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NON-ERGODIC BANACH SPACES ARE NEAR HILBERT

W. CUELLAR CARRERA

Abstract. We prove that a non-ergodic Banach space must be near Hilbert.
In particular, �p (2 < p < ∞) is ergodic. This reinforces the conjecture that
�2 is the only non-ergodic Banach space. As an application of our criterion
for ergodicity, we prove that there is no separable Banach space which is com-
plementably universal for the class of all subspaces of �p, for 1 ≤ p < 2. This
solves a question left open by W. B. Johnson and A. Szankowski in 1976.

1. Introduction

The solution of Gowers [21] and Komorowski–Tomczak-Jaegermann [31] to the
homogeneous Banach space problem provides that every Banach space having only
one equivalence class for the relation of isomorphism between its infinite dimensional
subspaces must be isomorphic to �2. G. Godefroy formulated the question about
the number of non-isomorphic subspaces of a Banach space X not isomorphic to �2.
This question was studied, in the context of descriptive set theory, by V. Ferenczi
and C. Rosendal [17], who introduced the notion of ergodic Banach space to study
the classification of the relative complexity of the isomorphism relation between the
subspaces of a separable Banach space.

Our general references for descriptive set theory will be [4, 30]. A Polish space
is a separable topological space which admits a compatible complete metric. The
Borel sets of a Polish space comprise the σ-algebra generated by the open sets. A
set X equipped with a σ-algebra is called a Borel standard space if there exists
a Polish topology on X for which that σ-algebra arises as the collection of Borel
subsets of X. A function between two Borel standard spaces f : X → Y is said to
be Borel if f−1(B) is Borel in X, for every Borel subset B ⊆ Y .

Given a Polish space X, let F(X) be the collection of all closed subsets of X.
The σ-algebra on F(X) generated by

AU = {F ∈ F(X) : F ∩ U �= ∅},
where U is an open subset of X, is called the Effros Borel structure on the closed
subsets of X. It is not hard to see that F(X) equipped with this Borel structure
is a Borel standard space. SB(X) denotes the collection of infinite dimensional
linear subspaces Y ∈ F(X) equipped with the relative Effros Borel structure. This
framework allows us to identify every class of subspaces of a Banach space X with a
subset of SB(X) in which its complexity can be measured. For instance, since C(2N)
is isometrically universal for all separable Banach spaces, we can consider the set
SB(C(2N)) as the standard Borel space of all separable Banach spaces. With this
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identification, properties of separable Banach spaces become sets in SB(C(2N)). In
[5] it was proved that the relation of isomorphism between separable Banach spaces
is an analytic and not borelian subset of SB(C(2N))2.

The central notion to study the complexity of analytic and Borel equivalence
relations on Borel standard spaces is the concept of Borel reducibility, which origi-
nated from the works of H. Friedman and L. Stanley [20] and independently from
the works of L. A. Harrington, A. S. Kechris, and A. Louveau [22].

Definition 1.1. Let R and S be two Borel equivalence relations on Borel standard
spaces X and Y , respectively. One says that R is Borel reducible to S (denoted by
R ≤B S) if there exists a Borel function φ : X → Y such that

xRy ⇐⇒ φ(x)Sφ(y),

for all x, y ∈ X. The relation R is Borel bireducible to S (denoted by R ∼B S)
whenever both R ≤B S and S ≤B R hold.

This can be interpreted as meaning that the equivalence relation R is classified
by a Borel assignment of invariants provided by equivalence classes for S. Observe
that a Borel reduction induces an embedding from the quotient space X/R to Y/S,
so X/R has less than or equal cardinality to that of Y/S.

Ferenczi, Louveau, and Rosendal [16] proved that the relation of isomorphism
between separable Banach spaces is a complete analytic equivalence relation, i.e.,
that any analytic equivalence relation Borel reduces to it.

For X a Polish space, let id(X) be the identity relation on the space X. Since
any two standard Borel spaces with the same cardinality are Borel isomorphic, it
follows that for any uncountable X,

id(X) ∼B id(R).

Among the uncountable Borel equivalence relations, the simplest is id(R). In fact,
it was proved by Silver [39] that given a Borel equivalence relation (X,R), either it
has countable many classes of equivalence or id(R) is Borel reducible to (X,R). An
equivalence relation admitting the reals as a complete invariant is called smooth,
that is, when it is reducible to id(R).

The simplest example of a non-smooth equivalence relation is the relation of
eventual agreement E0 on 2N; i.e., for x, y ∈ 2N,

xE0y ⇐⇒ (∃N ∈ N)(x(n) = y(n), n ≥ N).

Harrington, Kechris, and Louveau [22] proved that E0 is minimal among non-
smooth Borel equivalence relations with respect to ≤B .

The following notion measures the complexity of the relation of isomorphism
between subspaces of a separable Banach space and was introduced by Ferenczi
and Rosendal [17].

Definition 1.2. A separable Banach space X is ergodic if

(2N, E0) ≤B (SB(X),�).

It follows that an ergodic Banach space has at least 2N non-isomorphic subspaces
and the equivalence relation of isomorphism between its subspaces is non-smooth.

Rosendal [38] notices that every hereditarily indecomposable (H.I) Banach space
(i.e., a space in which no closed infinite dimensional subspace can be written as the
direct sum of two closed infinite dimensional subspaces) is ergodic. By Gowers
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dichotomy [21], every Banach space contains an H.I subspace or an unconditional
basic sequence. Since every Banach space containing an ergodic subspace must be
ergodic, one can approach the study of ergodicity by first restricting to spaces with
unconditional basis.

Ferenczi and Rosendal [17] proved that a non-ergodic Banach space X with
unconditional basis satisfies some regularity properties such as being isomorphic
to its square and to its hyperplanes, and more generally must be isomorphic to
X ⊕ Y for any subspace Y of X generated by a subsequence of the basis. It was
conjectured in [17] that every separable Banach space not isomorphic to �2 must
be ergodic.

