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PERIOD INTEGRALS AND MUTATION

KETIL TVEITEN

Abstract. We define what it means for a Laurent polynomial in two variables
to bemutable. For a mutable Laurent polynomial we prove several results about
f and its period πf in terms of the Newton polygon of f . In particular, we
give an in principle complete description of the monodromy of πf around the
origin. Special attention is given to the class of maximally mutable Laurent
polynomials, which has applications to the conjectured classification of Fano
manifolds via mirror symmetry.

1. Introduction

Let N � Z2 be a lattice, and let C[N ] be the ring of Laurent polynomials in two
variables. Let P ⊂ N be a lattice polytope, and let f(a, x) =

∑
m∈P amxm be a

generic Laurent polynomial with Newton polytope Newt(f) = P . For such an f ,
and C a 2-cycle in H2({x ∈ (C∗)2|f(x) �= 0},C), consider the integral

φf (a) =

∫
C

1

f(a, x)

dx1

x1

dx2

x2
.

As a function of the coefficients am of f , this integral satisfies a system of differ-
ential equations of the GKZ type, as follows: Let P ′ be the image of P under the
embedding N ↪→ Z×N “at height 1” given by m �→ (1,m). Then φf is a solution
to the GKZ system Hγ(P

′), where γ = (0, 0,−1) (see [SST00, 5.4.2]).
An interesting specialization of this is the classical period integral of f ,

πf (t) = (
1

2πi
)2

∫
|x1|=|x2|=1

1

1− tf(a, x)

dx1

x1

dx2

x2
,

which is a (possibly multivalued) holomorphic function of t in a punctured disk
around t = 0. When the polytope P is a Fano polytope (see Definition 2.1), the
classical period plays an important role in the conjectured classification of Fano
manifolds via mirror symmetry, for a certain class of Laurent polynomials f called
maximally mutable [CCG+13, ACC+16] (see Definition 3.14); understanding this
class of Laurent polynomials and the associated D-module generated by πf (t) is
the primary motivation for this paper.

We will study the local behaviour of the D-module D ·πf (t) around the origin by
using tools from toric geometry and the relation between properties of this module
and the combinatorial data of the Newton polytope of f , in particular through
the operation of mutation (see Definitions 3.9 and 3.12, and also [ACGK12]). In
addition, we try to extract some information about its global behaviour from the
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combinatorics of Newt(f). We solve the former problem completely; for the latter
the best we can do is make plausible conjectures backed up by empirical data. We
also prove several results about the relationship between Laurent polynomials and
their Newton polygons.

For a mutable Laurent polynomial f with Newton polygon P , the pencil |1, f |
defines a rational map YP ��� P1, where YP is the toric variety defined by the
normal fan of P . If X is the minimal resolution of the base locus of this map and
the singularities of YP , there is a morphism X → P1, and if Xt denotes the fiber
of this map at t ∈ P1, the monodromy of πf around some point is the monodromy
of H1(Xt,Z) around this point, for t generic (see Section 2 for the details of this
construction).

When discussing mutation of two-dimensional polytopes (or equivalently, of two-
dimensional toric del Pezzo surfaces), the principal invariant of mutation is the
singularity content due to Akhtar and Kasprzyk [AK14]; see Definition 3.3. In
Section 4, we show the main result of this paper, computing the monodromy at
zero by combining the contribution of each element in the singularity content.

Theorem 1.1. Let P be a Fano polygon with singularity content (k,B), and let
Xt be the general fiber of a generic maximally mutable Laurent polynomial with
Newt(f) = P . Then the monodromy of H1(Xt,Z) around t = 0 is given by the
composition [(α, β) �→ (α+ kβ, β)] ◦©σ∈Bψσ, where the ψσ are the automorphisms
defined in Lemma 4.9, and α, β are the cycles defined at the beginning of Section 4.

The terms and objects involved in this statement are defined in Sections 2, 3,
and 4. From the main theorem we can deduce another important result.

Theorem 1.2. Let P be a Fano polygon, let f be a maximally mutable Laurent
polynomial with Newt(f) = P , and let πf be its classical period. The monodromy
at zero of πf determines and is determined by the singularity content of P , thought
of as a multiset.

In particular, we state the version of the main theorem that applies in the sim-
plest nontrivial case, considered in [ACC+16].

Theorem 1.3. Let P be a Fano polygon with singularity content (k, {n× 1
3 (1, 1)},

and let Xt be the generic fiber of the morphism defined by a generic maximally muta-
ble Laurent polynomial f with Newt(f) = P . Then there is a basis {α, β, a11, a12, . . . ,
an1 , a

n
2} of cycles in H1(Xt,Z) such that in terms of this basis, the monodromy

automorphism φ of H1(Xt,Z) is given by

• φ(α) = α+ (k + n− 12)β +
∑n

j=1 a
j
1 +

∑n
j=1 a

j
2,

• φ(β) = β,

• φ(aj1) = aj2 for 1 ≤ j ≤ n, and

• φ(aj2) = β − aj1 − aj2 for 1 ≤ j ≤ n.

Note that the singularity content is not a complete invariant; there are polygons
with the same singularity content that are not mutation-equivalent. In Section 5
we conjecture an improvement to this: A local system V on P1 \ S (where S is a
finite set) has monodromy Ts around each point s ∈ S, and we can gather up some
information about the total monodromy group in a quantity called the ramification
of V , defined by

rf(V ) =
∑
s∈S

dim(Vx/V
Ts
x )− 2rk(V ),
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where x ∈ P1 \ S is some point (it doesn’t matter which, as Ts is only defined
up to conjugation, i.e., up to the choice of base point). It is a general fact that
rf(V ) ≥ 0, in particular local systems with rf(V ) = 0 seem interesting in their
own right (also see [CCG+13]); the local systems arising from classical periods
of maximally mutable Laurent polynomials have unusually low ramification, often
minimal. Based on some empirical evidence we conjecture the following.

Conjecture 1.4. Let P be a Fano polygon, and let f be a generic standard maxi-
mally mutable Laurent polynomial with Newt(f) = P . Then, the singularity content
of P together with the ramification of the local system Sol(D ·πf ) completely deter-
mines the mutation class of P .

2. Preliminaries

As we will discuss the operation of mutation of polygons and Laurent polynomi-
als, we must restrict ourselves to the class of Fano polygons, where this operation
is well behaved.

Definition 2.1. Let N be a two-dimensional lattice, and let P ⊂ N ⊗ R be a
convex lattice polygon such that

(1) dimP = 2;
(2) 0 ∈ int(P ), that is, the origin is a strict interior point of P ; and
(3) the vertices of P are primitive lattice points.

Such a polygon is called a Fano polygon (see [KN12]).

In the remainder, all polygons are assumed to be Fano polygons, and all Laurent
polynomials are such that Newt(f) is Fano. We consider two polygons to be equal if
they differ by an element of GL(N), and similarly consider two Laurent polynomials
to be equal if they are related by an automorphism of C[N ] induced by an element
of GL(N). The one-dimensional faces of a polygon are called edges and the zero-
dimensional faces are called vertices.

Let P ⊂ N be a Fano polygon, let M = Hom(N,Z), and let YP be the toric
del Pezzo surface defined by the normal fan of P in M . Recall that a variety Y is
Fano if the anticanonical divisor −KY is ample (two-dimensional Fano varieties are
usually called del Pezzo surfaces for historical reasons). The rays ui generating the
normal fan of P are the inward normals to the edges Ei of P , so for each edge Ei of
P , let DEi

= Di denote the corresponding divisor on YP . There is a distinguished
Cartier divisor on YP ,

DP =
∑
i

hiDi;

here hi = −〈ui|Ei〉 is the lattice height of the edge Ei. The associated line bundle
O(DP ) is very ample, and its global sections Γ(YP ,O(DP )) can be identified with
the set of Laurent polynomials with Newton polygon Newt(f) = P (see [CLS11,
4.3.3/4.3.7]). In particular, the origin 0 ∈ P corresponds to a distinguished element
1 ∈ Γ(YP ,O(DP )), with div(1) = DP .

A section f determines a rational map

τ :=
1

f
: YP ��� P1.

