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ALGEBRAS OF BOUNDED NONCOMMUTATIVE

ANALYTIC FUNCTIONS ON SUBVARIETIES

OF THE NONCOMMUTATIVE UNIT BALL

GUY SALOMON, ORR M. SHALIT, AND ELI SHAMOVICH

Abstract. We study algebras of bounded, noncommutative (nc) analytic
functions on nc subvarieties of the nc unit ball. Given an nc variety V in
the nc unit ball Bd, we identify the algebra of bounded analytic functions
on V—denoted H∞(V)—as the multiplier algebra MultHV of a certain re-
producing kernel Hilbert space HV consisting of nc functions on V. We find
that every such algebra H∞(V) is completely isometrically isomorphic to the
quotient H∞(Bd)/JV of the algebra of bounded nc holomorphic functions on
the ball by the ideal JV of bounded nc holomorphic functions which vanish
on V. In order to demonstrate this isomorphism, we prove that the space HV

is an nc complete Pick space (a fact recently proved—by other methods—by

Ball, Marx, and Vinnikov).
We investigate the problem of when two algebras H∞(V) and H∞(W) are

(completely) isometrically isomorphic. If the variety W is the image of V under

an nc analytic automorphism of Bd, then H∞(V) and H∞(W) are completely
isometrically isomorphic. We prove that the converse holds in the case where
the varieties are homogeneous; in general we can only show that if the algebras
are completely isometrically isomorphic, then there must be nc holomorphic
maps between the varieties (in the case d = ∞ we need to assume that the
isomorphism is also weak-∗ continuous).

We also consider similar problems regarding the bounded analytic functions
that extend continuously to the boundary of Bd and related norm closed al-
gebras; the results in the norm closed setting are somewhat simpler and work
for the case d = ∞ without further assumptions.

Along the way, we are led to consider some interesting problems on function
theory in the nc unit ball. For example, we study various versions of the
Nullstellensatz (that is, the problem of to what extent an ideal is determined
by its zero set), and we obtain perfect Nullstellensatz in both the homogeneous
as well as the commutative cases.
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1. Introduction

1.1. Historical background and motivation. The study of bounded analytic
functions on open domains in Cn is well entrenched. In particular, the algebra
H∞(D) of bounded analytic functions on the disc was extensively studied by many,
starting with Hardy [33] and Riesz [71]; see also the excellent books [32], [73] and
[72]. One area that stood out, in particular, due to its applications, is the theory
of interpolation of bounded analytic functions on the disc initiated by Pick [59]
and Nevanlinna [56, 57]. These concepts were later given a fresh approach from
the operator theoretic perspective by Sarason in [75] and by others (see [2]). In
this approach, one regards H∞(D) as an algebra of operators on the Hilbert space
H2(D), the space of analytic functions on the disc with square summable Taylor
coefficients at the origin.

Another connection of the classical theory of bounded analytic functions on the
disc to operator theory was discovered by von Neumann in [90], where he proved his
celebrated inequality. The inequality of von Neumann was extended to the bidisc
by Andô in [10]. After many unsuccessful generalization attempts, it was Parrot
[58] who showed that the von Neumann inequality fails for the tridisc. However, in
the case of commuting row contractions, Drury observed in [27] that one can obtain
a von Neumann inequality if we replace the bounded analytic functions on the unit
ball with the algebra of multipliers of the Drury–Arveson space (also known as
the symmetric Fock space), where the norm of the algebra is the multiplier norm
instead of the supremum norm (see also [55] and [13]). The Drury-Arveson space
is, in fact, a reproducing kernel Hilbert space of analytic functions on the unit
ball and has the complete Pick property, i.e., the interpolation question for matrix-
valued functions has a satisfactory answer (see [11,65] and [2, Section 8.9] and the
references therein). Moreover, Agler and McCarthy proved in [1] that this space is
universal among the spaces with the complete Pick property.

Let d ∈ N∪{∞}, let H2
d denote the Drury–Arveson space, and let Md denote the

multiplier algebra of the Drury–Arveson space (see the survey [77]). We note that
Md is closed in the weak-operator topology (wot) on B(H2

d) and, furthermore, it
is obtained as the wot-closure of the algebra generated by the shifts Mzi : f �→ zif
(i = 1, . . . , d). Every analytic subvariety of the ball cut out by functions in H2

d

can be cut out by functions in Md. Following [24], with every such subvariety
V ⊂ Bd we associate the subspace HV ⊂ H2

d , which is the closure of the subspace
spanned by the kernel functions corresponding to points of V . This is a reproducing
kernel Hilbert space, and we let MV denote the multiplier algebra of HV . Using
the complete Pick property, one obtains that there is a completely contractive and
surjective map Md → MV and its kernel is a wot-closed ideal. This considera-
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tion tells us that Md enjoys a property similar to the property of Stein manifolds
and affine schemes, namely that every “function” on a subvariety lifts to a global
“function”. Therefore, it stands to reason to ask, to what extent do the variety and
the algebra of multipliers on it determine each other.

This question was answered in the case of complete isometric isomorphism by
Davidson, Ramsey, and Shalit in [24, Theorem 4.5]. They proved that MV

∼= MW

completely isometrically if and only if there exists an automorphism of the ball F
such that F (V ) = W . In particular, the multiplier algebras “see” not only the
analytic structure of the variety, but also give information about the embedding
of the variety into the ball. In the case of homogeneous subvarieties of Bd the
result is much stronger. In fact Davidson, Ramsey, and Shalit in [23] and Hartz
in [35] proved that if d < ∞, then for homogeneous varieties V and W we have
that MV

∼= MW algebraically if and only if there exists a linear map ϕ ∈ GLd(C)
such that ϕ(V ) = W . We refer the reader to [74] for a detailed survey and also
additional results on these questions.

The theory described above gives a satisfactory answer to the classification of
quotient algebras of the form Md/JV , where JV is the kernel of the restriction
map f �→ f

∣∣
V
. The limitation, however, is that it deals with radical ideals only.

One way to see higher-order vanishing of a function of one variable at a point λ
is to consider f( λ 1

0 λ ). This consideration among others leads us to consider the
noncommutative (also called “free”) setting.

Noncommutative (nc for short) functions are functions defined on subsets of
matrices of all sizes which respect direct sums and similarities (see Section 2 for
precise definitions). Such functions were first introduced by Taylor in [82, 83] and
also by Voiculescu in [86–89]. Recently, many works laid out the foundations of
noncommutative free analysis, such as [44], [3, 4, 6], and [67]. The field of noncom-
mutative analysis has enjoyed such rapid growth, due to applications in many fields
such as free probability [16, 60] and real and convex algebraic geometry [37–41].
Noncommutative functions appeared earlier in the realm of operator algebras in
the works of Bunce [18], Frazho [31], and Popescu [62], that generalized von Neu-
mann’s inequality to an arbitrary (noncommuting) row contraction; here the shift
Mz1 , . . . ,Mzd on the Drury–Arveson space is replaced by the left creation operators
L1, . . . , Ld on the full Fock space (we shall explain below how to interpret Li as the
noncommutative coordinate function on the nc unit ball). The wot-closed algebra
generated by L1, . . . , Ld was studied in detail by Arias and Popescu [12], Davidson
and Pitts [20–22], Muhly and Solel [50, 52, 53] and Popescu [64, 67, 69].

Analogues of the Nevanlinna–Pick interpolation on the noncommutative ball first
appeared in [21] and [12]. More general noncommutative versions of the classical
interpolation and realization results appeared recently in the works of Agler and
McCarthy [5] and Ball, Marx and Vinnikov [14,15], who also introduced a general-
ization of reproducing kernel Hilbert spaces to the free setting.

Our first goal in this work is to show that the full Fock space is a noncommutative
reproducing kernel Hilbert space (nc RKHS), and its algebra of multipliers is, on
the one hand, the algebra of bounded functions on the noncommutative ball (such
that the multiplier norm and the supremum norm coincide), and, on the other
hand, that this algebra coincides with the wot-closed algebra considered by Arias–
Popescu and Davidson–Pitts. With this identification in hand, our second goal is to
show that several results of [14] in the case of the noncommutative ball follow from
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established operator algebraic techniques and results, in particular, the complete
Pick property of the noncommutative kernel of the full Fock space.

We then proceed to study subvarieties cut out by multipliers in the noncom-
mutative ball. Let H∞(Bd) denote the algebra of bounded nc functions on the
noncommutative ball, and let H2

d denote the full Fock space. Then, as above, for
every subvariety V ⊂ Bd we associate an nc RKHS H2

V ⊂ H2
d and its algebra of

multipliers MultH2
V. We prove that MultH2

V = H∞(V) and show that H∞(V) is
a quotient of H∞(Bd) by a wot-closed ideal, as in the commutative case. Thus,
we are led to study the isomorphism problem for such algebras. We obtain the
following (partial) generalization of the result of [24].

Theorem (Theorem 6.12). Let V ⊆ Bd and W ⊆ Be be nc varieties, and let
α : H∞(V) → H∞(W) be a completely isometric isomorphism. Assume that d
and e are finite or that α is weak-∗ continuous. Then there exists an nc map
G : Be → Bd such that G

∣∣
W

= Gα maps W bijectively onto V, which implements
α by the formula

α(f) = f ◦G, f ∈ H∞(V).

More satisfactory results are obtained in the homogeneous case. First, we show
that in the homogeneous case we have a strong form of the Nullstellensatz that
does not require taking radicals.

Theorem (Theorem 7.3). Let d ∈ N, and let J �Fd be a homogeneous ideal. Then

I(VBd
(J)) = J.

Then we show that—as in the commutative case—completely isometric isomor-
phisms are implemented by automorphisms of the ball.

Theorem (Theorem 8.4 and Corollary 8.9). Let V ⊆ Bd and W ⊆ Be be ho-
mogeneous nc varieties, and let α : H∞(V) → H∞(W) be a completely isometric
isomorphism. Assume that d and e are finite or that α is weak-∗ continuous. Then
V and W are conformally equivalent, in the sense that one may assume that there
is some k such that V,W ⊆ Bk, and that under this assumption there exists an
automorphism G ∈ Aut(Bk) such that G(W) = V and such that

α(f) = f ◦G, f ∈ H∞(V).

Furthermore, in this case there exists a unitary mapping V onto W.

In Theorem 10.3 we obtain a closely related result: if V,W ⊆ Bd (d < ∞) are
homogeneous varieties, then H∞(V) is isometrically isomorphic to H∞(W) if and
only if there exists a unitary mapping V onto W.

We then proceed to discuss the norm closure of the free algebra in the supremum
norm on the noncommutative ball; this should be considered as the nc analogue of
the disc algebra A(D). We discuss the conditions for a bounded noncommutative
function on a homogeneous variety to be in the norm closure of the polynomial
functions on the variety, and discuss the isomorphism problem for the norm closed
algebras instead of the wot-closed algebras; the classification scheme turns out to
be the same.

Lastly, we discuss connections to subproduct systems and to the commutative
case. In [29] Eisenbud and Hochester proved what they called a version of Null-
stellensatz with nilpotents. We provide a different proof to this perfect “free com-
mutative Nullstellensatz”, which shows how nc varieties encode the higher-order
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zeros of commuting polynomials. This version of the Nullstellensatz is “perfect”,
in the sense that an appropriately defined zero locus of an ideal captures all the
information about that ideal, in a way that does not involve radicals.

To briefly explain the result, let CMd denote the disjoint union
⊔

n CMd
n , con-

sisting of all commuting d-tuples of n × n matrices, where n varies through N.
Let C[z] = C[z1, . . . , zd] be the algebra of polynomials in d (commuting) variables.
Given Ω ⊂ CMd and S ⊆ C[z], we let

IC[z](Ω) = {p ∈ C[z] : p(X) = 0 for all X ∈ Ω}
and

VCMd
(S) = {X ∈ Ω : p(X) = 0 for all p ∈ S}.

Then our commutative free Nullstellensatz reads as follows.

Corollary (Commutative free Nullstellensatz—Corollary 11.7). For every ideal
J � C[z],

IC[z](VCMd
(J)) = J.

1.2. Readers’ guide. This subsection contains a more detailed outline of the
structure of the paper for the convenience of the reader.

Section 2 contains the preliminaries and notation. We deal with the notion of
noncommutative functions and sets. Then we proceed to discuss noncommutative
completely positive kernels, nc RKHS, and multipliers following [15].

Section 3 contains the comparison of objects that we intend to study with objects
that are already established in the literature (in particular, in the works of Arias
and Popescu, Davidson and Pitts, and Popescu). We demonstrate that the full Fock
space is isomorphic to an nc RKHS associated to the noncommutative Szego kernel.
We then show that this map induces unitary equivalence between the algebra of
multipliers and the algebra of bounded analytic nc functions, and we conclude that
it is also unitarily equivalent to the wot-closure of the free algebra generated by
the left creation operators on the full Fock space. In Section 4 we proceed to show,
using operator algebraic methods, that the Szego kernel has the complete Pick
property (this result was first obtained in [14] using different methods).

Section 5 begins our discussion of subvarieties of the noncommutative ball. We
show that we can associate to every subvariety a reproducing kernel Hilbert space
and thus an algebra of multipliers. Every such algebra is completely isometrically
isomorphic to a quotient of the algebra of multipliers of the noncommutative Szego
kernel. We also show that every multiplier is, in fact, a bounded nc function on the
variety and the multiplier norm coincides with the supremum norm. We then pro-
ceed, in Section 6, to discuss the isomorphism problem for subvarieties of the ball.
This section contains one of the main results of the paper, namely that multiplier
algebras of two subvarieties of the noncommutative ball are completely isometri-
cally isomorphic if and only if the varieties are biholomorphic (and, moreover, that
a biholomorphism implements the isomorphism).

Sections 7 and 8 contain the discussion of the homogeneous case. In the ho-
mogeneous setting, the extra structure afforded by the action of the multiplicative
group C× allows us to show that if the multiplier algebras of two homogeneous va-
rieties are completely isometrically isomorphic, then the varieties are mapped one
onto another by a linear automorphism of the commutative ball. In addition, we
show that a free homogeneous Nullstellensatz holds, i.e., that the ideal of functions
vanishing on the variety cut out by a wot-closed homogeneous ideal J is J itself.
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Section 9 contains the discussion of the algebra that is the norm closure of the
algebra generated by the left creation operators. This algebra is the multivariable
noncommutative analogue of the disc algebra. We discuss conditions that allow us
to approximate a multiplier by polynomials in norm, and we consider examples.
We then proceed to discuss the norm closed version of the isomorphism problem.

Section 10 connects our paper with the study of subproduct systems initiated
by Shalit and Solel in [78]. We show that the study of subproduct systems in the
case when d < ∞ is equivalent to the study of homogeneous ideals of multipliers.
We explain how the results of this paper add to what is known, and also contribute
to the longstanding problem of classifying tensor algebras of subproduct systems
in terms of the subproduct systems (see Proposition 10.4).

Lastly, in Section 11 we discuss the connection of this work to the commuta-
tive case; in particular, we explain the connection to the isomorphism problem for
complete Pick algebras [19, 23, 24, 35, 36, 45, 70, 74]. We prove an algebraic version
of the matricial Nullstellensatz (the “commutative free Nullstellensatz”) and show
some obstructions to such a Nullstellensatz in the case of the algebras of bounded
functions on the noncommutative ball.

2. Preliminaries

2.1. Noncommutative sets and noncommutative functions. We consider
noncommutative (nc) function theory in d complex variables, where d ∈ N or
d = ∞. Let Mn = Mn(C) denote the set of all n × n matrices over C, and let
Md

n be the set of all d-tuples X = (X1, X2, . . .) of such matrices such that the
row X determines a bounded operator from Cn ⊕ Cn ⊕ · · · to Cn (of course, this
specification matters only when d = ∞). We norm Md

n with the row operator norm
(that is, ‖X‖ = ‖

∑
j XjX

∗
j ‖1/2), and endow Md

n with the induced topology.
Let

Md =

∞⊔
n=1

Md
n.

A set Ω ⊂ Md is said to be an nc set if it is closed under direct sums. If Ω is an nc
set, we denote Ωn = Ω ∩Md

n . We also use the notation Ω(n) = Ω ∩Md
n.

Let V be a vector space. A function f from an nc set Ω ⊆ Md to
⊔∞

n=1 Mn(V)
is said to be an nc function (with values in V) if

(1) f is graded: X ∈ Ωn ⇒ f(X) ∈ Mn(V),
(2) f respects direct sums: f(X ⊕ Y ) = f(X)⊕ f(Y ),
(3) f respects similarities: if X ∈ Ωn and S ∈ Mn is invertible, and if S−1XS ∈

Ωn, then f(S−1XS) = S−1f(X)S.

An nc function with values in C is said to be a scalar-valued nc function.
We will be mostly interested in scalar-valued nc functions, but we shall also

require the cases where V = E or V = B(E), where E is a Hilbert space. In the
case V = E , we identify E with B(C, E) (bounded operators from C into E) and we
identify Mn(B(C, E)) with B(Cn, En).

A free polynomial is an element in Fd := C〈z1, . . . , zd〉 (the free algebra in d
variables). Every free polynomial is a (scalar-valued) nc function. Let Wd be the
free monoid on d generators. A polynomial p(z) =

∑
k∈Wd

akz
k can be written in
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a unique way as p(z) =
∑

n∈N
pn(z), where

pn(z) =
∑

k∈Wd,|k|=n

akz
k.

The polynomial pn is called the homogeneous component of degree n of p.
The (d-dimensional) open matrix unit ball Bd is defined to be

Bd =
{
X ∈ Md : ‖X‖2 =

∥∥∥∑XjX
∗
j

∥∥∥ < 1
}
.

A subset Ω ⊆ Md is said to be open/closed if for all n, Ωn is open/closed. An
nc set Ω ⊆ Md will be said to be an nc domain if it is open and if every Ωn is
connected. The topology determined by this collection of open sets is sometimes
called the disjoint union (du) topology. The boundary of Ω, denoted ∂Ω, is defined
to be

⊔∞
n=1 ∂Ωn.

A function f defined on an nc open set Ω is said to be nc holomorphic if it is an
nc function and, in addition, it is locally bounded.

By locally bounded we mean that for every X ∈ Ω, there is a set U � X, which is
open in the du topology, such that f is bounded on U . (There are other topologies
one may consider on Md, which lead to different notions of local boundedness and
hence to different notions of holomorphy. Since we are mainly interested with
bounded nc functions on Bd (d ∈ N ∪ {∞}), which is open in all topologies of
interest, local boundedness will not be an issue.) It turns out that an nc holomorphic
function is really a holomorphic function when considered as a function f : Ωn →
Mn, for all n, and moreover it has a “Taylor series” at every point (see [44]).

A noncommutative (nc) algebraic variety is a set of the form

VΩ(S) = {X ∈ Ω : p(X) = 0 for all p ∈ S},

where S ⊆ Fd. Likewise, we define an nc holomorphic variety in Ω to be the
joint zero set of a set of scalar-valued nc holomorphic functions on Ω. There are
potentially more general definitions that may be worth considering, but this will
be our working definition. Note that nc algebraic and nc holomorphic varieties are
nc sets.

