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EQUILIBRIUM STATES AND ZERO TEMPERATURE LIMIT

ON TOPOLOGICALLY TRANSITIVE COUNTABLE

MARKOV SHIFTS

RICARDO FREIRE AND VICTOR VARGAS

Abstract. Consider a topologically transitive countable Markov shift and,
let f be a summable potential with bounded variation and finite Gurevic pres-
sure. We prove that there exists an equilibrium state μtf for each t > 1 and

that there exists accumulation points for the family (μtf )t>1 as t → ∞. We
also prove that the Kolmogorov-Sinai entropy is continuous at ∞ with re-
spect to the parameter t, that is, limt→∞ h(μtf ) = h(μ∞), where μ∞ is an
accumulation point of the family (μtf )t>1. These results do not depend on
the existence of Gibbs measures and, therefore, they extend results of [Israel
J. Math. 125 (2001), pp. 93–130] and [Ergodic Theory Dynam. Systems 19
(1999), pp. 1565–1593] for the existence of equilibrium states without the big
images and preimages (BIP) property, [J. Stat. Phys. 119 (2005), pp. 765–776]
for the existence of accumulation points in this case and, finally, we extend
completely the result of [J. Stat. Phys. 126 (2007), pp. 315–324] for the
entropy zero temperature limit beyond the finitely primitive case.

1. Introduction

The thermodynamic formalism is a branch of the ergodic theory that studies
existence, uniqueness, and properties of equilibrium states, that is, measures that
maximize the value h(μ) +

∫
fdμ where h(μ) is the Kolmogorov-Sinai entropy. If,

for each t > 1, there is a unique equilibrium state μtf associated to the potential tf ,
an interesting problem is to study the accumulation points of the family (μtf )t>1,
as well as the behavior of the family as t → ∞, since in statistical mechanics any
accumulation points are the ground states of the system.

We are interested in the case of topologically transitive countable Markov shifts.
It is well known from [4] that there is at most one equilibrium state, and existence
is guaranteed usually by means of a strong condition on the dynamics. It is usually
assumed that the incidence matrix satisfies properties like being finitely primitive,
which is equivalent to the big images and preimages (BIP) property when the shift
is topologically mixing, which is equivalent to the existence of Gibbs measures [15].
In general, it is very difficult to find a simple condition without such hypothesis.
Our first result goes in this direction, and therefore extends the results for the
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existence of equilibrium states beyond the finitely primitive case, as the ones in [12]
and [16].

Theorem 1. Let Σ be a topologically transitive countable Markov shift and let
f : Σ → R be a summable potential such that V (f) < ∞ and PG(f) < ∞. Then,
for any t > 1 there is a unique equilibrium state μtf associated to the potential
tf . Also, we have that as t → ∞, there exists accumulation points for the family
(μtf )t>1.

The proof of this result is similar to one of the results in [12], that guarantees
under similar conditions the existence of an eigenmeasure of the dual Ruelle op-
erator. But it is not shown that in fact such an eigenmeasure gives birth to an
equilibrium state. As is well known that is not always the case. See the example
at the end of [15] for more information.

In the case of Markov shifts with finite alphabet, the existence of accumulation
points is trivial. For countable Markov shifts, Jenkinson, Mauldin, and Urbański
in [9] gave conditions on the potential f to guarantee the existence of accumulation
points for the family (μtf )t>1, assuming that Σ is a finitely primitive Markov shift
with countable alphabet, and they also prove that these accumulation points are
maximizing measures for f . Here, we do not focus on the maximizing property, since
it is already known that if there exists an accumulation point for the equilibrium
states as t → ∞, then it is maximizing [2]. Again, we emphasize these results are
in the context where there exists Gibbs measures.

We notice that existence of accumulation points does not imply the existence of
the zero temperature limit of the equilibrium states, for which another conditon is
usually required. One of the first works on the subject was done by Brémont in
[3], where the convergence when f depends only on a finite number of coordinates
is proved, that is, f is locally constant, and Σ is a topologically transitive Markov
shift with finite alphabet. More recently, Leplaideur in [11] gave an explicit form
for the zero temperature limit when Σ is a topologically Markov shift with finite
alphabet.1 Also, in [6], following ideas in a different context from [18], an example
of a Lipschitz potential for which there is no convergence if we drop the requirement
of locally constant is given. In fact, if we do not require the potential to be locally
constant, the situation is much more complex, as can be seen in [7], where for any
two ergodic measures with the same entropy fixed, it is possible to find a Lipschitz
potential such that the equilibrium states of this potential accumulates on both
ergodic measures. In the case of Markov shifts with countable alphabet and the
BIP property, the existence of the limit for locally constant potentials has been
proved by Kempton [10]. The question of whether the equilibrium states for a
locally constant potential in the non-BIP setting, that is, without the existence of
Gibbs measures, is still open.

