Noncommutative Auslander theorem
HTML articles powered by AMS MathViewer
- by Y.-H. Bao, J.-W. He and J. J. Zhang PDF
- Trans. Amer. Math. Soc. 370 (2018), 8613-8638 Request permission
Abstract:
In the 1960s Maurice Auslander proved the following important result. Let $R$ be the commutative polynomial ring $\mathbb {C}[x_1,\dots ,x_n]$, and let $G$ be a finite small subgroup of $\textrm {GL}_n(\mathbb {C})$ acting on $R$ naturally. Let $A$ be the fixed subring $R^G:=\{a\in R|g(a)=a \text { for all } g\in G \}$. Then the endomorphism ring of the right $A$-module $R_A$ is naturally isomorphic to the skew group algebra $R\ast G$. In this paper, a version of the Auslander theorem is proven for the following classes of noncommutative algebras: (a) noetherian PI local (or connected graded) algebras of finite injective dimension, (b) universal enveloping algebras of finite-dimensional Lie algebras, and (c) noetherian graded down-up algebras.References
- K. Ajitabh, S. P. Smith, and J. J. Zhang, Auslander-Gorenstein rings, Comm. Algebra 26 (1998), no. 7, 2159–2180. MR 1626582, DOI 10.1080/00927879808826267
- K. Ajitabh, S. P. Smith, and J. J. Zhang, Injective resolutions of some regular rings, J. Pure Appl. Algebra 140 (1999), no. 1, 1–21. MR 1700566, DOI 10.1016/S0022-4049(99)00049-3
- J. Alev and M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), no. 6, 1787–1802 (French). MR 1162608, DOI 10.1080/00927879208824431
- M. Artin, L. W. Small, and J. J. Zhang, Generic flatness for strongly Noetherian algebras, J. Algebra 221 (1999), no. 2, 579–610. MR 1728399, DOI 10.1006/jabr.1999.7997
- Maurice Auslander, On the purity of the branch locus, Amer. J. Math. 84 (1962), 116–125. MR 137733, DOI 10.2307/2372807
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI 10.1090/S0002-9947-1986-0816307-7
- Y.-H. Bao, J.-W. He, and J. J. Zhang, Pertinency of Hopf actions and quotient categories of Cohen-Macaulay algebras, J. Noncommut. Geom, to appear, arXiv:1603.02346.
- Jason Bell and James J. Zhang, Zariski cancellation problem for noncommutative algebras, Selecta Math. (N.S.) 23 (2017), no. 3, 1709–1737. MR 3663593, DOI 10.1007/s00029-017-0317-7
- Georgia Benkart and Tom Roby, Down-up algebras, J. Algebra 209 (1998), no. 1, 305–344. MR 1652138, DOI 10.1006/jabr.1998.7511
- K. Chan, E. Kirkman, C. Walton, and J. J. Zhang, McKay correspondence for semisimple Hopf actions on regular graded algebras, Part I, J. Algebra., to appear, arXiv:1607.06977.
- K. Chan, E. Kirkman, C. Walton, and J. J. Zhang, McKay correspondence for semisimple Hopf actions on regular graded algebras, Part II, J. Noncommut. Geom., to appear, arXiv:1610.01220.
- K. Chan, C. Walton, Y. H. Wang, and J. J. Zhang, Hopf actions on filtered regular algebras, J. Algebra 397 (2014), 68–90. MR 3119216, DOI 10.1016/j.jalgebra.2013.09.002
- J. Chen, E. Kirkman, and J. J. Zhang, Rigidity of down-up algebras with respect to finite group coactions, J. Pure Appl. Algebra 221 (2017), no. 12, 3089–3103. MR 3666738, DOI 10.1016/j.jpaa.2017.02.015
- J. Chen, E. Kirkman, and J. J. Zhang, Auslander Theorem for group coactions on noetherian graded down-up algebras, preprint, 2017, arXiv:1801.09020.
- J. Gaddis, E. Kirkman, W.F. Moore, and R. Won, Auslander’s Theorem for permutation actions on noncommutative algebras, preprint, 2017, arXiv:1705.00068.