If Ω is an open nc set, V ⊂ Ω is an nc variety, and f : V → M1 is a function,
we say that f is an nc function if it satisfies the nc function conditions, and we
say that it is nc holomorphic if, in addition, for every X ∈ V, there exists an open
neighborhood X ∈ U ⊂ Ω such that f extends to a bounded nc function on U .

Remark 2.1. We will see in Theorems 5.2 and 5.4 that if Ω = Bd, and if f : V → M1

is an nc function that is bounded on V, then there exists a bounded nc holomorphic
function F on Bd such that f = F

∣∣
V

(this also follows from results in [14]).

Given an open nc set Ω ⊆ Md, we define H∞(Ω) to be the algebra of bounded
holomorphic functions on Ω, and A(Ω) to be the algebra of bounded holomorphic
functions that extend to uniformly continuous functions on Ω = Ω ∪ ∂Ω (see Sec-
tion 9 for more details). We give H∞(Ω) and A(Ω) the obvious operator algebra
structure, where the matrix norm of F ∈ Mn(H

∞(Bd)) is given by

‖F‖ = sup
z∈Ω

‖F (z)‖ = sup
k∈N

sup
z∈Ω(k)

‖F (z)‖Mnk
.
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Similarly, we define for a variety V ⊆ Ω the algebra H∞(V) of bounded nc func-
tions on V, and the algebra A(V) of bounded nc functions on V that continue to
uniformly continuous functions on V.

2.2. Noncommutative reproducing kernel Hilbert spaces and multipliers.
In what follows, we let B(X,Y ) denote the space of all bounded linear maps between
two normed spaces X and Y .

Let Ω ⊆ Md, and let A and B be C*-algebras. A completely positive (cp) nc
kernel (with values in B(A,B)) on Ω is a function

k : Ω× Ω →
∞⊔

m,n=1

B(Mm×n(A),Mm×n(B))

such that

(1) k is graded, in the sense that

Z ∈ Ωm,W ∈ Ωn ⇒ k(Z,W ) ∈ B(Mm×n(A),Mm×n(B)).
(2) k respects intertwining, in the sense that

Ak(Z,W )(P )B∗ = k(Z ′,W ′)(APB∗)

whenever AZ = Z ′A and BW = W ′B, for all appropriately sized matrices
with Z,Z ′,W,W ′ ∈ Ω.

(3) k(Z,Z) is a cp map for all Z ∈ Ω.

This definition is a special case of the definition introduced and used in [14, 15].
In this paper, we will be interested in the particular case where A = C and

B = B(E), with E a Hilbert space (we will then say that the kernel has values in
B(E) ∼= B(C, B(E))). With these specifications, a main result of [15] (Theorem 3.1
there) is that every cp nc kernel k (with values in B(E)) is the “reproducing kernel”
of an nc reproducing kernel Hilbert space (RKHS)—a Hilbert space H consisting of
nc functions with values in E ∼= B(C, E), in which “point evaluation” is bounded,
and which is generated by the set of nc functions

{kW,v,y : Ω → �∞
n=1Mn(B(C, E)) : W ∈ Ωn, y ∈ En, v ∈ Cn, n ∈ N}

given by the formula

kW,v,y(Z)u = k(Z,W )(uv∗)y, Z ∈ Ωm, u ∈ Cm.

Moreover, the kernel functions kW,v,y have the reproducing property that for every
h ∈ H,

(2.1) 〈h, kW,v,y〉 = 〈h(W )v, y〉.
The multiplier algebra of an nc RKHS H is the algebra of nc functions

MultH = {f : Ω → �∞
n=1Mn(B(E)) : fh ∈ H for all h ∈ H}.

Every multiplier f ∈ MultH determines a bounded multiplication operator Mf :
H → H given by Mfh = fh [15].

Lemma 2.2. Let k be a cp nc kernel on Ω with values in B(E). If f ∈ MultH,
then for every kernel function kW,v,y,

M∗
f kW,v,y = kW,v,f(W )∗y.
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Proof. For every h ∈ H,

〈h,M∗
f kW,v,y〉 = 〈Mfh, kW,v,y〉

= 〈f(W )h(W )v, y〉
= 〈h(W )v, f(W )∗y〉
= 〈h, kW,v,f(W )∗y〉.

�

Lemma 2.3. Let k be a cp nc kernel on Ω with values in B(E).
(1) kW,v,y + kW ′,v′,y′ = kW⊕W ′,v⊕v′,y⊕y′ .
(2) kSWS−1,v,y = kW,S−1v,S∗y

The proof is straightforward.

Lemma 2.4. Let k be a cp nc kernel on Ω with values in B(E). Let f : Ω →⊔∞
n=1 Mn(B(E)) be a graded function, and let T be an operator on H such that

TkW,v,y = kW,v,f(W )∗y

for all W, v, y. Then f ∈ MultH and T = M∗
f .

Proof. Using Lemma 2.3 we find that f respects direct sums and similarities, thus
f is an nc function. Next,

〈T ∗h, kW,v,y〉 = 〈h, TkW,v,y〉
= 〈h, kW,v,f(W )∗y〉
= 〈h(W )v, f(W )∗y〉
= 〈f(W )h(W )v, y〉.

Therefore, the value of T ∗h on W is f(W )h(W ). It follows that f is a multiplier
and that Mf = T ∗. �

Lemma 2.5. Let k be a cp nc kernel on Ω with values in B(E), and assume that
for every n ∈ N and every X ∈ Ω(n),

span{h(X)v : v ∈ Cn, h ∈ H(k)} = En.

Let {fα}α∈I be a bounded net of multipliers on H(k). Then fα converges to a
multiplier f in the weak-operator topology if and only if it is pointwise convergent,
i.e., fα(X) → f(X) in the weak-operator topology, for all X ∈ Ω.

Proof. Assume first that lim fα = f in the weak-operator topology. Then for every
X ∈ Ω(n), y ∈ En, and v ∈ Cn, we have that

〈fα(X)h(X)v, y〉 = 〈fαh, kX,v,y〉 −→
α

〈fh, kX,v,y〉 = 〈f(X)h(X)v, y〉.

By assumption, vectors of the form h(X)v are dense in En, thus fα(X) converges
to f(X) in the weak-operator topology on Mn(B(E)).

Conversely, assume that fα(X)
wot−−→ f(X) for every X ∈ Ω. Then, as above, we

find that for every X ∈ Ω(n), y ∈ En, and v ∈ Cn, and for every h ∈ H(k),

〈fαh, kX,v,y〉 −→
α

〈fh, kX,v,y〉.

Now note that by Lemma 2.3, a linear combination of kernel functions is again a
kernel function, therefore the kernel functions are dense in H(k). Making use of
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the assumption that {fα} is bounded, it follows fα converges in the weak-operator
topology to f . �

The following is the noncommutative analogue of [49, Lemma 2.1].

Corollary 2.6. Let Ω ⊂ Md, and let k be a cp nc kernel on Ω as above. Set H(k)
to be the nc RKHS associated to k and M(k) the algebra of multipliers. Then M(k)
is weak-* closed and in particular it is a dual algebra.

Proof. By the Krein–Smulian theorem, it suffices to prove that the unit ball of
M(k) is weak-* closed. Since on norm bounded sets the wot and weak-* topologies
coincide, it is enough to prove that for every wot convergent net {fλ} in the ball,
the limit is also in the ball. If T = limwot

λ fλ, then by Lemma 2.5 there exists a
pointwise limit f of fλ on Ω. Now we apply Lemma 2.4 to get that T = Mf as
desired. �

If H(k) is an nc RKHS on Ω with values in E , and F is a Hilbert space, then we
can consider the space H(k) ⊗ F as an nc RKHS consisting of nc functions with
values in B(E⊗F), i.e., graded, direct sum, and similarity preserving functions from

Ω to
⊔

n Mn(E ⊗ F). The reproducing kernel of H(k)⊗ F is given by k̃ = k ⊗ IF ,
where

k̃(Z,W )(P ) = (k ⊗ IF )(Z,W )(P ) = k(Z,W )(P )⊗ IF ,

and the kernel functions are

k̃W,v,y⊗f = kW,v,y ⊗ f.

Multipliers are then nc functions with values in B(E ⊗ F), that is, graded, direct
sum, and similarity preserving functions from Ω to

⊔
n Mn(B(E ⊗ F)).

Similarly to left multipliers, we may consider right multipliers as well. Given a
scalar-valued nc function f : Ω → M1 and an nc RKHS H(k), we define the right
multiplication operator

Rf (h)(W ) = h(W )f(W ).

We denote by Multr(H(k)) the algebra of all nc functions such that Rf gives rise
to a well-defined (bounded) operator on H(k).

2.3. The nc Szego kernel and the nc Drury–Arveson space. We now define
the nc Drury–Arveson space, which was introduced by Ball, Marx and Vinnikov in
[14]; this nc reproducing Hilbert space will play a central role in this paper.

Recall that Wd denotes the free monoid on d generators (d ∈ N∪ {∞}). The nc
Szego kernel K(Z,W ) on the nc ball Bd of Md is defined by

K(Z,W )(T ) =
∑
k∈Wd

ZkTW ∗k,

for Z ∈ Bd(n), W ∈ Bd(m), and T ∈ Mn×m(C). We are using the plain notation
K, because this kernel will be the only reproducing kernel to be discussed from this
point on. Consider the nc function KW,v,y for W ∈ Bd(m), v, y ∈ Cm, defined for
Z ∈ Bd(n):

KW,v,y(Z)u = K(Z,W )(uv∗)y =
∑
k∈Wd

Zkuv∗W ∗ky =
∑
k∈Wd

〈y,W kv〉Zku.



NC ANALYTIC FUNCTIONS ON NC VARIETIES 8649

Thus KW,v,y is an nc function given by the power series

KW,v,y(Z) =
∑
k∈Wd

〈y,W kv〉Zk.

The nc Drury–Arveson space H2
d is the RKHS determined by the nc Szego kernel

K. In the next section we will see that MultH2
d = H∞(Bd).

3. The bounded holomorphic functions on the ball

In noncommutative multivariable operator theory, there have been several can-
didates for the role of “bounded analytic functions on the unit ball”. Our goals
in this section are (1) to carry out the task of demonstrating that all the natural
approaches give rise to the same algebra; and (2) to collect some facts about these
algebras to be used later in the paper. We will compare the algebra H∞(Bd) of
bounded holomorphic functions on the open matrix unit ball, with the noncommu-
tative analytic Toeplitz algebra Ld that was studied extensively by Davidson and
Pitts, and by Popescu (who denoted it F∞

d ), and with Popescu’s algebra of bounded
free holomorphic functions on the operatorial ball [67], denoted H∞(B(X )d1). Note
that although similar words and even the same notation are used to describe these
algebras, the definitions are different. Nevertheless, these algebras are all isometri-
cally isomorphic. We will also show that these algebras can be identified with the
multiplier algebra MultH2

d of the nc Drury–Arveson space.
In this section, we work with any d ∈ N∪{∞}. Let E be a d-dimensional Hilbert

space, and define the full Fock space to be

F(E) = C⊕ E ⊕ (E ⊗ E)⊕ · · · .
Define the shift operators Liξ = ei ⊗ ξ (i = 1, . . . , d), where {e1, . . . , ed} is an
orthonormal basis for E . The tuple L = (L1, . . . , Ld) is simply referred to as the
shift.

Davidson and Pitts defined Ld to be the closure of alg(L) in the weak-operator
topology (more precisely, their underlying Hilbert space was �2(Wd) and not F(E),
but these are clearly, up to a natural identification, the same Hilbert space). They
also showed that the weak-operator and weak-∗ topologies coincide [22]. The alge-
bra Ld is also Popescu’s noncommutative Hardy algebra [62], which he denotes by
F∞

d . In [61] F∞
d was defined to be the algebra g ∈ F(E) for which supp ‖g⊗p‖ < ∞,

where p runs over all polynomials of norm one. However, it was shown that this
is the same as the closure of alg(L) in the weak-operator topology. This algebra
is also a particular instance of Muhly and Solel’s Hardy algebra [50], and would be
denoted in their context as H∞(E).

The algebra of bounded holomorphic functions on the operatorial unit ball, de-
noted by H∞(B(X )d1) in Popescu’s work, is defined to be the algebra of all functions
F which have a power series representation on (B(X )d)1 and satisfy
sup ‖F (X1, . . . , Xd)‖ < ∞ (where the supremum runs over all (X1, . . . , Xd) ∈
(B(X )d)1 for some infinite-dimensional Hilbert space X ); see [67]. This is not
quite H∞(Bd) as was defined above, since the arguments of functions are tuples
of operators, and since the functions considered are a priori only those given by a
power series.

Theorem 3.1. The algebras H∞(B(X )d1), F∞
d , and H∞(Bd) are completely iso-

metrically isomorphic.
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Proof. In [67, Theorem 3.1] Popescu showed that H∞(B(X )d1) and F∞
d are com-

pletely isometrically isomorphic.
Now we proceed to prove the completely isometric isomorphism with H∞(Bd).

It is clear that every F ∈ H∞(B(X )d1) defines a bounded holomorphic function F̂

on Bd, and that the map F �→ F̂ is a completely contractive homomorphism.
Let f ∈ H∞(Bd). By [54, Theorem 5.1], f has a power series representation

f(z) =
∑

α cαz
α with radius of convergence

R =

⎛⎜⎝limk

∣∣∣∣∣∣
∑
|α|=k

|cα|2
∣∣∣∣∣∣

1
2k

⎞⎟⎠
−1

≥ 1.

For every r ∈ (0, 1) define fr(z) = f(rz). Then fr ∈ H∞(Bd) and ‖fr‖∞ ≤ ‖f‖∞.
Moreover, since the power series of fr converges uniformly in the closed unit ball
of B(H)d (H is any Hilbert space), we can plug in the shift L. Let us fix {ej}dj=1

an orthonormal basis for E and set En to be the (closed) subspace of E spanned by
e1, . . . , en. Let Pn be the sequence of projections onto

(3.1) Hn = C⊕ En ⊕ · · · ⊕ E⊗n
n ⊆ F(E).

If we view Hn as a subspace of Fd, then it corresponds to the subspace spanned
by the monomial of degree at most n in the first n variables. Since Hn are all
co-invariant for L, we have that

‖fr(L)‖ = lim
n

‖Pnfr(L)Pn‖ = lim
n

‖fr(PnLPn)‖ ≤ ‖fr‖∞ ≤ ‖f‖∞.

But by [67, Theorem 3.1], this implies that F =
∑

α cαLα determines an element

in F∞
d with limr→1 ‖fr(L)‖ = limr→1 ‖Fr‖ = ‖F‖. Since F̂ = f , the mapping

F �→ F̂ is a surjective isometric isomorphism.
Finally, to show that F �→ F̂ is completely isometric, let f ∈ Mn(H

∞(Bd)) =

H∞(Bd)⊗Mn. As above, there is an F ∈ Mn(F∞
d ) such that F̂ = f , and we need

to show that

‖F‖ ≤ ‖f‖∞ = sup
X∈Bd

‖f(X)‖.

But again ‖F‖ = limr→1 ‖Fr‖ and Fr = fr(L). Repeating the above computation
with Pn ⊗ ICn instead of Pn, the required inequality follows from

‖fr(L)‖ = lim
n

‖(Pn ⊗ ICn)fr(L)(Pn ⊗ ICn)‖ = lim
n

‖fr(PnLPn)‖ ≤ ‖fr‖∞ ≤ ‖f‖∞.

�

One could also deduce the isomorphism between H∞(B(X )d1) and H∞(Bd) from
[14, Corollary 4.5.1]. In the notation of [14] one takes U = Y = C and Q(Z) =[
Z1 Z2 . . . Zd

]
(we will use a similar consideration in Proposition 5.5). An

earlier instance of such a result can be found in [7] in the case of the noncommutative
polydisc.

It is clear that the natural unitary transformation mapping F(E) onto �2(Wd)
implements a unitary equivalence between the wot-closed algebras Ld and F∞

d .
In Proposition 3.5, we will show that similarly, the unitary transformation mapping
F(E) onto Hd

2 implements a unitary equivalence between the wot-closed algebras
MultHd

2 and F∞
d . Thus, the wot-closed algebras Ld, F∞

d , and MultHd
2 are all

unitarily equivalent. Combining this with Theorem 3.1 we conclude that all five
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wot-closed algebras Ld, F∞
d , MultHd

2, H
∞(B(X )d1), and H∞(Bd) are completely

isometrically isomorphic.
We start establishing these isomorphisms by showing that H2

d can be identified
with the Fock space F(E) over a d-dimensional Hilbert space E .

Proposition 3.2. H2
d can be identified with the Fock space F(E) (where E is a

d-dimensional Hilbert space), which in turn can be identified with the Hilbert space
of formal power series in d variables

Fd = {F (z) =
∑
k∈Wd

akz
k : ‖F‖2 :=

∑
k∈Wd

|ak|2 < ∞}.

Proof. The identification of F(E) with the space of formal power series with square
summable coefficients is clear. The map U : H2

d → Fd mapping the kernel func-
tion KW,v,y to the power series

∑
k∈Wd

〈y,W kv〉zk is readily seen to preserve inner
products, thus it extends to an isometry. On the other hand, it not hard to find,
for every m ∈ Wd, a kernel function KW,v,y that gets mapped to the monomial zm

(e.g., using compression of L to finite-dimensional subspaces as in (3.1)). Thus, U
is unitary. �

Remark 3.3. Here is another point of view on the unitary equivalence of H2
d and

Fd. It is easy to see that Fd is a Hilbert space of nc functions on Bd in which
point evaluation is bounded (just plug a tuple into the formal power series and
use Cauchy–Schwarz). Now {zk : k ∈ Wd} is an orthonormal basis for Fd. By

[15, Theorems 3.3 and 3.5], the space Fd is associated to a kernel K̃ which is given

by K̃(Z,W )(P ) =
∑

k∈Wd
ZkPW ∗k (this is an nc analogue to a familiar result in

the classical theory of RKHS). Thus the Hilbert spaces H2
d and Fd actually give

rise to the same reproducing kernel Hilbert spaces on Bd.

Recall that the multiplier algebra of H2
d is the algebra MultH2

d of all nc functions
from Bd to Md to M1 such that fh ∈ H2

d for all h ∈ H2
d.

Proposition 3.4. MultH2
d ⊆ H2

d.

Proof. The constant function Bd(n) � Z �→ In is in H2
d, since the constant formal

power series 1 is clearly in Fd. From this the containment MultH2
d ⊆ H2

d follows
immediately. �

Proposition 3.5. The unitary U of Proposition 3.2 maps MultH2
d onto F∞

d ,
when considered as subspaces of H2

d and F(E), respectively. Moreover, this unitary
implements a completely isometric isomorphism via conjugation between these wot-
closed algebras, when considered as subalgebras of B(H2

d) and B(F(E)), respectively.
In fact, these two maps coincide.

Proof. Recall that Popescu’s original definition of F∞
d is as the subspace of the

Fock space F(E), of a d-dimensional Hilbert space E , consisting of all g ∈ F(E)
for which supp ‖g ⊗ p‖ < ∞, where p runs over all polynomials of norm one [62].
It is easy to see that this space is, in fact, the space of all g ∈ F(E) for which
g⊗f ∈ F(E) for all f ∈ F(E); see, e.g., Popescu’s observation in [67] after equation
(3.1). It now follows by Propositions 3.4 and 3.2 that the unitary U from the latter
proposition maps MultH2

d onto F∞
d .

