener algebra, and it is proved in the needed form for the
logarithm in Calderón et al. [3, Lemma in Section 2]; see also [10, Thm. 3.4]. It
then follows that

μ̂(z) = δ̂k(z)̂̃μ(z) = eikz eg̃(z)

= exp

(
ikz +

∑
n∈Z

bne
inz

)

= exp

⎛⎝ikz +
∑

n∈Z,n�=0

bn(e
inz − 1)

⎞⎠ exp

(∑
n∈Z

bn

)
, z ∈ R.

Setting z = 0 in the above equation gives exp(
∑

n∈Z
bn) = μ̂(0) = 1, so that μ is

quasi-infinitely divisible with Gaussian variance 0, drift k, and quasi-Lévy measure
ν =

∑
n∈Z,n�=0 bnδn, provided we can show that the bn are real. Since bn is the nth
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Fourier coefficient of g̃(z) = g(z)− ikz, it follows that

bn =
1

2π

∫ 2π

0

e−inzg(z) dz − ik

2π

∫ 2π

0

e−inzz dz

=
1

2π

∫ 2π

0

e−inzg(z) dz +
k

n
, n �= 0,

i.e., bn has the form stated in (8.1). It remains to show that the Fourier coeffi-
cients bn are real. To do so, observe that the sequence of probability measures(
(
∑m

n=−m an)
−1

∑m
m=−n anδn

)
m∈N

converges weakly to μ. By modifying the co-

efficients slightly, as in equation (4.2) in the proof of Theorem 4.1, it follows that
there is a sequence (μm)m∈N of distributions converging weakly to μ such that μm

is concentrated on {−m, . . . ,m} and such that the characteristic function of μm

has no zeroes. By Theorem 3.9, each μm is quasi-infinitely divisible with Gauss-
ian variance 0 and quasi-Lévy measure νm concentrated on Z. Denote by gm the
distinguished logarithm of μ̂m and by km the drift of μm. Then

gm(z) = ikmz +
∑

n∈Z,n�=0

(einz − 1) νm({n}), z ∈ R,

in particular km = (2πi)−1gm(2π) and

bm,n :=
1

2π

∫ 2π

0

e−inz(gm(z)− ikmz) dz

=
1

2π

∫ 2π

0

e−inz

⎛⎝ ∑
j∈Z,j �=0

(eijz − 1) νm({j})

⎞⎠ dz = νm({n}), n ∈ Z \ {0}.

Since gm converges uniformly on compact subsets of R to g as m → ∞ (cf. [24, Lem.
7.7]), also (z �→ gm(z) − ikmz)m∈N converges uniformly on compacta to g̃, hence
νm({n}) = bm,n → bn as m → ∞ for each n ∈ Z \ {0}. But νm({n}) is a real
number, hence bn is real, too. This finishes the proof. �

Corollary 8.2. Let μ be a distribution concentrated on a lattice of the form r +
hZ with r ∈ R and h > 0. Then μ is quasi-infinitely divisible if and only if its
characteristic function has no zeroes. In this case, the quasi-Lévy measure of μ is
finite and the Gaussian variance is 0.

Proof. This is exactly as the proof of Corollary 3.10. �

The following shows that a factor of a quasi-infinitely divisible distribution con-
centrated on Z must necessarily be quasi-infinitely divisible.

Corollary 8.3. Let μ, μ1, μ2 be distributions on R such that μ = μ1 ∗μ2. Suppose
that μ is quasi-infinitely divisible with supp (μ) ⊂ Z. Then μ1 and μ2 are quasi-
infinitely divisible.