Also, under the same conditions as [9], Morris has proved in [14] the existence
of the limit limt→∞ h(μtf ) of the family of associated Kolmogorov-Sinai entropies
and showed that this limit agrees with the supremum of the entropies over the set
of the maximizing measures of f . We are able to give an extension of this result in
the same context as of the previous theorem.

1The proof uses an aperiodic incidence matrix, but it is essentially the same in the present
context, as can be seen also in similar results of [5].
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Theorem 2. Let Σ be a topologically transitive countable Markov shift and let
f : Σ → R be a summable Markov potential such that V (f) < ∞ and PG(f) < ∞.
Then

h(μ∞) = lim sup
t→∞

h(μtf ) = sup
μ∈Mmax(f)

h(μ) ,

where μ∞ is an accumulation point of the family (μtf )t>1.

As we have stated, the main development is that we do not depend on the
existence of Gibbs measures for the whole space, since we use the condition that f
is a summable potential to guarantee the existence of the equilibrium state μtf for
each t > 1. To the best of our knowledge, this is the first proof of the convergence
in the zero temperature limit beyond the finitely primitive case.

Our proofs are based on an elaborate construction similar to a diagonal argu-
ment. We approximate our countable Markov shift by compact invariant subshifts
Σk and use the results in [1] to locate the ground states on a well-determined com-
pact subshift Σk0

. Then, as k → ∞, we use the fact that the potential is summable
and the variational principle, through a fine control of the entropy, to show that
there exists equilibrium states for each t > 1 and their accumulation points as
t → ∞. As usual, this is not as simple as it might seem at first glance, in partic-
ular since Σ is not σ-compact, and also since in this general setting we lose some
important tools in classical thermodynamic formalism, such as the Gibbsianess of
the equilibrium states and some strong properties on the Ruelle operator. We give
some more detail on this in the next section.

The paper is organized as follows. In the next section, we give the basic defini-
tions and notation that we use in the proofs and results, as well as more details on
the setting we are working on. In section 3 we construct the basic approximation
by compacts that we have to deal with to prove our results. In section 4, we use the
existence of the equilibrium states on the compact case to show the existence of a
unique equilibrium state in the case of countable Markov shifts, therefore proving
Theorem 1. It is in section 4 that most of our main hypothesis show their strength,
since we have to make careful estimates to control the entropy and prove the ex-
istence of an equilibrium state. In section 5, we use the existence of accumulation
points in zero temperature to show the existence of the entropy zero temperature
limit, therefore proving Theorem 2.

2. Preliminaries

Let A be a countable alphabet and let M be a matrix of zeros and ones indexed
by A ×A. Let Σ be a topological Markov shift on the alphabet A with incidence
matrix M, that is,

Σ = {x ∈ AN∪{0} : Mxi,xi+1
= 1} ,

where the dynamics are given by the shift map σ : Σ → Σ, that is, the map defined
by σ((xn)n≥0) = (xn)n≥1. Just to ease the calculations we suppose that A = N.
Recall that a word ω is admissible if ω appears in x ∈ Σ. It is well known that Σ is a
metric space with topology compatible to the product topology. Also, the topology
has a sub-base made by cylinders that are both open and closed sets defined as

[ω] = {x ∈ Σ : x starts with the word ω} .
From now on, we assume that Σ is topologically transitive in the sense that

σ is topologically transitive. It is well known that this is equivalent to M being
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irreducible, which is also equivalent to the fact that given any symbols i, j ∈ A
there is an admissible word ω such that iωj is also admissible.

Fix a potential f : Σ → R, for each n ≥ 1 we define the nth variation of f as

Vn(f) = sup{|f(x)− f(y)| : x0 . . . xn−1 = y0 . . . yn−1} .
We say that f has summable (or bounded) variations if

V (f) =
∑
n∈N

Vn(f) < ∞ .

We say that f is coercive if limi→∞ sup f |[i] = −∞, and that f is summable if it
satisfies

(2.1)
∑
i∈N

exp(sup(f |[i])) < ∞ .

Observe that if f is summable, then f is coercive. Moreover, it is shown in [14]2

that the summability condition implies, for any t > 1, that

(2.2)
∑
i∈N

sup(−tf |[i]) exp(sup(tf |[i])) < ∞ .

It follows from [1] that the summability condition allows us to guarantee existence
of maximizing measures for the potential f , since it is coercive. Also, it is the key
ingredient to prove in this paper the existence of the equilibrium state associated
to tf for each t > 1.

From now on, we assume that V (f) < ∞ and that f is summable. Observe that
in this case f is uniformly continuous and bounded above.

We use the following notation:

μ(f) :=

∫
fdμ .