Let ZP → YP be the resolution of the indeterminacy locus τ−1(0) ∩ τ−1(∞), and

let D̂ be the strict transform of DP . The induced map τ̂ : ZP → P1 is a morphism,
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with central fiber τ̂−1(0) = D̂. The variety ZP is usually not smooth, however, so
let Γτ̂ be the graph of this morphism, and let X → Γτ̂ be the minimal resolution.
Via the embedding ZP ⊂ Γτ̂ there is an induced morphism X → P1, which we call

τ̃ . Let D′ be the pullback of D̂ to X; the central fiber τ̂−1(0) is equal to D′.
In fact, we will work with not merely a single f , but rather a linear system of

Laurent polynomials (the linear systems of mutable Laurent polynomials associated
to a polygon P generally have nonzero dimension) and so really a parametrised
family of τ ’s; this does not change the above description, as the base point locus of
this linear system coincides with the indeterminacy locus of τ (regardless of which
section f in the linear system one uses to define τ ). As nothing we discuss really
depends on these parameters, we supress the mention of them.

From D-module theory the module D · πf is the degree zero part of the D-
module theoretic direct image τ̃+OX (see [SST00, 5.5.1], in whose terminology
this is the integration module of OX). It follows from [BGK+87, VII.9.6, VIII.13.4
and VIII.14.5.1] that Sol(τ̃+OX) is isomorphic to Rτ̃!CX (via the standard iso-
morphisms of functors Sol � D ◦ DR, DR ◦ τ̃+ � Rτ̃∗ ◦ DR, and D ◦ Rτ̃∗ �
Rτ̃! ◦ D, where D is the Verdier duality and DR is the De Rham functor from
D-modules to constructible sheaves, and such that DR(OX) is a resolution of CX),
so Sol(D · πf ) � R1τ̃!CX as constructible sheaves. From [Dim04, 2.3.21, 2.3.26] we
have (R1τ̃!CX)t � H1

c (Xt,CX) � H1(Xt,C) for t ∈ P1. As R1τ̃!CX is constructible
with respect to the stratification given by the critical values of τ̃ (there are two
strata: the critical values and their complement), the restriction of R1τ̃!CX to the
complement of the critical values of τ̃ (the top stratum) is a local system with
fiber H1(XtC) for generic t. Recalling the well-known fact that the monodromy

of a holomorphic function is integral (see, e.g., [Żo�l06, 5.4.32]), the monodromy of
Sol(D · πf ) is thus the monodromy of H1(Xt,Z) around zero.

See Remark 3.16 for an alternate equivalent description of X.

3. Mutation

In this section we will introduce the operations of mutation (of Fano polygons
and Laurent polynomials, respectively), introduce the class of maximally mutable
Laurent polynomials, and prove some results that prepare us for the monodromy
computation in the next section. First, we must introduce some notation and ter-
minology, which will remain in force for the remainder of the paper.

Let P ⊂ N be as before, with vertices pi and edges Ei with inward normal
vectors ui ∈ M . We number these so that Ei is the edge between pi and pi+1. The
lattice height (or simply height) of an edge Ei is −〈ui|Ei〉, and the lattice width (or
simply width) of Ei is 〈ui−1|pi − pi+1〉 = 〈ui+1|pi+1 − pi〉; the lattice width is equal
to the number of lattice points on Ei minus one. The following definitions are due
to Akhtar and Kasprzyk (see [AK14]).

Definition 3.1. Let C ⊂ N be a primitive lattice cone of lattice height h and
lattice width w. If h = w, we say that C is a primitive T -cone. If w is a positive
multiple of h, we say that C is a T -cone. If w is strictly less than h, we say that C
is an R-cone.

Let E be an edge of P of height r and width w = mr + w0, where 0 ≤ w0 < r.
Then we can subdivide the cone in P spanned by E into m primitive T -cones and
one R-cone of width w0; we say these are cones on the edge E. There are m + 1
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ways to do this, depending on where you place the R-cone, but by [AK14, 2.3] the
type (see Definition 3.7) of the R-cone depends only on E and not on the ordering.
We therefore talk about, e.g., “the R-cone on E” and the “set of R-cones in P”
without ambiguity.

Definition 3.2. Let P be a Fano polygon. A lattice point in the interior of P that
is either the origin or inside an R-cone is called a residual point of P .

Definition 3.3 ([AK14]). Let P be a Fano polygon, let k be the number of T -cones
in P , and let B be the cyclically ordered list of types of R-cones in P . The set B is
called the singularity basket of P . The singularity content of P is the pair (k,B).
Remark 3.4. Note that in Theorem 1.2, the singularity basket is thought of as a
multiset rather than a cyclically ordered list; see Remark 4.10 for a discussion of
this defect.

Next we state the main results of this section, Theorem 3.5 and Proposition 3.6,
from which we see that the number of residual points is important. Note that some
of the terms in these statements are not yet defined; the definitions appear in the
text immediately following the statements of Theorem 3.5 and Proposition 3.6.

Theorem 3.5. Let f be a generic maximally mutable Laurent polynomial with
Newt(f) = P . The general fiber Xt ⊂ X, which is the desingularization of the
curve f = 0 in YP , has genus equal to the number of residual points of P . We call
this number the mutable genus of YP and denote it by gmut(YP ); it is mutation-
invariant.

Proposition 3.6. The dimension of the linear system of standard maximally mu-
table Laurent polynomials with Newton polygon P is equal to the number of residual
points of P .

A proof of Theorem 3.5 will be given at the end of this section; a proof of
Proposition 3.6 is given in [KT16] (the obvious generalization from standard to
generic maximally mutable to arbitrarily mutable is proved in the same way).

Definition 3.7. Let C ⊂ N be a primitive lattice cone, with primitive spanning
vectors u and v. If {u, v} is a lattice basis for N , we say that C is smooth. If C is
not smooth, there is a point p ∈ N such that p = 1

ru+ a−1
r v, and {u, p} and {v, p}

are lattice bases for N ; in this case we say that C is of type 1
r (1, a− 1).

Remark 3.8. The type of cones parallels the classification of cyclic quotient singu-
larities; a cone of type 1

r (1, a − 1) defines a toric variety isomorphic to the cyclic

quotient singularity C2/μr, where μr acts with weight (1, a−1). See [AK14] for fur-
ther details on R- and T -cones, and the corresponding singularities, called R- and
T -singularities. It is conjectured in [ACC+16] that there is an injective correspon-
dence from the set of Fano polygons up to mutation to the set or orbifold del Pezzo
surfaces up to Q-Gorenstein deformation. We will now describe this operation of
mutation.

Definition 3.9 ([ACGK12]). Let P ∈ N be a Fano polygon, and let E be an edge
of P , with inward normal vector u, lattice height −r, and lattice width w = mr+w0,
where m > 0, r ≥ w0 ≥ 0 are integers (in other words, E supports m T -cones and
an R-cone of width w0). Let r′ be the maximal lattice height (with respect to u)
of the points in P , let F ∈ u⊥ ⊂ N be a primitive lattice vector, and let F be the
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one-dimensional lattice polygon [0, F ]. For any s ∈ Z let Ps = {p ∈ P |u(p) = s} be
the points of P at height s with respect to u (in particular, P−r = E). Notice that
we can for each 0 > s ≥ −r write Ps as a Minkowski sum ms · F + Qs, where Qs

is some (possibly empty) polygon. The mutation of P with respect to the mutation
datum (u, F ) is the polygon P ′ = mutu(P ) defined by

P ′
s =

{
(m− 1)sF +Qs 0 ≥ s ≥ −r,

Ps + sF r′ ≥ s > 0.

Intuitively, we are removing slices sF from each negative height s < 0 and adding
slices s′F at each positive height s′ > 0. Equivalently, we are contracting a T -cone
from E and putting in a T -cone on the opposite side of P . We call F the factor of
mutation.

Any polygons P ,Q related by a chain of mutations are said to be mutation
equivalent.

We observe that we cannot mutate an edge with only a single R-cone, as that
edge will not have sufficient width to permit the procedure. The result of this is
that R-cones are essentially unchanged by mutation, more precisely the cyclically
ordered set of R-cones is invariant under mutation.

