Non-ergodic Banach spaces are near Hilbert
HTML articles powered by AMS MathViewer
- by W. Cuellar Carrera PDF
- Trans. Amer. Math. Soc. 370 (2018), 8691-8707 Request permission
Abstract:
We prove that a non-ergodic Banach space must be near Hilbert. In particular, $\ell _p$ ($2<p<\infty$) is ergodic. This reinforces the conjecture that $\ell _2$ is the only non-ergodic Banach space. As an application of our criterion for ergodicity, we prove that there is no separable Banach space which is complementably universal for the class of all subspaces of $\ell _p$, for $1\leq p <2$. This solves a question left open by W. B. Johnson and A. Szankowski in 1976.References
- G. Androulakis and T. Schlumprecht, The Banach space $S$ is complementably minimal and subsequentially prime, Studia Math. 156 (2003), no. 3, 227–242. MR 1978441, DOI 10.4064/sm156-3-2
- Razvan Anisca, The ergodicity of weak Hilbert spaces, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1405–1413. MR 2578532, DOI 10.1090/S0002-9939-09-10164-8
- Razvan Anisca and Christopher Chlebovec, Subspaces of $\ell _2(X)$ without the approximation property, J. Math. Anal. Appl. 395 (2012), no. 2, 523–530. MR 2948243, DOI 10.1016/j.jmaa.2012.05.060
- Spiros A. Argyros, Gilles Godefroy, and Haskell P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1007–1069. MR 1999190, DOI 10.1016/S1874-5849(03)80030-X
- Benoît Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2002), no. 2, 117–152. MR 1899225, DOI 10.4064/fm172-2-3
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- P. G. Casazza, C. L. García, and W. B. Johnson, An example of an asymptotically Hilbertian space which fails the approximation property, Proc. Amer. Math. Soc. 129 (2001), no. 10, 3017–3023. MR 1840107, DOI 10.1090/S0002-9939-01-06142-1
- P. G. Casazza, W. B. Johnson, and L. Tzafriri, On Tsirelson’s space, Israel J. Math. 47 (1984), no. 2-3, 81–98. MR 738160, DOI 10.1007/BF02760508
- P. G. Casazza, N. J. Kalton, Denka Kutzarova, and M. Mastyło, Complex interpolation and complementably minimal spaces, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) Lecture Notes in Pure and Appl. Math., vol. 175, Dekker, New York, 1996, pp. 135–143. MR 1358150
- Jesús M. F. Castillo, Valentin Ferenczi, and Yolanda Moreno, On uniformly finitely extensible Banach spaces, J. Math. Anal. Appl. 410 (2014), no. 2, 670–686. MR 3111858, DOI 10.1016/j.jmaa.2013.08.053
- A. M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261–266. MR 338735, DOI 10.1112/blms/5.3.261
- Per Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309–317. MR 402468, DOI 10.1007/BF02392270
- S. J. Dilworth, V. Ferenczi, Denka Kutzarova, and E. Odell, On strongly asymptotic $l_p$ spaces and minimality, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 409–419. MR 2340235, DOI 10.1112/jlms/jdm003
- Valentin Ferenczi, Minimal subspaces and isomorphically homogeneous sequences in a Banach space, Israel J. Math. 156 (2006), 125–140. MR 2282372, DOI 10.1007/BF02773828
- Valentin Ferenczi and Elói Medina Galego, Some equivalence relations which are Borel reducible to isomorphism between separable Banach spaces, Israel J. Math. 152 (2006), 61–82. MR 2214453, DOI 10.1007/BF02771976
- Valentin Ferenczi, Alain Louveau, and Christian Rosendal, The complexity of classifying separable Banach spaces up to isomorphism, J. Lond. Math. Soc. (2) 79 (2009), no. 2, 323–345. MR 2496517, DOI 10.1112/jlms/jdn068
- Valentin Ferenczi and Christian Rosendal, Ergodic Banach spaces, Adv. Math. 195 (2005), no. 1, 259–282. MR 2145797, DOI 10.1016/j.aim.2004.08.008
- Valentin Ferenczi and Christian Rosendal, On the number of non-isomorphic subspaces of a Banach space, Studia Math. 168 (2005), no. 3, 203–216. MR 2146123, DOI 10.4064/sm168-3-2
- T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191–210. (errata insert). MR 336294, DOI 10.4064/sm-45-2-191-210
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI 10.2307/2274750
- W. T. Gowers, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2) 156 (2002), no. 3, 797–833. MR 1954235, DOI 10.2307/3597282
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- William B. Johnson, Banach spaces all of whose subspaces have the approximation property, Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979) North-Holland, Amsterdam-New York, 1980, pp. 15–26. MR 585146
- W. B. Johnson, personal communication.
- W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430–470. MR 1392325, DOI 10.1007/BF02249259
- W. B. Johnson and A. Szankowski, Complementably universal Banach spaces, Studia Math. 58 (1976), no. 1, 91–97. MR 425582, DOI 10.4064/sm-58-1-91-97
- W. B. Johnson and A. Szankowski, Complementably universal Banach spaces. II, J. Funct. Anal. 257 (2009), no. 11, 3395–3408. MR 2571432, DOI 10.1016/j.jfa.2009.07.008
- W. B. Johnson and A. Szankowski, Hereditary approximation property, Ann. of Math. (2) 176 (2012), no. 3, 1987–2001. MR 2979863, DOI 10.4007/annals.2012.176.3.10
- N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30. MR 542869, DOI 10.1090/S0002-9947-1979-0542869-X
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Ryszard A. Komorowski and Nicole Tomczak-Jaegermann, Banach spaces without local unconditional structure, Israel J. Math. 89 (1995), no. 1-3, 205–226. MR 1324462, DOI 10.1007/BF02808201
- Denka Kutzarova and Pei-Kee Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2059–2068. MR 1654081, DOI 10.1090/S0002-9939-99-05248-X
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Gilles Pisier, Weak Hilbert spaces, Proc. London Math. Soc. (3) 56 (1988), no. 3, 547–579. MR 931514, DOI 10.1112/plms/s3-56.3.547
- C. Rosendal, Etude Descriptive de l’Isomorphisme dans la Classe des Espaces de Banach, These de Doctorat de l’Universite Paris 6, 2003.
- Christian Rosendal, Incomparable, non-isomorphic and minimal Banach spaces, Fund. Math. 183 (2004), no. 3, 253–274. MR 2128711, DOI 10.4064/fm183-3-5
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- A. Szankowski, Subspaces without the approximation property, Israel J. Math. 30 (1978), no. 1-2, 123–129. MR 508257, DOI 10.1007/BF02760833
- Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81–95. MR 1177333, DOI 10.1007/BF02782845
Additional Information
- W. Cuellar Carrera
- Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010 SP-Brazil
- Email: cuellar@ime.usp.br
- Received by editor(s): December 27, 2016
- Received by editor(s) in revised form: June 17, 2017, and June 26, 2017
- Published electronically: September 10, 2018
- Additional Notes: The author was supported by FAPESP grant 2014/25900-7.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8691-8707
- MSC (2010): Primary 46B20, 46B03; Secondary 03E15
- DOI: https://doi.org/10.1090/tran/7319
- MathSciNet review: 3864391