Define

(2.3) β = sup{μ(f) : μ ∈ Mσ(Σ)} ,
where Mσ(Σ) is the set of σ-invariant Borel probability measures on Σ. When
μ(f) = β, we say that μ is a maximizing measure, and denote the set of maximizing
measures by Mmax(f). For each a ∈ A, let

Zn(f, a) =
∑

σnx=x

exp(Snf(x))1[a](x) ,

with Snf(x) =
∑n−1

i=0 f(σi(x)). Then, the Gurevic pressure of f is defined as

PG(f) = lim
n→∞

1

n
logZn(f, a) .

Since Σ is topologically transitive, the above pressure definition is independent from
the choice of a ∈ A. Furthermore −∞ < PG(f) ≤ ∞ and satisfies the variational
principle (see [16] and [8])

(2.4) PG(f) = sup{h(μ) + μ(f) : μ ∈ Mσ(Σ) and μ(f) > −∞} .
So, in this case we have that the Gurevic pressure is the same as the topological
pressure, and then the hypothesis that requires finite pressure can be read in any
way.

2One can easily notice the BIP property is not required for this.
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Also, PG(f) satisfies another variational principle (see [16] and [8])

(2.5) PG(f) = sup{PG(f |Σ′) : Σ′ is a compact subshift of Σ} .

A measure μ ∈ Mσ(Σ) is called an equilibrium state associated to f when
h(μ) + μ(f) is well defined and reaches the supremum in (2.4), that is,

PG(f) = h(μ) + μ(f) .

We say that a measure μ ∈ Mσ(Σ) is an invariant Gibbs state associated to f if
there is a constant C > 1 such that for any x ∈ Σ and each n ≥ 1

(2.6) C−1 ≤ μ[x0 . . . xn−1]

exp(Snf(x)− nPG(f))
≤ C .

When Σ is compact the equilibrium states and the invariant Gibbs states are
unique and agree; see, for example, [12]. Furthermore, when Σ is compact and the
potential f has summable variations, we can choose

(2.7) C = exp(4V (f)) .

Recall that the Ruelle operator Lf associated to f is defined as

(Lfg)(x) =
∑
σy=x

exp(f(y))g(y) ,

and since f is summable, PG(f) < ∞ and V (f) < ∞, Lf is well defined. Also, one
can look into the dual operator L∗

f defined as

(L∗
fμ)(g) = μ(Lfg) ,

with g : Σ → C. These operators and their properties are the base for the following
well-known results.

In [4] the uniqueness of the equilibrium state, whenever it exists, assuming Σ
is a topologically transitive countable Markov shift and f is bounded above with
summable variation and PG(f) < ∞ is proved. In this case, we will denote by μf

the unique equilibrium state associated to f .
Furthermore, it is proved in [4] that if the equilibrium state exists, then

μf = hdν,

where h is the eigenfunction of Lf associated to the eigenvalue λ = ePG(f) and ν
is the eigenmeasure of L∗

f associated to the same eigenvalue. In [12], it is proved
that assuming f is a summable potential, then there exists an eigenmeasure ν for
L∗
f , but it is not proved that it will, in fact, result in an equilibrium state.
In this paper, we take a different approach. Instead of finding an eigenmeasure

to L∗
f and working out its properties to prove it is in fact an equilibrium state

under our hypothesis, we show that the equilibrium states on a suitable sequence
of compact Markov shifts accumulate on a measure that is, in fact, an equilibrium
state on the countable Markov shift, by the argument we have sketched in the
previous section. This approach gives us some minor benefits, in particular the fact
that we can easily realize that the equilibrium states family is tight.

We can suppose, w.l.o.g. that f ≤ 0, since f is bounded above by the fact that
it is coercive and V (f) < ∞, so we can consider f − sup f instead of f .
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3. Compact subshifts approximation

We suppose that f is a summable potential such that PG(f) < ∞ and V (f) < ∞
from now on. Our aim is to prove the existence of equilibrium states for tf and
t > 1 and accumulation points for such a sequence of equilibrium states as we
approach the zero temperature limit on topologically transitive countable Markov
shifts. We accomplish this using an approximation by compact subshifts of Σ and
its Gibbs equilibrium states in each compact subspace.

We can choose a sequence (Σk)k∈N of compact topologically transitive subshifts
of Σ such that for any k ∈ N we have Σk � Σ and Σk � Σk+1 and such that the
variational principle (2.5) can be resumed to

(3.1) PG(f) = sup{PG(f |Σk
) : k ∈ N} .

In fact, for each k ∈ N we can chooseAk := {0, . . . ,mk}∪{finite elements}, where
mk is a strictly increasing sequence in N and the choice of finite elements, which
depends on k, is made to allow us to connect any of the symbols in {0, . . . ,mk}. It
is always possible to choose such a finite alphabet since Σ is topologically transitive.
We can also choose mk = max{j : j ∈ Ak−1}+ 1 for k ≥ 1, which assures us that
Ak ⊂ Ak+1 and

⋃
k∈N

Ak = A. This construction is classical and appears, for
example, in [13].

It is not difficult to show that for all k we have Σk ⊂ Σ, σ|Σk
is also topologically

transitive and that this construction satisfies (3.1), since any compact subshift of
Σ is contained in some Σk for large k.