Example 3.10. Let P be the Fano polygon with vertices (−2, 1), (−1, 2), (3, 2),
(3,−1), and (−2,−1). It has one R-cone of type 1

3 (1, 1) (shaded dark grey), and nine
primitive T -cones. We will perform a mutation with factor F = (−1, 0) (indicated
by an arrow) and height function h((x, y)) = −y, which will contract away the
lightly shaded T -cone, and add a new T -cone on the other side of the polygon.

• • • • •

• · · · · •

• · · · •

• • • • • •

F

After the mutation, we have this picture; the lightly shaded T -cone has been con-
tracted, a new T -cone has been added to the opposite side, and the R-cone and the
T -cone beneath it have been sheared to fit.

• • •

• · · · •

• · · · •

• • • • • • •

Observe that the number of T - and R-cones are unchanged, and the type of the
R-cone is preserved.
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Any mutation removes one T -cone and adds another, so the total number of T -
cones is unchanged. The R-cones and their relative order is unchanged by mutation,
so the singularity content is an invariant under mutation (see [AK14]).

Example 3.11. The polygons in example Example 3.10 have singularity content
(9, { 1

3 (1, 1)}).
Definition 3.12. Let f be a Laurent polynomial with Newton polygon P , and
let P ′ be the mutation of P with mutation datum (u, F ). The map μ : xa �→
xa(γ + δxF )〈u|a〉 (where a ∈ N, γ, δ ∈ C) defines an automorphism of C(N), the
rational functions in two variables, and is called a cluster transformation. We say
that f is mutable with respect to u, (γ + δxF ) if f ′ = f ◦ μ is in C[N ] (notice that
Newt(γ + δxF ) = [0, F ]), i.e., is a Laurent polynomial, and in this case that f ′ is
a mutation of f ; the Newton polygon of f ′ is P ′. Any two Laurent polynomials
related by a chain of mutations are said to be mutation equivalent.

Remark 3.13. Note that if P and Q = mut(P ) are polygons with associated Laurent
polynomials f and g = mut(f), the cluster transformation of C(N) defining the
mutation corresponds to a rational map YP ��� YQ. Suppose E is the edge of P
with the T -cone that is contracted, and suppose E′ is the edge of Q where the
new T -cone is inserted. The map YP ��� YQ is given in suitable coordinates by
(x, y) �→ (x, y

γ+δx ), with inverse (ξ, η) �→ (ξ, η(γ+ δξ)), and one can factor the map

through first blowing up the point x = −γ/δ on DE ⊂ YP and then blowing down
to the point ξ = −γ/δ on DE′ ⊂ YQ. This enables an equivalent reformulation of
the notion of mutability in more geometric terms:

Let f be a Laurent polynomial with Newton polygon P , and let DP =
∑

rEDE

be the distinguished divisor on YP defined by P , so f is an element of Γ(YP ,O(DP )).
Let (γ : δ) be a point on a divisor DE different from (1 : 0) and (0 : 1), let Z � YP

be the blow-up at this point, and let D̂ be the strict transform of DP . We say that

f is mutable with respect to (γ : δ), E if f pulls back to an element of Γ(Z,O(D̂)).

This brings us to our main interest, the (generic) maximally mutable Laurent
polynomials.

Definition 3.14. Let P be a Fano polygon, and let DP =
∑

rEDE be the distin-
guished divisor on YP . For every edge E of width w = mr + w0, select m points
pi := (γi : δi) on the curve P1 � DE ⊂ YP . Let Y � YP be the blowup at these
points such that if any of the points pi coincide, the blowup should be done sequen-
tially, at each step blowing up at the corresponding point on the strict transform
under the previous blowup, and let D be the strict transform of DP . A Laurent
polynomial f with Newton polygon P is maximally mutable if it pulls back to a
section in Γ(Y ,OY (D)).1 We say that f is mutable with respect to the points pi.
We say that f is generic maximally mutable if the points pi are distinct. In the
special case where on each edge the points pi coincide at the point with canonical
coordinate (1 : −1), we say that f is standard maximally mutable.

We may for simplicity refer to maximally mutable Laurent polynomials as
MMLP’s.

The standard MMLP’s are of particular importance for the mirror symmetry
classification of Fano manifolds; see, e.g., [ACC+16,CCG+13,OP15]. Here we will

1In this case, Y ,D equals ZP , ̂D.
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focus on the generic case, but we will take a look at the specializations of coefficients
in the final section. We should also point out that the notions of mutation, Fano
polygons, and MMLP’s make sense in higher dimension, but the formulations in
this article are particular to the two-dimensional situation and do not directly
generalize; for the case of higher dimension see [KT16].

The relevant fact for us is that mutation of f preserves the classical period
integral πf (t). An explicit proof of this fact can be found in [ACGK12], though it
also follows from the construction in Remark 3.16. The analysis of πf (t) and D ·πf

is then independent of which f in the mutation class we use, which allows for a
great deal of flexibility.

Remark 3.15. It is of course possible to consider Laurent polynomials that are
only mutable with respect to some smaller number of points; this corresponds to
only allowing mutations of Newt(f) involving a subset of the T -cones. The results
analogous to Theorem 3.5 and Proposition 3.6 are obvious, replacing the number
of residual points by the corresponding number of lattice points in “unmutable”
cones of P . In particular, when one permits no mutations at all, the analogue of
Theorem 3.5 is the well-known result that the sectional genus of a toric surface is
the number of internal lattice points of the associated polygon, and the analogue
of Proposition 3.6 is the obvious statement that the dimension of the linear system
is equal to the number of basis elements.

Remark 3.16. There is a sense in which mutation-equivalent Laurent polynomials
are in fact the same function, which we sketch here briefly. Recall that a mutation
between polygons P and Q corresponds to a rational map YP ��� YQ which factors
through blow-ups at chosen points. If f and g are Laurent polynomials such that
g = mut(f) under the same mutation, it is clear that the pullbacks to the blow-up
surface are the same function.

So, if f is a mutable Laurent polynomial with Newt(f) = P , blowing up all the
chosen points on YP that define the mutability of f gives us the surface ZP to which
all the mutation-equivalent g = mut(f) on different Ymut(P ) pull back to become
the same function. If we remove the proper transform of the divisor DP , i.e., the
polar locus of this function, we get a universal variety Z ′

P which has a cover by the
inverse images of the toruses (C∗)2 from each of the toric varieties Ymut(P ), and the
pullbacks of maximally mutable Laurent polynomials are exactly the global sections
Γ(Z ′

P ,OZ′
P
). This variety Z ′

P is called the cluster variety associated to the mutation
class of P ; it is clearly mutation-invariant, and so provides us with a new way of
seeing that D ·πf is mutation-invariant (the pencils τf and τg are in this perspective
the same function on the same variety). Our surface X can be constructed from
ZP by resolving the base locus of the pencil τf , and so is a natural compactification
of the cluster variety.

This notion of cluster variety is treated in greater detail in [GHK15] (for the case
of classical cluster algebras) and [GU10] (for the analogous case which concerns us).

The process of finding the MMLP’s for a given polygon P is best illustrated with
an example.