We now turn to the unitary equivalence. When thinking of MultH2
d as a wot-

closed subalgebra of B(H2
d), we identify f with the multiplication operator Mf ;
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when thinking of F∞
d as a wot-closed subalgebra of B(F(E)), we identify f with

f(L) = f(L1, . . . , Ld), where L1, . . . , Ld are the creation operators on the associated
Fock space (see [62, Corollary 3.5]). Then for every 1 ≤ i ≤ d, W ∈ Bd(m),
v, y ∈ Cm, and n ∈ Wd we have

〈UM∗
ziKW,v,y , z

n〉 = 〈UKW,v,W∗
i y, z

n〉 =
∑
k∈Wd

〈W ∗
i y,W

kv〉〈zk, zn〉

= 〈W ∗
i y,W

nv〉 = 〈y,WiW
nv〉

=
∑
k∈Wd

〈y,W kv〉〈zk, Liz
n〉 = 〈L∗

iUKW,v,y , z
n〉.

Thus, UMziU
∗ = Li. Next, if f is a polynomial, then UMfU

∗ = f(UMzU
∗) =

f(L). Since every f ∈ F∞
d is the wot-limit of a bounded polynomial net and

MultH2
d is wot-bounded closed, we have that UMfU

∗ = f(UMzU
∗) = f(L) for

every f ∈ F∞
d . As U(MultH2

d) = F∞
d , we are done.

Finally, it is clear that on the level of formal power series the map sending f to
Uf and the map sending f to the formal power series associated with f(S) agree.
Therefore, they coincide on MultH2

d. �

Corollary 3.6. The wot-closed algebras Ld, F∞
d , H∞(B(X )d1), MultH2

d, and
H∞(Bd) are all completely isometrically isomorphic.

Corollary 3.7. The completely isometric isomorphism H∞(Bd) → MultH2
d can

be chosen to be the identity map. In particular, H∞(Bd) and MultH2
d are the same

set.

Proof. This follows by applying the composition of isomorphisms

MultH2
d → F∞

d → H∞(B(X )d1) → H∞(Bd)

on the level of formal power series on which it is easily seen to be the identity. �
Remark 3.8. The equality MultH2

d = H∞(Bd) also follows from [14, Theorem 5.5]
(the equivalence of conditions (1) and (1’) when taking a(Z) = In).

Remark 3.9. We have seen that the various algebras H∞(Bd), Ld (or F∞
d in

Popescu’s notation), H∞(B(X )d), and MultH2
d, are all the same. Henceforth,

these algebras will be identified. In particular, the free shift L = (L1, . . . , Ld) on
F(Cd) will be identified with the tuple Mz = (Mz1 , . . . ,Mzd) of multiplication by
coordinate operators, which will be identified with z = (z1, . . . , zd).

Using [22, Theorem 1.2] we obtain the following.

Corollary 3.10. MultH2
d and Multr H2

d are unitarily equivalent and are mutual
commutants: MultH2

d = (Multr H2
d)

′ and Multr H2
d = (MultH2

d)
′.

Proof. The algebra Multr H2
d is the algebra of nc functions f on Bd such that for

every g ∈ H2
d, we have gf ∈ H2

d. Following [22] we note that the map that sends the
monomial zα to the reversed monomial zα̃ extends to the power series representing
functions in H2

d. In fact, it is a unitary and implements an isomorphism between
MultH2

d and Multr H2
d. The second claim is precisely [22, Theorem 1.2]. �

The works of Davidson and Pitts [20–22], Arias and Popescu [12] and Popescu
[65–67] introduce the algebra H∞(Bd) as the wot-closure of the multiplication
operators by Fd on H2

d. It was proved in [22] that in fact the weak-* and wot
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topologies coincide on H∞(Bd). Hence in particular the unit ball of H∞(Bd) is
wot-compact.

A final useful fact about H∞(Bd) is the following.

Theorem 3.11. Let f ∈ H∞(Bd). Then f has a Taylor series f =
∑∞

n=0 fn that
converges pointwise, converges Cesàro in the weak-∗ topology, and where f �→ fn is
bounded.

Proof. This follows from [22, pp. 405–406]. �

4. The complete Pick property

For a set Ω ⊆ Bd we let

HΩ = span{KW,u,y : W ∈ Ω(m), u, y ∈ Cm,m ∈ N}.

Let IΩ denote the space of all functions in H2
d that vanish on Ω. For a set S ⊆ H2

d,
let V (S) denote the variety determined by S, that is, the intersection of the zero
sets of all functions in S. Finally, let JΩ denote the two-sided ideal in H∞(B) that
consists of functions vanishing on Ω.

The following lemma shows that varieties determined by functions in H2
d are the

same as varieties determined by functions in MultH2
d.

Lemma 4.1. Let V be an nc variety determined by functions in H2
d; that is, there

exists a family E ⊆ H2
d such that

V = {W ∈ Bd : f(W ) = 0 for all f ∈ E}.

Then V is determined by a family of functions in MultH2
d; that is, there exists a

family F ⊆ MultH2
d such that

V = {W ∈ Bd : f(W ) = 0 for all f ∈ F}.

Proof. We modify the argument in [2, Theorem 9.27] to our setting. For every h,
let V (h) = {W ∈ Bd : h(W ) = 0}. It suffices to prove that for all h ∈ H2

d and all
X /∈ V (h), there exists f ∈ MultH2

d such that f
∣∣
V (h)

= 0 and f(X) = h(X).

To show the existence of such a multiplier f , we attempt to define a bounded op-
erator T on HV (h)∪{X} by TKX,v,y = KX,v,h(X)∗y for all v, y ∈ Cn and TKW,v,y =
0 = KW,v,h(W )∗y for all W ∈ V (h). Clearly, this defines a bounded operator on
HV (h). It also defines a bounded, well-defined operator on H{X}, because being a
convergent power series of n × n matrices in X, h(X) is actually equal to a poly-
nomial in X, say h(X) = p(X) for some p ∈ Fd. Therefore, KX,v,y �→ KX,v,h(X)∗y

agrees with the action of the adjoint of the bounded multiplier Mp on H{X}.
What is not yet clear is that the operator T that we defined is well defined

on the intersection HV (h) ∩ H{X}. We need to show that if KX,v,y ∈ HV (h),
then KX,v,h(X)∗y = 0. But if KX,v,y ∈ HV (h), then KX,v,y is the limit of linear
combinations of the kernel functions KW,u,x for W ∈ V (h) and thus is orthogonal
to hq for any polynomial q; indeed

〈hq,KW,u,x〉 = 〈h(W )q(W )u, x〉 = 0
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for all W ∈ V (h) and all u, x of appropriate size. Therefore 〈h(X)q(X)v, y〉 =
〈hq,KX,v,y〉 = 0 for every polynomial q. Thus

‖KX,v,h(X)∗y‖2 = 〈K(X,X)(vv∗)h(X)∗y, h(X)∗y〉

= 〈
∑
k∈Wd

Xk(vv∗)Xk∗h(X)∗y, h(X)∗y〉

=
∑
k∈Wd

〈v∗Xk∗h(X)∗y, v∗Xk∗h(X)∗y〉

=
∑
k∈Wd

|〈h(X)Xkv, y〉|2 = 0.

Since T defined above is a bounded operator such that TKW,v,y = KW,v,h(W )∗y

(for W ∈ V (h) ∪ {X}), by Lemma 2.4 there exists f ∈ MultHV (h)∪{X} such

that f
∣∣
V (h)

= 0 = h
∣∣
V (h)

and f(X) = h(X). By Theorem 5.2 below (which

does not depend on the lemma we are now proving), f extends to a multiplier in
MultH2

d = H∞(Bd). �

Remark 4.2. By Lemma 2.3, a linear combination of kernel functions is again a
kernel function. We also note that the kernel functions are not necessarily indepen-
dent. For every X ∈ Bd and every f ∈ H∞(Bd), the matrix f(X) is an element
of the algebra generated by the coordinates of X. Thus, if X ∈ Bd(n) is generic
(i.e., the algebra generated by the coordinates of X is Mn(C)) and v �= 0, then
{f(X)v | f ∈ H∞(Bd)} = Cn, and thus KX,v,y = 0 if and only if y = 0. On
the other hand, if the coordinates of X have a nontrivial joint invariant subspace
U ⊂ Cn, then we take 0 �= v ∈ U and 0 �= y ∈ U⊥ and obtain that KX,v,y = 0.

For Ω ⊆ Bd we denote by Ω′ the full nc envelope of Ω in Bd. Recall from [14]
that this means that Ω′ is the smallest subset of Bd that is closed under direct sums
and left injective intertwiners, in the sense that if Z ∈ Ω′, if I is an injective matrix,
and if IZ̃ = ZI, then Z̃ is also in Ω′. The zero set of an nc function is clearly closed
under direct sums and injective left intertwiners, thus if an nc function vanishes on
Ω, then it also vanishes on Ω′.

The following lemma is an analogue of [24, Proposition 2.2].

Lemma 4.3. For Ω ⊆ Bd,

HΩ = HΩ′ = HV (IΩ) = HV (JΩ).

Proof. Clearly HΩ ⊆ HΩ′ . If f ∈ H2
d vanishes on Ω, then it also vanishes on Ω′,

hence H⊥
Ω ⊆ H⊥

Ω′ . Thus HΩ = HΩ′ .
Since Ω ⊆ V (IΩ) ⊆ V (JΩ), we have

HΩ ⊆ HV (IΩ) ⊆ HV (JΩ).

On the other hand, if h ∈ H⊥
Ω , then h

∣∣
Ω
= 0, so h ∈ IΩ. This means that h(W ) = 0

for all W ∈ V (IΩ), therefore h ∈ H⊥
V (IΩ). It follows that HΩ = HV (IΩ).

To prove the last equality, we note that V (IΩ) = V (JΩ). To see this, recall
that V (IΩ) is the smallest nc variety determined by functions in H2

d that contains
Ω, and V (JΩ) is the smallest nc variety determined by functions in MultH2

d that
contains Ω. Now invoke Lemma 4.1. �
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Lemma 4.4. Let E be a finite-dimensional Hilbert space, and suppose that Z ∈
Bd(n) and W ∈ Mn(B(E)). Then W belongs to the unital algebra alg(Z)⊗B(E) if
and only if the map Z �→ W extends to an nc function on Ω′—the full nc envelope
Bd(n) of the singleton Ω = {Z}. The nc function can be chosen to be a polynomial
with coefficients in B(E).

Proof. If W ∈ alg(Z) ⊗ B(E), then W = p(Z) for some operator coefficient poly-
nomial p. Such a polynomial p is clearly an nc function Md →

⊔∞
k=1Mk(B(E))

extending Z �→ W .
Suppose that Z �→ W extends to an nc function f0 on the full nc closure Ω′ of

Ω = {Z} relative to Bd.

Claim. If M ⊆ Cn ⊗ E is an invariant subspace for alg(Z) ⊗ B(E), then it is also
an invariant subspace for W .

Indeed, such an invariant subspace must be of the form L ⊗ E , where L is an
invariant subspace for Z. Now, if for all i

Zi =

(
Z̃i ∗
0 ∗

)
,

then ZiI = IZ̃i for I = ( I0 ), and so Z̃ ∈ Ω′. Thus f0 extends to Z̃, and since it is

an nc function it respects intertwiners, so WI = f0(Z)I = If0(Z̃). Therefore

W =

(
f0(Z̃) ∗
0 ∗

)
.

This proves the claim.

Now, assume for contradiction that W /∈ alg(Z) ⊗ B(E). Then there exists a
linear functional ψ : Mn ⊗B(E) → C such that ψ(p(Z)) = 0 for all p ∈ Fd ⊗B(E),
while ψ(W ) �= 0. We may find some k ∈ N and u, v ∈ (Cn ⊗ E)k such that
ψ(T ) = 〈T (k)u, v〉 for all T ∈ Mn ⊗B(E), where T (k) denotes the k-fold ampliation
of T , i.e., T (k) = T ⊕ T ⊕ · · · ⊕ T (k times). Denote M = [alg(Z(k)) ⊗ B(E)]u.
Since 〈p(Z(k))u, v〉 = 0 for all p ∈ Fd ⊗ B(E), M is a nontrivial invariant subspace
for alg(Z(k)) ⊗ B(E), and v ∈ M⊥. Applying the claim to Z(k) and W (k) in
place of Z and W , we find that M is invariant under W (k) as well. In particular,
ψ(W ) = 〈W (k)u, v〉 = 0, a contradiction. �
Lemma 4.5. Let Ω ⊆ Bd, and let JΩ be the ideal in H∞(Bd) consisting of all

functions vanishing on Ω. Then JΩH2
d = H⊥

Ω .

Proof. Put G = JΩH2
d. The space G is invariant under MultH2

d and Multr H2
d. To

prove that G = H⊥
Ω , we invoke the correspondence between subspaces of F(Cd)

invariant under the left and right shift operators, and two-sided ideals in Ld (de-
veloped in [20, Section 2]), together with the identifications made in Theorem 3.1
and Proposition 3.2.

By [20, Theorem 2.1], the map μ that sends a weak-operator closed ideal J �
H∞(Bd) to its closure in H2

d is invertible, with inverse ι : M �→ M ∩ H∞(Bd).
The linear space H⊥

Ω is equal to the space of all functions in H2
d that vanish on

Ω. It is therefore invariant under left and right multiplications. The set N =
H⊥

Ω ∩ H∞(Bd) = ι(H⊥
Ω) is therefore a weak-operator closed two-sided ideal, and

by definition it is equal to all functions in H∞(Bd) that vanish on Ω. Hence
N = JΩ = ι(G), and we conclude that G = H⊥

Ω . �
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Let k be an nc kernel on a set Ω̃ ⊆ Md. Then k is said to have the complete Pick

property if whenever E is a finite-dimensional Hilbert space, Ω ⊂ Ω̃, and we are
given an nc function f0 : Ω → M1 ⊗ B(E) :=

⊔
n Mn(B(E)) that extends to an nc

function defined on the full nc envelope Ω′ of Ω (in Ω̃), then there exists a multiplier
f ∈ Mult(H(k)⊗E) = MultH(k⊗IE) such that f

∣∣
Ω
= f0 and ‖Mf‖MultH(k)⊗E ≤ 1,

if and only if the kernel

(4.1) KdBR(Z,W )(P ) = k(Z,W )(P )⊗ IE − f0(Z) [k(Z,W )(P )⊗ IE ] f0(W )∗

is a cp nc kernel on Ω.
If k has the complete Pick property, then it is called a complete Pick kernel, and

H(k) is said to be a complete Pick space.

Remark 4.6. It follows from the definitions of nc reproducing kernel Hilbert space

that when Ω = Ω̃, then the positivity of the kernel KdBR as in (4.1) on Ω̃ is
a necessary and sufficient condition for f0 to be a multiplier of norm less than
or equal to 1. Thus, for any kernel (not necessarily a complete Pick kernel), if
f is a multiplier of norm less than or equal to 1 and f0 = f

∣∣
Ω
, then KdBR is a

completely positive nc kernel on Ω. The special feature of kernels with the complete
Pick property is that positivity of KdBR on Ω is sufficient for the existence of a
contractive multiplier extending f0.

Theorem 4.7. H2
d is a complete Pick space.

Remark 4.8. The theorem follows from [14, Corollary 5.6] as a special case. Variants
of this theorem have also appeared before (see [12, 21, 50]), but not quite in this
form. Here we will give a proof using the methods of [21]—in particular the distance
formula—to spell out how these operator algebraic techniques apply to this nc
function theoretic problem. The referee has pointed out that [12, Theorem 2.1],
that is in turn based on Popescu’s commutant lifting theorem [63], can also be used
as a basis for a proof of the complete Pick property.

Proof. We need to show that for every finite-dimensional Hilbert space E , every
Ω ⊂ Bd, and every nc function f0 : Ω → M1 ⊗B(E) that extends to an nc function
defined on the full nc envelope Ω′ of Ω, the following holds:

There exists a multiplier f ∈ Mult(H2
d ⊗ E) such that f

∣∣
Ω
= f0 and

‖f‖Mult(H2
d⊗E) ≤ 1 if and only if the kernel KdBR associated with K

as in (4.1) is a cp nc kernel on Ω.

By Remark 4.6, we need only prove that positivity of KdBR implies the existence
of a multiplier f . We will prove the result for a finite set Ω. The result for arbitrary
sets follows by Corollary 2.6 and a compactness argument.

Let Ω = {Z1, . . . , Zn} and suppose that f0(Zi) = Wi for i = 1, . . . , n. By taking
direct sums and using the assumption that f0 extends to Ω′, we may assume that
Ω = {Z} and f0(Z) = W ∈ Mn. By the assumption that Z �→ W extends to an nc
function on Ω′, together with Lemma 4.4, there is some polynomial p ∈ Fd ⊗B(E)
(that is, a polynomial with matrix coefficients) such that p(Z) = W .

Assuming that KdBR defined as in (4.1) is a cp nc kernel on Ω, we need to find a
contractive multiplier f satisfying f(Z) = W . Let J = JΩ be the ideal in H∞(Bd)
consisting of all functions vanishing on Ω. If we can find g ∈ J ⊗ B(E) such that
‖p+ g‖ ≤ 1, then putting f = p+ g we will be done. Since J is weak-∗ closed, it
suffices to prove that dist(p,J ⊗B(E)) ≤ 1.
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Let G = JH2
d. The space G is invariant under MultH2

d and Multr H2
d. By

Davidson and Pitts’s distance formula [21, Corollary 2.2] we have

dist(p,J ⊗B(E)) = ‖(PG⊥ ⊗ IE)Mp(PG⊥ ⊗ IE)‖,
so we are led to compute the norm of this compression.

By Lemma 4.5, G⊥ = HΩ. Letting h =
∑

i KZ,ui,yi
⊗ εi =

∑
i KZ,ui,yi⊗εi be an

element of G⊥⊗E = HΩ⊗E , we write vi = yi⊗εi and calculate (using p(Z) = f0(Z))

‖h‖2 − ‖M∗
ph‖2

=
∑
i,j

〈 [(
K(Z,Z)(uju

∗
i )− f0(Z)K(Z,Z)(uju

∗
i )f0(Z)∗

)
⊗ IE

]
vj , vi

〉
≥ 0

(by the assumption that (4.1) is a cp nc kernel on Ω). This computation shows that
‖M∗

p

∣∣
G⊥⊗E‖ ≤ 1. But since ‖M∗

p

∣∣
G⊥⊗E‖ = ‖(PG⊥ ⊗ IE)M

∗
p (PG⊥ ⊗ IE)‖, it follows

that

dist(p,J ⊗B(E)) = ‖(PG⊥ ⊗ IE)Mp(PG⊥ ⊗ IE)‖ ≤ 1,

as required. �

5. Quotients of H2
d and H∞(Bd)

For a family S of nc functions on Bd, we define

VBd
(S) = {Z ∈ Bd : f(Z) = 0 for all f ∈ S}.