Dilworth, Ferenczi, Kutzarova, and Odell [13] proved that every Banach space X
with a strongly asymptotic �p basis (1 ≤ p ≤ ∞) not equivalent to the unit vector
basis of �p (or c0 if p = ∞) is ergodic. This result was generalized by R. Anisca [2],
who constructed explicit Borel reductions to prove that every separable asymptot-
ically Hilbertian space (and therefore every weak Hilbert space) not isomorphic to
�2 is ergodic.

Recall that a Banach space X is called (complementably) minimal (notions due
to Pe�lczyński and Rosenthal, respectively) if every infinite dimensional closed sub-
space Y of X contains a (complemented) subspace Z isomorphic to X. Clearly,
every (complemented) subspace of a (complementably) minimal space is also a
(complementably) minimal space. Ferenczi [14] proved that a separable Banach
space without minimal subspaces must be ergodic. Hence, the conjecture in [17] is
related to the following problem: Is every minimal Banach space not isomorphic to
�2 ergodic?

It is well known that c0 and �p (1 ≤ p < ∞) are complementably minimal
spaces, while the dual of the Tsirelson space T ∗ is an example of a minimal but not
complementably minimal space [8]. The first example of a complementably minimal
space other than c0 and the �p’s is the Schlumprecht space and its dual [41]. The
list of minimal spaces known so far is completed with the family of Schlumprecht
type spaces and their duals constructed by complex interpolation methods in [9]
and every infinite dimensional closed subspace of each of the above. For classical
spaces, it was proved in [15] that c0 and �p for 1 ≤ p < 2 are ergodic. Rosendal
[37] proved that the dual of the Tsirelson space is ergodic. In this work we prove
ergodicity for a general family of Banach spaces including all the other minimal
spaces not isomorphic to �2 listed above. More specifically, given a Banach space
X, let

p(X) = sup{p : X has type p},
q(X) = inf{q : X has cotype q}.

Recall that a Banach space X is said to be near Hilbert when p(X) = q(X) = 2.
We give a criterion for ergodicity which together with the Johnson and Szankowski
construction of subspaces without the approximation property allows us to prove
that a non-ergodic Banach space must be near Hilbert. In particular, we solve the
question of [17] about the ergodicity of the �p spaces, for p > 2. We also prove
that the family of Schlumprecht type spaces and its dual are not near Hilbert, and
therefore they are ergodic spaces.

Finally, as an application of the criterion for ergodicity, we prove that for every
non-near Hilbert space X there does not exist a separable Banach space which is
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complementably universal for the class of all subspaces of X. In particular, this is
true for X = �p, p �= 2. This solves a problem left open by Johnson and Szankowski
in their 1976 paper [26] and mentioned again in [25]. (Johnson and Szankowski
verified the case 2 < p < ∞ in [26].)

2. Criterion for ergodicity

A Banach space X has the approximation property (AP) if the identity operator
on X can be approximated uniformly on compact subsets of X by linear operators
of finite rank. The Banach space X is said to have the bounded approximation
property (BAP) if there exists λ > 0 such that the finite rank operator T in the
definition of AP can be taken with norm ‖T‖ ≤ λ. In 1973, Enflo [12] presented the
first example of Banach space without the AP and therefore without a Schauder
basis. Enflo’s construction was simplified by Davie [11], who used probabilistic
methods to construct such examples inside �p-spaces (2 < p ≤ ∞). Later, in 1978,
Szankowski [40] proved that the other range of �p-spaces (1 ≤ p < 2) also has
subspaces failing AP. The criterion we introduce to study ergodicity in Banach
spaces is based on a criterion introduced by Enflo and used in the works of Davie
and Szankowski to prove that a space fails the AP.

We first introduce some notation used throughout the paper. For every n ∈ N,
denote In = {2n, 2n + 1, . . . , 2n+1 − 1}. Given a Banach space X and sequences of
vectors (zn,ε)n∈N in X, (z∗n,ε)n∈N in X∗, (ε = 0, 1), we denote Z = span{zj,ε : j ∈
N, ε = 0, 1} and we shall consider for every t ∈ 2N the closed subspace

Xt = span
{
zj,t(n) : j ∈ In, n = 1, 2, 3, . . .

}
.

If T : Xt → Z is a bounded and linear operator we define the n-trace of T as

βn
t (T ) = 2−n

∑
j∈In

z∗j,t(n)T (zj,t(n)).

Definition 2.1. A Banach space X satisfies the Cantorized-Enflo criterion if there
exist bounded sequences of vectors (zn,ε)n∈N in X, (z∗n,ε)n∈N in X∗ (ε = 0, 1), and
a sequence of real scalars (αn)n such that

(1) z∗i,ε(zj,τ ) = δijδετ for all i, j ∈ N and ε, τ = 0, 1.

(2) For every t, s ∈ 2N and every operator T : Xt → Xs,∣∣βn
t (T )− βn−1

t (T )
∣∣ ≤ αn‖T‖.

(3)
∑

n αn < ∞.

Recall that a subset of a topological space is said to be meagre if it is the
countable union of nowhere dense subsets (sets whose closure has empty interior).
An equivalence relation on a standard Borel space X is said to be meagre if it is a
meagre subset of X2.

Let t ∈ 2N and n ∈ N. We denote by t/n = {k ≤ n : t(k) = 1}. The E′
0

equivalence relation on 2N is defined as

xE′
0y ⇐⇒ ∃n(|t/n| = |s/n|) ∧ (t(k) = s(k), k ≥ n).

E′
0 is a refinement of E0, that is, E′

0 ⊆ E0. In connection with Borel reducibility
ordering we shall use the following result from Rosendal [38].