Proof. Since μ̂(z) = μ̂1(z)μ̂2(z) and μ̂(z) �= 0, neither μ̂1(z) nor μ̂2(z) have zeroes.
So, it is enough to show that, for j = 1, 2, there is bj ∈ R such that supp (μj ∗
δ−bj ) ⊂ Z. Since μ is discrete, μ1 and μ2 are discrete ([24, Lem. 27.1]). Choose
bj ∈ R such that μj({bj}) > 0. Let μ′

j = μj ∗ δ−bj . Then μ′
j({0}) > 0 for

j = 1, 2 and μ = μ′
1 ∗ μ′

2 ∗ δb1+b2 . Let X = X ′
1 +X ′

2 + b1 + b2, where L(X) = μ,
L(X ′

j) = μ′
j for j = 1, 2 and X ′

1 and X ′
2 are independent. We have b1+b2 ∈ Z, since
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P (X = b1 + b2) ≥ P (X ′
1 = 0, X ′

2 = 0) = P (X ′
1 = 0)P (X ′

2 = 0) > 0. If μ′
1({b}) > 0

for some b �∈ Z, then

P (X = b1 + b2 + b) ≥ P (X ′
1 = b,X ′

2 = 0) = P (X ′
1 = b)P (X ′

2 = 0) > 0

with b1 + b2 + b �∈ Z contrary to the assumption. Hence supp (μ′
1) ⊂ Z. Similarly

supp (μ′
2) ⊂ Z. �

An immediate question arising from Corollary 8.3 is the following:

Open Question 8.4. Let μ, μ1, μ2 be distributions on R such that μ = μ1 ∗μ2 and
such that μ is quasi-infinitely divisible. Is it true that then also μ1 and μ2 must be
quasi-infinitely divisible?

We do not have an answer to this question and leave it as a topic for further
research.

We have seen that although weak convergence of the characteristic pair is suf-
ficient for weak convergence of the quasi-infinitely divisible distribution (Theorem
4.3(a)), it is not necessary (Example 4.4), even if the limit distribution is (quasi-)
infinitely divisible. However, for distributions supported on the integers, weak con-
vergence of quasi-infinitely divisible distributions can be characterized by the weak
convergence of the characteristic pair as shown in the following result. Observe that
since the quasi-Lévy measure of a quasi-infinitely divisible distribution supported
on the integers is itself supported on Z and since the Gaussian variance is 0, the
measure ζ in the characteristic pair coincides with the quasi-Lévy measure ν in this
case.

Theorem 8.5. Let (μm)m∈N be a sequence of quasi-infinitely divisible distributions
concentrated on Z, μ a quasi-infinitely divisible distribution concentrated on Z, let c
be a representation function, and denote the characteristic pairs and triplets of μm

and μ with respect to c by (ζm, γm)c, (ζ, γ)c, (0, νm, γm)c, and (0, ν, γ)c, respectively.
Denote the drift of μm and μ by km and k, respectively. Then the following are
equivalent:

(i) μm converges weakly to μ as m → ∞.
(ii) km converges to k as m → ∞ and limm→∞

∑
n∈Z

|νm({n})− ν({n})| = 0,

i.e., (νm({n}))n∈Z converges in l1 to (ν({n}))n∈Z as m → ∞.

(iii) γm → γ and ζm
w→ ζ as m → ∞.

In particular, for quasi-infinitely divisible distributions μm concentrated on Z, weak
convergence of μm to a quasi-infinitely divisible distribution implies tightness and
uniform boundedness of (ζm)m∈N.

Proof. To show that (i) implies (ii), denote the distinguished logarithms of μ̂m and
μ̂ by gm and g, respectively. Then gm converges uniformly on compact sets to g,
cf. [24, Lem. 7.7]. Hence km = (2πi)−1gm(2π) → (2πi)−1g(2π) = k as m → ∞ by

Theorem 8.1. Hence also μm∗δ−km

w→ μ∗δ−k as m → ∞, and μm∗δ−km
and μ∗δ−k

have drift 0 and quasi-Lévy measures νm and ν, respectively. Hence, for proving (ii),
we will assume that km = k = 0 for all m ∈ N, so that gm(2π) = g(2π) = 0. Since
μ̂m → μ̂ uniformly (both are 2π-periodic), we have supz∈R

|(μ̂m(z)/μ̂(z))− 1| < 1/2
for large enough m. Then for large m, the logarithmic expansion

(8.2) hm(z) := −
∞∑

n=1

1

n

(
1− μ̂m(z)

μ̂(z)

)n

, z ∈ R,
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of the principal branch of the logarithm of μ̂m(z)/μ̂(z) converges uniformly. Then

exp(hm(z)) =
μ̂m(z)

μ̂(z)
= exp(gm(z)− g(z)), z ∈ R,

for large m, and since hm is continuous with hm(0) = 0, as is gm−g, the uniqueness
of the distinguished logarithm shows that

(8.3) hm(z) = gm(z)− g(z) ∀ z ∈ R for m large.