Also, notice that our proof below works mainly because (3.1) is true in this
sequence, and it does not require that Σ is in fact decomposed into this sequence,
which would be impossible, since Σ is not σ-compact.

Let fk := f |Σk
: Σk → R be the restriction of f to Σk and

βk := sup{μ(fk) : μ ∈ Mσ(Σk)} .
Since f is summable, we have that f is coercive. Therefore, the main theorem in
[1] says that there is a finite set F ⊂ A such that (2.3) becomes

β = sup{μ(f) : μ ∈ Mσ(ΣF )} ,
where ΣF is the restriction of Σ to the alphabet F , and since ΣF is compact,
then Mmax(f) 	= ∅. Moreover, it also implies that for any μ ∈ Mmax(f) we have
supp(μ) ⊂ ΣF.

Denote by P : [1,∞) → R the function t �→ P (t) = PG(tf) < ∞, and consider
the sequence (Pk)k∈N such that Pk : [1,∞) → R is the function t �→ Pk(t) =
PG(tfk). Since for each k ∈ N∑

σnx=x

exp(Sntf(x))1[a](x) ≥
∑

σnx=x

exp(Sntf(x))1[a](x)1Σk
(x) ,

then for any t ≥ 1 we have Pk(t) ≤ Pk+1(t) ≤ P (t), and it follows from (3.1) that

(3.2) P (t) = sup{Pk(t) : k ∈ N} .
Below we show that the sequence (μtfk)k∈N in Mσ(Σ) has a convergent subse-

quence. For this, we prove that this sequence is tight. Let us recall that a subset
K ⊂ Mσ(Σ) is tight if for every ε > 0 there is a compact set K ⊂ Σ such that
μ(Kc) < ε for any μ ∈ K.

Lemma 1. For each t > 1 the equilibrium states sequence (μtfk)k∈N is tight.
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Proof. Our proof is similar to the proof in [9]. Let ε > 0 and

K = {x ∈ Σ : 1 ≤ xm ≤ nm for each m ∈ N} ,
where (nm)m∈N in N is an increasing sequence. Then the set K is compact in the
product topology and satisfies

μtfk(K
c) = μtfk(

⋃
m∈N

{x ∈ Σ : xm > nm})

≤
∑
m∈N

∑
i>nm

μtfk({x ∈ Σ : xm = i})(3.3)

=
∑
m∈N

∑
i>nm

μtfk([i]) .

We choose (nm)m∈N such that∑
i>nm

μtfk([i]) <
ε

2m+1
.

Let μ ∈ Mσ(Σ) such that S = μ(f) satisfies −∞ < S < ∞. It is sufficient to

choose μ = 1
p

∑p−1
j=0 δσj x̄ with x̄ ∈ Perp(Σ0). Notice that since Σ0 ⊂ Σk for all

k ∈ N, we can consider μ to be a measure well defined both in Σ or in Σk for any k.
Let Sk = μ(fk) and by the previous comment, we have that Sk is well defined, and
it is also clear that Sk = S for any k ∈ N, since μ(f) is the ergodic average of f over
a periodic orbit in Σ0 and f and fk are the same in Σ0 for any k. Furthermore, we
have that

(3.4) Pk(t)− tSk = PG(t(fk − Sk)) ≥ h(μ) + t(μ(fk)− Sk) = h(μ) ≥ 0 .

Since each Σk is compact, from (2.6), (2.7) and the fact that exp(4V (tfk)) ≤
exp(4tV (f)) < ∞, then for all x ∈ [i] we have that

(3.5) exp(−4V (tf)) ≤ μtfk [i]

exp(tfk(x)− Pk(t))
≤ exp(4V (tf)) .

Recall that Sk = S for all k and by (3.4), we obtain that for each x ∈ [i]

μtfk([i]) ≤ exp(4tV (f) + tfk(x)− Pk(t))

≤ exp(4tV (f) + t sup f |[i] − Pk(t))

= exp(t(4V (f) + sup f |[i] − Sk)) exp(tSk − Pk(t))

≤ exp(t(4V (f) + sup f |[i] − S)) .

Since the potential f is coercive, then for i large enough we have the inequality
4V (f) + sup f |[i] − S ≤ 0, and since t > 1 we have

(3.6) μtfk([i]) ≤ exp(4V (f) + sup f |[i] − S) .

Moreover, from the summability condition (2.1) we can suppose that the se-
quence (nm)m∈N satisfies∑

i>nm

exp(sup f |[i]) <
ε

2m+1
exp(S − 4V (f)) .

Therefore, for any k

(3.7)
∑
i>nm

μtfk([i]) ≤
∑
i>nm

exp(4V (f) + sup f |[i] − S) <
ε

2m+1
.