Given an nc set S, we define

I(S) = {p ∈ Fd : p(Z) = 0 for all Z ∈ S}.
Recall that we previously defined

JS = {f ∈ H∞(Bd) : f(Z) = 0 for all Z ∈ S}.
Henceforth, when we speak of an nc variety, we shall mean a set V ⊆ Bd which

is the joint zero set of a family of multipliers in MultH2
d = H∞(Bd). By Lemma

4.1, this is the same as the joint zero set of a family of functions in H2
d. Letting

JV � H∞(Bd) denote the ideal of bounded nc functions vanishing on V, we have
V = VBd

(JV). The ideal JV is the kernel of the restriction map f �→ f
∣∣
V
. We will

write PV for the orthogonal projection PV : H2
d → HV.

Lemma 5.1. For every f ∈ MultH2
d, the restriction f

∣∣
V
∈ MultHV. Moreover,

M
f
∣∣
V

= PVMf = PVMfPV.

Proof. The space HV is invariant for M∗
f . Indeed, by Lemma 2.2 the action of

M∗
f

∣∣
HV

on kernel functions is KW,v,y �→ KW,v,f(W )∗y. Using Lemma 2.4, we see

that f
∣∣
V

is a multiplier and that M∗
f
∣∣
V

= M∗
f

∣∣
HV

. �

Theorem 5.2. Let V ⊆ Bd be an nc variety. The map f �→ f
∣∣
V

is a completely
contractive and surjective homomorphism, which induces a completely isometric
isomorphism MultH2

d/JV → MultHV. In particular, MultHV = MultH2
d

∣∣
V
,

and for every g ∈ MultHV there exists f ∈ H∞(Bd) such that f
∣∣
V

= g and
‖f‖∞ = ‖g‖MultHV

.
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Proof. The map f �→ f
∣∣
V

is completely contractive by Lemma 5.1, and it is readily
seen that the kernel is JV. To see that this map is surjective and induces a com-
pletely isometric isomorphism MultH2

d/JV → MultHV, we use the complete Pick
property.

Let g be a matrix-valued multiplier in Mult(HV ⊗Ck). Suppose without loss of
generality that ‖g‖MultHV⊗Ck ≤ 1. Then we have that

KdBR(Z,W )(P ) = K(Z,W )(P )⊗ Ik − g(Z) [K(Z,W )(P )⊗ Ik] g(W )∗

is a cp nc kernel onV (recall Remark 4.6). By Theorem 4.7, g extends to a multiplier
f ∈ Mult(H2

d ⊗ Ck) of norm less than or equal to 1. In particular, the restriction
map f �→ f

∣∣
V

is surjective. The restriction map therefore induces a completely

contractive linear isomorphism Φ : MultH2
d/JV → MultHV. Φ is in fact a complete

isometry, since given g ∈ Mk(MultHV) we just observed that one can find an
f ∈ Mk(MultH2

d) with ‖f‖ = ‖g‖. This implies that ‖(Φn)
−1(g)‖ = ‖g‖. �

Recall the Bunce–Frazho–Popescu dilation theorem [18, 31, 61] which says that
if T = (T1, . . . , Td) is a pure row contraction on a Hilbert space H, then there is a
Hilbert space E of dimension d, and an isometry V : H → F(E)⊗ E such that V H
is a co-invariant subspace for the free shift L⊗ IE , and such that

Ti = V ∗(Li ⊗ IE)V, i = 1, 2, . . . , d.

Identifying H∞(Bd) with Ld gives rise to a functional calculus: for every pure row
contraction T , there is a weak-operator continuous, unital, completely contractive
homomorphism

ΦT : H∞(Bd) → alg
wot

(T ),

given by ΦT (f) = V ∗(f(L)⊗ IE)V (where f(L) is the image of f in Ld under the
isomorphism H∞(Bd) ∼= Ld). If T is a strict contraction (‖T‖ := ‖T‖row < 1),
then it is not hard to see that ΦT becomes the evaluation at T , that is,

ΦT

(∑
k∈Wd

akz
k

)
=

∑
k∈Wd

akT
k.

We obtain a functional calculus for multiplier algebras on nc varieties, versions of
which were observed in [68, 78].

Corollary 5.3. Let V ⊆ Bd be an nc variety. Let T be a pure row contraction. If
JV ⊆ kerΦT (in particular, if T ∈ V), then there is a weak-operator continuous,

unital completely contractive homomorphism from MultHV to alg
wot

(T ) mapping
Mz to T .

Proof. By [17, 2.3.5], the map ΦT : H∞(Bd) → alg
wot

(T ) induces a unital com-

pletely contractive homomorphism ΨT : H∞(Bd)/JV → alg
wot

(T ) satisfying ΨT ◦
qJV

= ΦT , where qJV
is the natural quotient map. Since by Theorem 5.2 and the

identification in Corollary 3.6, H∞(Bd)/JV is completely isometrically isomorphic
to MultHV, we obtain the desired map. Therefore, it remains to show that this
map is weak-operator continuous. Due to Davidson–Pitts [22] and Corollary 3.6,
the weak-∗ topology and the weak-operator topology coincide in H∞(Bd). In par-
ticular, the weak-∗ closed ideal JV is also wot-closed. As ΦT is wot-continuous,
the map ΨT induced on the quotient must be wot-continuous as well. �
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Theorem 5.4. Let V ⊆ Bd be an nc variety. Then MultHV = H∞(V) completely
isometrically.

To prove the above theorem, we need to recall a result of Ball–Marx–Vinnikov
[14, Theorem 3.1] in a very specific case.

Proposition 5.5. Let f ∈ Mn(H
∞(V)) satisfying ‖f‖∞ ≤ 1. Then f has an

extension f̃ ∈ Mn(H
∞(Bd)) with ‖f‖∞ ≤ 1.

Proof. This follows from the implication (1′) =⇒ (1) in [14, Theorem 3.1]. With
the notation of the latter reference, if we are given a set of points Ω ⊆ DQ (here
DQ = {X ∈ Md : ‖Q(X)‖ < 1}, where Q is some matrix-valued nc polynomial)
and two nc functions a ∈ T (Ω′,L(Y , E)nc), b ∈ T (Ω′,L(U , E)nc), where Ω′ is the
DQ-relative full nc envelope of Ω, then the inequality a(Z)a(Z)∗ − b(Z)b(Z)∗ ≥ 0
for all Z ∈ Ω′ implies there exists an S : DQ → L(U ,Y)nc in the nc Schur–Agler
class satisfying a(Z)S(Z) = b(Z) for all Z ∈ Ω.

Letting Q(z) :=
[
z1 z2 . . . zd

]
and Ω := V we obtain that DQ = Bd and

Ω′ = Ω. Letting Y = U = E = Cn, a(Z) = In for all Z ∈ V, and b(Z) = f(Z) for
all Z ∈ V, we note that

a(Z)a(Z)∗ − b(Z)b(Z)∗ = 1− f(Z)f(Z)∗ ≥ 0 for all Z ∈ V.

Thus, by the above result, there exists an nc Schur–Agler class function f̃ := S :
Bd →

⊔∞
m=1(M

d
n)

m×m satisfying f̃(Z) = f(Z) for all Z ∈ V. The fact that f̃ is a

Schur–Agler class function implies that f̃ ∈ Mn(H
∞(Bd)) and ‖f̃‖∞ ≤ 1. �

Proof of Theorem 5.4. Suppose f ∈ Mn(H
∞(V)) and ‖f‖∞ ≤ 1. By Proposition

5.5, there exists f̃ ∈ Mn(H
∞(Bd)) such that f̃ |V = f . Theorem 5.2 implies that

f ∈ Mn(MultHV) and ‖f‖MultHV
≤ 1. The converse direction follows immediately

by Theorem 5.2. �

In Section 7, we will give an alternative proof of Theorem 5.4 in the case of ho-
mogeneous nc varieties (that proof will not require invoking the machinery of [14]).

6. Isomorphisms and isometric isomorphisms

6.1. The space of finite-dimensional representations. The finite-dimensional,
unital, completely contractive representations of H∞(Bd) = Ld have been worked
out in [20, Section 3] (for the case d = ∞, one should also see the erratum of that
paper). Let us denote by Repk(A) the space of all unital completely contractive
representations of an operator algebra A on Ck.

Theorem 6.1 (Davidson–Pitts [20]). For all d ∈ N ∪ {∞} and k ∈ N, there is
a natural continuous projection πd,k of Repk(H

∞(Bd)) onto the closed unit ball

Bd(k), given by
πd,k(Φ) = (Φ(z1), . . . ,Φ(zd)).

For every T ∈ Bd(k), there is a unique weak-operator continuous representation
ΦT ∈ π−1

d,k(T ), given by Popescu’s functional calculus [64]. If d < ∞ and T ∈ Bd(k),

then π−1
d,k(T ) is the singleton {ΦT }.

Remark 6.2. By Corollary 5.7 in [52], a tuple T ∈ Bd gives rise to a weak-∗
continuous unital representation, mapping zi to Ti, if and only if T is completely
noncoisometric (c.n.c.), meaning that there is no vector v in the space on which
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T acts such that ‖
∑

|α|=n(T
α)∗v‖ = ‖v‖ for all n. If ‖T‖ < 1, then clearly T is

c.n.c. Additionally, if ‖T‖ = 1 and T is pure (meaning that
∑

|α|=n(T
α)∗ converges

sot to 0 as n → ∞), then T is also c.n.c. In fact, since the unit sphere of a
finite-dimensional space is compact, it follows that T ∈ Bd is c.n.c. if and only if
it is pure. Thus we define for every pure T ∈ Bd the unique weak-∗ continuous
representation ΦT that maps zi to Ti. For every f ∈ H∞(Bd) and every pure T ,
one can evaluate f at the point T , by f(T ) = ΦT (f).

For V ⊆ Bd, we denote by V
p
the set of all pure T such that JV ⊆ kerΦT . This

allows us to get a handle on the finite-dimensional representations of H∞(V).

Theorem 6.3. Let V ⊆ Bd be an nc variety. For every k ∈ N, there is a natural
continuous projection πd,k of Repk(H

∞(V)) into the closed unit ball Bd(k), given
by

πd,k(Φ) = (Φ(z1), . . . ,Φ(zd)).

For every T ∈ V
p
, there is a unique weak-∗ continuous representation ΦT ∈ π−1

d,k(T ),

and these are the only weak-∗ continuous elements in Repk(H
∞(V)). If d < ∞ and

T ∈ V, then π−1
d,k(T ) is the singleton {ΦT }. Moreover, if d < ∞, then

πd,k(Repk(H
∞(V))) ∩Bd(k) = V(k).

Proof. Every representation Φ ∈ Repk(H
∞(V)) can be thought of as an element of

the space Repk(H
∞(Bd)) as well: for each f ∈ H∞(Bd) the map f �→ Φ(f |V) is

indeed a unital completely contractive representation of Bd on Ck. Thus πd,k from

Theorem 6.1 maps Repk(H
∞(V)) into the closed unit ball Bd(k).

Now let T ∈ V
p
. By Remark 6.2, as T is pure, there exists a weak-∗ continuous

representation ΦT such that πd,k(ΦT ) = T . Since these are the unique weak-∗
continuous elements of Repk(H

∞(Bd)), they are the unique weak-∗ continuous
elements of Repk(H

∞(V)) as well.
The penultimate assertion follows from the last statement of Theorem 6.1. As

for the last assertion, if Φ ∈ Repk(H
∞(V)) and T := πd,k(Φ) ∈ B(k), then by the

last statement of Theorem 6.1, ΦT (f) = Φ(f |V) for all f ∈ H∞(Bd). In particular,
for every f ∈ JV we have that f(T ) = ΦT (f) = Φ(0) = 0. This, together with fact
that T ∈ Bd(k), implies that T ∈ V(k). �
6.2. Completely contractive homomorphisms. Let V ⊆ Bd and W ⊆ Be be
nc varieties. Every completely contractive unital homomorphism α : H∞(V) →
H∞(W) induces a graded map

α∗ :
⊔
k

Repk(H
∞(W)) →

⊔
k

Repk(H
∞(V))

by α∗(Φ) = Φ ◦ α. If α is weak-∗ continuous, then α∗ maps weak-∗ continuous
representations to weak-∗ continuous representations. We obtain an nc map Gα :
W

p → Bd given by

Gα(W ) = πd,k(α
∗(ΦW )), W ∈ W

p
(k).

Proposition 6.4. Let V ⊆ Bd and W ⊆ Be be nc varieties, and let α : H∞(V) →
H∞(W) be a completely contractive unital homomorphism. Then there exists an
nc map G : Be → Bd such that G

∣∣
W

= Gα

∣∣
W
. If α is also assumed to be weak-∗

continuous, then G maps W into V
p
and implements α:

α(f) = f ◦G, f ∈ H∞(V).
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Proof. For i = 1, . . . , d, let us define gi = α(zi), where zi denotes the nc coordinate
function. Then gi ∈ H∞(W) for all i. We define the nc map G : W → Md by

G(W ) = (g1(W ), . . . , gd(W )), W ∈ W.

Then for every i = 1, . . . , d, and every W ∈ W(k),

α∗(ΦW )(zi) = ΦW (α(zi)) = gi(W ),

which shows that G(W ) = Gα(W ) for all W ∈ W. In particular, this means that
G(W ) ∈ Bd for all W ∈ W, so G ∈ H∞(W) ⊗ Cd has norm less than or equal to
1. By Theorem 5.2, we can therefore extend G from W to Be to obtain a function
(which we still call G) in H∞(Be)⊗ Cd with the same norm.

Now, if α is weak-∗ continuous, then α∗ preserves weak-∗ continuous representa-
tions. Thus, for every W ∈ W, α∗(ΦW ) is determined completely by πd,k(α

∗(ΦW )),
therefore it is ΦG(W ). So

α(f)(W ) = ΦW ◦ α(f) = ΦG(W )(f) = f ◦G(W ).

�

6.3. Completely isometric isomorphisms. An automorphism of the nc ball Bd

is an nc holomorphic map ϕ : Bd → Bd with an nc holomorphic inverse. We let
Aut(Bd) denote the group of automorphisms of Bd. If V,W ⊆ Bd, and W = ϕ(V)
for some ϕ ∈ Aut(Bd), then we say that V and W are conformally equivalent.

Proposition 6.5. Every ϕ ∈ Aut(Bd) is determined uniquely by its restriction to
Bd(1) = Bd. In particular, Aut(Bd) ∼= Aut(Bd).

Proof. This automorphism group has been touched upon several times in the lit-
erature (e.g., [20, Theorem 4.11], [34], [48], [51], or [69, Theorem 2.8]). In [69],
Popescu proved that Aut(B(X )d1)

∼= Aut(Bd). In a way similar to the proof of The-
orem 3.1 one can check that every function in Popescu’s Aut(B(X )d1) corresponds
naturally to a function in Aut(Bd) and vice versa. For d < ∞, one may also apply
Theorems 7 and 13 from [48] to obtain the result (it seems that their argument can
be adapted to the case d = ∞ as well).

Let us give an alternative proof in the case d < ∞ that is based on the well-
known structure of the automorphism group of matrix balls. Let Bd(n) be the
matrix unit ball in Mn(C)

d. Recall from [76, p. 273] that Bd(n) is a bounded
symmetric domain and its holomorphic automorphisms are given by

ϕ(Z) = (AZ +B)(CZ +D)−1,

where the matrix T =
(
A B
C D

)
belongs to SU(n, dn). Here we think of Z as an

n × dn-matrix Z = (Z1, . . . , Zd), and we have that A ∈ Mn(C), B ∈ Mn,dn(C),
C ∈ Mdn,n(C), and finally D ∈ Mdn(C).

Now assume that an automorphism ϕ ∈ Aut(Bd(n)) arises as the restriction to
Bd(n) of an nc map. Then, in particular, for every U ∈ Un we have

Uϕ(U∗ZU⊕d)U (⊕d)∗ = ϕ(Z).
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In other words, ϕ is a fixed point for the action of Un on Aut(Bd(n)). Writing it
out explicitly we get that

Uϕ(U∗ZU⊕d)U (⊕d)∗ = U(AU∗ZU⊕d +B)(CU∗ZU⊕d +D)−1U (⊕d)∗

= (UAU∗Z + UBU (⊕d)∗)U⊕d(U⊕dCU∗ZU⊕d + U⊕dD)−1

= (UAU∗Z + UBU (⊕d)∗)(U⊕dCU∗Z + U⊕dDU (⊕d)∗)−1.

Hence for every U ∈ Un, the matrix T and the matrix U⊕(d+1)TU (⊕(d+1))∗ induce
the same holomorphic automorphism on Bd(n). The holomorphic automorphisms
of Bd(n) are isomorphic to SU(n, dn)/Z(SU(n, dn)). This implies that for every
U ∈ Un, the matrix T−1U⊕(d+1)TU (⊕(d+1))∗ is in the center of SU(n, dn). Now
note that the map

U �→ T−1U⊕(d+1)TU (⊕(d+1))∗

is continuous on Un. Since Un is connected and the center is finite, we see that the
map is constant and thus T = U⊕(d+1)TU (⊕(d+1))∗ for every U ∈ Un. Since Un is
Zariski dense in GLn we can conclude that T = S⊕(d+1)T (S⊕(d+1))−1, for every
S ∈ GLn. Thus A = aIn is a scalar matrix, and if we write B = (B1 · · ·Bd), then
each Bj is scalar, i.e., there exists a row vector v ∈ M1,d(C) such that B = v ⊗ In
and similarly C = w ⊗ In and D = X ⊗ In, where w ∈ Md,1(C) and X ∈ Md(C).
Note that the assumption that T ∈ SU(n, dn) implies that

(
a v
w X

)
∈ SU(1, d), and

thus ϕ is induced by an automorphism of the commutative ball Bd(1) = Bd. �
Proposition 6.6. Every automorphism φ ∈ Aut(Bd) extends to an automorphism
Φ ∈ Aut(Bd+e).

Proof. This follows from Proposition 6.5 together with the commutative result [73,
Section 2.2.8]. �

The following is a version of Cartan’s uniqueness theorem in the nc setting. This,
too, has been considered, from different perspectives (e.g., [48] or [69]).

Let f : U → Md be an nc holomorphic function, where U is an nc domain. We
will write f = (f1, . . . , fd), and for every point Y ∈ U we will write the first order
nc derivative of f at Y as

Δf(Y, Y )(Z) = (Δf1(Y, Y )(Z), . . . ,Δfd(Y, Y )(Z)) .

Similarly for higher-order nc derivatives (for the notion of nc derivatives, see [44]).

Theorem 6.7. Let G ⊂ Md be a uniformly bounded nc domain. Let f : G → G
be an nc holomorphic function. Assume that Y ∈ G is such that f(Y ) = Y and
Δf(Y, Y ) = I. Then f(Z) = Z for every Z ∈ G.

Proof. Since f is an analytic function of bounded domains in Ms(C)
d and the

derivative of f at Y can be identified with Δf(Y, Y ), we can apply the classical
Cartan’s uniqueness theorem [73, Theorem 2.1.1] to get that f is the identity on
level s. Now writing out the Taylor-Taylor power series for f around Y (see [44]),
we get that in fact, f is the identity on a noncommutative ball with center Y . Using
the uniqueness theorem we can conclude that f is the identity on every level that
is multiple of s. Using the fact that f is an nc function and G is an nc domain, if
X ∈ G ∩Mn(C)

d, then
X⊕s = f(X⊕s) = f(X)⊕s.