Write μ =
∑

n∈Z
anδn and μm =

∑
n∈Z

an,mδn. Since μm
w→ μ as m → ∞, we have

an,m → an for each n ∈ Z as m → ∞, and since
∑

n∈Z
an,m =

∑
n∈Z

an = 1 and all
coefficients are nonnegative, it follows that also

∑
n∈Z

|an,m − an| → 0 as m → ∞.

But μ̂m(z) =
∑

n∈Z
an,meinz and μ̂(z) =

∑
n∈Z

ane
inz, hence an,m = bn(μ̂m) and

an = bn(μ̂). Altogether, we conclude that μ̂m converges to μ̂ in the A(T)-norm.
Since A(T) is a Banach algebra, this also implies that μ̂m/μ̂ converges to 1 in the
A(T)-norm as m → ∞. In particular, for each ε ∈ (0, 1), there is N(ε) ∈ N such
that ‖1− (μ̂m/μ̂)‖A(T) < ε for all m ≥ N(ε), so that the series defining hm in (8.2)
converges also in the A(T)-norm (to the same limit, since supz∈R

|ψ(z)| ≤ ‖ψ‖A(T)

for ψ ∈ A(T)), and we have ‖hm‖A(T) ≤
∑∞

n=1 n
−1εn ≤ ε/(1 − ε) for m ≥ N(ε).

Using (8.3) this means that gm − g converges to 0 and hence gm to g in the A(T)-
norm as m → ∞. By Theorem 8.1 this means that (νm({n})n∈Z converges in l1 to
(ν({n}))n∈Z as m → ∞, which finishes the proof of (ii).

To see that (ii) implies (iii), observe that ζm = νm and ζ = ν since the quasi-Lévy
measures are concentrated on Z. The l1-convergence of the quasi-Lévy measures

then obviously implies ζm
w→ ζ as m → ∞ and γm = km +

∑
n∈Z

c(n)νm({n}) →
k +

∑
n∈N

c(n)ν({n}) as m → ∞, which is (iii). That (iii) implies (i) follows from
Theorem 4.3(a); observe that we do not need c to be continuous, since we can always
modify c between two integers in order to make it continuous without affecting the
integrals, since the quasi-Lévy measures are supported only on Z.

Finally, tightness and uniform boundedness of (ζm)m∈Z follows from (iii). �

We have seen that the quasi-Lévy measure of a quasi-infinitely divisible distri-
bution on Z is finite, the drift is an integer, and the Gaussian variance is 0. There
is also a converse.

Theorem 8.6. Let μ be a quasi-infinitely divisible distribution on R. Then the
following are equivalent:

(i) μ is concentrated on the integers, i.e., supp μ ⊂ Z.
(ii) The quasi-Lévy measure of μ is concentrated on Z, the drift is an integer,

and the Gaussian variance is 0.

Proof. That (i) implies (ii) is Theorem 8.1. For the converse, denote the drift of
μ by γ and its quasi-Lévy measure by ν. Let X,Y, Z be random variables such
that L(X) = μ, L(Y ) is infinitely divisible with characteristic triplet (0, ν−, 0)0,
L(Z) is infinitely divisible with characteristic triplet (0, ν+, γ)0, and such that X
and Y are independent. Then (1.11) is satisfied. By [24, Cor. 24.6], Y and Z are
concentrated on Z. Hence also X must be concentrated on Z, i.e., supp μ ⊂ Z, and
we are done. �

Denote by D = {w ∈ C : |w| < 1} the open unit disk and by D = {w ∈ C : |w| ≤
1} the closed unit disk. A special case of quasi-infinitely divisible distributions
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is formed by the discrete pseudo-compound Poisson distributions, in short DPCP -
distribution, which have applications in insurance mathematics. Following Zhang
et al. [26, Def. 5.1], a DPCP-distribution is a distribution μ =

∑∞
n=0 anδn on the

nonnegative integers whose probability generating function D � w �→
∑∞

n=0 anw
n

has the form

(8.4)
∞∑

n=0

anw
n = exp

⎛⎝ ∞∑
j=1

αjλ(w
j − 1)