Proposition 2.2 ([38, Proposition 15]). Let E be a meagre equivalence relation on
2N containing E′

0. Then E0 ≤B E.
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Recall that a Banach space X is said to be complementably universal for a
family A of Banach spaces if every space in A is isomorphic to a complemented
subspace of X. In [26] Johnson and Szankowski proved that there is no separable
Banach space which is complementably universal for the class Ap of all subspaces
of �p, 2 < p < ∞. As observed by Johnson [24], it follows that a complementably
universal Banach space for the class Ap (2 < p < ∞) must have density character
at least the continuum, where the density character of a topological space X is
the least cardinality of a dense subset of X. In particular, this shows that the
family of non-isomorphic subspaces of �p, for (2 < p < ∞), has the cardinality of
the continuum. We use the ideas of the proof in [26] (see also [27]) to establish a
criterion for ergodic Banach spaces.

Lemma 2.3. Let X be a Banach space satisfying the Cantorized-Enflo criterion,
and let Γ be an uncountable subset of 2N. Then every Banach space which is comple-
mentably universal for the family {Xt}t∈Γ has density character at least cardinality
of Γ.

Proof. Let X be a Banach space satisfying the Cantorized-Enflo criterion and con-
sider sequences (zn,ε)n∈N on X, (z∗n,ε)n∈N on X∗, (ε = 0, 1), and real scalars (αn)n
as in Definition 2.1. Suppose that there is an uncountable set Γ ⊆ 2N and a Ba-
nach space W with density character less than the cardinality of Γ such that for
every t ∈ Γ, Xt is isomorphic to a complemented subspace of W . For each t ∈ Γ
we fix an embedding Tt : Xt → W and a projection onto Pt : W → TtXt. We
claim that there exist λ > 0 and a set Γ′ ⊆ Γ with the same cardinality of Γ
such that ‖Tt‖‖T−1

t ‖ ≤ λ and ‖Pt‖ ≤ λ for every t ∈ Γ′. This follows, since
Γ =

⋃
n∈N

{t ∈ Γ : ‖Tt‖‖T−1
t ‖ + ‖Pt‖ ≤ n} and from the fact that Γ is uncount-

able. Now replacing Tt by ‖T−1
t ‖Tt, we may assume that for every t ∈ Γ′,

‖x‖ ≤ ‖Ttx‖ ≤ λ‖x‖ for every x ∈ Xt.

Take δ > 0. It follows by conditions (2) and (3) in Definition 2.1 that there exists
k = k(δ) such that for every m > k,

∣∣βm
t (T )− βk

t (T )
∣∣ ≤ δ‖T‖,

for every t, s ∈ 2N and any operator T : Xt → Xs. We observe that there is a subset
Γ′
k ⊆ Γ′ with the same cardinality of Γ′ such that for every t, s ∈ Γ′

k, t(i) = s(i)
(i = 1, 2, . . . , k). Since the density character of W is less than the cardinality of Γ′

k,
there exists a pair t �= s ∈ Γ′

k such that

‖Tt(zj,t(k))− Ts(zj,s(k))‖ ≤ 1/λ2k, j ∈ Ik.

Now define T : Xt → Xs by T = T−1
s PsTt, where T−1

s : TsXs → Xs. We have
T−1
s Ps(Tt(zj,t(k))− Ts(zj,s(k))) = T (zj,t(k))− zj,s(k) and therefore

∑
j∈Ik

‖Tzj,t(k) − zj,s(k)‖ ≤
∑
j∈Ik

‖T−1
s Ps‖‖Tt(zj,t(k))− Ts(zj,s(k))‖ ≤ 1.

From this we deduce, by using t(k) = s(k), that

∣∣βk
t (T )

∣∣ ≥ 1− 2−k
∑
j∈Ik

∥∥∥z∗j,s(k)
(
zj,s(k) − Tzj,t(k)

)∥∥∥ ≥ 1− 2−k.
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Now since t(m) �= s(m) for some m > k and (z∗j,ε, zj,ε) is a biorthogonal system, we
have

βm
t (T ) = 0.

Therefore,

‖T‖ ≥ δ−1
∣∣βm

t (T )− βk
t (T )

∣∣ ≥ (1/2)δ−1.

On the other hand,

‖T‖ ≤ ‖T−1
s ‖‖Ps‖‖Tt‖ ≤ λ2.

Since δ was arbitrary, we get a contradiction. �

Theorem 2.4. Every separable Banach space satisfying the Cantorized-Enflo cri-
terion is ergodic.

Proof. Let X be a separable Banach space satisfying the Cantorized-Enflo crite-
rion. Define an equivalence relation E on 2N by setting sEt if and only if Xs is
isomorphic to Xt. We observe that E is E′

0-invariant. Indeed, if tE
′
0s, then Xt and

Xs are generated by the same sequence of vectors except for finite sets of the same
cardinality and therefore are isomorphic spaces. By Lemma 2.3 each equivalence
class of E is countable and then a meagre subset of 2N. It is a general fact that an
equivalence relation is meagre whenever each of its equivalence class is meagre [30].
Hence E is a meagre equivalence relation on 2N, and we have from Proposition 2.2
that E0 ≤B E. It is clear that the function φ : 2N → SB(X) given by φ(t) = Xt is
Borel. In consequence, X is ergodic. �

Remark 2.5. A Banach space satisfying the Cantorized-Enflo criterion has a con-
tinuum of non-isomorphic subspaces failing the bounded approximation property.

Proof. We observe that the spaces Xt used in the reduction fails the BAP for every
t ∈ 2N. Assume without loss of generality that the vectors in the Cantorized-Enflo
criterion satisfy ‖zi,ε‖ ≤ 1 and ‖z∗i,δ‖ ≤ 1, for every ε, δ = 0, 1 and every i ∈ N.

Given λ > 0, let n ∈ N be such that λ
∑

k>n αk ≤ 1/2. Let T : Xt → Xt be an
operator with ‖T‖ ≤ λ. Since |βn

t (U)| ≤ ‖U|Zn
‖ for every U : Xt → Z, where

Zn = {zi,t(n), i ∈ In} is a compact set, we have

‖(Id− T )|Zn
‖ ≥ |βn

t (Id− T )| ≥ 1− |βn
t (T )| ≥ 1−

∑
k>n

|βk
t (T )− βk−1

t (T )|

≥ 1− ‖T‖
∑
k>n

αk > 1/2.