Conclude that f(X) = X and we are done. �
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By [20, Theorem 4.1] and the identification in Corollary 3.6, there exists a homo-
morphism τ : Aut(H∞(Bd)) → Aut(Bd) that has a continuous section κ carrying
Aut(Bd) to the subgroup Autu(H

∞(Bd)) of unitarily implemented automorphisms
of H∞(Bd). That is, for every φ ∈ Aut(Bd), there is a unitary Uφ ∈ B(F(Cd))
such that κ(φ) is a completely isometric automorphism of H∞(Bd) of the form

κ(φ)(Mf ) = U∗
φMfUφ for all f ∈ H∞(Bd).

We record the following.

Proposition 6.8 (Davdison–Pitts [20]). Every φ ∈ Aut(Bd) gives rise to a unitary
on H2

d that implements a completely isometric automorphism of H∞(Bd).

We easily obtain a sufficient condition for two algebras H∞(V) and H∞(W) to
be completely isometrically isomorphic.

Proposition 6.9. Let V and W be two nc varieties in Bd and Be, respectively.
Suppose that there exist nc holomorphic functions G : Be → Bd and H : Bd → Be

such that G ◦ H
∣∣
V

= idV and H ◦ G
∣∣
W

= idW. Then H∞(V) and H∞(W) are
completely isometrically isomorphic.

In particular, if there exists ϕ ∈ Aut(Bd) such that ϕ(W) = V, then H∞(V)
and H∞(W) are completely isometrically isomorphic.

Proof. It is easy to check that the map α : H∞(V) → H∞(W) given by α(f) = f◦G
is a completely isometric isomorphism. �

Remark 6.10. We conjecture that in the case d = e, if there exist G and H as in
the first part of the theorem, then there exists an automorphism ϕ as in the second
part of the theorem. We have not been able to prove this. In the next section, we
will prove that if the varieties under consideration are homogeneous, then this is
indeed true.

We now generalize the maximum modulus principle for nc holomorphic functions
mapping domains which are invariant under unitary conjugation and containing 0
into Md.

Lemma 6.11 (maximum principle). Let Ω ⊆ Me be an nc domain invariant under
unitary conjugation and containing the origin, and let G : Ω → Md be an nc
holomorphic function. Suppose there exists W0 ∈ Ω such that

‖G(W0)‖ = max
W∈Ω

‖G(W )‖,

where ‖ · ‖ is the row operator norm on Md. Then G is constant.

Proof. Let G : Ω → Md be an nc holomorphic function such that ‖G(W0)‖ =
maxW∈Ω ‖G(W )‖ for some W0 ∈ Ω(n). We may assume that ‖G(W0)‖ = 1 so that
G(Ω) ⊆ Bd. Let ϕ be a (unitary) automorphism of the d-dimensional ball mapping
G(0) to (‖G(0)‖, 0, . . . , 0), and set Gϕ := ϕ ◦ G. As G(W0) ∈ ∂Bd(n), we have
that Gϕ(W0) ∈ ∂Bd(n) as well. So there exists a unit vector u ∈ Cnd such that
v := Gϕ(W0)u is a unit vector in Cn. Now consider the function ψ : Ω(n) → D given
by ψ(W ) = 〈Gϕ(W )u, v〉. Then |ψ(W )| ≤ 1 for all W ∈ Ω(n), but ψ(W0) = 1,
so by the maximum modulus principle ψ is constant on Ω(n). By the Cauchy–
Schwarz inequality, the function φ : Ω(n) → Cn given by φ : W �→ Gϕ(W )u must
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be constantly equal to v. Write

u =

⎡⎢⎣u1

...
ud

⎤⎥⎦ and Gϕ = (Gϕ
1 , . . . , G

ϕ
d ).

So for every W ∈ Ω(n) we have v = Gϕ(W )u = Gϕ(0)u = u1. Thus, u2 = · · · =
ud = 0, so Gϕ

1 (W )u1 = u1 for all W ∈ Ω(n). But Gϕ is an nc function, so for
every unitary U ∈ Mn and W ∈ Ω(n) we have Gϕ

1 (W )Uu1 = UGϕ
1 (U

∗WU)u1 =
Uu1. Thus Gϕ

1 (W ) = In for all W ∈ Ω(n) so that Gϕ(W ) = (In, 0, . . . , 0), and
consequently we have G(W ) = G(0) for all W ∈ Ω(n).

In fact, G must be the constant G(0) on all levels of Ω. To see this, note that for
each level m of Ω, the zero element is mapped to G(0) ∈ ∂Bd(m), so the previous
argument implies that G must then be equal to the constant G(0) on Be(m). �

Theorem 6.12. Let V ⊆ Bd and W ⊆ Be be nc varieties, and let α : H∞(V) →
H∞(W) be a completely isometric isomorphism. Assume that d and e are finite or
that α is weak-∗ continuous. Then there exists an nc map G : Be → Bd such that
G
∣∣
W

= Gα|W maps W bijectively onto V, which implements α by the formula

α(f) = f ◦G, f ∈ H∞(V).

Proof. By Proposition 6.4, there is an nc map G = (G1, . . . , Gd) : Be → Bd such
thatG

∣∣
W

= Gα|W. We first show that the injectivity of α implies that G(Be) ⊆ Bd.
Assuming the opposite, the maximum principle (Lemma 6.11) implies that G is
constant of norm 1. By the construction of G, we have that Gi = α(zi), where zi
denotes the coordinate nc function z �→ zi restricted to W. Thus, zi−Gi(0) ∈ kerα.
As α is injective, we obtain that zi is the constant Gi(0) for all i = 1, 2, . . . . Since
‖G(0)‖ = 1, we conclude that W must be empty, which is of course a contradiction.
Thus, G(Be) ⊆ Bd.

Finally, we prove that α is implemented by composition with G. In the case
that d is finite, then as G(W) ⊆ Bd, Theorem 6.3 implies that π−1

d,k(G(W )) is the

singleton {ΦG(W )} for every k ∈ N and W ∈ W(k). Thus, α∗(ΦW ) = ΦG(W ) for
all W ∈ W. In the case that α is weak-∗ continuous, then α preserves weak-∗
continuous representations. Since evaluations by elements of V

p
are the only weak-

∗ continuous elements of Repk(H
∞(V)) and since G(W) ⊆ Bd, we must have that

α∗(ΦW ) = ΦG(W ) for all W ∈ W. In any case we conclude that G(W) ⊆ V and

α(f)(W ) = ΦW (α(f)) = α∗(ΦW )(f) = ΦG(W )(f) = (f ◦G)(W )

for every f ∈ H∞(V) and W ∈ W. Replacing the roles of α and α−1 (which must
be weak-∗ continuous if α is weak-∗ continuous) yields an nc map H : Bd → Be

mapping W into V such that G ◦H
∣∣
V
= idV and H ◦G

∣∣
W

= idW. �

Theorem 6.12 shows that in the case where d, e ∈ N, every completely isometric
isomorphism is implemented by a composition with a biholomorphism. If follows
easily (using Lemma 2.5) that such an isomorphism is weak-∗ continuous. We
record this in the following.
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Corollary 6.13. Let V ⊆ Bd and W ⊆ Be be nc varieties with d, e ∈ N. Then ev-
ery completely isometric isomorphism from H∞(V) onto H∞(W) is automatically
weak-∗ continuous.

The following corollary to Theorem 6.12 should be read with the previous one
in mind.

Corollary 6.14. Let V ⊆ Bd and W ⊆ Be be nc varieties. Then H∞(V) and
H∞(W) are completely isometrically isomorphic via a weak-∗ continuous map if
and only if V and W are biholomorphically equivalent, in the sense that there exists
an nc holomorphic map G : Be → Bd and an nc holomorphic map H : Bd → Be

such that G
∣∣
W

= (H
∣∣
V
)−1.

Remark 6.15. The above corollary is our noncommutative generalization of [24,
Theorem 4.4]. Note that something remains to be desired, since, unlike in the
commutative setting, we are not able to show that G and H can be chosen to
be automorphisms of the nc ball. In Section 8 we will remedy this, under the
assumption that the varieties under consideration are homogeneous.

7. Homogeneous varieties and a homogeneous Nullstellensatz

In this section, unless stated otherwise, we always assume d < ∞. An ideal I �Fd

or I � H∞(Bd) is said to be homogeneous if for every f ∈ I, every homogeneous
component fn of f is in I.

Proposition 7.1. I is a homogeneous ideal in Fd if and only if for every polynomial
p ∈ I and for all t ∈ C the polynomial z �→ p(tz) is also in I. Likewise, J is a
homogeneous ideal in H∞(Bd) if and only if for every function f ∈ J and for all
t ∈ D, the function z �→ f(tz) is also in J .

Proof. Omitted (see [23, Proposition 6.3] for a similar result in the commutative
setting). �

A subset S ⊆ Bd is said to be homogeneous if tS ⊆ S for all t ∈ D. A variety
V ⊆ Bd that is homogeneous is called a homogeneous variety.

Proposition 7.2. If a set S ⊆ Bd is homogeneous, then both I(S) and JS are
homogeneous ideals. If an ideal I in Fd or H∞(Bd) is homogeneous, then VBd

(I)
is a homogeneous variety.

Proof. Clear from the definitions and Proposition 7.1. �

Theorem 7.3. Let J � Fd be a homogeneous ideal. Then

I(VBd
(J)) = J.

Proof. By definition, J ⊆ I(VBd
(J)). For the converse, note that by Propositions

7.1 and 7.2, I(VBd
(J)) is also a homogeneous ideal. Let p /∈ J be a homogeneous

polynomial. We will find X ∈ VBd
(J) such that p(X) �= 0.

Identifying J as a subspace of H2
d, we consider the compression of the shift

Mz = (Mz1 , . . . ,Mzd) to J⊥ = H2
d � J :

S = PJ⊥MzPJ⊥ .

A homogeneous polynomial q satisfies q(S) = 0 if and only if q ∈ J . Therefore,
having chosen p /∈ J , we have p(S) �= 0 [78, Lemma 7.6]. Let Pn denote the
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orthogonal projection onto the polynomials of degree less than or equal to n. Since
J is homogeneous, Pn commutes with the projection of H2

d onto J⊥. It follows
that:

(1) for every n and every q ∈ J , q(PnSPn) = Pnq(S)Pn = 0; and
(2) for some n, p(PnSPn) = Pnp(S)Pn �= 0.

Letting n be as in (2) above, we pick some t �= 0 in the open unit disc. Then we
have that X := tPnSPn ∈ VBd

(J) while p(tPnSPn) �= 0. Thus p /∈ I(VBd
(J)), and

the proof is complete. �

Remark 7.4. Note that the result as stated is false for nonhomogeneous ideals, as
the example J = 〈xy − yx − 1〉 � F2 shows. This example shows that the result is
false if one replaces Bd with Md, or even with B(H)d for some Hilbert space H.
Thus, a perfect Nullstellensatz J = I(V (J)) does not hold without some further
assumptions. On the other hand, we will see below in Corollary 11.7 that a perfect
free Nullstellensatz does hold in the free commutative case.

Remark 7.5. For a version of the Nullstellensatz that works in the noncommuta-
tive and nonhomogeneous setting, see Amitsur’s Nullstellensatz [8]. Although our
result is rather simple minded in comparison, it does seem to contain independent
information. For a nonhomogeneous Nullstellensatz closer in spirit to our result,
see [42, Theorem 6.3]. For a closely related homogeneous Nullstellensatz, where the
variety consists of operator row contractions satisfying the relations, see [78, Theo-
rem 7.7].

Proposition 7.6. For a weak-∗ closed ideal J � H∞(Bd), the following are equiv-
alent:

(1) J is homogeneous.
(2) VBd

(J) is homogeneous.
(3) J is the weak-∗ closure of a homogeneous ideal I � Fd.

In fact, if J � H∞(Bd) is a weak-∗ closed homogeneous ideal, then

J = J ∩ Fd
w∗

,

and J ∩ Fd is the unique ideal in Fd with closure equal to J .

Proof. Omitted. �

Corollary 7.7. If V is a homogeneous holomorphic nc variety in Bd, then V is
in fact an algebraic variety: there exists I � Fd such that V = VBd

(I).

Proof. V = VBd
(JV). Now take I = JV ∩ Fd. �

The significance of the following result is that it shows that, in the context of
homogeneous varieties and ideals, it does not matter whether our starting point is a
variety or an ideal, since there is a bijective correspondence between homogeneous
weak-∗ closed ideals in H∞(Bd) and homogeneous varieties.

Theorem 7.8. If I � Fd, is homogeneous, then

JVBd
(I) = I

w∗
.

If J � H∞(Bd) is a homogeneous weak-∗ closed ideal, then

JVBd
(J) = J.
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Proof. It suffices to prove the second assertion, since VBd
(I) = VBd

(I
w∗

). Now, for
a homogeneous weak-∗ closed ideal J � H∞(Bd),

JVBd
(J) ∩ Fd = I(VBd

(J)) = I(VBd
(J ∩ Fd)) = J ∩ Fd,

where for the last equality we used Theorem 7.3. By Proposition 7.6 we find that
JVBd

(J) = J . �

If V is a homogeneous variety in Bd, and d < ∞, then we may present an
alternative proof of Theorem 5.4, and there is no need to invoke [14, Theorem 3.1].
First we need a couple of lemmas.

Lemma 7.9. Let Ω ⊂ Md be an open nc set containing 0 such that for every λ ∈ D

and every Z ∈ Ω we have λZ ∈ Ω as well. For θ ∈ [0, 2π] we define an action αθ

on the nc holomorphic functions on Ω via αθ(f)(Z) = f(eiθZ). Then the following
is true:

(i) The following function is n homogeneous on Ω:

fn(Z) =
1

2π

∫ 2π

0

αθ(f)(Z)e−inθdθ.

Furthermore, fn is a polynomial, and if f is n homogeneous, then fn = f
and fm = 0 for m �= n.

(ii) If Ω = Bd, then αθ induces a unitary action of the circle on H2
d. If V ⊆ Bd

is a homogeneous variety, then HV and H∞(V) are both invariant under
αθ for all θ ∈ [0, 2π].

Proof. For 0 < r < 1 and τ ∈ [0, 2π] we have

fn(re
iτZ) =

1

2π

∫ 2π

0

f(rei(θ+τ)Z)e−inθdθ =
rneinτ

2π

∫
|λ|=r

f(λZ)
dλ

λn
.

Since f(λZ) 1
λn is an analytic matrix-valued function on D \ {0}, we get that the

integral is independent of r, hence fn is n-homogeneous. The second statement of
(i) follows from the Taylor expansion of f in a neighborhood of the origin.

For (ii) we note that it is immediate that f �→ αθ(f) is a unitary operator on
H2

d and it preserves homogeneous components of the Taylor expansion around the
origin. This induces a unitarily implemented automorphism ofH∞(Bd). IfV ⊂ Bd

is a homogeneous variety, then its ideal is homogeneous and thus is invariant under
αθ, hence HV is also invariant under this action of the circle. We also note that each
αθ commutes with the projection onHV and thus it induces a unitarily implemented
automorphism on H∞(V). �
Lemma 7.10. Let V ⊂ Bd be a homogeneous variety. Let f be an nc holomorphic
function on V such that for every Z ∈ V and every λ ∈ D we have f(λZ) = λnf(Z).
Then:

(i) There exists an n-homogeneous polynomial p ∈ Fd such that p|V = f ;
(ii) f ∈ MultHV and ‖f‖∞ = ‖f‖Mult = ‖f‖HV

= ‖p‖∞ = ‖p‖Mult = ‖p‖H2
d
.

Proof. To prove (i) we extend, by definition, f to an nc holomorphic function f̃ on
a ball of radius ε around 0 and denote this ball by B. Since f is n-homogeneous we
can take f̃ to be a homogeneous polynomial of degree n, since for every Z ∈ V∩B:

f̃n(Z) =
1

2π

∫ 2π

0

f̃(eiθZ)e−inθdθ = f(Z).
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Now for every Z ∈ V we can find r > 0 such that rZ ∈ V∩B, and since both f̃ and
f are homogeneous we get that f̃(Z) = f(Z). Thus we have found a homogeneous

polynomial of degree n such that f̃ |V = f .
We first prove (ii) for homogeneous polynomials on all of Bd. Let p =

∑
k akz

αk ,
where for every k we have |αk| = n. Now ‖p‖2H2

d
=
∑

k |ak|2. Since Mzαk are

isometries with orthogonal ranges, we obtain that for every g ∈ H2
d:

‖Mpg‖2 =
∑
k

|a2k|‖Mzαk g‖2 = ‖g‖2
∑
k

|ak|2.

Now since the supremum norm coincides with the multiplier norm we have our
equality in the case of the entire ball.

To prove (ii) in general, we note first that since f is a restriction of a polynomial
it is bounded on V and, furthermore, it is a multiplier on HV. Now since V is
homogeneous, it is cut out by an ideal generated by polynomials that we shall denote
by IV. Let us identify HV = I⊥V inside H2

d; thus we may choose the polynomial
obtained in (i) to lie in HV. Then we have

‖f‖MultHV
≥ ‖f‖HV

= ‖p‖H2
d
= ‖p‖MultH2

d
≥ ‖f‖MultHV

.

Hence the inequalities are in fact equalities. For the supremum norm we first note
that ‖f‖∞ ≤ ‖f‖Mult; indeed, with p as above,

sup
X∈V

‖f(X)‖ ≤ ‖p‖∞ = ‖p‖MultH2
d
= ‖f‖MultHV

.

It remains to prove the reverse inequality. To this end we note that

‖f‖MultHV
= ‖f‖HV

= ‖f · 1‖HV
= ‖p(L)1‖HV

= ‖ lim
k→∞

p(PkLPk)1‖HV
≤ ‖f‖∞.

Here PkLPk is the compression of the shifts to the finite-dimensional space of poly-
nomials of degree less than or equal to k. (We can plug PkLPk into p since it is a
polynomial.) �

Proof of Theorem 5.4, for a homogeneous variety V⊆Bd, d<∞. We need to show
that if f ∈ Mn(H

∞(V)), then f is a multiplier and that ‖f‖MultHV
≤ ‖f‖∞ (the

reverse inequality follows immediately by Theorem 5.2).
Let f ∈ Mn(H

∞(V)). For every n ∈ N set

fn(Z) =
1

2π

∫ 2π

0

αθ(f)(Z)e−inθdθ ∀Z ∈ V.

Clearly, each fn is in H∞(V) with ‖fn‖∞ ≤ ‖f‖∞, and for every Z ∈ V and every
λ ∈ D we have fn(λZ) = λnfn(Z). Thus, by Lemma 7.10, the nc functions fn
are restrictions of polynomials pn, and for every n we have ‖f‖∞ = ‖f‖MultHV

=
‖f‖HV

= ‖p‖∞ = ‖p‖MultH2
d
= ‖p‖H2

d
.

Now, let 0 < r < 1. As
∑

n r
n‖pn‖∗ ≤ ‖f‖∞

1−r , where ‖ · ‖∗ stands for the norm

of either MultH2
d, H2

d, or H∞(Bd), the series gr =
∑

n r
npn defines a function

which is in MultH2
d = H∞(Bd). In addition, a simple computation shows that

gr(Z) = fr(Z) := f(rZ) for all Z ∈ V.
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Define S = PHV
LPHV

, that is, S is the compression of the shift L to HV. Then
recalling Lemma 5.1, we have

‖fr‖MultHV
= ‖PVMgrPV‖ = ‖gr(PVLPV)‖
= ‖g(rS)‖ = lim

k→∞
‖f(rPkSPk)‖

≤ ‖f‖∞.