⎞⎠ ∀ w ∈ D

for some λ > 0 and a sequence (αj)j∈N of real numbers such that
∑∞

j=1 |αj | < ∞
and

∑∞
j=1 αj = 1. Setting w = eiz, z ∈ R, it is clear that a DPCP-distribution is

quasi-infinitely divisible with drift 0, Gaussian variance 0, and quasi-Lévy measure
λ
∑∞

j=1 αjδj . Zhang et al. [26] obtained the following characterization of DPCP-
distributions.

Theorem 8.7 (Zhang et al. [26, Thm. 5.2]). A distribution μ =
∑∞

n=0 anδn is a
DPCP-distribution if and only if the probability generating function has no zeroes
on D, i.e., if

∑∞
n=0 anw

n �= 0 for all w ∈ D.

It follows from Theorem 8.7 that a DPCP-distribution must necessarily have
an atom at 0. The following theorem establishes the precise connection to quasi-
infinitely divisible distributions.

Theorem 8.8. Let μ =
∑

n∈Z
anδn be a distribution on Z, and let k ∈ Z. Then

the following are equivalent:

(i) μ is quasi-infinitely divisible with drift k, quasi-Lévy measure ν, and
supp ν ⊂ N.

(ii) μ is quasi-infinitely divisible with drift k, quasi-Lévy measure ν, and
supp ν+ ⊂ N.

(iii) ak �= 0, an = 0 for n < k (i.e. inf(supp μ) = k) and the function D → C

given by w �→
∑∞

n=0 an+kw
n has no zeroes on D.

(iv) μ ∗ δ−k is a DPCP-distribution, in particular is concentrated on N0.
(v) ak �= 0, an = 0 for n < k, and there exists a sequence (qn)n∈N of real

numbers with
∑∞

n=1 |qn| < ∞ and such that

(8.5) nan+k =
n∑

j=1

jqjan+k−j ∀ n ∈ N.

Further, the sequence (qn)n∈N appearing in (v) is related to the quasi-Lévy measure
ν of μ by qn = ν({n}) for all n ∈ N.

Proof. The equivalence of (iii) and (iv) is Theorem 8.7, and that (iv) implies (i) has
been observed after the definition of DPCP-distributions. That (i) implies (ii) is
trivial, and that (ii) implies (i) follows from Proposition 5.1 and Theorem 8.1. Let
us prove that (i) implies (iii). Again, by Proposition 5.1 (and since the Gaussian
variance is 0), k = inf(supp μ). Define the functions f, g : D → C by

f(w) =

∞∑
n=0

an+kw
n and g(w) = exp

( ∞∑
n=1

(wn − 1) ν({n})
)
.
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Then both f and g are holomorphic on D and continuous on D, in particular
bounded on D. Since

g(eiz) = (μ ∗ δ−k )̂ (z) = (

∞∑
n=0

an+kδn)̂ (z) = f(eiz), z ∈ R,

f and g agree on the boundary ∂D = {w ∈ C : |w| = 1} and hence f = g on D,
see, e.g., [6, Thm. 13.5.3]. Since g has no zeroes on D, the same is true for f . We
have proved the equivalence of conditions (i)–(iv). For proving that (i)–(iv) are
equivalent to (v), by considering μ ∗ δ−k we can and shall assume without loss of
generality that k = 0 so that a0 �= 0 and an = 0 for n < 0. The equivalence of (i)
and (v) and the relation qn = ν({n}) then follows in complete analogy to the proof
of Corollary 51.2 in [24], with the help of Theorem 5.3. �

Condition (v) in Theorem 8.8 is a version of Katti’s criterion for quasi-infinitely
divisible distributions and appears also under the name of Panjer-recursions. The
equivalence of (iv) and (v) above (without explicitly stated summability conditions
on (qn)) has already been observed by Hürlimann [15, Lem. 1]. Observe that (8.5)
gives an easy method of determining the quasi-Lévy measure of a distribution that
satisfies the equivalent conditions of Theorem 8.8 by simply solving (8.5) recursively
for qn.