�

Remark 2.6. Actually, if in Definition 2.1, we have for every n ∈ N,
∣∣βn

t (T )− βn−1
t (T )

∣∣ ≤ sup{‖Tz‖, z ∈ Fn}

for a finite set Fn of vectors in X, such that
∑

n sup{‖z‖, z ∈ Fn} < ∞, then every
Xt fails the AP ([40, Proposition 1]).

Remark 2.7. We also proved that E0 is Borel reducible to the relation of com-
plemented biembeddability between the subspaces of a separable Banach space
satisfying the Cantorized-Enflo criterion.
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LetX and Y be two Banach spaces and let there be a constantK > 0. Recall that
X is said to be K-crudely finitely representable in Y if for every finite dimensional
subspace F of X there exist a linear isomorphism T : F → T (F ) ⊆ Y so that
‖T‖‖T−1‖ ≤ K. X is said to be finitely representable in Y if X is (1 + ε)-crudely
finitely representable in Y for every ε > 0. A classical result of Maurey and Pisier
[35] states that lp(X) and �q(X) are finitely representable in X, for any Banach space
X. The following remark is stated in the classical book [34].

Remark 2.8. It follows from the proof of [33, Theorem 1.a.5] that if �p is K-crudely
finitely representable in Y , for some 1 ≤ p ≤ ∞, then Y has a subspace X which has
a Schauder decomposition into {Xn}∞n=1 with d(Xn, �

n
p ) ≤ K + 1 for every n ∈ N.

Proposition 2.9. If �p is crudely finitely representable in a Banach space X for
some p > 2, then X satisfies the Cantorized-Enflo criterion.

Proof. The proof of Johnson and Szankowski [26, Section IV] that there does not
exist a separable Banach space which is complementably universal for the class of
subspaces of �p (2 < p < ∞) is by modifying Davie’s construction of a subspace of �p
(2 < p < ∞) failing AP. We observe that the Johnson and Szankowski construction
yields that �p (2 < p < ∞) satisfies the Cantorized-Enflo criterion.

Indeed, fix p > 2. For every n ∈ N, we denote by (fn
j )

3.2n

j=1 the unit vector basis

of �3.2
n

p . Using the notation of [11, 26], let for j ∈ In and ε = 0, 1,

zj,ε = en+1
j+ε2n ,

z∗j,ε = αn+1
j+ε2n ,

where the vectors ekj defined in [26] have the form

ekj =
3.2k−1∑
l=1

λk
j (l)f

k
l +

3.2k∑
l=1

δkj (l)f
k
l .

Also the functionals αk
j are linear combinations of the biorthogonal functionals

(fk∗

l )3.2
k

l=1 of �3.2
k

q , satisfying αk
l (e

i
j) = δkiδlj . For any operator T : Xt → �p,

∣∣βn
t (T )− βn−1

t (T )
∣∣ ≤ sup{‖TΦk,t

l ‖, l ∈ Fn},

for some vectors Φk,t
l and a finite set Fn, where ‖Φk,t

l ‖ ≤ A(n + 1)1/22−n(p−2)/2p,
uniformly on t and l. Therefore �p satisfies the Cantorized-Enflo criterion.

Actually, we notice that the previous construction only uses that �p has a natural

Schauder decomposition into {�3.2np }∞n=2. Therefore, if �p (p > 2) is crudely finitely
representable in X, then using Remark 2.8, there exist a constant K > 0 and a
subspace Y of X admitting a Schauder decomposition into {Xn}∞n=1, such that
d(Xn, �

3.2n

p ) ≤ K. Hence, the analogous construction of vectors ekj and αk
j can be

done as vectors supported in Xk−1 and Xk. �

Corollary 2.10. If �p (p > 2) is crudely finitely representable in X, then X is
ergodic.

We observe that the construction of Johnson and Szankowski [26, Section IV]
satisfies the Cantorized-Enflo criterion in the form of Remark 2.6, so each of the
Xt constructed fails the AP.
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3. Case p(X) < 2

In this section we prove ergodicity for separable Banach spaces such that p(X) <
2. The particular case for the �p spaces (1 ≤ p < 2) was proved by Ferenczi and
Galego [15], where they actually reduce the relation EKσ

and use only subspaces
with unconditional bases. Their approach relies on certain lower estimates on suc-
cessive vectors which have no reason to hold in the case when �p is only crudely
finitely representable on X.

Our approach is to obtain the ‘Cantorized version’ of the subspaces of �p (1 ≤
p < 2) without AP constructed by Szankowski [40]. The advantage of this method is
that the nature of that construction allows us to pass the Cantorized-Enflo criterion
from �p to a Banach space X for which �p is crudely finitely representable in X.

Before the proof, we need to define the functions fk : N → N, k ≤ 8, gk : N → N,
k ≤ 15, hk : N → N, k ≤ 32 to encode the support of some vectors used in that
construction. The main difference from [40] is that our construction uses vectors
with support of length twelve instead of six of the original one:

fk(16i+ l) = 8i+ k − 1, i = 2, 3, 4, . . . 0 ≤ l ≤ 15, 1 ≤ k ≤ 8,
gk(16i+ l) = 16i+(l+ k) mod 16, i = 2, 3, 4, . . . 0 ≤ l ≤ 15, 1 ≤ k ≤ 15,
hk(16i+ l) = 32i+ k − 1, i = 2, 3, 4, . . . 0 ≤ l ≤ 3, 1 ≤ k ≤ 32.

We denote Ijn = {k ∈ In : k ∼= j (mod 16)}, j = 0, 1, 2 . . . , 15. The following
is a modified version of the key Szankowski combinatorial argument [40] (see also
[34, Proposition 1.g.5]) adapted to our set of functions {fk, gk, hk}.