8458 RICARDO FREIRE AND VICTOR VARGAS

From (3.3) and (3.7), we conclude that

μtfk(K
c) <

∑
m∈N

ε

2m+1
= ε .

�

Remark 1. The last passage in the proof of Lemma 1 is the key point where the
summability condition is in fact needed. It is not the only point where the summa-
bility condition is essential, but it would be interesting to know if it is possible to
use a different argument assuming only that f is coercive, even if we need some
additional regularity on f .

4. Proof of Theorem 1

In this section we prove our first theorem, which is a consequence of the summa-
bility condition (2.1), the finiteness of the pressure, and the tightness of the sequence
(μtfk)k∈N.

By Prohorov’s theorem, there exists a subsequence (μtfkm
)m∈N of the sequence

(μtfk)k∈N and a measure μt ∈ Mσ(Σ) such that

μt = lim
m→∞

μtfkm
.

Our aim is to prove that μt is, indeed, an equilibrium state associated to the
potential tf . For this purpose, we have to estimate both μt(tf) and h(μt) to prove
they are finite, so that h(μt) + μt(tf) is well defined and then we can finally verify
that they are also maximal. We begin with μt(tf).

From (3.5), for each m ∈ N we have

μtfkm
[i] ≤ exp(4tV (f) + sup(tf |[i])− P0(t)) ,

and notice that for each i ≥ 1 we have ∂[i] = ∅, where ∂[i] is the topological
boundary of the cylinder [i]. Therefore, the cylinder [i] is a continuity set of μt,
and taking the limit as m → ∞ we obtain

μt[i] ≤ exp(4tV (f) + sup(tf |[i])− P0(t)) .

Then, for any t > 1, we have

μt(−tf) = μt

(∑
i∈N

−tf |[i]

)

≤
∑
i∈N

sup(−tf |[i])μt[i](4.1)

≤ Ct

∑
i∈N

sup(−tf |[i]) exp(sup(tf |[i])) < ∞ .

So μt(tf) is finite for any t > 1 and in fact we can approximate it well through
our compact sequence, as the following lemma shows.

Lemma 2. For each t > 1 we have that μt(tf) = limm→∞ μtfkm
(tf).

Proof. Observe that this result is not a direct consequence of the weak* convergence
of the sequence (μtfkm

)m∈N since the potential tf is not bounded below.
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For each N ∈ N, denote by fN : Σ → R the function

fN (x) :=

{
f(x) if f(x) ≥ −N,

−N otherwise,

and set gN : Σ → R such that f = fN + gN .
Notice that both fN and gN are continuous, and that fN is bounded. Also, it

is easy to verify that |gN (x)| ≤ |f(x)| and gN (x) ≤ 0 for all x ∈ Σ.
First, let us show that given ε > 0, there is N0 ∈ N such that |μtfkm

(tgN )| < ε
4

and |μt(tg
N )| < ε

4 for all N ≥ N0 and any m.
We prove it for μt since for μtfkm

it is similar and, in fact, it works with the
same N0.

Given n0 ∈ N, since f is coercive and V (f) < ∞ we can choose N0 = N0(n0)
large enough such that gN |[i] = 0 if i ≤ n0 for all N ≥ N0. In this way, we can
proceed as in (4.1) and we get

|μt(tg
N )| = μt(−tgN ) = μt

(∑
i>n0

−tgN |[i]

)

≤
∑
i>n0

sup(−tgN |[i])μt[i]

≤ Ct

∑
i>n0

sup(−tgN |[i]) exp(sup(tf |[i]))

≤ Ct

∑
i>n0

sup(−tf |[i]) exp(sup(tf |[i])) ,

and if we choose n0 large enough, we get |μt(tg
N )| < ε

4 for N ≥ N0 and all m as
desired.

Finally, to conclude the proof, given ε > 0, fix N ≥ N0 as above and we have
that

|μtfkm
(tf)− μt(tf)| ≤ |μtfkm

(tfN )− μt(tf
N )|+ |μtfkm

(tgN )− μt(tg
N )|

≤ |μtfkm
(tfN )− μt(tf

N )|+ |μtfkm
(tgN )|+ |μt(tg

N )|

≤ |μtfkm
(tfN )− μt(tf

N )|+ ε

2
,

and recall that since fN is continuous and bounded and μt = limm→∞ μtfkm
, the

result follows. �

Now we turn our attention to the estimates on h(μt). Let α = {[a] : a ∈ A} be
the natural partition of Σ; then for any μ ∈ Mσ(Σ) we have its Kolmogorov-Sinai
entropy defined by

(4.2) h(μ) = inf
n

1

n
H(μ | αn) .

Since for any m ∈ N we have

h(μtfkm
) = Pkm

(t) + μtfkm
(−tf) ,

the sequence (μtfkm
(−tf))m∈N is bounded above and Pkm

(t) ≤ P (t). Then, there
is a constant B > 0 such that

(4.3) h(μtfkm
) ≤ P (t) + μtfkm

(−tf) ≤ B .