Since f is the bounded pointwise limit of fr, letting r → 1, we conclude that f is
a multiplier and that ‖f‖MultHV

≤ ‖f‖∞. �

8. The isomorphism problem for homogeneous varieties

For every n, we write Md(n) = Md
n = Cd ⊗ Mn. Given a subset X ⊆ Md, we

define its matrix span mat-spanX to be the graded set

mat-spanX =
⊔
n

mat-spanX (n)

given by

mat-spanX (n) = span{[Id ⊗ T ](X) : X ∈ X (n) , T ∈ L(Mn)}.
(Here, L(Mn) denotes the linear maps on Mn.)

Lemma 8.1. Let F : Bd → Md be an nc map, and let X ⊆ Md. If ΔF (0, 0) is the
identity on X , then ΔF (0, 0) is equal to the identity on mat-spanX .

Proof. If F : Bd → Md is an nc map, then using [44, Proposition 2.15] we find
that ΔF (0, 0) acts as A⊗ I on Cd ⊗Mn, where A is a linear map on Cd. Because
ΔF (0, 0) is also an nc holomorphic function, the linear map A does not depend on
n. It follows that if we fix n, ΔF (0, 0)

∣∣
Md

n
commutes with every operator of the

form Id ⊗ T , where T is a linear map on Mn. The result follows. �
Lemma 8.2. Let X ⊆ Md be an nc set. Then for all n there exists a subspace Vn ⊆
Cd such that mat-spanX (n) = Vn ⊗Mn. There exists a minimal subspace V ⊆ Cd

such that mat-spanX (n) ⊆ V ⊗Mn for all n, and if d < ∞, then mat-spanX (n) =
V ⊗Mn for all sufficiently large n.

Proof. Denote X̃ = mat-spanX . Fix n. For every linear f : Cd → C, the space
(f ⊗ idMn

)X̃n is invariant under L(Mn). Therefore, either (f ⊗ idMn
)X̃n = 0 or

(f ⊗ idMn
)X̃n = Mn. If the latter holds for every f ∈ (Cd)∗, then X̃n = Cd ⊗Mn.

Let
Φn = {f ∈ (Cd)∗ : ‖f‖ = 1 and (f ⊗ idMn

)X̃n = 0}.
Put

Vn = {x ∈ Cd : f(x) = 0 for all f ∈ Φn}
(interpreted as Cd in case Φn = ∅). The fact that X̃ is an nc set containing zero
implies that Φn+1 ⊆ Φn. It follows that Vn ⊆ Vn+1 for all n.

We will now show that X̃n = Vn ⊗Mn. Obviously X̃n ⊆ Vn ⊗Mn. To prove the
converse, we first make some elementary observations. Suppose that

∑
xi ⊗ Ai ∈

X̃n, where A1, A2, . . . are linearly independent. Then from the definition of X̃n,
xi ⊗ Ai ∈ X̃n for all i, and therefore—again, from the definition of X̃n—it follows
that xi ⊗A ∈ X̃n for all A ∈ Mn.

Now let

W = {v ∈ Cd : v ⊗A ∈ X̃n for some nonzero A ∈ Mn}.
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Then by the above observations W is a subspace and W ⊗Mn ⊆ X̃n ⊆ Vn ⊗Mn.
Now if f ∈ (Cd)∗ satisfies f(W ) = 0, then f ∈ Φn. This implies that W = Vn.

Define V =
⋃

n Vn. If Φn = ∅ for some n, then V = Cd and X̃n = Cd ⊗Mn for
all sufficiently large n. Otherwise, if d < ∞, then the spaces Vn form an increasing
sequence of subspaces of Cd and therefore must stabilize. �

Lemma 8.3. Let V ⊂ Bd be a homogeneous variety, and let f : Bd → Bd be an
nc holomorphic function such that f |V is the identity. Then for every X ∈ V,

Δf(0, 0)(X) = X.

Proof. Recall that by the nc difference differential relation we have that for every
Y ∈ Bd and every t ∈ C× the following relation holds:

f(tY ) = f(tY )− f(0) = Δf(tY, 0)(tY − 0) = tΔf(tY, 0)(Y ).

Therefore, for X ∈ V we have that

X =
1

t
f(tX) = Δf(tX, 0)(X).

Since the above equality holds for every t ∈ C× and furthermore by [44, Theorem
7.46] Δf(·, ·) is an nc holomorphic function of order 1, we can take the limit as t
goes to 0 to obtain the desired result. �

Theorem 8.4. Let V ⊆ Bd and W ⊆ Be be homogeneous nc varieties, and let
α : H∞(V) → H∞(W) be a completely isometric isomorphism. Assume that d
and e are finite or that α is weak-∗ continuous. Then V and W are conformally
equivalent, in the sense that one may assume that there is some k such that V,W ⊆
Bk, and that under this assumption there exists an automorphism G ∈ Aut(Bk)
such that G(W) = V, and such that

α(f) = f ◦G, f ∈ H∞(V).

Proof. By Lemma 8.2, there are increasing sequences of subspaces Vn ⊆ Cd and
Wn ⊆ Ce such that for every n,

mat-spanV(n) = Vn ⊗Mn and mat-spanW(n) = Wn ⊗Mn.

Put V =
⋃

n Vn and W =
⋃

n Wn. Since V ⊆
⊔

n(V ⊗ Mn) ∩ Bd and W ⊆⊔
n(W ⊗ Mn) ∩ Be, we may as well assume that

⊔
n(V ⊗ Mn) ∩ Bd = Bd and⊔

n(W ⊗Mn) ∩Be = Be (otherwise, we restrict our attention to these subballs).
By Theorem 6.12, we find that there are nc holomorphic maps G : Be → Bd

and H : Bd → Be such that α(f) = f ◦G for f ∈ H∞(V) and α−1(g) = g ◦H for
g ∈ H∞(W). We need to show that G ◦H and H ◦G are equal to the identity on
Be and Bd, respectively.

Define F = G ◦H. As F fixes the homogeneous variety V, Lemma 8.3 says that
the derivative ΔF (0, 0) fixes every element in V. By Lemma 8.1, ΔF (0, 0) fixes
every point of (mat-spanV)(n) = Vn ⊗ Mn, for all n. We claim that ΔF (0, 0) is
the identity. Indeed, in Lemma 8.1 we noted that there is some linear A such that
ΔF (0, 0) acts as A ⊗ In on Cd ⊗ Mn, so A

∣∣
Vn

is the identity. Since ΔF (0, 0) is

continuous, it follows that A is the identity on V and that ΔF (0, 0) is the identity
as claimed. Since F (0n) = 0n, Theorem 6.7 implies that F is the identity on Bd.

In the same way, we obtain that H ◦ G is the identity on Be. This shows that
d = e and that G,H are automorphisms of Bd, as required. �
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Remark 8.5. We cannot obtain that V and W are related by an automorphism,
without first embedding them in some Bk: consider V = B∞ and

W = {Z = (Z1, Z2, . . .) ∈ B∞ : Z1 = 0}.
Then clearly H∞(V) = H∞(B∞) ∼= H∞(W), but there is no automorphism of
B∞ that takes B∞ onto W. Of course, after restricting our attention to the matrix
spans, the problem disappears.

Corollary 8.6. Let V,W ⊆ Bd be two homogeneous varieties. Then H∞(V)
and H∞(W) are completely isometrically isomorphic via a weak-∗ continuous map
if and only if V and W are conformally equivalent in the sense of Theorem 8.4.
Furthermore, every weak-∗ continuous completely isometric isomorphism is imple-
mented by composition with an automorphism of Bd. (Recall that if d ∈ N, then
every completely isometric isomorphism is automatically weak-∗ continuous.)

We shall now show that if two homogeneous nc varieties V,W ⊆ Bd are confor-
mally equivalent, then V is the image of W under an invertible linear transforma-
tion. We start with the following lemma.

Lemma 8.7. Let V,W ⊆ Bd be two conformally equivalent homogeneous varieties.
If 0 is not mapped to 0, then there exist two discs D1 ⊆ V(1) and D2 ⊆ W(1), both
containing 0, such that D1 is mapped by the conformal equivalence onto D2.

Proof. Let G ∈ Aut(Bd) be an automorphism mapping V onto W. If 0 is not
mapped to 0, then both V := V(1) and W := W(1) are nontrivial homogeneous
varieties which are conformally equivalent. Since automorphisms of the commuta-
tive ball Bd := Bd(1) map affine sets to affine sets, G maps affine discs to affine
discs. Thus the disc D1 ⊆ V spanned by G−1(0) is mapped to a disc D2 containing
0. As 0 �= G(0) ∈ W ∩D2, D2 is the disc spanned by G(0) and therefore must be
contained in W . �

Proposition 8.8. Let V,W ⊆ Bd be two conformally equivalent homogeneous
varieties. Then there exists a conformal equivalence F of V onto W that maps 0
to 0.

Proof. We import the “disc trick” from [23] to the current setting (see also [74,
Lemma 5.9]). Let G be a conformal equivalence mapping V onto W. If 0 is
mapped by G to 0, we are done. Assume that G(0) �= 0. We will prove that there
exists an automorphism F , mapping V onto W, such that F (0) = 0.

Lemma 8.7 implies there exist two discs D1 ⊆ V(1) and D2 ⊆ W(1) such that
G(D1) = D2. Define

O(0;V) := {z ∈ D1 : z = F (0) for some automorphism F of V}
and

O(0;V,W) :=
{
z ∈ D2 : z = F (0) for some conformal equivalence

F of V onto W

}
.

Since homogeneous varieties are invariant under multiplication by complex num-
bers, it is easy to check that these sets are circular, that is, for every μ ∈ O(0;V)
and ν ∈ O(0;V,W), it holds that Cμ,D1

:= {z ∈ D1 : |z| = |μ|} ⊆ O(0;V) and
Cν,D2

:= {z ∈ D2 : |z| = |ν|} ⊆ O(0;V,W).
Now, asG(0) belongs toO(0;V,W), we obtain that C := CG(0),D2

⊆ O(0;V,W).

Therefore, the circle G−1(C) is a subset of O(0;V); note that this circle passes
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through the point 0 = G−1(G(0)). As O(0;V) is circular, every point of the inte-
rior of the circle G−1(C) lies in O(0;V). Thus, the interior of the circle C must
be a subset of O(0;V,W). But the interior of C contains 0. We conclude that
0 ∈ O(0;V,W). �

Corollary 8.9. Let V,W ⊆ Bd be two conformally equivalent homogeneous vari-
eties. Then there is a unitary transformation which maps V onto W.

Proof. Suppose that there exists ψ ∈ Aut(Bd) such that W = ψ(V). By Proposi-
tion 8.8, V and W are conformally equivalent via a 0 preserving map ϕ ∈ Aut(Bd).
An automorphism ϕ ∈ Aut(Bd) = Aut(Bd) such that ϕ(0) = 0 is a unitary transfor-
mation [73, Theorem 2.2.5]. Alternatively, the free version of Cartan’s uniqueness
theorem [48, Theorem 7] says that if there exists a 0 preserving nc automorphism of
a circular bounded nc domain, then it is the restriction of a unitary linear map. �

Corollary 8.10. Let V ⊆ Bd and W ⊆ Be be two homogeneous varieties. Then
H∞(V) and H∞(W) are completely isometrically isomorphic via a weak-∗ contin-
uous map, if and only if there is an embedding V,W ⊆ Bk and a unitary trans-
formation which maps V onto W (in the case d < ∞, then the weak-∗ continuity
requirement is superfluous).

In Theorem 10.3, we will show that when considering norm closed analogues of
the multiplier algebra, or when d < ∞, the condition “completely isometrically
isomorphic” can be weakened to “isometrically isomorphic”.

9. Algebras of continuous functions

In this section, we consider algebras of continuous multipliers on subvarieties
of the noncommutative ball. First, we require a few definitions. Let Ω ⊂ Md be
an nc subset, and let f : Ω → M1 be an nc function. We say that f is uniformly
continuous on Ω if for every ε > 0 there exists a δ > 0 such that for every n ∈ N we
have that if X,Y ∈ Ω(n) are such that ‖X−Y ‖ < δ, then ‖f(X)−f(Y )‖ < ε (recall
that for A ∈ Ω(n) we let ‖A‖ denote the norm of the row operator (A1, . . . , Ad) :
(Cn)d → Cn).

Let Ω ⊂ Md be an nc set, and let f : Ω → M1 be a uniformly continuous nc
function. Given an ε > 0, the δ that we obtain from uniform continuity actually
satisfies the fact that for every X ∈ Ω(n) and Y ∈ Ω(m) such that ‖X⊕�/n −
Y ⊕�/m‖ < δ, where � is a common multiple of n and m, we have that ‖f(X)⊕�/n−
f(Y )⊕�/m‖ < ε.

The proof of the following lemma is standard and we state it for the sake of
completeness.

Lemma 9.1. Let Ω ⊂ Md be an nc set. Then:

(i) A linear combination of nc functions that are uniformly continuous on Ω
is uniformly continuous on Ω.

(ii) A product of two nc functions that are bounded and uniformly continuous
on Ω is uniformly continuous on Ω.

(iii) If a sequence of bounded and uniformly continuous nc functions on Ω con-
verges in the supremum norm, then the limit is also bounded and uniformly
continuous on Ω.



NC ANALYTIC FUNCTIONS ON NC VARIETIES 8673

Corollary 9.2. Let Ω ⊂ Md be a bounded nc set. Then the polynomials are uni-
formly continuous on Ω.

This leads us to define the following two algebras. Let V ⊆ Bd. Let A(V)
denote all functions in H∞(V) which continue uniformly continuously to V, and
let AV denote the norm closure of the image of the polynomials under the quotient
map H∞(Bd) → H∞(V). It is clear from the Lemma 9.1 and Corollary 9.2 that
AV ⊆ A(V).

In this section we treat these algebras, concentrating mostly on homogeneous
varieties. We will prove that A(V) = AV in the case that V is a homogeneous
variety. We then obtain a classification of the algebras of continuous holomorphic
functions A(V) analogous to the classification of algebras of bounded holomorphic
functions. We will also obtain a homogeneous Nullstellensatz here in the context
of algebras of continuous functions.

9.1. The equality A(V) = AV for homogeneous varieties. For a homogeneous
variety V ⊆ B, we denote by V its closure in Bd. The following notion is a weaker
version of uniform continuity that will later turn out to be equivalent in the case
of homogeneous varieties.

LetV be a homogeneous variety inBd, and let f ∈ H∞(V). We will say that f is
radially uniformly continuous on V if f for every ε > 0 there exists a δ > 0 such that
for every r, s ∈ (0, 1) and every X ∈ Bd, if |r − s| < δ, then ‖f(rX)− f(sX)‖ < ε.
Every radially uniformly continuous function in H∞(V) extends to an nc function
f : V → M1, which is radially continuous at every point of the boundary (we
will see below that such a function is in fact uniformly continuous on V). It is
immediate that linear combinations, products, and uniform limits of functions that
are radially uniformly continuous are also radially uniformly continuous.

Proposition 9.3. Let V be a homogeneous variety in Bd, and let f ∈ H∞(V).
Then f ∈ AV if and only if f is radially uniformly continuous on V.

Proof. In the proof we will use the following fact repeatedly:

‖f‖ = sup {‖f(X)‖ | X ∈ V} .
Assume that f ∈ H∞(V) is radially uniformly continuous on V. Let fr(Z) = f(rZ)
for all Z ∈ V. Applying the methods of Lemma 7.10, we see that for d < ∞, fr
is a norm converging series of n-homogeneous polynomials. If d = ∞, a similar
argument shows that fr is a norm converging series of n-homogeneous holomorphic
nc-functions, where each—due to the Fock structure of H2

d—is in the norm closure
of the monomials of degree n. In any case, fr ∈ AV. In addition, the net fr
sot-converges to f as r → 1. We need to show that the convergence is in fact
in norm. It suffices to show that for every ε > 0, there exists δ > 0 such that
if 1 − δ < r < 1, then ‖fr − f‖ < ε. Given ε > 0, let us choose δ from uniform
continuity that corresponds to ε

2 . Now for every r ∈ (1−δ, 1), we can choose X ∈ V

such that ‖fr − f‖ < ‖fr(X) − f(X)‖ + ε
2 . Since ‖rX − X‖ = 1 − r < δ we get

that ‖fr − f‖ < ε, and this concludes the proof. The converse is trivial since every
f ∈ AV is uniformly continuous on V. �

Corollary 9.4. Let V ⊆ Bd be a homogeneous variety. Every radially uniformly
continuous multiplier on HV extends to a uniformly continuous function on V. In
particular, A(V) = AV.
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Proof. As we have already observed, AV ⊆ A(V). On the other hand, clearly every
uniformly continuous function is radially uniformly continuous. �

9.2. Nullstellensatz and quotients. In accordance with parts of the literature,
we let Ad denote the closure of polynomials in the sup norm, that is

Ad = ABd
= A(Bd).

Following Popescu [66], the algebra Ad is called the noncommutative disc algebra;
the discussion above shows what a suitable designation this is.

If V ⊆ Bd, we put

IV = {f ∈ Ad : f(X) = 0 for all X ∈ V}.

Theorem 9.5. Let d ∈ N. If I � Fd, is homogeneous, then

IVBd
(I) = I

‖·‖
.

If J � Ad is a homogeneous norm closed ideal, then

IVBd
(J) = J.

Proof. Let us write V = VBd
(I) and IV = IVBd

(I) for simplicity. To prove the first

part note that for every f =
∑∞

n=0 fn ∈ IV we have that fn ∈ I and the Cesàro
sums of the Taylor expansion converge in norm to f . Alternatively, we may—as
in the proof of Theorem 7.8—content ourselves with proving the second assertion,

since the variety cut out by I equals the variety cut out by I
‖·‖

.
As for the second assertion, let V be the variety cut out by J . Clearly, J ⊆ IV

and we only need to prove the other inclusion. Since both ideals are homogeneous,

we have that J ∩ Fd
‖·‖

= J and similarly for IV. Therefore, the proof of the
proposition reduces to the polynomial case. But Theorem 7.3 implies that

IVBd
(J) ∩ Fd = I(VBd

(J)) = I(VBd
(J ∩ Fd)) = J ∩ Fd.

Thus, IVBd
(J) = J . �

Lemma 9.6. Let V ⊆ Bd be a homogeneous variety. Let IV and JV denote,
respectively, the ideals of functions in A(Bd) and H∞(Bd), respectively, that vanish
on V. Then the natural map A(Bd)/IV → H∞(Bd)/JV given by f+IV �→ f+JV

is completely isometric.