In Example 6.3 we have seen that existence of certain moments cannot always be
characterized by the corresponding property of the quasi-Lévy measure. Now we
show that for quasi-infinitely divisible distributions on the integers and for submul-
tiplicative functions satisfying an additional condition, this is possible. We need
the following Wiener–Lévy type theorem for the Beurling algebra of 2π-periodic
functions whose Fourier coefficients are summable with respect to a given weight
satisfying the GRS-condition (named for Gelfand, Raikov, and Shilov). It can be
(almost) found in this form in Bhatt and Dedania [1]:

Theorem 8.9 (Bhatt and Dedania [1]). Let h : Z → [0,∞) be a submultiplicative
function, i.e., such that there exists B > 0 with

(8.6) h(n+m) ≤ Bh(n)h(m) ∀ n,m ∈ Z.

Assume furthermore that h satisfies the GRS-condition

(8.7) lim
n→±∞

log h(n)

n
= 0.

Let f be a continuous 2π-periodic complex-valued function such that its Fourier co-
efficients bn(f) satisfy

∑
n∈Z

h(n)|bn(f)| < ∞, and let F : U → C be a holomorphic
function defined in an open neighbourhood U of the range of f . Then the Fourier
coefficients bn(F ◦ f) of F ◦ f satisfy

∑
n∈Z

h(n)|bn(F ◦ f)| < ∞ also.

Proof. Multiplying (8.6) by B, we have Bh(m + n) ≤ (Bh(n))(Bh(m)). By re-
placing h by Bh, we may hence assume that B = 1. Then, by submultiplicativity,
log h(nm) ≤ n log[h(m)] for n ∈ N and m ∈ Z, so that the GRS-condition implies
log h(m) ≥ 0 for each m ∈ Z, i.e., h(m) ≥ 1. With these additional hypothesis, the
theorem is then stated in Bhatt and Dedania [1], observing that the function χ there
can be chosen to be the original weight-function h (in their notation, ω) as pointed
out in their proof, since inf{[h(n)]1/n : n ∈ N} = sup{[h(n)]1/n : −n ∈ N} = 1 by
the GRS-condition. Since the proof in [1] is a bit short for people that are not famil-
iar with Gelfand theory, an alternative reasoning can be based on Gröchenig [14]:
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By Corollary 5.27 in [14], the Beurling algebra under consideration is inverse closed
in the algebra of continuous 2π-periodic functions. Since it is further continuously
embedded into that algebra as is easy to see, the Riesz calculi for holomorphic func-
tions in both algebras coincide [14, Cor. 5.15], and hence exactly the same proof
as in [14, Thm. 5.16] gives the claim. �

Theorem 8.9 can be applied to the distinguished logarithm, and we obtain the
following analogue to the Lemma on page 491 of Calderón et al. [3]:

Corollary 8.10. Let h : Z → [0,∞) be a submultiplicative function satisfying the
GRS-condition, and let f : R → C be a continuous 2π-periodic complex-valued func-
tion such that f(z) �= 0 for all z ∈ R and such that the Fourier coefficients bn(f)
satisfy

∑
n∈Z

h(n)|bn(f)| < ∞. Assume furthermore that the distinguished loga-
rithm g of f satisfies g(2π) = g(0). Then the Fourier coefficients bn(g) of g satisfy∑

n∈Z
h(n)|bn(g)| < ∞ also.

Proof. As in the proof of Theorem 8.9, we can and do assume that B in (8.6)
is equal to 1. Then the space Ah = Ah(T) of all 2π-periodic complex-valued
continuous functions ϕ on R with

∑
n∈Z

h(n)|bn(ϕ)| < ∞ is a Banach algebra
under the usual addition and multiplication of functions, and with norm given by
‖ϕ‖h =