In this way, we have the following.
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Proposition 1. For each N ∈ N there is n0 ≥ N such that the sequence (H(μtfkm
|

αn0))m∈N is bounded above.

Proof. Suppose that the proposition is not true; then there exists N0 ∈ N such that
for any n ≥ N0 the sequence (H(μtfkm

| αn))m∈N is not bounded. Let n′ ≥ N0

and B′ > 0; then there exists a subsequence (kl)l∈N of the sequence (km)m∈N such

that H(μtfkl
| αn′

) > B′ for any l ∈ N, particularly we have 1
n′ H(μtfkl

| αn′
) > B′

n′ .

Since B′ is choosing arbitrarily, then we can choose the sequence (kl)l∈N such that

the last inequality is true for B′ = 2Bn′, i.e., 1
n′ H(μtfkl

| αn′
) > 2B for any l ∈ N.

On the other hand the sequence (h(μtfkm
))m∈N is bounded above with upper bound

B; then by (4.2) we obtain a contradiction. Therefore, the proposition is true. �

Lemma 3. Let μt = limm→∞ μtfkm
; then for each N ∈ N there are n0 ≥ N and a

subsequence (kl)l∈N of the sequence (km)m∈N such that

H(μt | αn0) = lim
l→∞

H(μtfkl
| αn0) .

Proof. Let N ∈ N. By the above proposition there exists n0 ≥ N such that
(H(μtfkm

| αn0))m∈N is bounded above. This implies that there is a subsequence
(kl)l∈N of the sequence (km)m∈N such that liml→∞ H(μtfkl

| αn0) < ∞.
Moreover, for l0 ∈ N and any j ≥ l0 we have

inf
l≥l0

{−μtfkl
[ω] log(μtfkl

[ω])} ≤ −μtfkj
[ω] log(μtfkj

[ω]).

Therefore, summing up all the [ω] ∈ αn0 we obtain that

∑
[ω]∈αn0

inf
l≥l0

{−μtfkl
[ω] log(μtfkl

[ω])} ≤ inf
j≥l0

⎧⎨
⎩

∑
[ω]∈αn0

−μtfkj
[ω] log(μtfkj

[ω])

⎫⎬
⎭ .

Moreover, taking the limit as l0 → ∞ and using the monotone convergence theo-
rem for the integrable function φm(x) = inf l≥m{−μtfkl

(x) log(μtfkl
(x))} with the

counting measure on the set {[ω] : [ω] ∈ αn0}, we get∑
[ω]∈αn0

lim inf
l→∞

(−μtfkl
[ω] log(μtfkl

[ω])) ≤ lim inf
l→∞

∑
[ω]∈αn0

−μtfkl
[ω] log(μtfkl

[ω]) .

Since μt = liml→∞ μtfkl
and μt(∂[ω]) = 0 for any cylinder [ω] ∈ αn0 , then we have

to μt[ω] log(μt[ω]) = liml→∞ μtfkl
[ω] log(μtfkl

[ω]).
Therefore, it follows that∑

[ω]∈αn0

−μt[ω] log(μt[ω]) ≤ lim inf
l→∞

∑
[ω]∈αn0

−μtfkl
[ω] log(μtfkl

[ω]) .

By a similar proceeding we can prove that∑
[ω]∈αn0

−μt[ω] log(μt[ω]) ≥ lim sup
l→∞

∑
[ω]∈αn0

−μtfkl
[ω] log(μtfkl

[ω]).

Therefore, we conclude that

H(μt | αn0) = lim
l→∞

H(μtfkl
| αn0) .

�

Proposition 2. Let (μtfkl
)l∈N be a sequence given by the previous lemma. Then

lim supl→∞ h(μtfkl
) ≤ h(μt).
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Proof. Suppose that lim supl→∞ h(μtfkl
) > h(μt); then we can choose ε > 0 such

that h(μt) ≤ lim supl→∞ h(μtfkl
) − 3ε. From (4.2), 1

nH(μt | αn) ≤ h(μt) + ε for n
large enough, and by Lemma 3, there is n0 ≥ n such that

lim
l→∞

H(μtfkl
| αn0) = H(μt | αn0).

Finally by (4.2), there is l0 ∈ N such that for j ≥ l0 we have h(μtfkj
) ≤ 1

n0
H(μtfkj

|
αn0). Therefore,

h(μtfkj
) ≤ 1

n0
H(μt | αn0) + ε

≤ h(μt) + 2ε

≤ lim sup
l→∞

h(μtfkl
)− ε ,

and taking the lim sup as j → ∞ in the left side of the inequality, we obtain a
contradiction. In this way, we conclude that lim supl→∞ h(μtfkl

) ≤ h(μt) . �

Proof of Theorem 1. Let (kl)l∈N be a sequence as in Lemma 3. Since (kl)l∈N is a
subsequence of (km)m∈N and the sequence (Pkl

(t))l∈N is increasing, from (3.2) and
Lemma 2 we have

lim
l→∞

Pkl
(t) = P (t)

and

lim
l→∞

μtfkl
(tf) = μt(tf) .