Proof. Given f ∈ Mk(A(Bd)), we need to prove that

d(f,Mk(IV)) := inf{‖f − g‖ : g ∈ Mk(IV)} = inf{‖f − g‖ : g ∈ Mk(JV)}.
Fixing ε, let r > 0 be such that ‖f − fr‖ < ε. Then for every g ∈ Mk(JV), we have
that gr ∈ Mk(IV)—here we use homogeneity. Applying the methods of Lemma 7.10
and noting that fr is obtained from f by integrating against the Poisson kernel

fr(Z) =
1

2π

∫ 2π

0

f(eiθZ)

( ∞∑
n=0

(re−iθ)n

)
dθ,

we get that f �→ fr is a complete contraction. Therefore, we see that for g ∈
Mk(JV),

‖f − g‖ ≥ ‖fr − gr‖ ≥ ‖gr − f‖ − ‖fr − f‖ ≥ d(f,Mk(IV))− ε.

�
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Proposition 9.7. Let V ⊆ Bd be a homogeneous variety. Then A(V) is completely
isometrically isomorphic to A(Bd)/IV.

Proof. Since the restriction of a function f ∈ A(Bd) to V will clearly result in a
function that extends to a uniformly continuous function on V, we have a well-
defined map A(Bd) → A(V) that factors through A(Bd)/IV. In other words, we
have a map A(Bd)/IV → A(V), and our goal is to show that it is completely
isometric.

Now let JV be the ideal of functions in H∞(Bd) that vanish on V. By Theorem
5.2, the restriction map f �→ f

∣∣
V

induces a completely isometric isomorphism
H∞(Bd)/JV → H∞(V). Thus, for every f ∈ Mk(A(Bd)), we have by the previous
lemma

d(f,Mk(IV)) = d(f,Mk(JV)) = ‖f
∣∣
V
‖.

�

9.3. Classification up to a completely isometric isomorphism. Let us con-
sider the completely contractive finite-dimensional representations of Ad. If ρ : Ad→
Mn(C) is completely contractive, then Xρ := (ρ(z1), . . . , ρ(zd)) is a row contrac-

tion and thus a point in Bd(n). On the other hand, using Popescu’s functional
calculus, we note that every point X ∈ Bd(n) induces a unique completely contrac-
tive representation ρX : Ad → Mn(C). Hence, the finite-dimensional completely
contractive representations of Ad are in one-to-one correspondence with points of
Bd. Furthermore, given a homogeneous nc variety V ⊆ Bd and the corresponding
homogeneous ideal IV ⊂ Ad, the finite-dimensional completely contractive repre-
sentations of Ad/IV are in one-to-one correspondence with the variety V := V (IV)
cut out by IV in the closed ball Bd. Hence every unital completely contractive
homomorphism ϕ : A(V) = Ad/IV → A(W) = Ae/IW induces a map ρ �→ ρ ◦ ϕ
from W to V. We will let ϕ∗ denote the map ρ �→ ρ ◦ ϕ.

Now, set gj = ϕ(zj), j = 1, . . . , d. Then

Xϕ∗(ρ) = (ρ(ϕ(z1)), . . . , ρ(ϕ(zd))) = (ρ(g1), . . . , ρ(gd)).

Hence we can consider ϕ∗ as a map that takes the point Xρ ∈ W to the point

(g1(Xρ), . . . , gd(Xρ)) ∈ V.

In other words ϕ∗ defines an nc map from W to V. This discussion leads us
to the following proposition, in which we describe the completely contractive maps
homomorphisms in the case of the norm closed algebras. It is interesting to contrast
with the case of full multipliers (Proposition 6.4).

Proposition 9.8. Let V ⊆ Bd and W ⊆ Be be homogeneous nc varieties, and let
ϕ : A(V) → A(W) be a unital completely contractive homomorphism. For every
ε > 0, there exists a continuous nc map G : Be → (1 + ε)Bd such that G|

V
= ϕ∗

and such that G implements ϕ:

ϕ(f) = f ◦G.

Proof. Set gj = ϕ(zj), j = 1, . . . , d, as above. Invoking Proposition 9.7, we lift the
maps gj to Gj ∈ Ad and set G = (G1, . . . , Gd). Now for all f ∈ A(V) and W ∈ W,

ϕ(f)(W ) = ΦW ◦ ϕ(f) = ΦG(W )(f) = f ◦G(W ).

�
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Our next goal is to prove a norm closed counterpart of Theorem 8.4, namely,
to show that two homogeneous varieties V and W are conformally equivalent if
and only if the norm closed algebras A(V) and A(W) are completely isometric
isomorphic. To achieve this, we first need to show that every completely isometric
isomorphism between A(V) and A(W) is implemented as a precomposition with an
nc map from one nc ball into the other, mapping one variety onto the other.

Lemma 9.9. Let V ⊆ Bd and W ⊆ Be be homogeneous nc varieties, and let
α : A(V) → A(W) be a completely isometric isomorphism. Then there exists an
nc map G : Be → Bd such that G

∣∣
W

= Gα|W maps W bijectively onto V, which
implements α by the formula

α(f) = f ◦G, f ∈ A(V).

Proof. Since α is completely isometric, it takes completely contractive representa-
tions to completely contractive representations. Hence α∗ and (α∗)−1 take W to V

and vice versa. By Theorem 5.2, we can lift α∗ and (α∗)−1 to nc maps G : Be → Bd

and F : Bd → Be such that G|W = α∗ and F |V = (α∗)−1. The maximum princi-
ple (Lemma 6.11) and the injectivity of α and α−1 imply that G(Be) ⊆ Bd and
F (Bd) ⊆ Be. Since point evaluations are the only completely contractive repre-
sentations of A(V) and A(W), we deduce—as in the proof of Theorem 6.12—that
α(f) = f ◦G for all f ∈ A(V) and α−1(g) = g ◦ F for all g ∈ A(V). �

Following the lines of the proof of Theorem 8.4—using Lemma 9.9 instead of
Theorem 6.12—we obtain the counterpart of Theorem 8.4 for the norm closed
algebras A(V) and A(W).

Theorem 9.10. Let V ⊆ Bd and W ⊆ Be be homogeneous nc varieties, and let
α : A(V) → A(W) be a completely isometric isomorphism. Then V and W are
conformally equivalent, in the sense that one may assume that there is some k such
that V,W ⊆ Bk, and that under this assumption there exists an automorphism
G ∈ Aut(Bk) such that G(W) = V, and such that

α(f) = f ◦G, f ∈ A(V).

From the above theorem, together with Theorems 8.4, 6.12, Lemma 9.9, and
Corollary 8.10 we get the following.

Corollary 9.11. Let V ⊆ Bd and W ⊆ Be be two homogeneous varieties. Then
the following are equivalent:

(i) A(V) and A(W) are completely isometrically isomorphic;
(ii) H∞(V) and H∞(W) are completely isometrically isomorphic via a weak-

∗-continuous map (weak-∗ is automatic when d < ∞);
(iii) V and W are biholomorphic;
(iv) V and W are conformally equivalent (perhaps after finding a new embedding

V,W ⊆ Bk);
(v) there is a unitary transformation which maps V onto W (perhaps after

finding a new embedding V,W ⊆ Bk).

In Theorem 10.3, we will see that in the finite-dimensional case (d < ∞) the
condition “completely isometrically isomorphic” can be weakened to “isometrically
isomorphic”.
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9.4. An example (radial continuity versus uniform continuity). Let CBd

denote the commutative nc unit ball, that is,

CBd = {X ∈ Bd : XiXj = XjXi for all i, j = 1, . . . , d}.
CBd is a homogeneous variety in Bd. We will give an example of a function in
H∞(CBd) that extends to a function on CBd which is radially continuous at each
level CBd(n), but is not in ACBd

(and hence, not radially uniformly continuous).
First, we need a preliminary result.

Proposition 9.12. For every T ∈ CBd, there exists a constant CT > 0, such that

‖p(T )‖ ≤ CT sup
z∈Bd

|p(z)|

for all p ∈ C[z1, . . . , zd].

Proof. Fix T ∈ CBd. Then the joint spectrum of T , σ(T ), is contained in the
closed unit ball Bd. Now the joint spectrum of a tuple of commuting n×n matrices
(T1, . . . , Td) is nothing but the points appearing on the diagonals of the matrices
when put in upper triangular form. In other words, σ(T ) is simply the n points
in Cd obtained as (〈T1vi, vi〉, . . . , 〈Tdvi, vi〉), i = 1, . . . , n, where {v1, . . . , vn} is an
orthonormal basis of Cn with respect to which T1, . . . , Td are simultaneously upper
triangular.

As T is a row contraction, every point in the spectrum that is on the boundary
of Bd corresponds to a direct summand. Thus we have T = N ⊕ T ′, where N
is a normal tuple with σ(N) ⊆ ∂Bd, and σ(T ′) ⊆ Bd. Thus we may assume
σ(T ) ⊆ Bd, because the spectral theorem for commuting normal tuples implies
that ‖p(N)‖ = supz∈σ(N) |p(z)|.

But if σ(T ) ⊆ Bd, then σ(T ) ⊆ rBd for some r < 1. By the continuity of the
holomorphic functional calculus for commuting operators (see, e.g., [46] or [81]),
there is a constant CT such that

‖f(T )‖ ≤ CT sup
z∈Bd

|f(z)|

for every function f analytic in Bd, as required. �
Let A(Bd) denote the closure in the sup norm of the polynomials in H∞(Bd).

A(Bd) is called the ball algebra.

Corollary 9.13. Every T ∈ CBd(n) gives rise to a functional calculus

ΦT : A(Bd) → Mn,

which we denote by f �→ f(T ). The functional calculus is a bounded homomorphism,
satisfying ‖f(T )‖ ≤ CT ‖f‖∞, for all f ∈ A(Bd).

Example 9.14. When the variety is the set CBd consisting of all commuting
row contractions, then it is common to use the notation Md = H∞(CBd) and
Ad = ACBd

. Note that Md is just the multiplier algebra of the Drury–Arveson
space and that Ad is the norm closure of the polynomials in Md (in Section 11 we
will elaborate further on these identifications).

Let ψ ∈ Md ∩ C(Bd) be such that ψ /∈ Ad (the existence of such a multiplier
was noted in [77, Section 5.2] by invoking [30]). Then ψ is, in particular, in the
ball algebra A(Bd). By the above corollary, we have that ‖ψ(rX) − ψ(sX)‖ =
‖(ψr − ψs)(X)‖ ≤ CX‖ψr − ψs‖∞ for every X ∈ Bd and every r, s ∈ D. Thus ψ
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gives rise to a function that is defined on Bd(n), continuous on Bd, and radially

continuous on Bd(n), for every n. However, as ψ /∈ Ad, ψ is not in the closure of
the polynomials.

We conclude that a function may be continuous on every Bd(n), with radial
limits everywhere on Bd(n), holomorphic and uniformly bounded on Bd, while not
being in the closure of polynomials. We do not know whether the function ψ above
is uniformly continuous on each level Bd(n).

Question 9.15. Let n ∈ N be fixed. Does there exist a constant Cn (depending
implicitly on d) such that

‖p(T )‖ ≤ Cn sup
z∈Bd

|p(z)|

for all T ∈ CBd(n) and all p ∈ C[z1, . . . , zd]?

Of course, by the well-known incomparability of the multiplier and supremum
norms in Md [77, Section 3.7], if such constants Cn exist, then they must satisfy
Cn → ∞ (when d > 1). If the answer to the previous question is affirmative, then
so is the answer to the following question, by making use of the same function from
the example above.

Question 9.16. Does there exist a bounded holomorphic function, that is levelwise
uniformly continuous on every Bd(n), which is not uniformly continuous on Bd?

10. Connection to subproduct systems

Our results connect well to works on the structure and classification of operator
algebras associated with subproduct systems.

A subproduct system is a family X = {X(n)}n∈N of a Hilbert spaces such that
X(0) = C, X(n) ⊆ X(1)⊗n, and

X(m+ n) ⊆ X(m)⊗X(n),

for all m,n ∈ N.
Subproduct systems were introduced in [78] as a technical tool for the analysis of

semigroups of completely positive maps on von Neumann algebras (recently, they
have been used to study semigroups on C*-algebras, too [79]). In fact, one also
looks at subproduct systems over more general semigroups, and it is useful to allow
fibers that are Hilbert W*-correspondences, and not just Hilbert spaces, but such
generality is beyond the scope of the present work. Subproduct systems give rise to
a class of natural operator algebras, and in recent years these algebras have been
investigated by several researchers [9, 23, 25, 26, 35, 43, 84, 85]. We will now explain
how algebras of bounded analytic functions on homogeneous varieties are operator
algebras associated with subproduct systems, and indicate points of intersection
with previous works.

Assume that X is a subproduct system and that X(1) = Cd, with d < ∞ (the
assumption d < ∞ is mainly for simplicity). We identify the free algebra Fd with a
dense subspace of the Fock space F(Cd). Then we can define a homogeneous ideal
IX by saying that a homogeneous polynomial p of degree n is in IX if and only if
p ∈ (Cd)⊗n �X(n). It is straightforward to check that IX is really a homogeneous
(two-sided) ideal in Fd.
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Conversely, given a homogeneous (two-sided) ideal I � Fd, we define a subprod-
uct system XI by letting XI(n) be the orthogonal complement in (Cd)⊗n of the
homogeneous polynomials in I that have degree n.

In [78, Proposition 7.2] it was observed that the map X �→ IX is a bijective corre-
spondence (with inverse I �→ XI) between subproduct subsystems of {(Cd)⊗n}n∈N

and proper homogeneous ideals in Fd.
Let X be a subproduct system with X(1) = Cd. The X-Fock space is the direct

sum
FX = X(0)⊕X(1)⊕X(2)⊕ · · · .

Fix an orthonormal basis {e1, . . . , ed} for Cd. The X-shift is the d-tuple of operators
SX = (SX

1 , . . . , SX
d ) given by

SX
i η = ei ⊗ η , η ∈ X(n).

The tensor algebra associated with X is the unital, norm closed operator algebra
AX generated by SX . The noncommutative Hardy algebra associated with X is the
unital, weak-operator closed operator algebra LX generated by SX .

Let I �Fd be a homogeneous ideal, let V = VBd
(I), and let J = JV be the weak-

∗ closed ideal consisting of multipliers in H∞(Bd) that vanish on V. By Theorem

7.8, J = I
w∗

. By Lemma 4.5, HV = (JH2
d)

⊥.
On the other hand, if we identify FX as a subspace of F(Cd) = H2

d, we see that
FX = I⊥ = (JH2

d)
⊥. Thus, using Corollary 9.4, we make the identifications

(10.1) AX = A(V), LX = H∞(V).

In [23, 25] the algebras AX and LX were classified in terms of the structure of
the subproduct systems.

Definition 10.1. Two subproduct systems X = {X(n)}n∈N and Y = {Y (n)}n∈N

are said to be isomorphic if there exists a family of unitaries {Un : X(n) →
Y (n)}n∈N such that

Um+nPX(m)⊗X(n)→X(m+n) = PY (m)⊗Y (n)→Y (m+n)(Um ⊗ Un),

for all m,n ∈ N.

In [78, Proposition 7.4] (see also [23, Proposition 3.1]) it was shown that if X
and Y are subproduct subsystems of (Cd)⊗n

n∈N
, then X and Y are isomorphic if and

only if IX is obtained from IY by the unitary change of variables. Using this, we
can now prove the following geometric characterization of the subproduct system
isomorphism.

Proposition 10.2. Let X and Y be subproduct subsystems of (Cd)⊗n
n∈N

, for d ∈ N.

X and Y are isomorphic if and only if VBd
(IX) and VBd

(IY ) are conformally
equivalent, and this happens if and only if there is a unitary map U of Cd such that

UVBd
(IX) = VBd

(IY ).

Proof. First let us assume that X and Y are isomorphic as subproduct systems.
Then, the associated Fock spaces FX and FY are in particular unitarily equivalent.
This equivalence induces an isomorphism between the multiplier algebras. Apply-
ing Corollary 8.10, we obtain that there exists a unitary U on Cd that satisfies
UVBd

(IX) = VBd
(IY ).

Conversely, assume that there exists a unitary U on Cd such that UVBd
(IX) =

VBd
(IY ). We note that U is in fact a coordinate change and extends to a map
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Γ(U) : Fd → Fd, which acts on the nth graded component (which we view as
(Cd)⊗n) as U⊗n. By the homogeneous Nullstellensatz (Theorem 7.3), this coor-
dinate change maps IX onto IY . As IX is obtained from IY by a unitary change
of variables the subproduct systems are isomorphic. �

Using the above characterization of the subproduct system isomorphism, we can
now recognize that Corollaries 8.10 and 9.11 were obtained (for finite d) in [23, The-
orems 4.8 and 11.2]. In [23], the general [78, Theorem 9.7] on isomorphisms of
subproduct systems was invoked, to obtain a stronger statement, with “completely
isometric” replaced by “isometric”. Having the dictionary set up between homoge-
neous nc varieties and subproduct systems, we reformulate these results as follows.

Theorem 10.3. Let d < ∞, and let V,W ⊆ Bd be two homogeneous varieties.
Then A(V) and A(W) are isometrically isomorphic if and only if H∞(V) is iso-
metrically isomorphic to H∞(W), and this happens if and only if V and W are
conformally equivalent, which is the case if and only if there is a unitary map U of
Cd such that

UVBd
(I(V)) = VBd

(I(W)).

Proof. This follows from [23, Theorems 4.8 and 11.2] together with Proposition 10.2.
Alternatively, if A(V) and A(W) are isometrically isomorphic, then by the above

discussion the corresponding algebras AX and AY (as in Equation (10.1)) are iso-
metrically isomorphic. By an application of the disc trick (as in Proposition 8.8),
there exists a vacuum-preserving isometric isomorphism AX → AY . By [78, The-
orem 9.7] this means that X ∼= Y , which, by Proposition 10.2, means that there
exists a unitary as stated. The converse is already taken care of by Corollary 9.11
together with Proposition 10.2.

The case of H∞(V) ∼= H∞(W) is handled in a similar manner. �
Note that in Theorems 8.4 and 9.10 we obtain additional information regarding

the form of nonzero-preserving isomorphisms, and moreover we also handle the case
of d = ∞.

In fact, the connection between subproduct systems and nc varieties also holds
in the setting of d = ∞, but when discussing the connection between ideals and
varieties there might occur ideals which are not ideals of polynomials in the classical
sense (for example, if a = (ai)

∞
i=1 ∈ �2, then the function z �→ 〈z, a〉 =

∑
aizi is not

a polynomial in the classical sense, but such functions may naturally be thought of
as polynomials of degree one). In this setting one has a bijective correspondence
between homogeneous norm closed ideals I in A(B∞) = A∞ and subproduct sys-
tems X with X(1) a separable Hilbert space. Let us write the bijections I ↔ XI
and X ↔ IX .

In this setting it still holds that two subproduct systems X and Y are isomorphic
if and only if IX and IY are related by a unitary change of variables. However, we
do not know whether or not homogeneous normed closed ideals in A(B∞) are in
bijective correspondence with homogeneous nc varieties in B∞. The issue is that
we do not know whether the homogeneous Nullstellensatz (Theorem 9.5) holds in
the case d = ∞.

With these comments in mind, we use the results of this paper to contribute to
the completely isometric isomorphism problem for tensor algebras of subproduct
systems in the case of d = ∞, something that was left open in [23]. The following
result still leaves much to be desired.
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Proposition 10.4. Let X and Y be two subproduct systems whose fibers X(n) and
Y (n) are separable Hilbert spaces for all n. Suppose that there exist homogeneous
nc varieties such that IX = IV and IY = IW. Then AX and AY are completely
isometrically isomorphic if and only if X and Y are isomorphic.