Lemma 3.1. There exist partitions Δn and ∇n of In into disjoint sets and a
sequence of integers (mn)n with mn ≥ 2n/32−1, n = 2, 3, . . . such that:

(1) For every A ∈ ∇n, mn ≤ |A| ≤ 2mn and it is contained in some Ijn.
(2) For every A ∈ ∇n and every B ∈ Δn, |A ∩B| ≤ 1.
(3) For every A ∈ ∇n and every function ξ in {fk, gk, hk}, the set ξ(A) is

contained entirely in an element of Δn−1,Δn, or Δn+1.

Proof. Consider the functions ϕj
n : I0n → Ijn given by ϕj

n(k) = k+j (j = 0, 1, . . . , 15).
For n ≥ 4 and r = 0, 1 we let ψr

n : I0n → I0n+1 be the map defined by ψr
n(k) =

2k+16r. The above functions are 1-1 and have disjoint ranks with I0n+1 = ψ0
n(I

0
n)∪

ψ1
n(I

0
n).

Inductively, for n ≥ 4 we can represent I0n as the cartesian product Cn × Dn,
where |Dn+1| = |Cn|, |Cn+1| = 2|Dn| and such that:

(1) For every c ∈ Cn+1 there exist d ∈ Dn and r = 0, 1 such that ψr
n(Cn×{d}) =

{c} ×Dn+1.
(2) For every d ∈ Dn+1 there exists c ∈ Cn such that ψ0

n ∪ ψ1
n({c} × Dn) =

Cn+1 × {d}.

This means that the functions ψr
n send columns of Cn×Dn onto rows of Cn+1×Dn+1

in a way that every column of Cn+1 ×Dn+1 is the image of a row of Cn ×Dn by
ψ0
n ∪ ψ1

n. Notice that |Cn|, |Dn| ≥ 2n/2−2.
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Now we split each Dn as a cartesian product of sixteen factors Dn =
∏15

l=0D
l
n

such that

|D0
n| ≤ |D1

n| ≤ · · · ≤ |D15
n | ≤ 2|D0

n|.
The partitions are then defined as

∇n =

⎧⎨
⎩ϕl

n

(
{c} ×Dl

n

)
: c ∈ Cn ×

∏
i �=l

Di
n, 0 ≤ l ≤ 15

⎫⎬
⎭ ,

Δn =

⎧⎨
⎩ϕl

n

⎛
⎝Cn ×

∏
i �=l

Di
n × {d}

⎞
⎠ : d ∈ Dl

n, 0 ≤ l ≤ 15

⎫⎬
⎭ .

The conditions (1), (2), and (3) are satisfied in the same way as [40]. �

Theorem 3.2. If �p is crudely finitely representable in a Banach space X, for some
1 ≤ p < 2, then X satisfies the Cantorized-Enflo criterion.

Proof. Let X be a Banach space such that �p is crudely finitely representable, for
some 1 ≤ p < 2. For every n ∈ N, we fix Δn and ∇n partitions of In obtained
by Lemma 3.1. It follows by Remark 2.8 that there exist a constant K > 0 and
a subspace Y of X admitting a Schauder decomposition into {Xn}∞n=1 such that
d(Xn, �

2n

p ) ≤ K, for every n ∈ N. Let (xj)
∞
j=1 be a bounded sequence of vectors in

Y with xj ∈ Xn when j ∈ In such that for every n,
(3.1)

K−1

⎛
⎜⎝

∑
B∈Δn

⎛
⎝∑

j∈B

|aj |2
⎞
⎠

p/2
⎞
⎟⎠

1/p

≤

∥∥∥∥∥∥
∑
j∈In

ajxj

∥∥∥∥∥∥
≤ K

⎛
⎜⎝

∑
B∈Δn

⎛
⎝∑

j∈B

|aj |2
⎞
⎠

p/2
⎞
⎟⎠

1/p

,

for any sequence of scalars (aj)
∞
j=1. Let (x

∗
j )

∞
j=1 be a sequence of functionals in Y ∗

such that x∗
j (xi) = δij for all i, j ∈ N and

(3.2)

K−1

⎛
⎜⎝

∑
B∈Δn

⎛
⎝∑

j∈B

|bj |2
⎞
⎠

q/2
⎞
⎟⎠

1/q

≤

∥∥∥∥∥∥
∑
j∈In

bjx
∗
j

∥∥∥∥∥∥
Y ∗

≤ K

⎛
⎜⎝

∑
B∈Δn

⎛
⎝∑

j∈B

|bj |2
⎞
⎠

q/2
⎞
⎟⎠

1/q

for any sequence of scalars (bj)
∞
j=1 and every n, where 1/p+ 1/q = 1.

We now define the sequence of vectors (zi,ε)i, ε = 0, 1, in Y by setting:

zi,0 = (x8i − x8i+1) + (x8i+2 − x8i+3) + x16i + x16i+1 + x16i+4 + x16i+5 + x16i+8

+ x16i+9 + x16i+12 + x16i+13,

zi,1 = (x8i+4 − x8i+5) + (x8i+6 − x8i+7) + x16i+2 + x16i+3 + x16i+6 + x16i+7

+ x16i+10 + x16i+11 + x16i+14 + x16i+15.

Recall that Z = span{zj,ε : j ∈ N, ε = 0, 1}. Notice that for every i ∈ N,

(x∗
8i − x∗

8i+1)|Z = (x∗
8i+2 − x∗

8i+3)|Z = 1/2(x∗
16i + x∗

16i+1 + x∗
16i+8 + x∗

16i+9)|Z

= 1/2(x∗
16i+4 + x∗

16i+5 + x∗
16i+12 + x∗

16i+13)|Z .
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Indeed, all four formulas give 2 when evaluated on zi,0 and give 0 when evaluated
on zj,ε �= zi,0. Analogously, for every i ∈ N,

(x∗
8i+4 − x∗

8i+5)|Z=(x∗
8i+6 − x∗

8i+7)|Z=1/2(x∗
16i+2 + x∗

16i+3 + x∗
16i+10 + x∗

16i+11)|Z

=1/2(x∗
16i+6 + x∗

16i+7 + x∗
16i+14 + x∗

16i+15)|Z .