Example 3.17. Let P be the polygon with vertices (−1, 2), (1, 2), (2, 1), (2,−1),
(−2,−1), and (−2, 1); this has two R-cones of type 1

3 (1, 1) and seven T -cones. It is
easiest to show the process of finding the MMLP’s by labelling the vertices of P by
the associated coefficients. The cones are indicated; the R-cones are shaded grey,
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the T -cones are white. We begin with generic coefficients:

a−1,2 a0,2 a1,2

a−2,1 a−1,1 a0,1 a1,1

a−2,0 a−1,0 a0,0 a1,0

a−2,−1 a−1,−1

a2,1

a2,0

a2,−1a0,−1 a1,−1

First impose the factorization conditions along the edges with a linear factor
(γ + δx) for each T -cone. This will determine the “internal” coefficients on the
edges with T -cones of height 2, e.g., a−1,2 + a0,2x + a1,2x

2 = (γ + δx)2 (for some

γ, δ) implies that a0,2 = 2(a−1,2a1,2)
1
2 . In the same way, a2,0 = 2(a2,1a2,−1)

1
2 and

a−2,0 = 2(a−2,1a−2,−1)
1
2 . To reduce visual clutter, we rename the free parameters

on the edges by a, b, c, . . ., etc.

a 2(ab)
1
2 b

i a−1,1 a0,1 a1,1

2(hi)
1
2 a−1,0 a0,0 a1,0

h g

c

2(cd)
1
2

df e

We now require the polynomial i y
x2 +a−1,1

y
x+a0,1y+a1,1xy+cx2y along the y = 1

row to be divisible by a
1
2 +b

1
2x, the polynomial a y2

x +a−1,1
y
x+a−1,0

1
x+g 1

xy along the

x = −1 line to be divisible by h
1
2 +i

1
2 x, and the polynomial bxy2+a1,1xy+a1,0x+ex

y

along the x = 1 line to be divisible by c
1
2 +d

1
2 x. Solving the equations this imposes,

we get

• a−1,0 = h
1
2

i
1
2
a−1,1 − ah

i + gi
1
2

h
1
2
,

• a0,1 = b
1
2

a
1
2
a−1,1 +

a
1
2

b
1
2
a1,1 − ac

b − bi
a ,

• a1,0 = d
1
2

c
1
2
a1,1 − bd

c + c
1
2 e

d
1
2
.
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If for simplicity we let f be standard maximally mutable, imposing binomial edge
coefficients, we get the following picture (where we set a−1,1 = p, a1,1 = q, a0,0 = r
for readability):

1 2 1

1 p p+ q
−2

q

2 p+ 3 r q + 3

1 4

1

2

16 4

Observe that there are 12 free parameters a, b, c, d, e, f, g, h, i, a−1,1, a1,1a0,0 in
the coefficients; there is one for each vertex, and one for each residual point of P ;
in the standard case there are only free parameters corresponding to the residual
points, as predicted by Proposition 3.6.

One can detect mutability of a Laurent polynomial via geometrical properties.

Proposition 3.18. Let P be a Fano polygon, and let f be a generic Laurent poly-
nomial with Newt(f) = P . Let E be an edge of P of height r, and let (γ : δ) ∈ DE

be a point with respect to which f is mutable (as in Remark 3.13). Then f has an
ordinary multiple point of multiplicity r at (γ : δ) on DE . In particular, a generic
maximally mutable Laurent polynomial has one multiple point of multiplicity ri for
each primitive T -cone of P of height ri.

Proof. Recall from Definition 3.12 the conditions for mutability: choose local coor-
dinates x, y so the edge E is contained in the hyperplane y = r, and let fs be the
polynomial made up of terms of f corresponding to points at height s (using the
same height function). Then in these coordinates, we can write

fs = (γ + δx)syshs,

where hs = hs(x) is some Laurent polynomial in x. In local coordinates at the point
x = −γ/δ, this becomes

fs = xr−sysh′
s,

where h′
s is a rational function of x. We can now rewrite f as

f =

r∑
i=0

ar−i,ix
r−iyi + (terms of degree > r)

for some numbers ai,j , where at least ar,0 (generically) and a0,r are nonzero. To
see that there are r distinct branches at the point, notice that the origin of P is a
residual point, and so the constant term of f is a free parameter; this parameter
appears only in one of the coefficients ar−i,i, namely ar,0. For generic values of the
parameter we fall outside the discriminant of the polynomial

∑r
i=0 ar−i,ix

r−iyi, as
the leading coefficient of a polynomial is not a factor of its discriminant. This gives
r distinct factors, i.e., r distinct branches through the chosen point. �
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Remark 3.19. If there are more than one T -cone on the same edge, and f is mu-
table with respect to the same chosen point for each of them, then the obvious
generalization—f has a multiple point with higher-order tangency—is proved in a
similar way: now instead we have fs = (γ + δx)msyshs and so in local coordinates
we have f =

∏
(bjx

m + cjy) + (higher-order terms).

Proof of Theorem 3.5. Recall that the genus g(DP ) of the desingularization of DP ,
called the sectional genus of YP , is equal to the number of internal lattice points
of P [CLS11, 10.5.8]. This is the genus of a generic curve in the complete linear
system of curves linearly equivalent to DP ; this linear system lifts to X, so we may
consider it as the linear system of curves equivalent to D′. The curves defined by
generic MMLP’s lift to X to form a base point-free linear subspace of this linear
system in the obvious way (passing to X we blow up all the base points), and to
find the genus of such a curve, we need to examine how an MMLP f differs from a
generic section of DP .

Proposition 3.18 shows that the curve defined by an MMLP has an r-uple point
for every point at which we blow up; these points are generic and we have imposed
no other conditions, so there are no other special points that affect the genus.

The effect of an ordinary r-uple point on the genus of a curve is well known (see,
e.g., [GH94, pp. 500–508]): the genus drops by 1

2r(r−1) for every such point. Thus,

the genus of the curve defined by f is g(DP )−
∑

1
2ri(ri − 1), where the sum runs

over the T -cones of Newt(f) and the ith cone has lattice height ri.
Now observe that 1

2r(r−1) is exactly the number of internal lattice points in a T -
cone of height r (this follows directly from Pick’s formula [CLS11, Ex. 9.4.4]), so the
genus of f is equal to g(DP )−

∑
1
2ri(ri−1) = |int(P )∩N |−|int(P )∩N∩(T−cones)|,

that is, the number of residual points of P .
To see that this genus g is mutation-invariant, it is enough to recall that the

singularity content of P , in particular the set of R-cones, is invariant under mutation
(Definition 3.3; see also [AK14]), which of course implies that the number of residual
points is preserved. �

Remark 3.20. We remark that one gets the same number for the genus even if some
the chosen mutation points on an edge DE are allowed to coincide (the standard
MMLP’s are the extreme case where all the points on each edge are equal), i.e.,
if f is mutable with the same factor (γ + δx) multiple times (as in Remark 3.19).
This is because at such a point, the curve {f = 0} will have an r-uple point with
higher order tangency, so in local coordinates it will factor as

∏
(bix

m + ciy) (plus
higher degree terms), similar to Proposition 3.18. Similar to how an ordinary r-uple
point drops the genus by 1

2r(r−1), an r-uple point with tangency of order m drops
the genus by m for each branch (again, see [GH94, pp. 500–508]), and so the total
defect for the MMLP is still m · 12r(r−1), the same as for m ordinary r-uple points.

4. Monodromy at t = 0

In this section we will prove Theorems 1.2 and 1.3. To compute the monodromy
of H1(Xt,Z), we need to find a suitable basis of cycles and a description of the
monodromy automorphism. We will do this by explicitly constructing a model for
Xt by means of local calculations, explicitly carrying out the resolution X → YP .

Let us recap what we know so far: The general fiber Xt ⊂ X is a genus gmut

curve, the special fiber X0 is equal to the divisor D′, and there is a retraction of
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Figure 1. Local picture of the degeneration over an intersection
between components of DP ; the vanishing cycle is indicated in red,
and the relative cycle in blue.

a neighbourhood (in X) of the special fiber X0 on to X0 that induces a surjection
Xt � X0. Topologically this divisor D′ is a necklace of spheres with some chains
of spheres branching off at certain points; this will be apparent from the resolution
we perform.

Recall from Theorem 3.5 that gmut(YP ), the genus of the general fiber Xt, is
equal to the number of residual points of P , which always includes the origin as
P by assumption is Fano. A necklace of spheres is a degeneration of a topological
surface of genus at least one, which accounts for the contribution to the genus from
the lattice point at the origin. By Theorem 3.5 the rest of the genus comes from
the internal points of the R-cones of P , so the remaining genus must result from
resolving the base points on the components of DP corresponding to the edges of P .

We may thus reduce to a series of local considerations, which we will refer to
as the contributions from the vertices and edges, and R-cones, respectively. The
contribution from the vertices is this: intersection points between the components
are degenerations of the form {xmyn = t} → {xmyn = 0}, and we must describe
which of these occur and what the monodromy does to them (see Figure 1). The
contributions from the R-cones is this: on the components of DP corresponding to
edges with R-cones, we must identify what singular points occur and resolve them

to get a positive-genus curve C̃ → P1; then find an appropriate automorphism of C̃
that fixes the inverse images of all the singular points and intersection points with
the adjoining components of DP (see Figure 2).