Therefore,

P (t) = lim
l→∞

Pkl
(t) ≤ lim sup

l→∞
h(μtfkl

) + lim sup
l→∞

μtfkl
(tfkl

) ≤ h(μt) + μt(tf) .

The above inequality shows that μt is an equilibrium state associated to the
potential tf . Since P (tf) < ∞, tf is bounded above and V (tf) < ∞. From [4]
we have that the equilibrium state associated to the potential tf is unique and,
therefore, μt = μtf .

To prove that the family (μtf )t>1 is tight, notice that from equation (3.6) and
that μt = μtf , we can take the limit as m → ∞ at both sides, maybe under a
convergent subsequence of μtfk and noticing that the cylinders are continuity sets,
and we get

μtf ([i]) ≤ exp(4V (f) + sup f |[i] − S) .

Observe that the right side does not depend on t. So, following the same conclusion
of Lemma 1, we can conclude that (μtf )t>1 is tight. Taking any subsequence
tk → ∞, we find an accumulation point for (μtf )t>1 as t → ∞, and Theorem 1 is
proved. �

A consequence of this proof is the following corollary which states that the whole
sequence (μtfk)k∈N is in fact convergent to the equilibrium state μtf . That is
interesting in the sense that we can approximate the equilibrium states of the non-
compact case by the ones in the invariant compact subshifts, which is not trivial
since the space is not σ-compact.

Corollary 1. For each t > 1 the equilibrium states sequence (μtfk)k∈N converges
to μtf .
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Proof. Suppose that the sequence (μtfk)k∈N is not convergent. Recall Mσ(Σ) is a
metrizable space and let d be any distance on this space. Then, there is ε0 > 0 and
a subsequence (μtfkj

)j∈N of the sequence (μtfk)k∈N such that for any j ∈ N

d(μtfkj
, μtf ) ≥ ε0 .

In particular, notice that (μtfkj
)j∈N cannot converge to μtf .

Now, by Lemma 1, the sequence (μtfkj
)j∈N is tight, therefore the argument

used to prove Theorem 1 implies that there exists (μtfki
)i∈N as a subsequence of

(μtfkj
)j∈N such that

lim
i→∞

μtfki
= μtf .

Since the equilibrium state is unique, this is a contradiction, which proves the
result. �

Observe that, by Remark 1, the assumption that f is summable is essential for
the proof of Theorem 1, and therefore, also for Theorem 2. Otherwise, there are
counterexamples, like the one in [17], where it can be checked that the potential is
not summable, although it is Markov.

5. Proof of Theorem 2

In this section we prove the other theorem of this work. This proof is a direct
consequence of Theorem 1 and the following result.

The following proposition shows that there exist k0 large enough such that the
set of the fk-maximizing measures is the same for each k ≥ k0. This is the key
point where we use the results in [1] to locate the ground states.

Proposition 3. There is k0 such that, for each k ≥ k0, we have that βk = β and
Mmax(fk) = Mmax(f).

Proof. It is proved in [1] that there exists a finite set F ⊂ N such that

β = sup{μ(f) : μ ∈ Mσ(ΣF )},
and every measure μ ∈ Mmax(f) satisfies supp(μ) ⊂ ΣF. Moreover, there exists
k0 ≥ 0 such that ΣF ⊂ Σk0

. Therefore, we can suppose w.l.o.g. that ΣF = Σk0
.

Then

β = sup{μ(f) : μ ∈ Mσ(Σk0
)}

= sup{μ(fk0
) : μ ∈ Mσ(Σk0

)}
= βk0

.

Observe that for each k we have βk ≤ βk+1 ≤ β, this is because Mσ(Σk) ⊂
Mσ(Σk+1). Besides that, μ(fk) = μ(fk+1) for any μ ∈ Mσ(Σk); then βk = β for
each k ≥ k0 and every measure μ ∈ Mmax(f) satisfies supp(μ) ⊂ Σk0

. Moreover,
we have that

β = μ(f) = μ(fk) ,

that is, μ ∈ Mmax(fk). Let k ≥ k0, if the probability measure μk ∈ Mmax(fk).
Using that supp(μk) ⊂ Σk, we have

βk = μk(fk) = μk(f),

since βk = β; then we conclude that μk ∈ Mmax(f). �
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The following proof is basically a consequence of Theorem 1 and the previous
proposition. In addition to this we have that this result is a complete generalization
of the theorem of Morris in [14] beyond the finitely primitive case.