All four formulas above give 2 when evaluated on zi,1 and 0 when evaluated on
zj,ε �= zi,1. We define the sequence of functionals (z∗n,ε)n∈N, ε = 0, 1, on Z∗ by
setting

z∗i,ε = 1/2(x∗
8i+4ε − x∗

8i+4ε+1)|Z .

Hence,

z∗i,0 = 1/2(x∗
8i+2 − x∗

8i+3)|Z = 1/4(x∗
16i + x∗

16i+1 + x∗
16i+8 + x∗

16i+9)|Z

= 1/4(x∗
16i+4 + x∗

16i+5 + x∗
16i+12 + x∗

16i+13)|Z ,

z∗i,1 = 1/2(x∗
8i+6 − x∗

8i+7)|Z = 1/4(x∗
16i+2 + x∗

16i+3 + x∗
16i+10 + x∗

16i+11)|Z

= 1/4(x∗
16i+6 + x∗

16i+7 + x∗
16i+14 + x∗

16i+15)|Z .

For t ∈ 2N, recall that Xt = span{zj,t(n) : j ∈ In, n ∈ N}. If T : Xt → Z is a linear
and bounded operator, the n-trace of T has been defined as

βn
t (T ) = 2−n

∑
j∈In

z∗j,t(n)T (zj,t(n)).

We need to verify that the β′
ns satisfy the conditions of the Cantorized-Enflo

criterion (Definition 2.1).

Case 1. t(n) = t(n− 1) = 0.

βn
t (T )− βn−1

t (T ) = 2−n
∑
i∈In

z∗i,0T (zi,0)− 2−n+1
∑

i∈In−1

z∗i,0T (zi,0)

= 2−n
∑
i∈In

2−1
(
x∗
8i − x∗

8i+1

)
T (zi,0)

− 2−n+1
∑

i∈In−1

2−2(x∗
16i + x∗

16i+1 + x∗
16i+8 + x∗

16i+9)T (zi,0)

= 2−n−1
∑

i∈In−1

{x∗
16iT (z2i,0 − zi,0) + x∗

16i+1T (−z2i,0 − zi,0)

+ x∗
16i+8T (z2i+1,0 − zi,0) + x∗

16i+9T (−z2i+1,0 − zi,0)}.

The elements in parentheses above will be called y16i, y16i+1, y16i+8, y16i+9, re-
spectively; thus

βn
t (T )− βn−1

t (T ) = 2−n−1
∑

j∈In+3(0,0)

x∗
jT (yj),

where In(0, 0) = I0n ∪ I1n ∪ I8n ∪ I9n.
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Case 2. t(n) = 0, t(n− 1) = 1.

βn
t (T )− βn−1

t (T ) = 2−n
∑
i∈In

z∗i,0T (zi,0)− 2−n+1
∑

i∈In−1

z∗i,1T (zi,1)

= 2−n
∑
i∈In

2−1
(
x∗
8i+2 − x∗

8i+3

)
T (zi,0)

− 2−n+1
∑

i∈In−1

2−2(x∗
16i+2 + x∗

16i+3 + x∗
16i+10 + x∗

16i+11)T (zi,1)

= 2−n−1
∑

i∈In−1

{x∗
16i+2T (z2i,0 − zi,1) + x∗

16i+3T (−z2i,0 − zi,1)

+ x∗
16i+10T (z2i+1,0 − zi,1) + x∗

16i+11T (−z2i+1,0 − zi,1)}.

The elements in parentheses above will be called y16i+2, y16i+3, y16i+10, y16i+11,
respectively; thus

βn
t (T )− βn−1

t (T ) = 2−n−1
∑

j∈In+3(0,1)

x∗
jT (yj),

where In(0, 1) = I2n ∪ I3n ∪ I10n ∪ I11n .

Case 3. t(n) = 1, t(n) = 0.

βn
t (T )− βn−1

t (T ) = 2−n
∑
i∈In

z∗i,1T (zi,1)− 2−n+1
∑

i∈In−1

z∗i,0T (zi,0)

= 2−n
∑
i∈In

2−1
(
x∗
8i+4 − x∗

8i+5

)
T (zi,1)

− 2−n+1
∑

i∈In−1

2−2(x∗
16i+4 + x∗

16i+5 + x∗
16i+12 + x∗

16i+13)T (zi,0)

= 2−n−1
∑

i∈In−1

{x∗
16i+4T (z2i,1 − zi,0) + x∗

16i+5T (−z2i,1 − zi,0)

+ x∗
16i+12T (z2i+1,1 − zi,0) + x∗

16i+13T (−z2i+1,1 − zi,0)}.

The elements in parentheses above will be called y16i+4, y16i+5, y16i+12, y16i+13,
respectively; thus

βn
t (T )− βn−1

t (T ) = 2−n−1
∑

j∈In+3(1,0)

x∗
jT (yj),

where In(1, 0) = I4n ∪ I5n ∪ I12n ∪ I13n .
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Case 4. t(n) = 1, t(n− 1) = 1.

βn
t (T )− βn−1

t (T ) = 2−n
∑
i∈In

z∗i,1T (zi,1)− 2−n+1
∑

i∈In−1

z∗i,1T (zi,1)

= 2−n
∑
i∈In

2−1
(
x∗
8i+6 − x∗

8i+7

)
T (zi,1)

− 2−n+1
∑

i∈In−1

2−2(x∗
16i+6 + x∗

16i+7 + x∗
16i+14 + x∗

16i+15)T (zi,1)

= 2−n−1
∑

i∈In−1

{x∗
16i+6T (z2i,1 − zi,1) + x∗

16i+7T (−z2i,1 − zi,1)

+ x∗
16i+14T (z2i+1,1 − zi,1) + x∗

16i+15T (−z2i+1,1 − zi,1)}.
The elements in parentheses above will be called y16i+6, y16i+7, y16i+14, y16i+15,

respectively; thus

βn
t (T )− βn−1

t (T ) = 2−n−1
∑

j∈In+3(1,1)

x∗
jT (yj),

where In(1, 1) = I6n ∪ I7n ∪ I14n ∪ I15n .
Hence,

βn
t (T )− βn−1

t (T ) = 2−n−1
∑

j∈In+3(t(n),t(n−1))

x∗
jT (yj).