To compute the whole monodromy action on Xt, we will then cut the curve
into pieces Z corresponding to the edges E of P , or equivalently summands DE of
D′ with boundaries ∂Z, and consider each piece by itself, and then assemble the
results afterwards. For each piece Z the following is true: some of the basis cycles
of H1(Xt) will exist entirely within these pieces (that is, they are homologous to
homology classes in H1(Z,Z)), and these will be cycles that degenerate to a point
in the special fiber and are as such called vanishing cycles ; there is a distinguished
cycle which enters and exits the local pieces through the cuts (that is, has homology
class in H1(Z, ∂Z,Z)), called a relative cycle; and there is a distinguished vanishing
cycle homologous to one of the two components2 of ∂Z.

We fix some notation: the monodromy restricted to a piece Z is the variation
diffeomorphism φZ (or merely φ if Z is understood), the relative cycle will be

2The two components are homologous, so it doesn’t matter which one we pick.
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Figure 2. The component of D′ corresponding to an R cone,
showing on the left the curve DE as the central sphere, exceptional
curves of some resolved singular points (these parts make up the
piece Z discussed in the text), and parts of the DE′ for adjoining
edges (shown as half-spheres); this is a degeneration of a higher-
genus surface (on the right), vanishing and relative cycles indicated.
Notice how the monodromy automorphism of Xt must fix these
vanishing cycles to degenerate correctly to the special fiber.

Figure 3. The cycle α marked in blue and the vanishing cycle β
marked in red, and their images in the local pieces.

denoted α, and the distinguished vanishing cycle on the boundary is denoted β (see
Figure 3). It is important to remark that φZ does not fix ∂Z pointwise, but rotates
one component a rational multiple of 2π; this means that the coefficients of β in
φZ may be rational (all other cycles will have integral coefficients).

Observe that when adding up the local pieces, those rational coefficients must
add up to something integral, as we know the monodromy of H1(Xt) is integral.
Exploiting this fact will be crucial in some of the local calculations.
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4.1. The singularities of YP and the intersections between the compo-
nents. After we have resolved the singularities of YP , we may look at the mon-
odromy action over the intersections between the components of D′. Locally at
the intersection between two components of this divisor, of multiplicities m and n,
respectively, in the local coordinates given by the toric chart corresponding to the
vertex of intersection, we can write supp(D′) as {xmyn = 0}. In these local coor-
dinates, the global sections 1 and f become xmyn and 1 + (higher-order terms),
respectively, and we can write 1− tf as xmyn − t(1+ (higher-order terms)), locally
analytically equivalent to xmyn − t. The degeneration when t → 0 is now equiv-
alent to {xmyn = t} → {xmyn = 0}. The monodromy action is then locally the
monodromy of the curve xmyn = t as t goes around zero.

Lemma 4.1. Let β be the vanishing cycle of xmyn = t when t → 0 (with positive
orientation), and let α be the relative cycle. The monodromy action on α, β in
xmyn = t as t goes around t = 0 in the positive direction is given by β �→ β, α �→
α− 1

mnβ.

Proof. Consider the Riemann surface of y = n

√
t

xm , for fixed t. This is an n-sheeted

covering of the punctured complex plane with a singularity at x = 0, where as you
trace along the surface around the singularity, y will alternate between approaching
+∞ and −∞ as x approaches zero, alternating a total of m times (see Figure 4
for a picture of what this looks like). Notice the m-fold rotational symmetry of the
surface.

Write t = eiθ and x = eiτ (we may ignore the magnitude, as only the argument
is relevant to the monodromy action); we may now express the surface as

y = (tx−m)
1
n = (ei(θ−mτ))

1
n .

In other words, when t moves around the origin, the resulting surface satisfies an
equation y = (x−m

θ )
1
n , where xθ = eiτ(θ), and the argument satisfies −mτ (θ) =

θ−mτ . From this, τ (θ) = −θ/m+τ , we see that the surface will rotate in the same
direction as t, with 1

m th the speed. Thus, when t has completed a full revolution, the

surface will have rotated by an angle of 2π
m , or one step along the m-fold rotational

symmetry.
To find the effect of this on the cycles α and β, we give an explicit model

for each. The vanishing cycle β is homologous to the curve {(eiθ, e− iθ
n )|0 ≤ θ ≤

2nπ} that winds around the singularity n times, following the sheets until it meets
itself. This curve is preserved under the rotational symmetry of the surface, so the
monodromy action on β is the identity. The relative cycle α can be modelled by
a curve going along the topmost sheet of the surface from (ε, ε−

m
n ) to (K,K−m

n ),
where ε � 1 and K � 1 are real numbers (note the orientation). The monodromy
action can be modelled by pinning the initial point (ε, ε−

m
n ) in place (i.e., letting

it rotate along with the surface) while holding the other fixed over x = K. After
the monodromy action, the inital point has been moved to (ε · e2πi/m, ε−

m
n e2πi/m),

while the final point, fixed to lie over x = K, will be on the sheet immediately
below the topmost one. The resulting curve is homologous to α − 1

mnβ, as the

m-fold rotational symmetry moves a point 1
mn th of the length of β. �

We now find the pullback of D̂ when resolving the singularities of ZP ; to get D′,
this will give us all the points on X0 that locally are of the form xmyn = 0, and



PERIOD INTEGRALS AND MUTATION 8391

Figure 4. The Riemann surface of y = Re(
√

1
x3 ); the solid curve

is the relative cycle α, and the vanishing cycle β can be identified
with the outer boundary of the displayed surface. The dashed curve
is the cycle α− 1

6β.

now section 4.1 tells us what the local monodromy action is. Notice that we can
combine the local actions without a problem, as the vanishing cycles β appearing
in all of them are homologous, so the local actions commute. Also note that as
ZP → YP is a blow-up of smooth points of YP , and we are now looking at the

singular points of ZP /YP , for this purpose D̂ (on ZP ) and DP (on YP ) can be
thought of as interchangeable.

Recall that DP =
∑

hiDi, where hi are the lattice heights of the edges Ei of
P corresponding to the divisors Di. The resolved divisor can be written as D′ =
DP +

∑
mjFj , where Fj are some exceptional curves and mj are their multiplicities.

An interesting fact is that the numbers mj are such that it makes sense to think
of the Fj as corresponding to “edges” of P of width zero and height mj ; we will
however not need this.

Suppose now that v is a vertex of P , corresponding to a cone in the normal fan
where YP has a singularity of type 1

r (1, a − 1), and that v is joining edges E and
E′, of heights h and h′. The singularity is resolved according to [CLS11, Chapter
10]; recall in particular the notion of Hirzebruch–Jung continued fractions, denoted
as follows:

[b1, b2, . . . , bk] = b1 −
1

b2 − 1
···− 1

bk

.

We introduce some notation: suppose the Hirzebruch–Jung continued fraction ex-
pansion of r/(a− 1) is [b1, . . . , bk]; let s1 = tk = 1, and define positive integers si, ti
by

si/si−1 := [bi−1, . . . , b1], 2 ≤ i ≤ k,

ti/ti+1 := [bi+1, . . . , bk], 1 ≤ i ≤ k − 1.

Note that we may extend this to letting s0 = tk+1 = 0 and sk+1 = t0 = r.
When resolving the singularity at v, we get k exceptional curves F1, . . . , Fk,

with self-intersections F 2
i = −bi. Let mi denote the multiplicity of Ei in D; these

multiplicities are determined by the criterion that Ei.D = 0.
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Lemma 4.2.

(1) si+1 + si−1 = bisi and ti+1 + ti−1 = biti.
(2) mi =

1
r (tim0 + simk+1).

(3) m0 = si+1mi − simi+1.