Proof. By assumption, there exist homogeneous varieties V and W such that AX =
A(V) and AY = A(W). By Corollary 9.11, after perhaps finding a new embedding
V,W ⊆ Bk, there is a unitary U such that W = UV. As above, this implies that
X and Y are isomorphic. �

We can now also recognize that [43, Theorem 9.2] treated the classification of the
operator algebras of the form A(V), where V is the zero set of an ideal generated
by monomials. In [43, Theorem 9.2], due to the particularity of the ideals under
investigation, additional rigidity was present: a completely isometric isomorphism
was actually shown to be equivalent to an algebraic isomorphism.

Finally, we mention that in [43, Theorem 3.4] (following work done in [25]) it was
shown that operator algebras AX and AY (arising from subproduct systems X and
Y ) are boundedly isomorphic if and only if X and Y are similar. We leave it for
future work to parse what this means in terms of bounded isomorphisms between
algebras of the form A(V), where V ⊂ Bd is a homogeneous variety.

11. Connection to the commutative case

In this section, we show how our study connects to previous works on algebras
of bounded analytic functions on commutative analytic varieties. As we shall see,
the nc setting not only generalizes some of the results, it also clarifies some of the
results (as well as some nonresults) that were obtained for commutative algebras.

Remark 11.1. We will be using somewhat confusing terminology, as we will be con-
sidering “commutative noncommutative varieties”. The word “noncommutative”
here means that we will be considering subvarieties of the nc ball Bd, that is, vari-
eties consisting of d-tuples of matrices of arbitrary size. The word “commutative”
here refers to the fact that the varieties under consideration will all lie in the com-
muting variety CBd ⊂ Bd, that is, the tuples of matrices are assumed to commute
with one another. Perhaps an alternative way of saying “commutative nc variety”
would be “free commutative variety”. In any case, now that the reader is warned,
there should be no confusion.

11.1. The isomorphism problem in the commutative case. We start by re-
calling that the Drury–Arveson space H2

d is the reproducing kernel Hilbert space
(in the usual, commutative function-theoretic sense) on the unit ball Bd ⊆ Cd, with
reproducing kernel kw(z) = k(z, w) = 1

1−〈z,w〉 (see [77]). Let Md denote the multi-

plier algebra (in the usual, commutative function-theoretic sense) of H2
d . Note that

if we put Ω = Bd = Bd(1), and if we denote CBd as the part of Bd consisting of
all commuting tuples, then using Lemma 4.3 we see that

H2
d
∼= HΩ = HV (JΩ) = HCBd

;

this is because CBd is the smallest variety in Bd that contains Bd. Thus Md can
be identified with MultHCBd

= H∞(CBd) (further explanation will be given in
Proposition 11.2 below).

We call a subset V ⊆ Bd a variety if V is the joint zero set of a family of functions
in Md.
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In [19, 23, 24, 35, 36, 45, 70] (see also the survey paper [74]), the following prob-
lem was investigated. For a variety V ⊆ Bd, consider the Hilbert space FV =
span{kv : v ∈ V }, and define MV = MultFV . By [24, Proposition 2.6],

MV = {f
∣∣
V
: f ∈ Md}.

Proposition 11.2. Let V ⊆ Bd. Let V = V (IV ) = V (JV ) be the smallest nc
variety that contains V . Then MV is completely isometrically isomorphic and
unitarily equivalent to H∞(V) = MultH2

V.

Proof. First, V (IV ) = V (JV ) thanks to Lemma 4.1 (here we are using the notation
of that lemma). As above, we apply Lemma 4.3 to obtain

HV = HV

as subspaces of H2
d, and HV is clearly unitarily equivalent to FV , via the identity

map.
Let us concentrate first on the case V = Bd. In this case, V = CBd. To see

this, observe that JV is simply the weak-operator closed ideal generated by the
nc functions zizj − zjzi (i, j ∈ {1, . . . , d}), thus V (JV ) = CBd. Now, Md and
H∞(CBd) have different interpretations as function algebras, but both Md and
H∞(CBd) are the operator algebra obtained by compressions of Ld = H∞(Bd) to
the co-invariant subspace H2

d = HCBd
. Thus these operator algebras coincide.

Now let V ⊆ Bd be a variety, and let V = V (JV ) be the smallest nc variety
in Bd that contains it. The algebra MV is obtained from Md by compressing to
FV [24, Proposition 2.6], and by Theorem 7.2, H∞(V) is obtained from H∞(Bd)
by compressing to HV, and since HV ⊆ HCBd

, H∞(V) is the compression of
H∞(CBd) to that subspace. Thus, MV and H∞(V) coincide. �

Remark 11.3. It is well known that Md � H∞(Bd) and that the multiplier norm
and supremum norm ‖f‖∞ = supz∈Bd

|f(z)| are not comparable. The noncommu-
tative framework allows one to view the multiplier norm as a supremum norm: for
every multiplier f ∈ Md,

‖f‖Mult = sup
Z∈CBd

‖f(Z)‖.

Another thing that the noncommutative framework helps to clarify is the issue of
continuous multipliers. As pointed out in Example 9.14, the algebra Ad, obtained
as the norm closure of polynomials in Md, is strictly smaller than the algebra Md∩
C(Bd) consisting of multipliers that extend to (uniformly) continuous functions on
Bd. When looked at from the noncommutative point of view, we see that Ad =
A(CBd) — the algebra of multipliers that extend to uniformly continuous functions
on Bd. Thus, the urge to call Ad the algebra of “continuous multipliers” need not
be suppressed.

In [24], the point of departure was a radical homogeneous ideal I �C[z1, . . . , zd].
Let V be the affine variety corresponding to I (i.e., the zero locus of I). Let AV

denote the norm closure of polynomials in MV . This algebra is also, in some sense,
the universal unital operator algebra generated be a commuting row contraction
that satisfies the relations in the ideal I. In [24], AV was denoted by AI to highlight
the role of the ideal I. In fact, one naturally defines the universal operator algebras
AI and MI and for a not-necessarily radical homogeneous ideal I �C[z1, . . . , zd] —
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AI is simply the compression of Ad to the complement of IH2
d in H2

d , and likewise
for MI .

Let I and J be radical homogeneous ideals corresponding to affine varieties V
and W . In [23, Theorem 8.2] it was shown that AI = AV is completely isomet-
rically isomorphic to AJ = AW if and only if V and W are related by a unitary
transformation, and in [23, Theorem 8.5] it was shown that AI = AV is alge-
braically isomorphic to AJ = AW if and only if V and W are related by a linear
map or, equivalently, if V and W are biholomorphic (the proof of that theorem was
completed only later, with an important contribution by Hartz [35]). Likewise, in
[23, Theorem 11.7] it was shown that the algebras MI = MV and MJ = MW

are isomorphic/completely isometrically isomorphic under the exact same terms.
Thus, the variety V = V (I) serves as a geometric invariant of the structure of the
operator algebras AI and MI , when I is a homogeneous and radical ideal. The
question of whether there exists a geometric invariant for classifying the algebras
AI and MI for a not-necessarily-radical ideal was left open.

In the noncommutative setting, the geometric invariant becomes evident. Indeed,
it is easy to see that AI = A(VBd

(I)) and that MI = H∞(VBd
(I)), thus Corol-

laries 8.6 and 9.11 give the “geometric” classification result. Note that Hilbert’s
Nullstellensatz explains why we should expect that the affine varieties give a clas-
sification for (algebras associated with) ideals, only for the class of radical ideals.
On the other hand, the nc homogeneous Nullstellensatz, Theorem 7.3, shows that
homogeneous nc varieties are in bijective correspondence with homogeneous ideals
(see also Corollary 11.7 below).

Finally, let us point out how the nc theoretic Corollaries 8.6 and 9.11 contain the
function-theoretic Theorems 8.2 and 11.7 in [23] (and this should also shed light
on how Corollary 6.14 relates to [24, Theorem 4.4]). To wit, if I is a radical ideal
and V = V (I) is the associated affine variety, then V = VBd

(I) is the smallest
nc variety containing V . Thus, if J is another radical ideal and W and W the
associated affine and nc varieties, respectively, then V and W are related by a
unitary/automorphism if and only if V and W are related. By Proposition 11.2,
we conclude that MV is completely isometrically isomorphic to MW if and only
if H∞(V) and H∞(W) are completely isometrically isomorphic, and this happens
(by Corollary 8.6) if and only if V and W are conformally equivalent (equivalently,
if and only if a unitary maps one onto the other), which, by the previous remarks,
happens if and only if V and W are conformally equivalent (equivalently, if and only
if a unitary maps one onto the other). Thus, we recapture some of the classification
results of [23].

When an ideal I � C[z1, . . . , zd] is not radical, then VBd(I) is not uniquely de-
termined by the scalar level, and to encode I one is required to use higher matrix
levels.

11.2. An example. In [47], a reproducing kernel space consisting of Dirichlet series
on the half-plane, which is weakly isomorphic to the Drury–Arveson space H2

d , was
discovered. Let H0 = {z ∈ C : Re z > 0}. Fix d ∈ N ∪ {∞}, and let b = (bn)

d
n=1 be

a sequence of positive numbers such that
∑

b2i = 1. Consider the map f : H0 → Bd

by

f(s) = (b1p
−s
1 , b2p

−s
2 , . . .)
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(where pi denotes the ith prime number), and define a kernel

k(s, u) = (1− 〈f(s), f(u)〉)−1 =
∑
n≥1

ann
−s−ū

on H0 × H0 (the an’s are positive numbers determined uniquely by this equality).
This kernel gives rise to a reproducing kernel Hilbert space H on the set H0, which
has the complete Pick property. The elements of H are precisely the Dirichlet series
h(s) =

∑
n γnn

−s that satisfy ‖h‖2H :=
∑

|γn|2a−1
n < ∞.

One of the main results in [47] is that H is weakly isomorphic to H2
d , via the

unitary map U : k(·, u) �→ 1
1−〈·,f(u)〉 , which has inverse U∗ : g �→ g◦f . Consequently,

Mult(H) is unitarily equivalent Mult(H2
d), and the inverse associates ψ ∈ Mult(H2

d)
with ψ◦f ∈ Mult(H). This is somewhat surprising (especially in the case d = ∞), as
Mult(H) is an algebra of analytic functions in a single variable, whereas Mult(H2

d)
has several universal properties. The norm of a multiplier ϕ ∈ Mult(H) is given by
the highly inexplicit formula ‖ϕ‖ = sup‖h‖H=1 ‖ϕh‖, and it is not comparable to

the perhaps-more-accessible supremum norm ‖ϕ‖H0,∞ = sups∈H0
‖ϕ(s)‖. In light

of Remark 11.3 (as well as some wishful thinking), one might hope that there exists
some kind of “noncommutative half-plane” H0 which will enable one to find the
multiplier norm of a matrix-valued multiplier ϕ by an nc supremum ‖ϕ(S)‖H0,∞ =
supS∈H0

‖ϕ(S)‖. We will now show that there is no such noncommutative half-
plane.

Suppose that H0 ⊆ M1 =
⊔

n Mn is an nc set for which it holds that

(11.1) ‖ϕ‖ = sup
S∈H0

‖ϕ(S)‖,

for every matrix-valued multiplier (we are assuming that H0 is an nc set such that
every element in Mult(H) can be evaluated at any S ∈ H0). For convenience, let us
assume that 2 ≤ d < ∞. Now, the unitary equivalence maps the function s �→ bip

−s
i

to the function z �→ zi, therefore the row multiplier f(s) = (b1p
−s
1 , b2p

−s
2 , . . . , bdp

−s
d )

is unitary equivalent to the row multiplier (z1, . . . , zd), and hence is a row contrac-
tion. Therefore, if (11.1) holds for all matrix-valued multipliers, then for every
S ∈ H0, ‖f(S)‖ ≤ ‖f‖ = 1. In other words, for every S ∈ H0,∑

i

b2i e
− log pi(S+S∗) =

∑
i

b2i e
− log piS(e− log piS)∗ ≤ I.

It follows that for every eigenvalue λ of S + S∗, f(λ) ∈ Bd. This means that
ReS ≥ 0. But if S has a nonnegative real part, then H0 is a complete spectral
set for S, meaning that for any matrix-valued Dirichlet polynomial ϕ, it holds that
‖ϕ(S)‖ ≤ sups∈H0

|ϕ(s)|. Since, in general, sups∈H0
|ϕ(s)| < ‖ϕ‖, we see that (11.1)

cannot hold.
We conclude the examination of this example by finding the natural nc variety

in Bd on which H and Mult(H) can be thought to live. First, the map U : k(·, u) �→
1

1−〈·,f(u)〉 identifies H with the subspace

Hf(H0) = span

{
1

1− 〈·, f(u)〉 : u ∈ H0

}
⊆ H2

d ⊆ H2
d.

By Lemma 4.3, Hf(H0) = HV (Jf(H0)), where V (Jf(H0)) is the smallest nc variety

(cut out by H∞(Bd) functions) that contains f(H0). Now, V (Jf(H0)) is an nc set,
so it clearly contains the nc set (f(H0))nc that consists of all d-tuples of diagonal
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matrices formed by taking direct sums of the d-tuples f(s) = (b1p
−s
1 , . . . , bdp

−s
d ),

where s ∈ H0. The commutators xixj−xjxi vanish on (f(H0))nc, and, therefore, so
does any function in the weakly closed ideal Jc generated by the commutators. On
the other hand, the quotient of H∞(Bd) by Jc is Md

∼= H∞(CBd). By [47, Lemma
34], there is no nonzero function g ∈ Md that vanishes on f(H0). It follows that
Jc = Jf(H0), and so V (Jf(H0)) = CBd.

It is interesting to note that the supremum of a multiplier ψ on (f(H0))nc is
given by the scalar sup norm of ψ ◦ f on H0, and this is strictly smaller than ‖ψ‖.
This does not contradict Theorems 5.2 and 5.4, as (f(H0))nc is not an nc variety
in our sense.

11.3. Commutative free Nullstellensatz. In connection to the previous discus-
sion on how the higher matrix levels encode the difference between an ideal and its
radical, we investigate the matter from a purely algebraic point of view.

Let us denote CMd = {X ∈ Md : XiXj = XjXi , i, j = 1, . . . , d}. In [29],
Eisenbud and Hochester obtained a generalization of the Nullstellensatz to the
setting of rings with nilpotents. More precisely, if A is an affine ring and I � A is
an ideal, then there exists a positive integer k, that depends on the nilpotence of
A/I, such that:

I =
⋂
I⊂m

m maximal

(
m

k + I
)
.

We will now obtain a version of their Nullstellensatz for ideals in C[z1, . . . , zd] where
the “points” are allowed to be any tuple of commuting matrices. This will provide a
more elementary proof of a slightly weaker result than the main result of [29], while
emphasizing the role played by finite-dimensional representations. In other words,
we will show that zero locus of an ideal I �C[z1, . . . , zd] completely determines the
ideal I (see Corollary 11.7).

Proposition 11.4. Let k be a field, and let A be a Noetherian commutative local
k-algebra with maximal ideal m such that A/m ∼= k. Let f ∈ A. If ϕ(f) = 0 for
every homomorphism ϕ : A → Mn(k), then f = 0.

Proof. Since A/m ∼= k, we conclude that f maps to 0 and thus f ∈ m. Since
A is Noetherian, m is finitely generated, and thus A/m� is a finite-dimensional
vector space over k, for every � ≥ 1. The natural map π : A → A/m� endows this
finite-dimensional space with a structure of an A-module, and thus f acts as 0 on
this space. We conclude that f ∈ m�. Now we apply Krull’s intersection theorem
[28, Corollary 5.4] to deduce that f = 0. �

Remark 11.5. For example, the assumption of the above proposition holds if k
is algebraically closed and A is a localization of a finite type algebra over k at a
maximal ideal or, alternatively, if k = C and A = C{{z}} is the ring of germs of
analytic functions at 0.

Corollary 11.6. Let k be an algebraically closed field. Let J � k[x1, . . . , xd] be
an ideal. Put A = k[x1, . . . , xd]/J , and let π be the natural projection onto A. If
f ∈ k[x1, . . . , xd] is such that for every homomorphism ϕ : A → Mn(k) we have that
ϕ(π(f)) = 0, then f ∈ J .

Proof. Let us write f = π(f). For every maximal ideal m � A, let Am be the lo-
calization of A at m, and let ιm : A → Am be the localization map. Since every
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finite-dimensional representation of Am induces via ιm a finite-dimensional repre-
sentation of A, we can conclude by the above proposition that ιm(f) = 0. Since
f = 0 in every localization, it follows that f = 0 (indeed, otherwise there ex-
ists a maximal ideal m that contains the annihilator of f in A, and thus ιm(f) is
nonzero). �

Given Ω ⊂ CMd and S ⊆ C[z], if we denote

IC[z](Ω) = {p ∈ C[z] : p(X) = 0 for all X ∈ Ω}
and

VCMd
(S) = {X ∈ Ω : p(X) = 0 for all p ∈ S},

then we can reformulate the above corollary as follows.

Corollary 11.7 (Commutative free Nullstellensatz). For every ideal J � C[z],

IC[z](VCMd
(J)) = J.

Remark 11.8. From the main result of [29] it follows that it is enough to consider
only finite-dimensional representations of C[z1, . . . , zd]/J of a fixed dimension. To
see this note that as above we can represent the polynomial ring A = C[z1, . . . , zd]
(and in fact A/J) on (C[z1, . . . , zd]/J)m /mk

m by multiplication operators, where
m is a maximal ideal containing J and k is the positive integer obtained using
the main theorem of [29]. This representation is of course finite dimensional, in
fact the dimension of this representation is bounded from above by the number of
monomials of degree less than k, that we shall denote by N . Now if we assume
that f ∈ A vanishes on all N -dimensional representations of A/J , then it implies
that f ∈ mk + J for every maximal ideal m that contains J , and we conclude that
f ∈

⋂
J⊂m

(mk + J) = J .

Example 11.9. Take s ∈ H∞(D) a singular inner function (for example s(z) =

e
z+1
z−1 ). Then for any X ∈ B1 we have that s(X) �= 0, since we can always conjugate

X to an upper triangular form with a unitary and because s does not vanish on
the disc it won’t vanish on the entries of the diagonal. Now, note that the ideal
generated by s is wot-closed and its range is the shift invariant subspace sH2(D)
(here we used the Beurling–Lax theorem [80, Theorem V.3.3]). This is a proper
subspace of H2(D) since 1 /∈ sH2(D). By [20] the wot-closed ideal sH∞(D) is not
trivial and thus the function 1, which vanishes on precisely the same matrices in
the ball as s does, is not in the ideal. We conclude that one cannot get a version
of the Nullstellensatz for wot-closed ideals in H∞(D) = H∞(B1) considering only
finite-dimensional representations.

Remark 11.10. It is trivial that if we throw infinite-dimensional representations into
the mix, then we get a Nullstellensatz (one only needs to consider the representation
obtained by compressing the shifts to the orthogonal complement of the range of
the ideal).
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[57] R. Nevanlinna, Über beschränkte Funktionen, Ann. Acad. Sci. Fenn. Ser. A 32 (7), 1929.
[58] Stephen Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970),

481–490. MR0268710
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