We use the functions {fk, gk, hk} to describe the support of the vectors yj .
For each j, we shall need four functions of the {fk, k ≤ 8}, nine functions of the
{gk, k ≤ 15}, and eight functions of the {hk, k ≤ 32}. In fact, notice that

yj =

4∑
k=1

αjkxfjk (j)
+

9∑
t=1

βjtxgjt (j)
+

8∑
s=1

γjsxhjs (j)
,

where |αj,k| = |γjs | = |βjt | = 1 for all the indexes in the formula above, except for
one jt0 which satisfies |βjt0

| = 2.

Given ε, δ = 0, 1, we write ∇n(ε, δ) = {A ∈ ∇n : A ⊆ In(ε, δ)}. Observe that
these sets are well defined because of Lemma 3.1(1). Notice also that

2−n−1
∑

j∈In+3(ε,δ)

x∗
jT (yj) = 2−n−1

∑
A∈∇n+3(ε,δ)

∑
j∈A

x∗
jT (yj)

= 2−n−1
∑

A∈∇n+3(ε,δ)

2−|A|
∑
θ

⎛
⎝∑

j∈A

θjx
∗
j

⎞
⎠

⎛
⎝∑

j∈A

θjTyj

⎞
⎠ ,

where the sum is taken over all the choices of signs {θj}j∈A. Observe that by
Lemma 3.1(2) and equation (3.2) above (about norm of the functionals x∗

j ) we
have, for every A ∈ ∇n+3(ε, δ) and {θj}j∈A,

∥∥∥∥∥∥
∑
j∈A

θjx
∗
j

∥∥∥∥∥∥
Y ∗

≤ K

⎛
⎜⎝

∑
B∈Δn

⎛
⎝ ∑

j∈B∩A

|θj |2
⎞
⎠

q/2
⎞
⎟⎠

1/q

= K|A|1/q ≤ K(2mn+3)
1/q,
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where 1/p+1/q = 1. By Lemma 3.1(3) we have, for every A ∈ ∇n+3(ε, δ), {θj}j∈A,
and any function ξ in {fk, gk, hk},∥∥∥∥∥∥

∑
j∈A

θjxξ(j)

∥∥∥∥∥∥
≤ K|A|1/2 ≤ K(2mn+3)

1/2.

It follows that∥∥∥∥∥∥
∑
j∈A

yj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈A

21∑
k=1

λjkxξlk (j)

∥∥∥∥∥∥
≤ 42K|A|1/2 ≤ 42K(2mn+3)

1/2.

Notice that by construction |∇n(ε, δ)| = 2−2|∇n| ≤ 2n−2m−1
n . Hence,

∣∣βn
t (T )− βn−1

t (T )
∣∣ =

∣∣∣∣∣∣
2−n−1

∑
j∈In+3(ε,δ)

x∗
jT (y)

∣∣∣∣∣∣
≤ 2−n−1(2n+1m−1

n+3)K(2mn+3)
1/q42K

√
2m

1/2
n+3‖T‖

≤ 84K2(mn+3)
1/q+1/2−1‖T‖.

Since α = 1/2+ 1/q− 1 = 1/2− 1/p < 0, the series
∑

n m
α
n ≤

∑
n 2

α(n/32−1) < ∞.
Therefore, X satisfies the Cantorized-Enflo criterion. �

Remark 3.3. The proof of Theorem 3.2 is based on the idea from [40] where sub-
spaces of �p (1 ≤ p < 2) without AP were constructed. It was pointed out by
Szankowski [40] (see also [34, Remark 2, p. 111]) that the mentioned idea can be
easily adapted to obtain subspaces of �p (2 < p < ∞) without the AP. This implies
that the method used in the proof of Theorem 3.2 is also valid for Banach spaces
X in which �p (2 < p < ∞) is crudely finitely representable. Indeed, the same
definition of vectors zi,ε and functionals z∗i,ε works; it is only necessary to modify
the construction of the partitions Δn and ∇n in Lemma 3.1. This gives us an
independent proof of Proposition 2.9.

We observe that the construction of Theorem 3.2 satisfies the Cantorized-Enflo
criterion in the form of Remark 2.6. Therefore every Xt constructed above fails the
AP. We can conclude the following.

Theorem 3.4. Every separable Banach space not near Hilbert satisfies the
Cantorized-Enflo criterion and therefore is ergodic. Furthermore, the reduction
uses subspaces without the AP.

The following remark is due to Anisca.

Remark 3.5. There do exist near Hilbert spaces satisfying the Cantorized-Enflo
criterion. Indeed, Casazza, Garćıa and Johnson [7] constructed an asymptotically
Hilbertian space which fails the AP. Their approach follows closely the Davie con-
struction [11] of a subspace of �p = (

∑
n �

3.2n

p )p (2 < p < ∞) failing the AP. The

space in [7] is instead a subspace of Z = (
∑

n �
3.2n

pn
)2 where pn ↓ 2 appropriately.

One can combine the arguments of Proposition 2.9 and those in [26, Section IV]
to construct a version of the Casazza, Garćıa, and Johnson space satisfying the
Cantorized-Enflo criterion. Also, the arguments of Theorem 3.4 can be used in the
context of construction by Anisca and Chlebovec [3] to obtain that spaces of the
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form �2(X), with X of cotype 2 and having the sequence of Euclidean distances of
order at least (log n)β (β > 1), satisfy the Cantorized-Enflo criterion.

As a direct consequence of Lemma 2.3 and Theorem 3.2, we can now extend the
result of Johnson and Szankowski [26] about complementably universal spaces for
the family of subspaces of �p (2 < p < ∞).