Proof.
(1) By definition, si+1/si = [bi, . . . , b1] = bi− 1/[bi−1, . . . , b1] = bi− si−1/si, and

it follows that si+1+si−1 = bisi. A similar rearrangement shows the other identity.
(2) Recall that the mi are defined by the system of equations Ei.D = 0. As the

only components of D that are involved are DF , DF ′ , and the Ei’s, and the inter-
section numbers are 1 for adjacent components and 0 for nonadjacent components,
we get equations mi−1 − bimi +mi+1 = 0 (for 1 ≤ i ≤ k). Successive elimination,
applying item (1) at each step, now yields the desired conclusion.

(3) We show this by induction. The base case is the equationmi−1−bimi+mi+1 =
0 for i = 1, using that s1 = 1 and s2 = b1. The induction step is to show that
si+1mi−simi+1 = si+2mi+1−si+1mi+2; rearranging we have si+1mi+si+1mi+2 =
si+2mi+1+simi+1, and applying the identity si+2+si = bi+1si+1 on the right-hand
side and the equation mi+mi+2 = bi+1mi+1 on the left-hand side, we see that both
sides equal bi+1si+1mi+1. �

Lemma 4.3.
∑k

i=0
1

mimi+1
= r

m0mk+1
.

Proof. Observe first that 1
m0m1

+ 1
m1m2

= 1
m1

m2+m0

m0m2
, and by Lemma 4.2(3) m2 +

m0 = s1m2 + m0 = s2m1, so we get 1
m0m1

+ 1
m1m2

= s2
m0m2

. In a similar fashion

we see that si
m0mi

+ 1
mimi+1

= 1
mi

simi+1+m0

m0mi+1
= si+1

m0mi+1
, so by induction we have∑k

i=0
1

mimi+1
= sk+1

m0mk+1
= r

m0mk+1
. �

Proposition 4.4. The contribution to the global monodromy of the cycles α, β ∈
H1(Xt) from the vertices of P is α �→ α− (K2

Π)β and β �→ β, where Π is the toric
variety defined by the spanning fan of P and KΠ is its canonical divisor.

Proof. Combining Lemmas 4.1, 4.2, and 4.3 tells us that the contribution from a
vertex of P is α �→ α − r

mnβ, where m,n are the lattice heights of the adjoining

edges and the singularity of YP in the corresponding chart is of type 1
r (1, a− 1) (or

if YP is smooth here, take r = 1).
It is well known that K2

Π is equal to the lattice volume of the dual polytope
P ◦ ⊂ MR of P (see [CLS11, 13.4.1]). To show the claim, it is enough to show that the
volume of the cone Cv in P ◦ corresponding to the vertex v of P is equal to r

mn . Let

u,w be primitive lattice generators of Cv. By Definition 3.7, Cv is of type 1
r (1, a−1)

when { 1
ru+

a−1
r w,w} is a lattice basis for M . As { 1

ru+
a−1
r w,w} is a lattice basis,

we have det( 1ru + a−1
r w,w) = 1, and it follows that det(u, v) = r. Observing now

that Cv is spanned by 1
mu and 1

nw, we are done as det( 1
mu, 1

nw) =
r

mn . �
4.2. Monodromy over an R-cone. It remains to see what happens over the R-
cones, so assume we have an edge E of P supporting a single cone, of height r
and width w, and denote by XE the inverse image under the map Xt → X0 of
the pullback of DE under the resolution X → ZP . The strict transform of DE is

a P1, and it intersects the adjacent components of the pullback of D̂, as well as
the exceptional curves coming from resolving the indeterminacy points of f on DE .
The inverse image XE is then the part of Xt bounded by the vanishing cycles over
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these points of intersection. From this and Theorem 3.5 we see that topologically,
XE is a surface with genus equal to 1

2 (r − 1)w, the number of internal points in
the R-cone (this follows directly from Pick’s formula), with two punctures, one for
each of the intersection points.

As before, we may in suitable coordinates write f =
∑

fs, where fs are the
terms “at height s”, corresponding to lattice points in Newt(f) at height s relative
to the height function given by the normal vector of the edge E. In particular,
fr = yr

∏w
i=1(x − ηi) (up to some monomial in x which is not important). In the

local coordinate chart of YP corresponding to a vertex of E, we can write f as

f =
∏

(x− ηi) + yh1(x) + y2h2(x) + · · · ,

where hi(x) are some polynomials in x. In the same coordinate chart, 1 becomes
xeyr (where e is some positive integer; it is not important which). At each of the
points (ηi, 0) on DE , it is easy to see (do a coordinate change x �→ x + ηi) that
f becomes x + y + (terms of higher degree), so locally at these points we have
f ∼ x+ y analytically; and that 1 becomes yr(x+ ηi)

e ∼ yr. We see that the graph
Γτ , which is given by 1− tf , is at the corresponding points analytically equivalent
to yr− t(x+y). In other words, on DE ⊂ YP ⊂ Γτ there are w special points where
the graph Γτ is locally equivalent to yr − t(x+ y), a singularity of type Ar−1.

Thus, we have on DE the w singular points of f , each of type Ar−1, and the
two points of intersection with the adjacent components of DP . As DE has multi-
plicity r, we can now model our XE as a ramified degree r cover of P1, with two
ramification points of ramification index r (corresponding to the intersection points
with the adjacent divisors), and w ramification points corresponding to the singular
points of f . More precisely, XE is homotopic to such a surface, punctured at the
two ramification points over the intersections with the adjacent components. The
ramification index ep of the remaining w points is found by the Riemann–Hurwitz
formula: setting g = 1

2 (r − 1)w in

2g − 2 = −2r + 2(r − 1) + w(ep − 1)

gives ep = r, so we have a degree r map, ramified at w + 2 points of ramification
index r.

The local monodromy action on H1(XE) must then be induced by an automor-
phism of XE with w + 2 fixed points, near which the automorphism has order r
(to be compatible with the ramification index); this implies the automorphism has
order r everywhere (a priori it has order a factor of r). We have shown the following.

Lemma 4.5. Let E be a edge of P with an R-cone of height r and width w. Then
the local monodromy action on H1(XE), where XE is as above, is given by an order
r automorphism of a genus 1

2 (r − 1)w surface with w + 2 fixpoints.

From the above discussion and fixing some value for t in a local expression for
1 − tf , it is clear which surface to use as a model for XE : the Riemann surface
of the function r

√
(x− x1) · · · (x− xw+2), for some values x1 · · ·xw+2. We will now

construct a topological model of this surface that suits our purposes, and with it
an automorphism with the desired properties.

Denote the w+ 2 fixpoints by p1, p2, q1, . . . , qw. The points labelled p1, p2 corre-
spond to the punctures described above, while the qi’s are the remaing fixpoints.
Now take r sheets3 S1, . . . , Sr marked with w+2 points with the appropriate labels,

3That is, copies of P1, as usual.
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Figure 5. The first sheet in the described arrangement of cuts
and cycles in the case w = 6 with r coprime to 3. The black
points are the points p1, p2 and the grey points are q1, . . . , q6; cuts
are indicated by black lines. The blue cycle is α; the red cycle is
the parts of β that are on this sheet; the remaining cycles ai1 for
i = 1, . . . , 6 are indicated, with solid curves being the part on S1

and dashed curves the part on S2.

and make cuts from each qi to one of the pj ’s in such a way that the number of
qi’s joined to each pj is coprime to h (this is of course always possible). Next glue
the sheets along these cuts such that when viewed from a pj , going in the positive
direction across any cut takes you one step “down” in the stack of sheets, from Si

to Si+1 (and from Sr to S1). The readers can easily verify for themselves that the
result is a surface of genus g = 1

2 (r − 1)w.
Now we choose a basis of homology cycles; we need 2g cycles, plus the relative

and boundary cycles α and β. For α, choose a path on S1 from p1 to p2. For β,
choose a path passing around p1 until it returns to the origin; the parts of this
cycle on each sheet will form a circle around the point p1. We will permit homology
deformations of cycles to cross the points marked qi (where this makes sense), but
not the points p1, p2 (as these represent the boundary of XE); with this in mind
the reader can easily verify that the similar path around p2 with the opposite
orientation is homologous to the one we have chosen. For the remaining 2g cycles,
choose paths as follows: on each sheet Si denote by a1i the path from q1 around the

assembly of cuts connected to q1; denote by aji the path from q1 crossing the cut
connected to qj and returning to q1 on the next sheet Si+1. This totals rw cycles
(of which we need only (r−1)w to form a basis); however, as the readers may verify

for themselves, the cycle
∑r

i=1 a
1
i is homologous to β, while the cycles

∑r
i=1 a

j
i (for

j �= 1) are homologous to the trivial cycle. Thus, we can choose the cycles aji with
i = 1, . . . , r − 1 as a basis. We refer to Figure 5 for a visual aid.