- Ji-Wei He, Fred Van Oystaeyen, and Yinhuo Zhang, Hopf dense Galois extensions with applications, J. Algebra 476 (2017), 134–160. MR 3608147, DOI 10.1016/j.jalgebra.2016.12.014
- Osamu Iyama and Ryo Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann. 356 (2013), no. 3, 1065–1105. MR 3063907, DOI 10.1007/s00208-012-0842-9
- N. Jacobson, A note on Lie algebras of characteristic $p$, Amer. J. Math. 74 (1952), 357–359. MR 47026, DOI 10.2307/2372000
- Naihuan Jing and James J. Zhang, On the trace of graded automorphisms, J. Algebra 189 (1997), no. 2, 353–376. MR 1438180, DOI 10.1006/jabr.1996.6896
- E. Kirkman, Private communication, 2015.
- Ellen Kirkman and James Kuzmanovich, Fixed subrings of Noetherian graded regular rings, J. Algebra 288 (2005), no. 2, 463–484. MR 2146140, DOI 10.1016/j.jalgebra.2005.01.024
- E. Kirkman, J. Kuzmanovich, and J. J. Zhang, Invariant theory of finite group actions on down-up algebras, Transform. Groups 20 (2015), no. 1, 113–165. MR 3317798, DOI 10.1007/s00031-014-9279-4
- E. Kirkman, J. Kuzmanovich, and J. J. Zhang, Invariants of $(-1)$-skew polynomial rings under permutation representations, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Contemp. Math., vol. 623, Amer. Math. Soc., Providence, RI, 2014, pp. 155–192. MR 3288627, DOI 10.1090/conm/623/12463
- E. Kirkman, J. Kuzmanovich, and J. J. Zhang, Rigidity of graded regular algebras, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6331–6369. MR 2434290, DOI 10.1090/S0002-9947-08-04571-6
- E. Kirkman, J. Kuzmanovich, and J. J. Zhang, Noncommutative complete intersections, J. Algebra 429 (2015), 253–286. MR 3320624, DOI 10.1016/j.jalgebra.2014.12.046
- Ellen Kirkman, Ian M. Musson, and D. S. Passman, Noetherian down-up algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3161–3167. MR 1610796, DOI 10.1090/S0002-9939-99-04926-6
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Izuru Mori, McKay-type correspondence for AS-regular algebras, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 97–117. MR 3092260, DOI 10.1112/jlms/jdt005
- Izuru Mori and Kenta Ueyama, Ample group action on AS-regular algebras and noncommutative graded isolated singularities, Trans. Amer. Math. Soc. 368 (2016), no. 10, 7359–7383. MR 3471094, DOI 10.1090/tran/6580
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- J. T. Stafford and J. J. Zhang, Homological properties of (graded) Noetherian $\textrm {PI}$ rings, J. Algebra 168 (1994), no. 3, 988–1026. MR 1293638, DOI 10.1006/jabr.1994.1267
- Kenta Ueyama, Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities, J. Algebra 383 (2013), 85–103. MR 3037969, DOI 10.1016/j.jalgebra.2013.02.022
- Amnon Yekutieli and James J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), no. 1, 1–51. MR 1674648, DOI 10.1006/jabr.1998.7657
- James J. Zhang, Connected graded Gorenstein algebras with enough normal elements, J. Algebra 189 (1997), no. 2, 390–405. MR 1438182, DOI 10.1006/jabr.1996.6885
- J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (3) 72 (1996), no. 2, 281–311. MR 1367080, DOI 10.1112/plms/s3-72.2.281
Additional Information
- Y.-H. Bao
- Affiliation: School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
- MR Author ID: 873632
- Email: baoyh@ahu.edu.cn
- J.-W. He
- Affiliation: Department of Mathematics, Hangzhou Normal University, Hangzhou Zhejiang 310036, People’s Republic of China
- MR Author ID: 710882
- Email: jwhe@hznu.edu.cn
- J. J. Zhang
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): August 15, 2016
- Received by editor(s) in revised form: May 20, 2017
- Published electronically: June 26, 2018
- Additional Notes: The first and second authors were supported by NSFC (grant Nos. 11571239, 11671351 and 11401001). The third author was supported by the US National Science Foundation (grant Nos. DMS-1402863 and DMS-1700825 ).
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8613-8638
- MSC (2010): Primary 16E65, 16E10
- DOI: https://doi.org/10.1090/tran/7332
- MathSciNet review: 3864389