∑
n∈Z

h(n)|bn(ϕ)|, cf. [14, Lem. 5.22]. In particular, f ∈ Ah by assumption.
From the proof of the Lemma in [3, p. 491] it follows that there is a trigonometric

polynomial p(z), say p(z) =
∑m

n=−m qne
inz, such that the range of z �→ ϕ1(z) :=

exp(−ip(z))f(z) lies in the half-plane {w ∈ C : 
(w) > 0}. Since obviously p ∈ Ah,
Theorem 8.9 gives e−ip(·) ∈ Ah, hence by the Banach-algebra property also ϕ1 ∈ Ah.
Denote by log the principal branch of the logarithm, and define ψ1(z) = logϕ1(z)
for z ∈ R. Then as in [3, p. 491], but using Theorem 8.9 instead of the Wiener–
Lévy theorem applied to the principal branch log of the logarithm, it follows that
ψ1 ∈ Ah. Since ψ1 and p are continuous 2π-periodic functions with

exp(ψ1(z) + ip(z)) = ϕ1(z) exp(ip(z)) = f(z) = exp(g(z)) ∀ z ∈ R,

the uniqueness of the distinguished logarithm shows that there is l ∈ Z such that
g(z) = ψ1(z) + ip(z) + 2πil. Since ψ1, ip(·) and constant functions are in Ah, it
follows that also g ∈ Ah, which is the claim. �

With Corollary 8.10 we can now characterize finiteness of h-moments of quasi-
infinitely divisible distributions on the integers in terms of the quasi-Lévy measure,
provided h satisfies the GRS-condition.

Theorem 8.11. Let μ be a quasi-infinitely divisible distribution on Z with quasi-
Lévy measure ν, and let h : Z → [0,∞) be a submultiplicative weight-function that
satisfies the GRS-condition, i.e., h satisfies (8.6) and (8.7). Then the following are
equivalent:

(i) μ has finite h-moment, i.e.,
∫
R
h(x)μ(dx) < ∞.

(ii) ν+ has finite h-moment, i.e.,
∫
R
h(x) ν+(dx) < ∞.

(iii) |ν| has finite h-moment, i.e.,
∫
R
h(x) |ν|(dx) < ∞.

Proof. That (iii) implies (ii) is clear, and that (ii) implies (i) follows from Theorem
6.2, by observing that every submultiplicative function h on Z can be extended to a
submultiplicative function on R by setting h(x) := max{h(�x�), h(�x )} for x ∈ R,
where �x� denotes the largest integer smaller than or equal to x, and �x denotes



ON QUASI-INFINITELY DIVISIBLE DISTRIBUTIONS 8519

the smallest integer greater than or equal to x. It remains to show that (i) implies
(iii). For that, let μ be with drift k. Since

h(n− k) ≤ Bh(n)h(−k) and h(n) ≤ Bh(n− k)h(k) ∀ n ∈ Z,

it follows that μ has finite h-moment if and only if μ∗δ−k has finite h-moment. Since
further μ and μ ∗ δ−k have the same quasi-Lévy measure, we can and do assume
without loss of generality that k = 0. Denote by g the distinguished logarithm of
μ̂. From Theorem 8.1 we know that g(2π) = g(0) = 0 and that ν({n}) is the nth
Fourier coefficient of g. The claim then follows directly from Corollary 8.10, since
μ({n}) is the nth Fourier coefficient of μ̂ and since μ has finite h-moment. �

Theorem 8.11 applies in particular to the following three submultiplicative func-
tions h(x) : (|x| ∨ 1)α with α > 0, log(|x| ∨ e), and exp(α|x|β) with α > 0 and
β ∈ (0, 1) since they satisfy the GRS-condition. But it does not apply to eα|x| with
α > 0 nor to eαx with α > 0 since they do not satisfy the GRS-condition.

We do not know whether Theorem 8.11 will continue to hold if general distri-
butions on R are considered rather than distributions concentrated on Z. We pose
this as an open question for further research.

Open Question 8.12. Let h : R → [0,∞) be a submultiplicative weight-function
that satisfies the GRS-condition limx→±∞ x−1 log h(x) = 0. Is it then true that a
general quasi-infinitely divisible distribution μ on R with quasi-Lévy measure ν has
finite h-moment if and only if

∫
|x|>1

h(x) ν+(dx) < ∞ (equivalently, if and only if∫
|x|>1

h(x) |ν|(dx) < ∞ by Theorem 6.2(a))? If not, what are suitable conditions on

h to ensure the equivalence of
∫
R
h(x)μ(dx) < ∞ and of

∫
|x|>1

h(x) ν+(dx) < ∞?
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