With the model of the surface in hand, it is easy to describe an automorphism
with the desired order and number of fixpoints: let φXE

take any point of the surface
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to the point immediately below it on the next sheet. Clearly this has order r, as
there are r sheets, and the fixpoints are exactly the w + 2 marked points.

What remains is to write this action in terms of the basis cycles. Clearly we have
β �→ β and aji �→ aji+1, and as

r∑
i=1

aji =

{
β if j = 1,

0 otherwise,

we have in terms of our chosen basis that a1r−1 �→ β −
∑r−1

i=1 a1i and for j �= 1 that

ajr−1 �→ −
∑r−1

i=1 aji . The interesting thing is what happens to α.
The relative cycle α, which goes from p1 to p2 on the first sheet S1, is sent to

the similar path on S2. We can join these paths by attaching a curve homologous
to 1

rβ at each end (see Figure 6), and we get a closed cycle φ(α)− α+ 2
rβ. As one

can easily verify (see Figure 7), this cycle is homologous to a11 + a12 − aj1 (for some
j, as indicated), so rearranging we have

φ(α) = α− 2

r
β + a11 + a12 − aj1.

We may of course relabel the points qi such that j = 2 in this formula. The special
case of w = 1 is slightly different; as one can see in Figure 8, here we instead have
φ(α) = α− 2

rβ + a11 + a12 (which makes sense as there is no cycle a21 when w = 1).
We have shown the following.

Proposition 4.6. On a Riemann surface of genus g = 1
2 (r−1)w with two punctures

and w other marked points, there exists an order r automorphism φ fixing these
points and punctures and a basis of homology cycles {α, β, a11, . . . , awr−1} such that

• φ(α) =

{
α− 2

rβ + a11 + a12 − a21 if w �= 1

α− 2
rβ + a11 + a12 if w = 1,

• φ(β) = β,

• φ(aji ) = aji+1 for i < r − 1, and

• φ(ajr−1) =

{
β −

∑r−1
i=1 a1i if j = 1,

−
∑r−1

i=1 a1i if j �= 1.

Any power of φ also has the same order and fixpoints, so it remains to find which
power is the right one; the reader may be pleasantly surprised by the answer.

Recall from Proposition 4.4 that the total monodromy from the vertices of P
is equal to the degree K2

Π of the toric variety defined by the spanning fan of P .
We may reformulate this to a count of contributions from the edges by using a
result of Akhtar and Kasprzyk ([AK14, Prop. 3.3]). Recall also from section 4.1,
for a singularity σ of type 1

r (1, a − 1), the numbers b1, . . . , bkσ
making up the

Hirzebruch–Jung continued fraction expansion of r/(a− 1), and the numbers si, ti
(1 ≤ i ≤ kσ) defined in terms of the bi. Also let di = (si + ti)/r − 1, and let

A(σ) = kσ + 1−
∑kσ

i=1 d
2
i bi + 2

∑kσ−1
i=1 didi+1. Note that if σ is a primitive T -cone,

A(σ) = 1.

Proposition 4.7 (Akhtar-Kasprzyk, [AK14]). Let Π be a complete toric surface
with singularity content (n,B). Then

K2
Π = 12− n−

∑
σ∈B

A(σ).



8396 KETIL TVEITEN

Figure 6. The cycles made by joining together one copy of the
depicted curves for each of the r sheets of XE (as before, a dot-
ted line indicates “on the sheet below”) are both homologous to
the boundary cycle β. The depicted curves can then be said to
represent (1/r)β.

Figure 7. The blue cycle is φ(α)− α+ 2
rβ; the red cycle is a11 +

a12 − aj1 (here j = 5). The blue and red cycles are homologous.

This and Proposition 4.4 together give that for each R-cone of type σ, the
contribution to the total monodromy of the relative cycle α from the vertices is
α �→ α + (n − 12 + A(σ))β. The number A(σ) is in general not an integer, and so
the action on α in the local monodromy of the corresponding H1(XE) must be of
the form α �→ (something) +B(σ)β, where A(σ) +B(σ) is an integer.

Lemma 4.8. Let σ be of type 1
r (1, a− 1), and let the numbers bi, si, ti, and di be

as above. Then A(σ) = kσ + 1−
∑kσ

i=1(bi − 2)− 2a
r .

Proof. From the recurrence relations bisi = si−1+si+1 and biti = ti−1+ ti+1 (from
subsection 4.2) follows the relation di+1 + di−1 − bidi = bi − 2. This enables us to
rewrite the definition for A(σ) as

A(σ) = kσ + 1 +

kσ∑
i=1

di(bi − 2)
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Figure 8. The monodromy of the relative cycle α over an R-cone
of width 1. The blue cycle is φ(α)−α+ 2

rβ; the red cycle is a11+a12.
The blue and red cycles are homologous.

as the sums involving di’s telescope using the recurrence relation. Now di(bi − 2) =
1
r (bi(si + ti)− 2(si + ti)− (bi − 2)r), and summing over i now cancels all the terms
where si, ti occur (using the recurrences for si, ti), except for the first and last,
where there remains −s1 − t1 − sk − tk. We have s1 = tk = 1 by definition, and
from t0 = sk+1 = r it follows from the recurrences that sk = t1 = a− 1. �

By Proposition 4.6 the number B(σ) is some multiple of − 2
r , and the fractional

part of A(σ) is − 2a
r , so to determine the correct power p of φ one solves the con-

gruence −2p− 2a ≡r 0; as φ has order r this uniquely determines the correct mon-
odromy automorphism. The result below follows immediately; we use the fact that
a cone of type 1

r (1, a− 1) has height r/gcd(r, a) and width gcd(r, a) ([AK14][2.2]).

Lemma 4.9. Let σ be an R-cone of type 1
r (1, a − 1), and let φh,w be the auto-

morphism defined in Proposition 4.6 for an R-cone of width w = gcd(r, a) and
height h = r/gcd(r, a). Then the contribution of σ to the total monodromy is
ψ 1

r (1,a−1) := φ−a
h,w.

We are now in a position to prove the main theorems.

Proof of Theorem 1.1. This follows from Propositions 4.4 and 4.6 and Lemma 4.9;
all that remains is to see that the local automorphisms commute. The only cycles
appearing in more than one of these maps are α and β, so it is enough to check that
the restrictions to these cycles commute. This is immediate, however, as they are all
shear maps of the form (α, β) �→ (α+qβ, β) (where q is some rational number). �

Proof of Theorem 1.3. From Proposition 4.6 we have that forR-cones of type 1
3 (1, 1)

(which is a cone of height 3 and width 1) the variation diffeomorphism on the piece
XE is given by the matrix ⎛⎜⎜⎝

1 0 0 0
− 2

3 1 0 1
1 0 0 −1
1 0 1 −1

⎞⎟⎟⎠
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or its inverse. From Lemma 4.9 we have that the correct power is congruent to −2
modulo 3 (here a = 2), so it is 1; in other words the above matrix is the right one.
Putting this together with the vertex contributions that each 1

3 (1, 1)-cone gives

α �→ α + A(σ)β, and that A(σ) = 5
3 , we have that each R-cone of type 1

3 (1, 1)
contributes one to the coefficient of β in the image of α. Combining this with the
rest of Propositions 4.4 and 4.7, we get the desired result. �

Proof of Theorem 1.2. It is clear by Propositions 4.4, 4.7 and 4.6 that the singu-
larity content determines the monodromy.

Suppose now that the singularity content of P is (k,B) and that we are given the
monodromy matrix in the bases we have described. By Theorem 1.1 this matrix is
of the form ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
B 1 r

c 0

M1

M2

. . .