Proof of Theorem 2. Since the Σk’s are compact, then the functions t �→ h(μtfk) are
decreasing for each k ∈ N. Besides that, using (9) and Lemma 2 joined to Corollary
1, it follows immediately from the variational principle that limk→∞ h(μtfk) =
h(μtf ). Therefore, for each t1 > t0 > 1 and any k ∈ N we have to h(μt0fk) >
h(μt1fk). Then taking the limit as k → ∞ we obtain that

h(μt0f ) = lim
k→∞

h(μt0fk) ≥ lim
k→∞

h(μt1fk) = h(μtf ) ,

i.e., the family (h(μtf ))t>1 is non-increasing and particularly it is bounded above
for t large enough. Using again the variational principle we obtain that

h(μtf )

t
+ μtf (f) = sup

{
h(μ)

t
+ μ(f) : μ ∈ Mσ(Σ) and μ(f) > −∞

}
.

Then taking an increasing sequence (ti)i∈N in (1,∞) such that limj→∞ μtjf =
μ∞ and using the convexity of the function P (t), it follows immediately that this
function admits an asymptote as t → ∞ with slope β, i.e., P (t) = h + tβ + ρ(t)
with h ∈ R and limt→∞ ρ(t) = 0.

On the other hand, for each k ≥ k0 we have Mmax(f) = Mmax(fk), therefore
Mmax(f) is a compact set of Mσ(Σk0

) and so is compact in Mσ(Σ). By the upper
semi-continuity of the function μ �→ h(μ) restricted to the compact set Mmax(f),
there exists a maximal element μ̂ ∈ Mmax(f), i.e., a probability measure such that
h(μ) ≤ h(μ̂) for any μ ∈ Mmax(f), particularly h(μ∞) ≤ h(μ̂).

Since μ̂(f) = β, by the variational principle it follows that

(5.1) h(μ̂) + tβ(f) ≤ P (t) = h+ tβ(f) + ρ(t).

This inequality is valid for each t > 1, therefore h(μ̂) ≤ h+ρ(t), taking the limit as
t → ∞ it follows that h(μ̂) ≤ h. Besides that, μtf is an equilibrium state associated
to the potential tf ; then

(5.2) h+ tβ(f) + ρ(t) = h(μtf ) + tμtf (f) ≤ h(μtf ) + tβ(f),

i.e., h(μ∞) ≤ lim supt→∞ h(μtf ).
Now we just need to prove that lim supt→∞ h(μtf ) ≤ h(μ∞). In fact, observe

that for any increasing sequence (tj)j∈N in (1,∞) and each t′ ≥ tj we have

inf
t≥tj

{−μtf [ω] log(μtf [ω])} ≤ −μt′f [ω] log(μt′f [ω]).

Summing up all the [ω] ∈ αn0 we obtain that for each t′ ≥ tj∑
[ω]∈αn0

inf
t≥tj

{−μtf [ω] log(μtf [ω])} ≤
∑

[ω]∈αn0

−μt′f [ω] log(μt′f [ω]),

it follows immediately from the above inequality that

(5.3)
∑

[ω]∈αn0

inf
t≥tj

{−μtf [ω] log(μtf [ω])} ≤ inf
t′≥tj

⎧⎨
⎩

∑
[ω]∈αn0

−μt′f [ω] log(μt′f [ω]

⎫⎬
⎭ .
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Using the monotone convergence theorem for φj(x) = inft≥tj{−μtf (x) log(μtf (x))}
with the counting measure on the set {[ω] : [ω] ∈ αn0}, it follows that

lim
j→∞

∑
[ω]∈αn0

inf
t≥tj

{−μtf [ω] log(μtf [ω])} =
∑

[ω]∈αn0

lim
j→∞

inf
t≥tj

{−μtf [ω] log(μtf [ω])}.

On the other hand μ∞(∂[ω]) = 0 for each [ω] ∈ αn0 and limj→∞ μtjf = μ∞; then
limj→∞ μtjf [ω] = μ∞[ω]. Therefore, taking the limit as j → ∞ in both sides of
(5.3) we conclude that∑

[ω]∈αn0

−μ∞[ω] log(μ∞[ω]) ≤ lim inf
t→∞

∑
[ω]∈αn0

−μtf [ω] log(μtf [ω]).

An analogous proof shows that lim supt→∞ H(μtf |αn0) ≤ H(μ∞|αn0), therefore
limt→∞ H(μtf |αn0) = H(μ∞|αn0).

Then following the same proof as of Proposition 2 we obtain that

lim sup
t→∞

h(μtf ) ≤ h(μ∞).

Finally using the inequalities (5.1) and (5.2), it follows that

h(μ̂) ≥ h(μ∞) ≥ lim sup
t→∞

h(μtf ) ≥ h ≥ h(μ̂),

and this concludes our proof. �

Acknowledgments

The authors are extremely grateful to Professor Rodrigo Bissacot for reading the
first drafts, and for talks and suggestions that greatly improved the final exposition
of this paper. We would also like to thank Jose Chauta, who identified a gap in
an earlier version of the paper, and Professor Mariusz Urbański for the nice report
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