Theorem 3.6. There is no separable Banach space which is complementably uni-
versal for the class of all subspaces of X when X is not near Hilbert.

Corollary 3.7. There is no separable Banach space which is complementably uni-
versal for the family of subspaces of �p (1 ≤ p < 2).

In the limit case, Johnson and Szankowski [28] constructed a separable space,
non-isomorphic to the Hilbert, such that all subspaces have the BAP and it is
complementably universal for all its subspaces. Also, if every subspace of X has
the BAP (for example if X is weak Hilbert), then Pe�lczyński’s universal space (see
[33, Theorem 2.d.10(a)]) is complementably universal for the family of all subspaces
of X.

4. The Schlumprecht type space Sp,r is not near Hilbert

Schlumprecht [1,41] constructed the first example of a complementably minimal
Banach space S different from the classical spaces c0 and �p (1 ≤ p < ∞). In [9],
the Schlumprecht construction was extended to uniformly convex examples using
interpolation techniques. In fact, they constructed a family of uniformly convex
complementably minimal spaces by interpolating S and �q.

The approach in [9] deals with Banach spaces X defined by lattice norms ‖.‖X
on c00. In this context, if X and Y are two such spaces and 0 < θ < 1, then X1−θY θ

is defined as the space Z with the norm ‖z‖Z = inf{‖x‖1−θ
X ‖y‖θY , z = |x|1−θ|y|θ}.

When we consider the complex scalars and either X or Y is separable, then Z
coincides with the usual complex interpolation space [X,Y ]θ (see [6]).

Definition 4.1. For every 1 ≤ p < r ≤ ∞, the Schlumprecht type space Sp,r is

defined as the interpolated space �1−θ
t Sθ, where θ = 1

p − 1
r and t = (1− θ)r.

Proposition 4.2 ([9, Proposition 3 and Theorem 8]). For any 1 ≤ p < r ≤ ∞,
the space Sp,r and its dual are complementably minimal. Furthermore, Sp,r has a
1-unconditional normalized basis (en)

∞
n=1 such that

∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
Sp,r

= n1/p log2(n+ 1)1/r−1/p,

for every n ∈ N.

Notice that S is simply S1,∞. We use the ideas from [10] and estimates of the
norm of some combination of the vector basis to compute p(Sp,r) and q(Sp,r).

Proposition 4.3. Let 1 ≤ p < r ≤ ∞. For every n ∈ N and ε > 0, there exists a
sequence of vectors v1, . . . , vn in c00 such that:

(1) The set of vectors {v1, . . . , vn} is disjointly supported.
(2) ‖ε1v1 + · · ·+ εnvn‖Sp,r

≤ (1 + ε)θn1/r, for any ε1, . . . , εn of modulus 1.
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Proof. D. Kutzarova and P. K. Lin [32] proved that there exist vectors v1, . . . , vn
in c00 which are disjointly supported such that ‖v1 + · · · + vn‖S ≤ (1 + ε), where
each vj is of the form

mj

log2(mj+1)

∑
i∈Mj

ei, |Mj | = mj . Since the basis of S is

1-unconditional, we have ‖ε1v1 + · · ·+ εnvn‖S ≤ (1+ ε) for any (εj)
n
j of modulus 1.

Letting v = ε1v1 + · · ·+ εnvn, it follows from the Lozanovskii formula that

‖v‖Sp,r
≤ ‖v‖1−θ

t ‖v‖θS ≤ (1 + ε)θn(1−θ)/t = (1 + ε)θn1/r.

�

Proposition 4.4. Let 1 ≤ p < r ≤ ∞. The family of Schlumprecht type spaces
Sp,r and their duals are not near Hilbert. In particular, they are ergodic spaces.

Proof. Let 1 ≤ p < r ≤ ∞. Assume that Sp,r has type t. Then by Proposition

4.2, n1/p log2(n + 1)1/r−1/p ≤ Ttn
1/t for some constant Tt, and then t ≤ p. Hence

p(Sp,r) ≤ p. Analogously, if Sp,r has cotype t, then by Proposition 4.3 t ≥ r, and
then q(Sp,r) ≥ r. We have that p(Sp,r) ≤ p < r ≤ q(Sp,r), and it follows that Sp,r

is not near Hilbert. Also, since a Banach space X is near Hilbert if and only if X∗

is near Hilbert, the dual space S∗
p,r is not near Hilbert. �

5. Final remarks

Of course, the main question concerning ergodic spaces is whether �2 is the only
non-ergodic Banach space. The conclusion of Theorem 3.4 restricts the question
of ergodicity to the case of near Hilbert spaces, but our technique uses a reduction
throughout subspaces without the AP. A Banach space in which all of its subspaces
have AP is said to have the hereditary approximation property (HAP). Szankowski
[40] proved that every HAP space must be near Hilbert. The first example of a
HAP space not isomorphic to a Hilbert space was constructed by Johnson [23].
Later, Pisier [36] proved that every weak Hilbert space has the HAP. The space
constructed by Johnson is asymptotically Hilbertian and therefore ergodic by the
Anisca [2] result. In 2010 Johnson and Szankowski [28] constructed a HAP space
with a symmetric basis but not isomorphic to �2 and hence not asymptotically
Hilbertian. Hence, a natural question is the following:

Problem. Is the HAP non-asymptotically Hilbertian space contructed in [28] er-
godic?

Or more generally:

Problem. Is every HAP not isomorphic to the Hilbert space ergodic?

Another interesting class of near Hilbert spaces are the twisted Hilbert spaces.
The most important example of non-trivial twisted Hilbert space is the Kalton-Peck
space Z2 [29]. Z2 is not asymptotically Hilbertian, and it is not known whether it
has the HAP.

Problem. Does there exist an ergodic non-trivial twisted Hilbert space?

Another natural question is:

Problem. Is every minimal Banach space not isomorphic to a Hilbert space er-
godic?
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