Mn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here r and c are some vectors and Mi are block matrices of size 2gi× 2gi, where gi
is the genus of the local piece XEi

, and B = k − 12 +
∑

σ∈B m(σ), where m(σ) =

A(σ)− 2a
r (for σ = 1

r (1, a− 1)).

Each block Mi is associated to an R-cone of type 1
ri
(1, ai − 1). The sizes 2gi of

the blocks Mi give us the r in 1
r (1, a − 1), as 2gi = wi(hi − 1) (hi and wi are the

height and width of the R-cone, respectively), and necessarily the matrix Mi has
order hi, so we can solve for wi and get ri = hiwi; then ai can be deduced from
the local automorphism φEi

of Proposition 4.6 corresponding to that height and
width, by taking powers until you get Mi as a block in the lower right corner; ai is
then minus that power (as in Lemma 4.9).

Now having identified the elements of the singularity basket B, we deduce the
number of T -cones as k = 12 +B −

∑
σ∈B m(σ). �

Remark 4.10. We remarked after the definition of singularity content (Definition
3.3) that the singularity basket should be viewed as a cyclically ordered list, but we
are only able to see it in the monodromy as a multiset. That we cannot recover the
cyclical order of the singularity basket from the monodromy follows from the easily
verified fact that the local monodromy automorphisms over the R-cones commute;
also we may reorder the blocks Mi as desired by reordering the basis.

Corollary 4.11. With the assumptions of Theorem 1.2, suppose the singularity
basket contains ni R-cones of height ri. Then the monodromy of D · πf at zero has
eigenvalues 1 with multiplicity 2, and each rith root of unity (other than 1) with
multiplicity ni.

5. Ramification and the Picard–Fuchs operator

The singularity content does not completely classify Fano polygons up to muta-
tion, as there are nonequivalent polygons with the same singularity content. In this
section we note that the ramification of the MMLPs associated to a polygon is a
mutation invariant quantity, and present some evidence that these two invariants
together might give a complete classification.



PERIOD INTEGRALS AND MUTATION 8399

Example 5.1. These Fano polygons both have singularity content (5, {1× 1
3 (1, 1)}).

× ×· ·

However, they are not mutation-equivalent, as one can detect by the period se-
quences of their standard MMLPs: the first has period

πf1(t) = 1 + 8t2 + 6at3 + 168t4 + 240at5 + · · · ,
while the second has

πf2(t) = 1 + 2(1 + a)t2 + 18t3 + 6(7 + 4a+ a2)t4 + 20(10 + 9a)t5 + · · · .
Notice that the number of vertices is 3 and 4; there is no way to mutate the second
polygon into a triangle.

Let AnnD(πf ) be the annihilator ideal of D ·πf in D = C〈t,∇〉 (where ∇ = t d
dt ),

that is, the ideal such that D ·πf � D/AnnD(πf ). Elements θ of D can be written in
a standard normal form θ =

∑n
i pi(t)∇i; we say that the order of θ is n, the highest

occurring power of ∇ in this expression, and the degree of θ is the highest degree
among the polynomials pi(t). We now define the Picard–Fuchs operator of πf to be
the miminal generator of AnnD(πf ), that is, the generator with lowest degree of
pn(t) among those with lowest order. We denote the Picard–Fuchs operator by Lf .
In nice cases (and there is numerical data to suggest this is the generic behaviour),
Lf captures the monodromy of D · πf .

Proposition 5.2. Let f be a Laurent polynomial with Newt(f) = P , and let t ∈ P1

be a noncritical value of τ , which is outside the singular set of Lf . Then if the order
of the Picard–Fuchs operator Lf is 2 times the genus of Xt, Sol(D · πf ) is locally
isomorphic to Sol(D/Lf ) away from the critical locus of Lf (which contains the
singular points of τ).

Proof. As Lf ∈ Ann(πf) there is a surjectionD/〈Lf 〉 � D·πf , and correspondingly
an injection Sol(D/Lf ) ↪→ Sol(D · πf ).

It follows from the Cauchy–Kovalevski theorem ([Hör90, 9.4.5]) that the order
of Lf is equal to the rank of its solution space; and it is a well-known fact that
H1(X,Z) � Z2g if X is a compact Riemann surface of genus g, so Sol(D · πf ) has
rank 2g(Xt) by Theorem 3.5. Thus, if Lf has order 2g, Sol(D/Lf ) has rank 2g, and
so the cokernel of Sol(D/Lf ) ↪→ Sol(D · πf ) has finite support. In particular, in a
small punctured disk around any singular point of D ·πf the two local systems will
be equal. �

It is in general very expensive to compute Lf and πf , even with the latest
technology (see [Lai14]). However, in the cases where we have computed the Picard–
Fuchs operators of (generic) MMLPs (e.g., for all the 10 smoothable Fano polygons
and the 26 classes with singularity content (k, {n× 1

3 (1, 1)})), one indeed gets the
order 2·gmut(YP ) and Lf captures the monodromy at zero. It is not an unreasonable
conjecture that this is true in general.

Recall from the Introduction the ramification of a local system. The ramification
of Sol(D · πf ) is invariant under mutation (as f is). This quantity appears linked
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to the degree of Lf and the shape of P = Newt(f) in the following way. Suppose
P has singularity content (k, {n × 1

3 (1, 1)}) (n may be zero, which is the smooth
case), let f be a standard MMLP with Newt(f) = P , and let Lf be the associated
Picard–Fuchs operator. There are 10 smooth such P ’s and 26 with 1

3 (1, 1) cones,
and all 36 of these satisfy the following:

(1) the degree of Lf is equal to n2 + 5n+ 3 + 2(n+ 1) rf(Lf ),
(2) the ramification index rf(Lf ) is equal to n+keff−3, where keff is the number

of multiple points on the curve f = 0, and
(3) when f is a standard MMLP, the number keff is equal to the smallest number

of edges among the polygons mutation-equivalent to P .

The number keff here is equal to k for generic MMLP’s, and it drops by one
whenever two T -cones (that can be mutated to be) on the same edge of P have the
same associated factor (a+ bx) in f . Thus the minimal case is the standard MMLP
case where this is just the number of edges. We should also point out that we do not
know how to generalise the formula for the degree to more complicated singularity
baskets; the only method available to us at present—compute many examples and
make educated guesses—is not feasible when considering “large” singularity baskets,
as the relevant computations become too expensive (even for B = {2 × 1

5 (1, 1)}
the computation is infeasible). Presumably there exists a combinatorially derived
formula for the degree, but this has so far eluded us.

Example 5.3. The computations are expensive, as noted above, and the output
is very large and not particularly enlightening, so we’ll show only the simplest few
examples here. The simplest smooth Fano polygon is the one with vertices (0, 1),
(1, 0), and (−1,−1), with singularity content (3,∅): the standard MMLP is x+y+ 1

xy

and Lf is ∇2− 27t3(∇+1)(∇+2) (as before, ∇ = t∂t); this has ramification index
zero, degree 3, and order 2. The second simplest smooth Fano polygon is the one
with vertices (0, 1), (1, 0), (−1,−1), and (1, 1), with singularity content (4,∅); here
the standard MMLP is x + y + 1

xy + xy and Lf is 8∇2 + t∇(17∇ − 1) − t2(5∇ +

8)(11∇+8)−12t3(30∇2+78∇+47)−4t4(∇+1)(103∇+147)−99t5(∇+1)(∇+2)
(this has ramification index 1, order 2, and degree 5); there is no way to mutate
this polygon into one with three vertices.

The nonequivalent polygons from Example 5.1 had 3 and 4 vertices, respectively;
their Picard–Fuchs operators have, respectively, order 4, degree 9, and ramification
zero; and order 4, degree 13, and ramification one.

We are now in the apparent situation that we can distinguish nonequivalent Fano
polygons by either the minimal number of edges in their mutation class (which we
can currently bound from above, but not prove minimality of) or the ramification
of the Picard–Fuchs operators (which is easy to compute given Lf ). This motivates
Conjecture 1.4 from the Introduction.
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